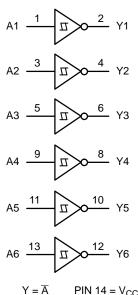
Hex Schmitt-Trigger Inverter with LSTTL Compatible Inputs

High–Performance Silicon–Gate CMOS


The MC74HCT14A may be used as a level converter for interfacing TTL or NMOS outputs to high–speed CMOS inputs.

The HCT14A is useful to "square up" slow input rise and fall times. Due to the hysteresis voltage of the Schmitt trigger, the HCT14A finds applications in noisy environments.

Features

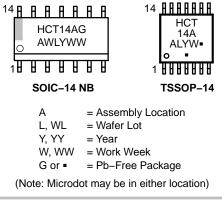
- Output Drive Capability: 10 LSTTL Loads
- TTL/NMOS-Compatible Input Levels
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 4.5 to 5.5 V
- Low Input Current: 1.0 μA
- In Compliance With the JEDEC Standard No. 7.0 A Requirements
- Chip Complexity: 72 FETs or 18 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

LOGIC DIAGRAM

PIN 7 = GND

ON Semiconductor®

http://onsemi.com


D SUFFIX CASE 751A

TSSOP-14 DT SUFFIX CASE 948G

PIN ASSIGNMENT

A1 [1●		l v _{cc}
Y1 [2	13] A6
A2 [12	D Y6
Y2 [4	11] A5
A3 [5	10] Y5
Y3 [6	9] A4
GND [7	8] Y4

MARKING DIAGRAMS

FUNCTION TABLE

Input A	Output Y
L	Н
н	L

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MAXIMUM RATINGS

Symbol	F	Parameter	Value	Unit
V _{CC}	DC Supply Voltage	(Referenced to GND)	-0.5 to +7.0	V
VI	DC Input Voltage	(Referenced to GND)	–0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	(Referenced to GND)	–0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current		±20	mA
I _{OK}	DC Output Diode Current		±25	mA
Ι _Ο	DC Output Sink Current		±25	mA
I _{CC}	DC Supply Current per Supply Pin		±50	mA
I _{GND}	DC Ground Current per Ground Pin		±50	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
ΤL	Lead Temperature, 1 mm from Case for	or 10 Seconds	260	°C
ТJ	Junction Temperature under Bias		+150	°C
θ_{JA}	Thermal Resistance	SOIC TSSOP	125 170	°C/W
PD	Power Dissipation in Still Air at 85°C	SOIC TSSOP	500 450	mW
MSL	Moisture Sensitivity		Level 1	
F_{R}	Flammability Rating	Oxygen Index: 30% – 35%	UL 94 V–0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 1) Machine Model (Note 2) Charged Device Model (Note 3)	> 4000 > 300 > 1000	V
I _{Latchup}	Latchup Performance	Above V_{CC} and Below GND at 85°C (Note 4)	±300	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Tested to EIA/JESD22–A114–A.

2. Tested to EIA/JESD22-A115-A.

3. Tested to JESD22-C101-A.

4. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V _{CC}	DC Supply Voltage (Referenced	to GND)	4.5	5.5	V
V _I , V _O	DC Input Voltage, Output Voltage (Referenced	to GND)	0	V _{CC}	V
T _A	Operating Temperature, All Package Types		-55	+125	°C
t _r , t _f	Input Rise and Fall Time (Figure 1)		-	(Note 5)	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. 5. No Limit when $V_I \approx 50\% V_{CC}$, $I_{CC} > 1 \text{ mA}$.

6. Unused inputs may not be left open. All inputs must be tied to a high-logic voltage level or a low-logic input voltage level.

