

www.vishay.com

2.5 Ω , High Bandwidth, Dual SPDT Analog Switch

DESCRIPTION

DG2517E is low-voltage dual single-pole double-throw monolithic CMOS analog switches. Designed to operate from 1.8 V to 5.5 V power supply, the DG2517E achieves a bandwidth of 221 MHz while providing low on-resistance (2.5 Ω), excellent on-resistance matching (0.3Ω) and flatness (1Ω) over the entire signal range.

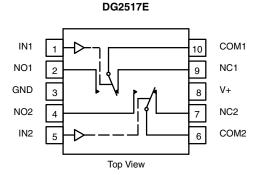
The DG2517E offers the advantage of high linearity that reduces signal distortion, making ideal for audio, video, and USB signal routing applications.

Built on Vishay Siliconix's proprietary sub-micron high-density process, the DG2517E brings low power consumption at the same time as reduces PCB spacing with the MSOP10 and DFN10 packages.

As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations. The DFN package has a nickel-palladium-gold device termination and is represented by the lead (Pb)-free "-GE4" suffix. The MSOP package uses 100 % matte Tin device termination and is represented by the lead (Pb)- free "-GE3" suffix. Both the matte Tin and nickel-palladium-gold device terminations meet all JEDEC® standards for reflow and MSL ratings.

FEATURES

- 1.8 V to 5.5 V single supply operation
- Low R_{ON}: 2.5 Ω at 4.5 V
- 221 MHz, -3 dB bandwidth
- Low off-isolation, -58 dB at 1 MHz
- +1.6 V logic compatible
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912


BENEFITS

- High linearity
- Low power consumption
- · High bandwidth
- Full rail signal swing range

APPLICATIONS

- USB / UART signal switching
- Audio / video switching
- · Cellular phone
- Media players
- Modems
- Hard drives
- PCMCIA

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE						
LOGIC	LOGIC NC1 AND NC2 NO1 AND NO2					
0	ON	OFF				
1	OFF	ON				

ORDERING INFORMATION							
TEMP. RANGE	TEMP. RANGE PACKAGE PART NUMBER						
-40 °C to 85 °C	MSOP-10	DG2517EDQ-T1-GE3					
	DFN-10	DG2517EDN-T1-GE4					

ABSOLUTE MAXIMUM RATINGS						
PARAMETER		LIMIT	UNIT			
Reference to GND						
V+		-0.3 to +6	V			
IN, COM, NC, NO a		-0.3 to (V+ + 0.3)				
Continuous current (any terminal)		± 50	mA			
Peak current (pulsed at 1 ms, 10 % dut	y cycle)	± 200	MA			
Storage temperature (D suffix)		-65 to +150	°C			
Down discipation (pooks and b	MSOP-10 °	320	mW			
Power dissipation (packages) b	DFN-10 ^d	1191	IIIVV			
ESD / HBM	EIA / JESD22-A114-A	7.5k	V			
ESD / CDM	EIA / JESD22-C101-A	1.5k	V			
Latch up JESD78		300	mA			

Notes

- a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings
- b. All leads welded or soldered to PC board
- c. Derate 4 mW/°C above 70 °C
- d. Derate 14.9 mW/°C above 70 °C

