High Power LED Series Chip Scale Package

LH181A

Use of Samsung's Chip Scale Package technology provide high performance and energy conserving

Features \& Benefits

- Utilizes Samsung TF chip technology
- Suitable for use in indoor and outdoor lighting
- Compact footprint ($1.91 \times 1.91 \mathrm{~mm}$)

Applications

- Indoor Lighting: Spotlight, Downlight, MR, PAR
- Outdoor Lighting: Street Light, Tunnel Light, Security Light, Parking Lot Light
- Industrial Lighting: High Bay Light, Low Bay Light
- Consumer Lighting: Torch Light

SNMSUNG

Table of Contents

1. Characteristics 3
2. Product Code Information 5
3. Typical Characteristics Graphs 14
4. Outline Drawing \& Dimension 16
5. Reliability Test Items \& Conditions 17
6. Soldering Conditions 18
7. Tape \& Reel 19
8. Label Structure 21
9. Packing Structure 22
10. Precautions in Handling \& Use 24
11. Characteristics
a) Absolute Maximum Rating

Item	Symbol	Rating	Unit	Condition
Ambient / Operating Temperature	Ta	$-40 \sim+105$	${ }^{\circ} \mathrm{C}$	Note 1)
Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-40 \sim+125$	${ }^{\circ} \mathrm{C}$	-
LED Junction Temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$	-
Forward Current	IF	1500	mA	-
Peak Pulse Forward Current	Ifp	2000	mA	Duty $1 / 10$ pulse width 10 ms
Assembly Process Temperature	-	$\begin{aligned} & 260 \\ & <10 \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ \mathrm{~s} \end{gathered}$	-
ESD (HBM)	-	± 2	kV	-

Note:

1) Refer to the derating curve, '3. Typical Characteristics Graph', for proper driving current that maintained below maximum junction temperature.
b) Electro-optical Characteristics

Item	Unit	Nominal CCT (K)	Condition		Value
			$\mathrm{IF}(\mathrm{mA})$	$\mathrm{T}_{\mathrm{j}}\left({ }^{\circ} \mathrm{C}\right)$	Typ.
Luminous Flux ($\Phi_{\text {v }}$)	Im	$\begin{gathered} 5000 \\ (70 \mathrm{CRI}) \end{gathered}$	350	25	172
			350	85	160
			700	85	290
			1000	85	383
			1500	85	489
Forward Voltage (V_{F})	V		350	25	2.92
			350	85	2.82
			700	85	2.97
			1000	85	3.08
			1500	85	3.15
Thermal Resistance (junction to solder point)	${ }^{\circ} \mathrm{C} / \mathrm{W}$				3
Beam Angle	\bigcirc				140

Note:

Samsung maintains measurement tolerance of: luminous flux $= \pm 7 \%$, forward voltage $= \pm 0.1 \mathrm{~V}$
2. Product Code Information

$\mathbf{1}$	$\underline{2}$	$\underline{3}$	4	5	$\underline{6}$	$\underline{7}$	$\underline{8}$	$\underline{9}$	$\underline{10}$	$\underline{11}$	$\underline{12}$	13	14	15	16	17	18
S C	P	$\mathbf{7}$	R	T	F	1	H	P	L	A	R	T	M	3	4	E	

a) Luminous Flux Bins and Characteristics ($\mathrm{IF}=350 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=85^{\circ} \mathrm{C}$)