				Temperature Limit						
			V _{cc}	−55°C	to 25°C	≤8	5°C	≤12	25°C	1
Symbol	Parameter	Test Conditions	Volts	Min	Max	Min	Max	Min	Max	Unit
V _{T+} max	Maximum Positive–Going Input Threshold Voltage	$\begin{array}{l} V_{O} = 0.1 \ V \ or \ V_{CC} - 0.1 \ V \\ I_{out} \leq 20 \ \mu A \end{array} \end{array} \label{eq:VC}$	4.5 5.5		1.9 2.1		1.9 2.1		1.9 2.1	V
V_{T+} min	Minimum Positive–Going Input Threshold Voltage	$\begin{array}{l} V_{O}=0.1 \ V \ or \ V_{CC}-0.1 \ V \\ I_{out} \leq 20 \ \mu A \end{array} \end{array} \label{eq:VC}$	4.5 5.5	1.2 1.4		1.2 1.4		1.2 1.4		V
V _{T-} max	Maximum Negative–Going Input Threshold Voltage	$\begin{array}{l} V_{O}=0.1 \ V \ or \ V_{CC}-0.1 \ V \\ I_{out} \leq 20 \ \mu A \end{array} \end{array} \label{eq:VC}$	4.5 5.5		1.2 1.4		1.2 1.4		1.2 1.4	
$V_{T-}min$	Minimum Negative–Going Input Threshold Voltage	$\begin{array}{l} V_{O}=0.1 \ V \ or \ V_{CC}-0.1 \ V \\ I_{out} \leq 20 \ \mu A \end{array} \end{array} \label{eq:VC}$	4.5 5.5	0.5 0.6		0.5 0.6		0.5 0.6		
V _H max	Maximum Hysteresis Voltage	$\begin{array}{l} V_{O}=0.1 \ V \ or \ V_{CC}-0.1 \ V \\ I_{out} \leq 20 \ \mu A \end{array} \end{array} \label{eq:VC}$	4.5 5.5		1.4 1.5		1.4 1.5		1.4 1.5	
V _H min	Minimum Hysteresis Voltage	$\begin{array}{l} V_{O}=0.1 \ V \ or \ V_{CC}-0.1 \ V \\ I_{out} \leq 20 \ \mu A \end{array} \end{array} \label{eq:VC}$	4.5 5.5	0.4 0.4		0.4 0.4		0.4 0 4		
V _{OH}	Minimum High–Level Output Voltage	V _I < V _T _ min I _{out} ≤ 20 μA	4.5 5.5	4.4 5.4		4.4 5.4		4.4 5.4		V
		$V_{I} < V_{T-}$ min $ I_{out} \le 4.0$ mA	4.5	3.98		3.84		3.7		
V _{OL}	Maximum Low–Level Output Voltage	$V_{I} \ge V_{T+} \max_{ I_{out} \le 20 \ \mu A}$	4.5 5.5		0.1 0.1		0.1 0.1		0.1 0.1	V
		$V_{I} \ge V_{T+} max$ $ I_{out} \le 4.0 mA$	4.5		0.26		0.33		0.4	
Ι _{ΙΚ}	Maximum Input Leakage Current	$V_{I} = V_{CC}$ or GND	5.5		±0.1		±1.0		±1.0	μA
I _{CC}	Maximum Quiescent Supply Current (per package)	$V_I = V_{CC}$ or GND $I_{out} = 0 \ \mu A$	5.5		1.0		10		40	μΑ
				≥ − 55°C 25°C		C to 12	5°C			
ΔI_{CC}	Additional Quiescent Supply Current	$V_I = 2.4 V$, Any One Input $V_I = V_{CC}$ or GND, Other Inputs $I_{out} = 0 \mu A$	5.5		2.9			2.4		mA

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC CHARACTERISTICS ($C_L = 50 \text{ pF}$; Input $t_r = t_f = 6.0 \text{ ns}$)

				Guaranteed Limit						
				−55°C	to 25°C	≤8	5°C	≤12	25°C	
Symbol	Parameter	Test Conditions	Figures	Min	Max	Min	Max	Min	Мах	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input A to Output Y (L to H)	$V_{CC} = 5.0 \text{ V} \pm 10\%$ $C_L = 50 \text{ pF}$, Input $t_r = t_f = 6.0 \text{ ns}$	1 & 2		32		40		48	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output	$V_{CC} = 5.0 \text{ V} \pm 10\%$ $C_L = 50 \text{ pF}$, Input $t_r = t_f = 6.0 \text{ ns}$	1&2		15		19		22	ns
		•	·	Typical @ 25°C, V _{CC} = 5.0 V			•			

		Typical @ 25°C, V _{CC} = 5.0 V		ĺ
C _{PD}	Power Dissipation Capacitance, per Inverter (Note 7)	32	pF	
	determine the net lead dynamic network constructions $\mathbf{D} = \mathbf{C} + \frac{1}{2} \mathbf{C}$			