Vishay Siliconix

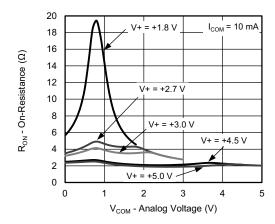
SPECIFICATIONS (V+ =	, , , , , , , , , , , , , , , , , , ,	TEST CONDITIONS		TEMP.	LIMITS			l
PARAMETER	SYMBOL	OTHERWISE UNLESS SPECIF $V+ = 3 V, \pm 10 \%, V_{INL} = 0.4 V, V_{INH}$		а	-40 MIN. ^c	-40 °C to +85 °C MIN. c TYP. b MAX. c		UNIT
Analog Switch		The state of the s	1.0.		IVIIIV.	IIIF.	IVIAA.	
Analog signal range d	V _{ANALOG}			Full	0	_	V+	V
, maiog orginal range	ANALOG			Room	-	7	11	
		$V+ = 1.8 \text{ V}, V_{NC/NO} = 0.4 \text{ V} / V+, I_{NC/NO} = 8 \text{ mA}$		Full	-	-	13	
Drain-source on-resistance	R _{DS(on)}			Room	-	4.6	5.5	
		$V+ = 2.7 \text{ V}, V_{COM} = 0.8 \text{ V} / 1.8 \text{ V}, I_{COM}$	_M = 10 mA	Full	-	-	6.5	
0 11	. 5			Room	-	0.02	0.3	Ω
On-resistance matching	$\Delta R_{DS(on)}$	V+ = 2.7 V, V _{COM} = 0.8 V / 1.4 V /	′ 1.8 V.	Full	-	-	0.6	
0	-	$I_{COM} = 10 \text{ mA}$,,	Room	-	0.62	1	
On-resistance flatness d, f	R _{flat(on)}			Full	-	-	1.5	
0.11110		V+ = 3.6 V, V _{NC/NO} = 1 V / 3.2	2 V.	Room	-1	0.01	1	
Off leakage current ^g	INC/NO(off)	$V_{COM} = 3.2 \text{ V} / 1 \text{ V}$,	Full	-5	-	5	^
Channel-on leakage		V: -26V V -V -1V	/22V	Room	-1	0.01	1	nA
current ^g	ICOM(on)	$V+ = 3.6 \text{ V}, V_{COM} = V_{NC/NO} = 1 \text{ V} / 3.2 \text{ V}$		Full	-5	-	5	
Digital Control								
Input current ^d	I_{INL} or I_{INH}			Full	-1	-	1	μΑ
Input high voltage ^d	V_{INH}			Full	1.5	-	ı	V
Input low voltage ^d	V_{INL}			Full	ı	-	0.4	V
Digital input capacitance d	C_{IN}			Room	ı	3	-	pF
Dynamic Characteristics								
Turn-on time	tou			Room	-	19	45	
Turri ori time	t _{ON}			Full	ı	-	50	
Turn-off time		$V_{NC/NO} = 3 \text{ V}, C_1 = 35 \text{ pf}, R_1 = 3$	800 O	Room	-	9	35	ns
Turr on time	t _{OFF}	VNC/NO = 0 V, OL = 00 pi, TiL = 0	22 000	Full	-	-	45	113
Break-before-make time d	t _{BBM}			Room	4	11	-	
Break Belefe make time	PDIVI			Full	3	-	-	
Charge injection ^d	Q_{INJ}	C _L = 1 nF, V _{gen} = 1.5 V, R _{gen} = 0	0 Ω	Room	-	-9	-	рС
Bandwidth ^d	BW	C _L = 5 pF (set up capacitano	e)	Room	-	226	-	MHz
Off-isolation d	OIRR	$R_1 = 50 \Omega, C_1 = 5 pF$	= 1 MHz	Room	-	-55	-	
On isolation	Ollill	f =	= 10 MHz	Room	-	-42	-	dB
Channel-to-channel crosstalk d	X _{TALK}	B ₁ = 50 O C ₁ = 5 pF	= 1 MHz	Room	-	-61	-	
Chamber to chamber crosstalk	MALK	f =	= 10 MHz	Room	-	-44	-	
NO, NC off capacitance d	$C_{NO(off)}$	V+ = 2.7 V, f = 1 MHz		Room	-	7	-	
NO, NO OII Capacitance	$C_{NC(off)}$			Room	-	7	-	pF
Channel-on capacitance d	C _{NO(on)}			Room	-	23	-	
Chamillor on oupdollarioc	C _{NC(on)}			Room	-	23	-	
Power Supply								
Power supply range	V+				2.7	-	3.3	V
Power supply current d	I+	$V+ = 2.7 \text{ V}, V_{IN} = 0 \text{ V or } 2.7 \text{ V}$		Full	-	-	1	μΑ

