STEP-UP DCIDC CONVERTER FOR OLED BACK LIGHT with SHUTDOWN FUNCTION

NO.EA-192-170925

OUTLINE

R1200x series are CMOS-based control type step-up DC/DC converter with low supply current ICs. Each of these ICs consists of a Nch MOSFET, NPN transistor, an oscillator, PWM comparator, a voltage reference unit, an error amplifier, a current limit circuit, an under voltage lockout circuit (UVLO), an over voltage protection circuit (OVP), and a soft start circuit. As the external components, an inductor, resistances or capacitors are necessary to make a constant output voltage of step-up DC/DC converter with the R1200x. At standby mode, the NPN transistor can separate the output from the input. During the situation of that, there are two versions. R1200xxxxA: the output of Vout is generated to 0 V by the low resistance (with the auto discharge function). R1200xxxxB does not generate the output of Vout (without the auto discharge function).

The soft-start time (Typ. 1.5ms) and the maximum duty cycle (Typ. 91\%) are set internally. For the protection functions of R1200x series are the current limit function of the Lx peak current, the OVP function for detection the over voltage of output and the UVLO function for protective miss-operation by the low voltage. (The threshold of OVP is selectable from $17 \mathrm{~V}, 19 \mathrm{~V}$ or 21 V .)

Since the packages for these ICs are DFN1616-6, DFN(PLP)1820-6, SOT-23-6 and WLCSP-6-P1, therefore high density mounting of the ICs on boards is possible.

FEATURES

- Supply Current
Typ. $500 \mu \mathrm{~A}$
- Standby Current
Max. $3 \mu \mathrm{~A}$
- Input Voltage Range
2.3V to 5.5 V
- Feedback Voltage
1.0V (Externally adjustable)
- Feedback Voltage Accuracy.
$\pm 1.5 \%$
- Temperature-Drift Coefficient of Feedback Voltage $\pm 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Oscillator Frequency
Typ. 1.2MHz
- Maximum Duty Cycle
Typ. 91\%
- Switch ON Resistance ..Typ. 1.35Ω
- UVLO Detector Threshold...Typ. 2.0V
- Soft-start Time...Typ. 1.5ms
- Lx Current Limit Protection ...Typ. 700mA
- OVP Detector Threshold17V, 19V, 21V
- Switching Control..PWM
- Built-in a rectifier NPN transistor, at standby mode, complete shutdown is possible.
- Built-in Auto discharge function....................................A version
- Packages ..DFN1616-6, DFN(PLP)1820-6, SOT-23-6, WLCSP-6-P1
- Ceramic capacitors are recommended........................ $1 \mu \mathrm{~F}$

APPLICATION

- OLED power supply for portable equipment
- White LED Backlight for portable equipment

R1200Z (WLCSP-6-P1) is the discontinued product as of September 2017.
R1200K (DFN(PLP)1820-6) is the non- promotional product as of March 2019.

R1200x

NO.EA-192-170925

SELECTION GUIDE

The OVP threshold voltage, auto discharge function, and the package for the ICs can be selected at the user's request.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R1200Zxxx*-E2-F	WLCSP-6-P1	5,000 pcs	Yes	Yes
R1200Lxxx*-TR	DFN1616-6	$5,000 \mathrm{pcs}$	Yes	Yes
R1200Kxxx*-TR	DFN(PLP)1820-6	5,000 pcs	Yes	Yes
R1200Nxxx*-TR-FE	SOT-23-6	$3,000 \mathrm{pcs}$	Yes	Yes

xxx : Designation of OVP detector threshold
(001) 17V threshold of OVP
(002) 19V threshold of OVP
(003) 21V threshold of OVP

* : The auto discharge function at off state are options as follows.
(A) with auto discharge function at off state
(B) without auto discharge function at off state