7. Used to determine the no–load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$.

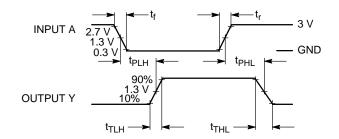
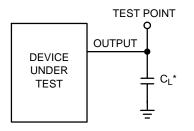
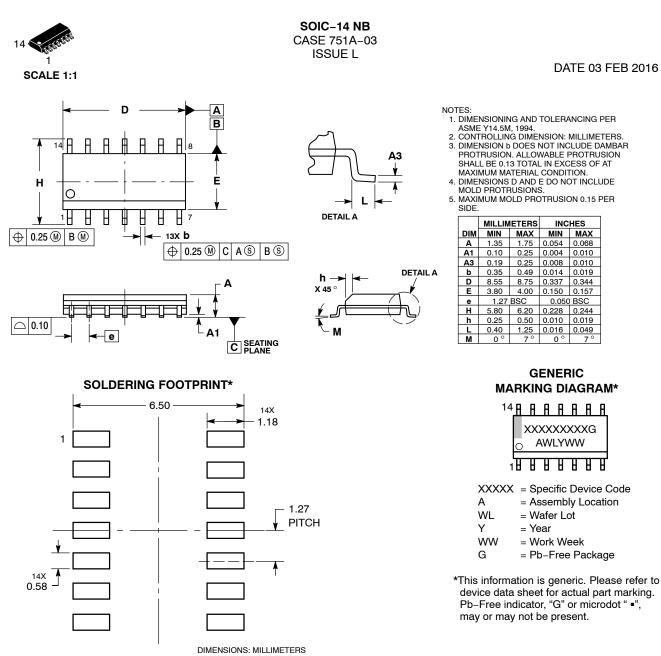



Figure 1. Switching Waveforms

*Includes all probe and jig capacitance.

Figure 2. Test Circuit


ORDERING INFORMATION

Device	Package	Shipping [†]
MC74HCT14ADG	SOIC-14 NB	55 Units / Rail
NLV74HCT14ADG*	(Pb-Free)	55 Units / Rail
MC74HCT14ADR2G	SOIC-14 NB	2500 / Tana & Real
NLV74HCT14ADR2G*	(Pb–Free)	2500 / Tape & Reel
MC74HCT14ADTR2G	TSSOP-14	2500 / Tape & Reel
NLV74HCT14ADTR2G*	(Pb-Free)	

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

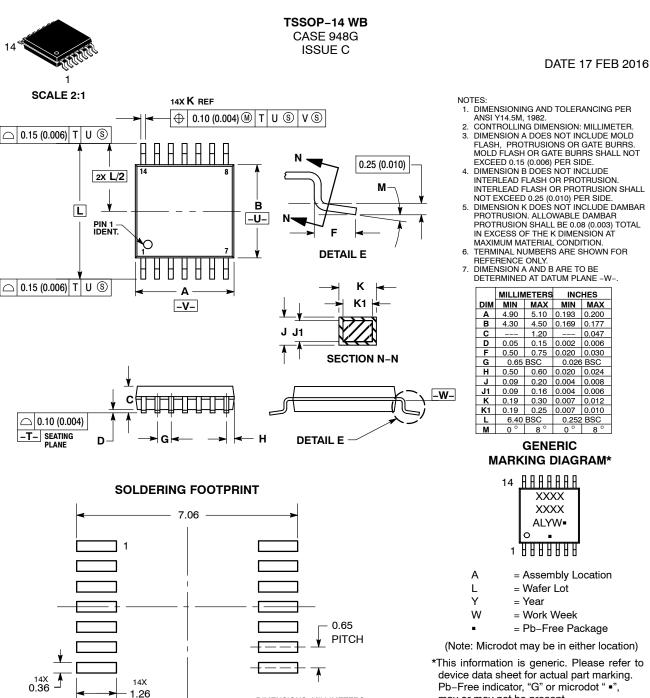
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-14 NB		PAGE 1 OF 2		
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product o ncidental damages. ON Semiconductor does not convey any license under	or guarantee regarding or circuit, and specifically		

SOIC-14 CASE 751A-03 ISSUE L


DATE 03 FEB 2016

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED (
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2			
ON Semiconductor and image trademarks of Semiconductor Components Industries LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries						

ON Semiconductor and united states and/or other countries. LC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

may or may not be present.

DOCUMENT NUMBER:	98ASH70246A	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TSSOP-14 WB		PAGE 1 OF 1		
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or icidental damages. ON Semiconductor does not convey any license under	or guarantee regarding r circuit, and specifically		

DIMENSIONS: MILLIMETERS

© Semiconductor Components Industries, LLC, 2019

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

MC74HCT14AD MC74HCT14ADG MC74HCT14ADR2 MC74HCT14ADR2G MC74HCT14ADTR2 MC74HCT14ADTR2G MC74HCT14AFEL MC74HCT14AFELG MC74HCT14AN MC74HCT14ANG NLV74HCT14ADG NLV74HCT14ADR2G NLV74HCT14ADTR2G NLVHCT14ADR2G