Notes

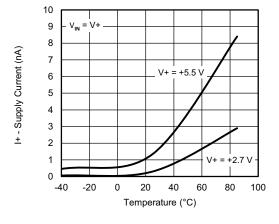
- a. Room = 25 °C, Full = as determined by the operating suffix
- b. Typical values are for design aid only, not guaranteed nor subject to production testing
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet
- d. Guarantee by design, not subjected to production test
- e. $V_{IN} = V + voltage$ to perform proper function
- f. Crosstalk measured between channels
- g. Guarantee by 5 V testing

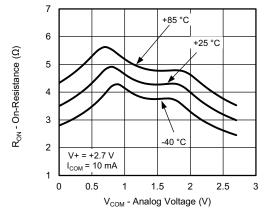
Vishay Siliconix

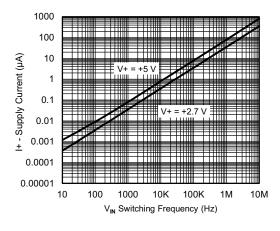
PARAMETER	SYMBOL	TEST CONDITIONS OTHERWISE UNLESS SPECIFIED		TEMP.	LIMITS -40 °C to +85 °C			UNIT
		$V+ = 5 V, \pm 10 \%, V_{INL} = 0.5 V, V_{INL} = 0.5 V$		а	MIN. c	TYP. b	MAX. c	J. .
Analog Switch								
Analog signal ranged	V _{ANALOG}			Full	0	-	V+	V
Drain-source on-resistance	D	V+ = 4.5 V, V _{COM} = 0.8 V / 3.5 V; I _{COM} = 10 mA		Room	-	2.5	3.1	
Diam-source on-resistance	R _{DS(on)}	V+ = 4.5 V, VCOM = 0.8 V / 3.5 V, IC	COM - TO THA	Full	-	-	4	
On-resistance matching	$\Delta R_{DS(on)}$				-	0.01	0.4	Ω
	21 (DS(0H)	$V+ = 4.5 \text{ V}, V_{COM} = 0.8 \text{ V} / 2.5$	V / 3.5 V,	Full	-	-	0.6	
On-resistance flatness d, f	R _{flat(on)}	$I_{COM} = 10 \text{ mA}$		Room	-	0.61	1	
	··liat(on)			Full	-	-	1.5	
Off leakage current ^g	I _{NC/NO(off)}	$V + = 5.5 \text{ V}, V_{NC/NO} = 1 \text{ V} /$	4.5 V,	Room	-2	0.15	2	
	140/140(011)	V _{COM} = 4.5 V / 1 V		Full	-10	-	10	nA
Channel-on leakage current ^g	I _{COM(on)}	$V+ = 5.5 \text{ V}, V_{COM} = V_{NC/NO} = 1$	I V / 4.5 V	Room	-2	0.20	2] '"`
				Full	-10	-	10	
De code alledon d		$V+ = 0 \text{ V}, V_{COM} = 5.5 \text{ V}, NC/N$		Full	-	0.01	5	μΑ
Power down leakage ^d	I _{PD}	$V+ = 0 V$, $V_{NC/NO} = 5.5 V$, COM , open		Full	-	0.01	3	mA
Digital Control								
Input current ^d	I _{INL} or I _{INH}			Full	-1	-	1	μΑ
Input high voltage ^d	V_{INH}			Full	2	-	-	V
Input low voltage d	V_{INL}			Full	-	-	0.5	V
Digital input capacitance d	C _{IN}			Room	-	3	-	pF
Dynamic Characteristics								
Turn-on time	t _{ON}			Room	-	13	40	
Turr or time	UN			Full	=	-	43	
Turn-off time	t _{OFF}	$V_{NC/NO} = 3 \text{ V, } C_1 = 35 \text{ pf, } R_1$	- 300 O	Room	-	7	33	ns
Turr on time	OFF	VNC/NO = 0 V, OL = 00 β1; 11L	- 000 12	Full	-	-	35	
Break-before-make time d	t _{BBM}			Room	3	6	-	
	*BBIVI			Full	2	-	-	
Propagation delay d	tpd	$V+ = 5 V$, no R_L		Room	-	380	-	ps
Charge injection d	Q_{INJ}	$C_L = 1 \text{ nF}, V_{gen} = 2.5 \text{ V}, R_{ge}$		Room	-	-19.4	-	рC
Bandwidth ^d	BW	C _L = 5 pF (set up capacita	ance)	Room	-	221	-	MHz
Off-isolation d	OIRR	$R_1 = 50 \Omega, C_1 = 5 pF$	f = 1 MHz	Room	-	-58	-	1
		, -	f = 10 MHz	Room	-	-43	-	dB
Channel-to-channel	X _{TALK}	$R_1 = 50 \Omega, C_1 = 5 pF$	f = 1 MHz	Room	-	-62	-	
crosstalk ^d		2 / - 2 - 1	f = 10 MHz	Room	-	-47	-	
NO, NC off capacitance d	C _{NO(off)}	V+ = 5 V, f = 1 MHz		Room	-	7	-	
	C _{NC(off)}			Room	-	7	-	pF
Channel-on capacitance d	C _{NO(on)}			Room		23	-	
·	C _{NC(on)}			Room		23		
Power Supply	.,			l e	l 4-	ı	l	
Power supply range	V+			- "	4.5	<u> </u>	5.5	V
Power supply current d	l+	$V+ = 5.5 V$, $V_{IN} = 0$ or $5.5 V$		Full	-	-	1	μΑ