NO.EA-192-170925

BLOCK DIAGRAMS

R1200xxxxB

R1200x
NO.EA-192-170925

PIN DESCRIPTIONS

- WLCSP-6-P1

Pin No	Symbol	Pin Description
1	Lx	Switching Pin (Open Drain Output)
2	VIn 2	Power Supply Input Pin
3	VFB $^{\text {FB }}$	Feedback Pin
4	CE	Chip Enable Pin ("H" Active)
5	Vout	Output Pin
6	GND	Ground Pin

- DFN1616-6, DFN(PLP)1820-6

Pin No	Symbol	Pin Description
1	CE	Chip Enable Pin ("H" Active)
2	$\mathrm{~V}_{\text {FB }}$	Feedback Pin
3	Lx	Switching Pin (Open Drain Output)
4	GND	Ground Pin
5	VDD 2	Input Pin
6	Vout	Output Pin

[^0]- SOT-23-6

Pin No	Symbol	Pin Description
1	CE	Chip Enable Pin ("H" Active)
2	Vout	Output Pin
3	VDD	Input Pin
4	Lx	Switching Pin (Open Drain Output)
5	GND	Ground Pin
6	$V_{\text {FB }}$	Feedback Pin

R1200Z (WLCSP-6-P1) is the discontinued product as of September 2017. R1200K (DFN(PLP)1820-6) is the non- promotional product as of March 2019.
R1200x
NO.EA-192-170925

ABSOLUTE MAXIMUM RATINGS

(GND=0V)

Symbol	Item			Rating	Unit
Vin	Vin Pin Voltage			-0.3 to 6.5	V
Vce	CE Pin Voltage			-0.3 to Vin+0.3	V
$V_{\text {FB }}$	VFb Pin Voltage			-0.3 to $\mathrm{V}_{\text {In }}+0.3$	V
Vout	Vout Pin Voltage			-0.3 to 25.0	V
VLx	Lx Pin Voltage			-0.3 to 25.0	V
ILx	Lx Pin Current			1000	mA
PD	Power Dissipation*	Standard Test Land Pattern	WLCSP-6-P1	633	mW
		JEDEC STD. 51-7 Test Land Pattern	DFN1616-6	2400	
			DFN(PLP)1820-6	2200	
			SOT-23-6	660	
Tj	Junction Temperature Range			-40 to 125	${ }^{\circ} \mathrm{C}$
Tstg	Storage Temperature Range			-55 to 125	${ }^{\circ} \mathrm{C}$

*) For Power Dissipation, please refer to POWER DISSIPATION.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS

Symbol	Item	Rating	Unit
$\mathrm{V}_{\mathbb{N}}$	Input Voltage	2.3 to 5.5	V
Ta	Operating Temperature Range	-40 to 85	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such ratings by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