$\begin{gathered} \mathrm{CRI}\left(\mathrm{R}_{\mathrm{a}}\right) \\ \mathrm{Min} .^{1)} \end{gathered}$	Nominal CCT (K)	Product Code	Sorting @ 350 mA (1m)		Calculated Minimum Flux ${ }^{2}$ (Im)	
			Flux Rank	Flux Range ${ }^{\text {1) }}$	@ 700 mA	@ 1000 mA
	2700	SCP7WTF1HPLAW0J34E	M1	140 ~ 150	257	339
			K1	$130 \sim 140$	238	315
			$J 1$	120 ~ 130	220	291
	3000	SCP7VTF1HPLAV0K34E	N1	150 ~ 160	275	363
			M1	140 ~ 150	257	339
			K1	$130 \sim 140$	238	315
	3500	SCP7UTF1HPLAU0K34E	N1	150 ~ 160	275	363
			M1	$140 \sim 150$	257	339
			K1	$130 \sim 140$	238	315
	4000	SCP7TTF1HPLATOM34E	P1	$160 \sim 170$	293	388
70			N1	150 ~ 160	275	363
			M1	140~150	257	339
	5000	SCP7RTF1HPLARTM34E	P1	160 ~ 170	293	388
			N1	150 ~ 160	275	363
			M1	140~150	257	339
	5700	SCP7QTF1HPLAQTM34E	P1	160 ~ 170	293	388
			N1	$150 \sim 160$	275	363
			M1	140 ~ 150	257	339
	6500	SCP7PTF1HPLAPTM34E	P1	160 ~ 170	293	388
			N1	$150 \sim 160$	275	363
			M1	140 ~ 150	257	339

Notes:

1) Samsung maintains measurement tolerance of: luminous flux $= \pm 7 \%, \mathrm{CRI}= \pm 3$
2) Calculated minimum and maximum flux values are for reference only
a) Luminous Flux Bins and Characteristics ($\mathrm{IF}_{\mathrm{F}}=350 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=85^{\circ} \mathrm{C}$)

$\begin{aligned} & \text { CRI }\left(R_{\mathrm{a}}\right) \\ & \text { Min. } \left.{ }^{1}\right) \end{aligned}$	Nominal CCT (K)	Product Code	Sorting @ 350 mA (1m)		Calculated Minimum Flux ${ }^{2}$ ((Im)	
			Flux Rank	Flux Range ${ }^{\text {1) }}$	@ 700 mA	@ 1000 mA
	2700	SCP8WTF1HPLAW0J34E	M1	140 ~ 150	257	339
			K1	$130 \sim 140$	238	315
			J1	120 ~ 130	220	291
	3000	SCP8VTF1HPLAVOK34E	N1	$150 \sim 160$	275	363
			M1	140 ~ 150	257	339
			K1	$130 \sim 140$	238	315
	3500	SCP8UTF1HPLAU0K34E	N1	$150 \sim 160$	275	363
			M1	140 ~ 150	257	339
			K1	$130 \sim 140$	238	315
80	4000	SCP8TTF1HPLATOK34E	N1	$150 \sim 160$	275	363
			M1	140 ~ 150	257	339
			K1	$130 \sim 140$	238	315
	5000	SCP8RTF1HPLARTK34E	N1	150 ~ 160	275	363
			M1	140 ~ 150	257	339
			K1	$130 \sim 140$	238	315
	5700	SCP8QTF1HPLAQTK34E	N1	$150 \sim 160$	275	363
			M1	140~150	257	339
			K1	$130 \sim 140$	238	315
	6500	SCP8PTF1HPLAPTK34E	N1	150 ~ 160	275	363
			M1	140~150	257	339
			K1	$130 \sim 140$	238	315
90	3000	SCP9VTF1HPLAV0G34E	J1	120~130	220	291
			H1	110 ~ 120	201	266
			G1	$100 \sim 110$	184	243
	4000	SCP9TTF1HPLAT0G34E	J1	120~130	220	291
			H1	110 ~ 120	201	266
			G1	100 ~ 110	184	243

Notes:

1) Samsung maintains measurement tolerance of: luminous flux $= \pm 7 \%, \mathrm{CRI}= \pm 3$
2) Calculated minimum and maximum flux values are for reference only
b) Color Bins ($\mathrm{IF}_{\mathrm{F}}=350 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=85^{\circ} \mathrm{C}$)