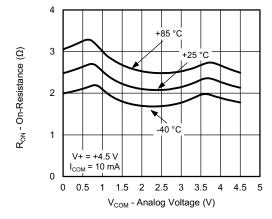

Notes

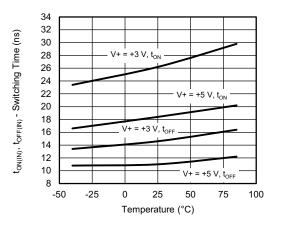
- a. Room = 25 °C, Full = as determined by the operating suffix
- b. Typical values are for design aid only, not guaranteed nor subject to production testing
- c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet
- d. Guarantee by design, not subjected to production test
- e. V_{IN} = input voltage to perform proper function
- f. Difference of min and max values
- g. Guaranteed by 5 V testing.


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

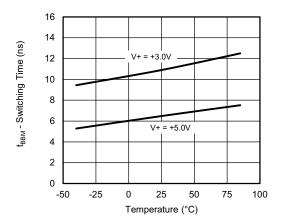

TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

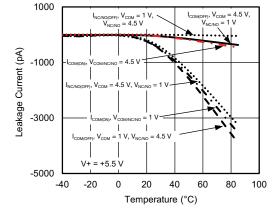

R_{ON} vs. V_{COM} and Single Supply Voltage

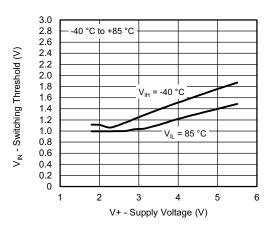

Supply Current vs. Temperature

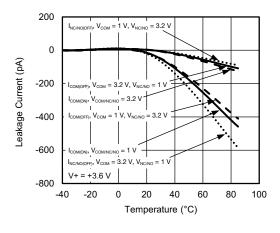

R_{ON} vs. Analog Voltage and Temperature

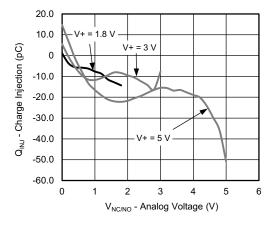
Positive Supply Current vs. Switching Frequency

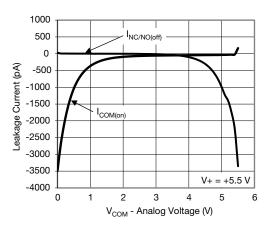

R_{ON} vs. Analog Voltage and Temperature


Switching Time vs. Temperature


TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)