\author{

- R1200x
}
$\mathrm{Ta}=25^{\circ} \mathrm{C}$

Symbol	Item	Conditions		Min.	Typ.	Max.	Unit
IdD	Supply Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0 \mathrm{~V}$, Lx at no load			0.5	1.0	mA
Istandby	Standby Current	$\mathrm{V}_{\text {In }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {ce }}=0 \mathrm{~V}$			0	3.0	$\mu \mathrm{A}$
Vuvloi	UVLO Detector Threshold	Vin falling		1.9	2.0	2.1	V
Vuvloz	UVLO Released Voltage	Vin rising			$\begin{aligned} & \text { VuvLo1 } \\ & +0.10 \end{aligned}$	2.25	V
$\mathrm{V}_{\text {ceh }}$	CE Input Voltage " H "	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$		1.5			V
Vcel	CE Input Voltage "L"	$\mathrm{V}_{\mathrm{IN}}=2.3 \mathrm{~V}$				0.5	V
Rce	CE Pull Down Resistance	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$		600	1200	2200	k Ω
$V_{\text {Fb }}$	$V_{\text {fb }}$ Voltage Accuracy	$\mathrm{V}_{\mathrm{IN}=}=3.6 \mathrm{~V}$		0.985	1.0	1.015	V
$\begin{gathered} \Delta \mathrm{V}_{\mathrm{FB}} / \\ \Delta \mathrm{Ta} \end{gathered}$	$V_{\text {FB }}$ Voltage Temperature Coefficient	Vin $=3.6 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 85^{\circ} \mathrm{C}$			± 150		${ }_{1^{\circ} \mathrm{C}}^{\mathrm{p}}$
Ifb	VFB Input Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=0 \mathrm{~V}$ or 5.5 V		-0.1		0.1	$\mu \mathrm{A}$
tstart	Soft-start Time	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$			1.5		ms
Ron	Switch ON Resistance	$\mathrm{V}_{\mathrm{I}=}=3.6 \mathrm{~V}$, $\mathrm{Isw}=100 \mathrm{~mA}$			1.35		Ω
Itxleak	Switch Leakage Current				0	3.0	$\mu \mathrm{A}$
ILxim	Switch Current Limit	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$		400	700	1000	mA
VNpN	NPN Vce Voltage	$\mathrm{I}_{\mathrm{NPN}=}=100 \mathrm{~mA}$			0.8		V
Inpnoff1	NPN Leakage Current 1	Vout $=23 \mathrm{~V}$				10	$\mu \mathrm{A}$
InpnofF2	NPN Leakage Current 2	Vout $=0 \mathrm{~V}, \mathrm{~V}$ Lx $=5.5 \mathrm{~V}$				3.0	$\mu \mathrm{A}$
fosc	Oscillator Frequency	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {Fb }}=0 \mathrm{~V}$		1.0	1.2	1.4	MHz
Maxduty	Maximum Duty Cycle	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {Fb }}=0 \mathrm{~V}$		86	91		\%
Vovp1	OVP Detector Threshold	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V},$ Vout rising	R1200x001x	16	17	18	V
			R1200x002x	18	19	20	
			R1200x003x	20	21	22	
Vovp2	OVP Released Voltage	$\mathrm{V}_{\text {In }}=3.6 \mathrm{~V}$, Vout falling			$\begin{aligned} & \hline \text { Vovp1 } \\ & -1.1 \end{aligned}$		V
Idischg	Vout Discharge Current	$\mathrm{V}_{\text {In }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {out }}=0.1 \mathrm{~V}$	R1200xxxxA		0.7		mA
Ivout	OVP Sense Current	$\mathrm{V}_{\text {In }}=3.6 \mathrm{~V}$, Vout=23V			6.0		$\mu \mathrm{A}$

R1200x

NO.EA-192-170925

OPERATING DESCRIPTIONS

Operation of Step-Up DCIDC Converter and Output Current

<Current through L>

There are two operation modes of the step-up PWM control-DC/DC converter. That is the continuous mode and discontinuous mode by the continuousness inductor.
When the transistor turns ON, the voltage of inductor L becomes equal to Vin voltage. The increase value of inductor current (i1) will be

$$
\Delta i 1=V_{\mathrm{IN}} \times \text { ton } / \mathrm{L}
$$

Formula 1

As the step-up circuit, during the OFF time (when the transistor turns OFF) the voltage is continually supply from the power supply. The decrease value of inductor current (i2) will be

$$
\Delta i 2=\left(V_{\text {out }}-V_{\text {IN }}\right) \times \text { topen } / L
$$

At the PWM control-method, the inductor current become continuously when topen=toff, the DC/DC converter operate as the continuous mode.

In the continuous mode, the variation of current of i1 and i2 is same at regular condition.

$$
\text { VIN } \times \text { ton } / L=(\text { Vout }- \text { VIn }) \times \text { toff } / L
$$

The duty at continuous mode will be

$$
\text { duty }(\%)=\text { ton } /(\text { ton }+ \text { toff })=(\text { Vout - Vin }) / \text { Vout.. Formula } 4
$$

The average of inductor current at $\mathrm{tf}=$ toff will be

If the input voltage $=$ output voltage, the lout will be

$$
\begin{aligned}
& \text { lout }=\mathrm{V}_{\text {IN }}{ }^{2} \times \text { ton } /(2 \times \mathrm{L} \times \text { Vout }) \\
& \text { Formula } 6
\end{aligned}
$$