$\begin{gathered} \mathrm{CRI}\left(\mathrm{R}_{\mathrm{a}}\right) \\ \text { Min. } \end{gathered}$	Nominal CCT (K)	Product Code	Color Rank	Chromaticity Bins
70	2700	SCP7WTF1HPLAW0J34E	wo (Whole bin)	V1, V2, V3, V4, V5, V6, V7, V8, V9, VA, VB, VC, VD, VE, VF, VG
	3000	SCP7VTF1HPLAVOK34E	Vo (Whole bin)	V1, V2, V3, V4, V5, V6, V7, V8, V9, VA, VB, VC, VD, VE, VF, VG
	3500	SCP7UTF1HPLAU0K34E	UO (Whole bin)	U1, U2, U3, U4, U5, U6, U7, U8, U9, UA, UB, UC, UD, UE, UF, UG
	4000	SCP7TTF1HPLATOM34E	T0 (Whole bin)	T1, T2, T3, T4, T5, T6, T7, T8, T9, TA, TB, TC, TD, TE, TF, TG
	5000	SCP7RTF1HPLARTM34E	RT (ANSI bin)	R1, R2, R3, R4
	5700	SCP7QTF1HPLAQTM34E	QT (ANSI bin)	Q1, Q2, Q3, Q4
	6500	SCP7PTF1HPLAPTM34E	PT (ANSI bin)	P1, P2, P3, P4
80	2700	SCP8WTF1HPLAW0J34E	wo (Whole bin)	W1, W2, W3, W4, W5, W6, W7, W8, W9, WA, WB, WC, WD, WE, WF, WG
	3000	SCP8VTF1HPLAV0K34E	V0 (Whole bin)	V1, V2, V3, V4, V5, V6, V7, V8, V9, VA, VB, VC, VD, VE, VF, VG
	3500	SCP8UTF1HPLAU0K34E	UO (Whole bin)	U1, U2, U3, U4, U5, U6, U7, U8, U9, UA, UB, UC, UD, UE, UF, UG
	4000	SCP8TTF1HPLAT0K34E	T0 (Whole bin)	T1, T2, T3, T4, T5, T6, T7, T8, T9, TA, TB, TC, TD, TE, TF, TG
	5000	SCP8RTF1HPLARTK34E	$\begin{gathered} \text { RT } \\ \text { (ANSI bin) } \end{gathered}$	R1, R2, R3, R4
	5700	SCP8QTF1HPLAQTK34E	QT (ANSI bin)	Q1, Q2, Q3, Q4
	6500	SCP8PTF1HPLAPTK34E	PT (ANSI bin)	P1, P2, P3, P4
90	3000	SCP9VTF1HPLAV0G34E	V0 (Whole bin)	V1, V2, V3, V4, V5, V6, V7, V8, V9, VA, VB, VC, VD, VE, VF, VG
	4000	SCP9VTF1HPLAV0G34E	T0 (Whole bin)	T1, T2, T3, T4, T5, T6, T7, T8, T9, TA, TB, TC, TD, TE, TF, TG

SNMSUNG
c) Voltage Bins ($\mathrm{If}=350 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=8{ }^{\circ} \mathrm{C}$)

CRI (Ra) Min.	Nominal CCT (K)	Product Code	Voltage Rank

d) Chromaticity Region \& Coordinates ($\mathrm{IF}_{\mathrm{F}}=350 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=8{ }^{\circ} \mathrm{C}$ C)