Switching Time vs. Temperature

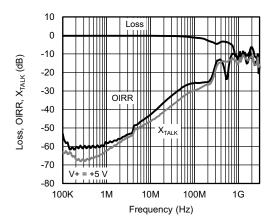

Leakage Current vs. Temperature


Switching Threshold vs. Supply Voltage

Leakage Current vs. Temperature

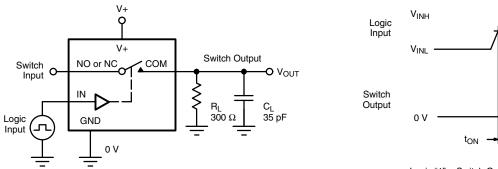
Charge Injection vs. Source Voltage

Leakage Current vs. Analog Voltage


 $t_r < 5 \text{ ns}$

 $t_f < 5 \text{ ns}$

0.9 x V_{OUT}



TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

Loss, OIRR, X_{TALK} vs. Frequency

TEST CIRCUITS

 \mathbf{C}_{L} (includes fixture and stray capacitance)

$$\boldsymbol{V}_{OUT} = \boldsymbol{V}_{COM} \left(\frac{\boldsymbol{R}_{L}}{\boldsymbol{R}_{L} + \boldsymbol{R}_{ON}} \right)$$

Logic "1" = Switch On Logic input waveforms inverted for switches that have the opposite logic sense.

50 %

Fig. 1 - Switching Time

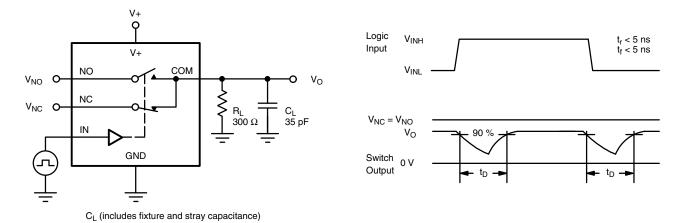


Fig. 2 - Break-Before-Make Interval

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

TEST CIRCUITS

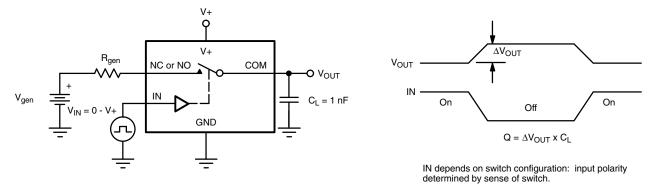


Fig. 3 - Charge Injection

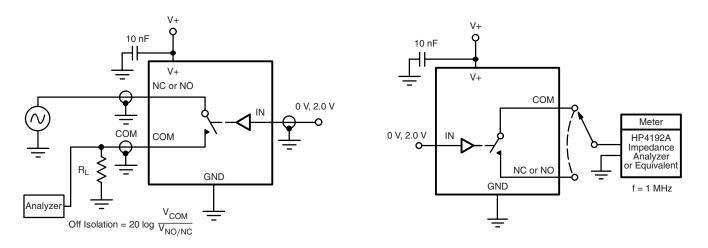
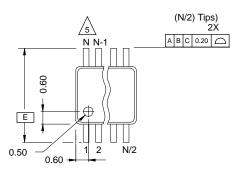


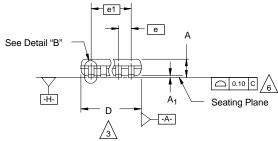
Fig. 4 - Off-Isolation

Fig. 5 - Channel Off/On Capacitance

Fig. 6 - Source / Drain Power Down Leakage

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg274518.






MSOP: 10-LEADS

JEDEC Part Number: MO-187, (Variation AA and BA)

Top View

NOTES:

. Die thickness allowable is 0.203 ± 0.0127.

2. Dimensioning and tolerances per ANSI.Y14.5M-1994.

3.

Dimensions "D" and "E $_1$ " do not include mold flash or protrusions, and are measured at Datum plane $\boxed{-H_2}$, mold flash or protrusions shall not exceed 0.15 mm per side.

Dimension is the length of terminal for soldering to a substrate.