If the lout value is large than above the calculated value (Formula 6), it will become the continuous mode, at this status, the peak current (ILmax) of inductor will be

$$
\begin{aligned}
& \text { ILmax }=\text { lout } \times \text { Vout } / \mathrm{V}_{\text {IN }}+\mathrm{V}_{\text {IN }} \times \text { ton } /(2 \times \mathrm{L}) \\
& \text { ILmax }=\text { lout } \times \text { Vout } / \mathrm{V}_{\text {IN }}+\mathrm{V}_{\text {IN }} \times \mathrm{T} \times(\text { Vout }-\mathrm{V} \text { IN }) /\left(2 \times \mathrm{L} \times \mathrm{V}_{\text {out }}\right)
\end{aligned}
$$

The peak current value is larger than the lout value. In case of this, selecting the condition of the input and the output and the external components by considering of ILmax value.
The explanation above is based on the ideal calculation, and the loss caused by Lxswitch and the external components are not included.
The actual maximum output current will be between 50% and 80% by the above calculations. Especially, when the IL is large or $V_{\text {IN }}$ is low, the loss of $V_{I N}$ is generated with on resistance of the switch. Moreover, it is necessary to consider V_{f} of the diode (approximately 0.8 V) about Vout.

R1200x

NO.EA-192-170925

- Shutdown

- At standby mode, the output is completely separated from the input and shutdown by the NPN transistor of internal IC. However, the leakage current is generated when the Lx pin voltage is equal or more than Vin pin voltage at standby mode.
- R1200xxxxA (with auto discharge function): In the term of standby mode, the switch is turned ON between Vout to GND and the Vout capacitor is discharged.
- R1200xxxxB (without auto discharge function): The built-in switch for discharge does not turn on, but the OVP sense resistors between Vout and GND exists as same as A version.
- However, the both version (A/B) has the OVP sense resistance (4 to $5 \mathrm{M} \Omega$) between Vout and GND (refer to OVP sense current (Ivout) on ELECTRICAL CHARACTERISTICS table) and the current flows through from Vout to GND.

APPLICATION INFORMATION

- Typical Applications

- Selection of Inductors

The peak current of the inductor at normal mode can be estimated as the next formula when the efficiency is 80\%.

```
ILmax \(=1.25 \times\) lout \(\times\) Vout \(/ \operatorname{Vin}+0.5 \times \operatorname{Vin} \times(\) Vout \(-\operatorname{Vin}) /(L \times V\) Vout x fosc \()\)
```

In the case of start-up or dimming control by CE pin, inductor transient current flows, and the peak current of it must be equal or less than the current limit of the IC. The peak current should not beyond the rated current of the inductor.
The recommended inductance value is $4.7 \mu \mathrm{H}-22 \mu \mathrm{H}$.

Table 1 Peak current value in each condition

Condition				
V In $\left.^{4} \mathrm{~V}\right)$	Vout (V)	Iout (mA)	$\mathrm{L}(\mu \mathrm{H})$	ILmax (mA)
3	14	20	10	215
3	14	20	22	160
3	21	20	10	280
3	21	20	22	225

Table 2 Recommended inductors

L $(\mu \mathrm{H})$	Part No.	Rated Current (mA)	Size (mm)
10	LQH32CN100K53	450	$3.2 \times 2.5 \times 1.55$
10	LQH2MC100K02	225	$2.0 \times 1.6 \times 0.9$
10	VLF3010A-100	490	$2.8 \times 2.6 \times 0.9$
10	VLS252010-100	520	$2.5 \times 2.0 \times 1.0$
22	LQH32CN220K53	250	$3.2 \times 2.5 \times 1.55$
22	LQH2MC220K02	185	$2.0 \times 1.6 \times 0.9$
22	VLF3010A-220	330	$2.8 \times 2.6 \times 0.9$
4.7	LQH32CN4R7M53	650	$3.2 \times 2.5 \times 1.55$

- Selection of Capacitors

Set $1 \mu \mathrm{~F}$ or more value bypass capacitor C 1 between V_{I} pin and GND pin as close as possible.
Set $1 \mu \mathrm{~F}-4.7 \mu \mathrm{~F}$ or more capacitor C 2 between Vout and GND pin.
Table 3 Recommended components

	Rated voltage(V)	Part No.
C1	6.3	CM105B105K06
C2	25	GRM21BR11E105K
C3	25	22 pF
R1		For Vout Setting
R2		For Vout Setting
R3		$2 \mathrm{k} \Omega$

- External Components Setting

- If the spike noise of Vout may be large, the spike noise may be picked into V_{FB} pin and make the operation unstable. In this case, use a R3 of the resistance value in the range from $1 \mathrm{k} \Omega$ to $5 \mathrm{k} \Omega$ to reduce a noise level of $V_{\text {fb }}$.

- The Method of Output Voltage Setting

- The output voltage can be calculated with divider resistors (R1 and R2) values as the following formula:

$$
\text { Output Voltage }=V_{F B} \times(R 1+R 2) / R 1
$$

- The total value of R1 and R2 should be equal or less than 300 k . Make the Vin and GND line sufficient. The large current flows through the VIN and GND line due to the switching. If this impedance (VIN and GND line) is high, the internal voltage of the IC may shift by the switching current, and the operating may become unstable. Moreover, when the built-in Lx switch is turn OFF, the spike noise caused by the inductor may be generated. As a result of this, recommendation voltage rating of capacitor (C2) value is equal 1.5 times larger or more than the setting output voltage.

R1200x

NO.EA-192-170925

TECHNICAL NOTES

- Current Path on PCB

The current paths in an application circuit are shown in Fig. 1 and 2.
A current flows through the paths shown in Fig. 1 at the time of MOSFET-ON, and shown in Fig. 2 at the time of MOSFET-OFF. In the paths pointed with red arrows in Fig. 2, current flows just in MOSFET-ON period or just in MOSFET-OFF period. Parasitic impedance/inductance and the capacitance of these paths influence stability of the system and cause noise outbreak. So please minimize this side effect. In addition, please shorten the wiring of other current paths shown in Fig. 1 and 2 except for the paths of LED load.

- Layout Guide for PCB

- Please shorten the wiring of the input capacitor (C1) between Vin pin and GND pin of IC. The GND pin should be connected to the strong GND plane.
- The area of $L x$ land pattern should be smaller.
- Please put output capacitor (C2) close to the Vout pin.
- Please make the GND side of output capacitor (C2) close to the GND pin of IC.

Fig. 1 MOSFET-ON

Fig. 2
MOSFET-OFF

- PCB Layout

- PKG: DFN1616-6pin

R1200L Typical Board Layout

Topside	Backside
 GND L1 CE VIN	

- PKG:DFN(PLP)1820-6pin

R1200K Typical Board Layout

Topside \quad Backside

R1200x

NO.EA-192-170925

- PKG:SOT-23-6pin

R1200N Typical Board Layout

TYPICAL CHARACTERISTICS

1) Output Voltage vs. Output Current ($\mathrm{L}=22 \mu \mathrm{H}$)

R1200x

R1200x

2) Efficiency vs. Output Current

R1200x
$\mathrm{V}_{11}=3.6 \mathrm{~V}$ Set Vout $=15 \mathrm{~V}$

R1200x

R1200x

R1200x
$V_{1 N}=3.6 \mathrm{~V}$ Set Vout $=15 \mathrm{~V}$

R1200Z (WLCSP-6-P1) is the discontinued product as of September 2017. R1200K (DFN(PLP)1820-6) is the non- promotional product as of March 2019.