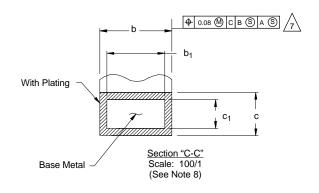
Terminal positions are shown for reference only.

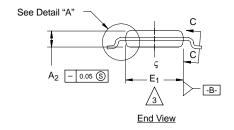
Formed leads shall be planar with respect to one another within 0.10 mm at seating plane.

The lead width dimension does not include Dambar protrusion. Allowable Dambar protrusion shall be 0.08 mm total in excess of the lead width dimension at maximum material condition. Dambar cannot be located on the lower radius or the lead foot. Minimum space between protrusions and an adjacent lead to be 0.14 mm. See detail "B" and Section "C-C".

Section "C-C" to be determined at 0.10 mm to 0.25 mm from the lead tip.

9. Controlling dimension: millimeters.

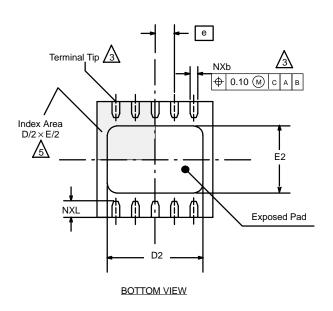

10. This part is compliant with JEDEC registration MO-187, variation AA and BA.

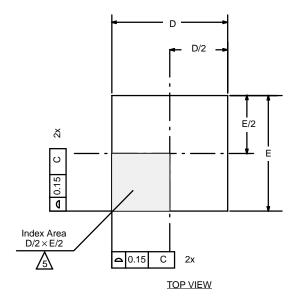


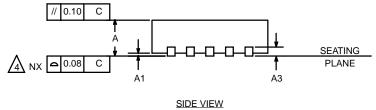
Datums —A— and —B— to be determined Datum plane —H—.

2 Exposed pad area in bottom side is the same as teh leadframe pad size.

N = 10L


	MILLIMETERS					
Dim	Min	Nom	Max	Note		
Α	-	- 1.10				
A ₁	0.05	0.10	0.15			
A ₂	0.75	0.85	0.95			
b	0.17	-	0.27	8		
b ₁	0.17	0.17 0.20 0.23		8		
С	0.13	0.13 - 0.23				
c ₁	0.13 0.15		0.18			
D		3				
Е		4.90 BSC				
E ₁	2.90	3.00	3.10	3		
е		0.50 BSC				
e ₁		2.00 BSC				
L	0.40	0.55	0.70	4		
N		5				
œ	0°	4°	6°			
ECN: T-02080—Rev. C, 15-Jul-02 DWG: 5867						


Document Number: 71245


12-Jul-02

DFN-10 LEAD (3 X 3)

NOTES:

1. All dimensions are in millimeters and inches.

N is the total number of terminals.

Dimension b applies to metallized terminal and is measured between 0.15 and 0.30 mm from terminal tip. $\,$

Coplanarity applies to the exposed heat sink slug as well as the

The pin #1 identifier may be either a mold or marked feature, it must be located within the zone iindicated.

	МІ	LLIMETE	RS				
Dim	Min	Nom	Max	Min	Nom	Max	
Α	0.80	0.90	1.00	0.031	0.035	0.039	
A 1	0.00	0.00 0.02 0.05 0.000		0.000	0.001	0.002	
А3		0.20 BSC		0.008 BSC			
b	0.18 0.23 0.30 0.007 0.009					0.012	
D		3.00 BSC		0.118 BSC			
D2	2.20	2.20 2.38 2.48 0.087 (0.098	
Е		3.00 BSC		0.118 BSC			
E2	1.49	1.64	1.74	0.059	0.065	0.069	
е	0.50 BSC				0.020 BSC		
L	0.30	0.40	0.50	0.012	0.016	0.020	
*Use millimeters as the primary measurement.							
ECN: S-42134—Rev. A, 29-Nov-04							

DWG: 5943

Document Number: 73181 www.vishay.com 29-Nov-04

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

DG2517EDQ-T1-GE3 DG2517EDN-T1-GE4