R1200x
NO.EA-192-170925

R1200x

3) OVP Sense Current vs. Temperature R1200x

R1200x
$\mathrm{L}=22 \mu \mathrm{H}$ Set Vout=9V

R1200x

4) Supply Current vs. Temperature R1200x

5) CE Pulldown Resistance vs. Temperature R1200x

7) CE Input Voltage "H" vs. Temperature R1200x

9) Vfb Voltage vs. Temperature R1200x

6) CE Input Voltage "L" vs. Temperature

8) NPN Vce Voltage vs. Temperature R1200x

10) UVLO Detect / Released Voltage vs. Temperature R1200x

11) Oscillator Frequency vs. Temperature R1200x

12) Maxduty vs. Temperature R1200x

13) OVP Detect / Released Voltage vs. Temperature

14) Soft-start Time vs. Temperature R1200x

15) Vout Discharge Current vs. Temperature R1200x

16) Lx Limit Current vs. Temperature R1200x

17) Switch ON Resistance vs. Temperature R1200x

18) Load Transient Response ($\mathrm{V} \mathrm{IN}=3.6 \mathrm{~V}$, Iout $=5 \mathrm{~mA} \leftrightarrow 25 \mathrm{~mA}, \mathrm{tr}=\mathrm{tf}=0.5 \mu \mathrm{~s}$)

19) Start-up Waveform (Vin=3.6V, lout=20mA)

R1200x

R1200x003A

R1200Z (WLCSP-6-P1) is the discontinued product as of September 2017.
R1200K (DFN(PLP)1820-6) is the non- promotional product as of March 2019.
R1200x
NO.EA-192-170925
20) Shut-down Waveform ($\mathrm{V}_{\mathrm{in}}=3.6 \mathrm{~V}$, lout $=20 \mathrm{~mA}$)

R1200x003A

21) OVP Waveform ($\mathrm{V}_{\mathrm{FB}=}=0 \mathrm{~V}$)

R1200x001A

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.

Measurement Conditions

	Standard Test Land Pattern
Environment	Mounting on Board (Wind Velocity $=0 \mathrm{~m} / \mathrm{s}$)
Board Material	Glass Cloth Epoxy Plastic (Double-Sided Board)
Board Dimensions	$40 \mathrm{~mm} \times 40 \mathrm{~mm} \times 1.6 \mathrm{~mm}$
Copper Ratio	Top Side: Approx. 50%
Bottom Side: Approx. 50%	
Through-holes	-

Measurement Result
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Tjmax}=125^{\circ} \mathrm{C}\right)$

	Standard Test Land Pattern
Power Dissipation	633 mW
Thermal Resistance	$\theta \mathrm{ja}=\left(125-25^{\circ} \mathrm{C}\right) / 0.633 \mathrm{~W}=158^{\circ} \mathrm{C} / \mathrm{W}$

Power Dissipation vs. Ambient Temperature

IC Mount Area (mm)

Measurement Board Pattern

WLCSP-6-P1 Package Dimensions (Unit: mm)

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.

Measurement Conditions

Item	Measurement Conditions (JEDEC STD. 51-7)
Environment	Mounting on Board (Wind Velocity $=0 \mathrm{~m} / \mathrm{s}$)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	$76.2 \mathrm{~mm} \times 114.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$
Copper Ratio	1st Layer: Less than 95% of 50 mm Square Through-holes

Measurement Result
($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Tjmax}=125^{\circ} \mathrm{C}$)

Item	Measurement Result
Power Dissipation	2400 mW
Thermal Resistance (日ja)	$\theta \mathrm{ja}=41^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Characterization Parameter ($\psi \mathrm{jt}$)	$\psi \mathrm{jt}=11^{\circ} \mathrm{C} / \mathrm{W}$

$\theta \mathrm{ja}$: Junction-to-ambient thermal resistance.
$\psi j \mathrm{j}:$ Junction-to-top of package thermal characterization parameter.

DFN1616-6 Package Dimensions (Unit: mm)

* The tab on the bottom of the package shown by blue circle is a substrate potential (GND). It is recommended that this tab be connected to the ground plane on the board but it is possible to leave the tab floating.

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.

Measurement Conditions

Item	Measurement Conditions (JEDEC STD. 51-7)
Environment	Mounting on Board (Wind Velocity $=0 \mathrm{~m} / \mathrm{s}$)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	$76.2 \mathrm{~mm} \times 114.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$
Copper Ratio	1st Layer: Less than 95% of 50 mm Square
Through-holes	2nd, 3rd, 4th Layers: Approx. 100% of 50 mm Square

Measurement Result
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Tjmax}=125^{\circ} \mathrm{C}\right)$

Item	Measurement Result
Power Dissipation	2200 mW
Thermal Resistance ($\theta \mathrm{ja}$)	$\theta \mathrm{ja}=45^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Characterization Parameter ($\psi \mathrm{j} \mathrm{t})$	$\psi \mathrm{jt}=18^{\circ} \mathrm{C} / \mathrm{W}$

θ ja: Junction-to-ambient thermal resistance.
$\psi j \mathrm{j}$: Junction-to-top of package thermal characterization parameter.

DFN(PLP)1820-6 Package Dimensions (Unit: mm)

* The tab on the bottom of the package is substrate level (GND). It is recommended that the tab be connected to the ground plane on the board, or otherwise be left floating.

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.

Measurement Conditions

Item	Measurement Conditions (JEDEC STD. 51-7)
Environment	Mounting on Board (Wind Velocity $=0 \mathrm{~m} / \mathrm{s}$)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	$76.2 \mathrm{~mm} \times 114.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$
Copper Ratio	1st Layer : Less than 95% of 50 mm Square
Through-holes	2nd, 3rd, 4th Layers: Approx. 100% of 50 mm Square
$0.3 \mathrm{~mm} \times 7 \mathrm{pcs}$	

Measurement Result
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Tjmax}=125^{\circ} \mathrm{C}\right)$

Item	Measurement Result
Power Dissipation	660 mW
Thermal Resistance ($\theta \mathrm{ja}$)	$\theta \mathrm{ja}=150^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Characterization Parameter ($\psi \mathrm{j} \mathrm{t})$	$\psi \mathrm{jt}=51^{\circ} \mathrm{C} / \mathrm{W}$

өja: Junction-to-ambient thermal resistance.
ψj t: Junction-to-top of package thermal characterization parameter

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

SOT-23-6 Package Dimensions

1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
7. Anti-radiation design is not implemented in the products described in this document.
8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.
Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

https://www.e-devices.ricoh.co.jp/en/

Sales \& Support Offices

Ricoh Electronic Devices Co., Ltd.
Shin-Yokohama Office (International Sales)
2-3, Shin-Yokohama 3-chome, Kohoku-ku, Yokohama-shi, Kanagawa, 222-8530, Japan Phone: +81-50-3814-7687 Fax: +81-45-474-0074
Ricoh Americas Holdings, Inc.
675 Campbell Technology Parkway, Suite 200 Campbell, CA 95008, U.S.A.
Phone: $+1-408-610-3105$
Ricoh Europe (Netherlands) B.V.
Semiconductor Support Centre
Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands
Phone: +31-20-5474-309
Ricoh International B.V. - German Branch
Semiconductor Sales and Support Centre
Oberrather Strasse 6, 40472 Düsseldorf, Germany
Phone: +49-211-6546-0
Ricoh Electronic Devices Korea Co., Ltd. 3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea Phone: +82-2-2135-5700 Fax: +82-2-2051-5713
Ricoh Electronic Devices Shanghai Co., Ltd.

Ricoh Electronic Devices Shanghai Co., Ltd.
Shenzhen Branch
1205, Block D(Jinlong Building), Kingkey 100, Hongbao Road, Luohu District
Shenzhen, China
Ricoh Electronic Devices Co., Ltd.
Taipei office
Room 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Ricoh Electronics:
R1200N003A-TR-FE R1200N001A-TR-FE R1200N002A-TR-FE R1200L003A-TR R1200L001A-TR R1200L001BTR R1200L002A-TR R1200N001B-TR-FE R1200N002B-TR-FE R1200N003B-TR-FE

[^0]: *) Tab is GND level. (They are connected to the reverse side of this IC.)
 The tab is better to be connected to the GND, but leaving it open is also acceptable.