Region	CIE X	CIE Y	Region	CIE x	CIE Y

Region	CIE x	CIEy	Region	CIEx	CIEy

SNMSUNG
d) Chromaticity Region \& Coordinates

Region	CIE x	CIE y	Region	CIE x	CIE y	Region	CIE x	CIE y	Region	CIE x	CIE y
		U rank	(3500 K)					T rank	(4000 K)		
U1	0.3889	0.3690	U9	0.3941	0.3848	T1	0.3670	0.3578	T9	0.3702	0.3722
	0.3915	0.3768		0.3968	0.3930		0.3726	0.3612		0.3763	0.3760
	0.3981	0.3800		0.4040	0.3966		0.3744	0.3685		0.3782	0.3837
	0.3953	0.3720		0.4010	0.3882		0.3686	0.3649		0.3719	0.3797
U2	0.3953	0.3720	UA	0.4010	0.3882	T2	0.3726	0.3612	TA	0.3763	0.3760
	0.3981	0.3800		0.4040	0.3966		0.3783	0.3646		0.3825	0.3798
	0.4048	0.3832		0.4113	0.4001		0.3804	0.3721		0.3847	0.3877
	0.4017	0.3751		0.4080	0.3916		0.3744	0.3685		0.3782	0.3837
U3	0.4017	0.3751	UB	0.4080	0.3916	T3	0.3783	0.3646	TB	0.3825	0.3798
	0.4048	0.3832		0.4113	0.4001		0.3840	0.3681		0.3887	0.3836
	0.4116	0.3865		0.4186	0.4037		0.3863	0.3758		0.3912	0.3917
	0.4082	0.3782		0.4150	0.3950		0.3804	0.3721		0.3847	0.3877
U4	0.4082	0.3782	UC	0.4150	0.3950	T4	0.3840	0.3681	TC	0.3887	0.3837
	0.4116	0.3865		0.4186	0.4037		0.3898	0.3716		0.3950	0.3875
	0.4183	0.3898		0.4259	0.4073		0.3924	0.3794		0.3978	0.3958
	0.4147	0.3814		0.4221	0.3984		0.3863	0.3758		0.3912	0.3917
U5	0.3915	0.3768	UD	0.3968	0.3930	T5	0.3686	0.3649	TD	0.3719	0.3797
	0.3941	0.3848		0.3996	0.4015		0.3744	0.3685		0.3782	0.3837
	0.4010	0.3882		0.4071	0.4052		0.3763	0.3760		0.3802	0.3916
	0.3981	0.3800		0.4040	0.3966		0.3702	0.3722		0.3736	0.3874
U6	0.3981	0.3800	UE	0.4040	0.3966	T6	0.3744	0.3685	TE	0.3782	0.3837
	0.4010	0.3882		0.4071	0.4052		0.3804	0.3721		0.3847	0.3877
	0.4080	0.3916		0.4146	0.4089		0.3825	0.3798		0.3869	0.3958
	0.4048	0.3832		0.4113	0.4001		0.3763	0.376		0.3802	0.3916
U7	0.4048	0.3832	UF	0.4113	0.4001	T7	0.3804	0.3721	TF	0.3847	0.3877
	0.4080	0.3916		0.4146	0.4089		0.3863	0.3758		0.3912	0.3917
	0.4150	0.3950		0.4222	0.4127		0.3887	0.3836		0.3937	0.4001
	0.4116	0.3865		0.4186	0.4037		0.3825	0.3798		0.3869	0.3958
U8	0.4116	0.3865	UG	0.4186	0.4037	T8	0.3863	0.3758	TG	0.3912	0.3917
	0.4150	0.3950		0.4222	0.4127		0.3924	0.3794		0.3978	0.3958
	0.4221	0.3984		0.4299	0.4165		0.3950	0.3875		0.4006	0.4044
	0.4183	0.3898		0.4259	0.4073		0.3887	0.3836		0.3937	0.4001

SNMSUNG
d) Chromaticity Region \& Coordinates

Region	CIE x	CIE y	Region	CIE x	CIE y	Region	CIE x	CIE y
R rank (5000 K)			Q rank (5700 K)			P rank (6500 K)		
R1	0.3371	0.3490	Q1	0.3215	0.3350	P1	0.3068	0.3113
	0.3451	0.3554		0.3290	0.3417		0.3144	0.3186
	0.3440	0.3427		0.3290	0.3300		0.3130	0.3290
	0.3366	0.3369		0.3222	0.3243		0.3048	0.3207
R2	0.3451	0.3554	Q2	0.3290	0.3417	P2	0.3144	0.3186
	0.3533	0.3620		0.3371	0.3490		0.3221	0.3261
	0.3515	0.3487		0.3366	0.3369		0.3213	0.3373
	0.3440	0.3427		0.3290	0.3300		0.3130	0.3290
R3	0.3376	0.3616	Q3	0.3207	0.3462	P3	0.3048	0.3207
	0.3463	0.3687		0.3290	0.3538		0.3130	0.3290
	0.3451	0.3554		0.3290	0.3417		0.3115	0.3391
	0.3371	0.3490		0.3215	0.3350		0.3028	0.3304
R4	0.3463	0.3687	Q4	0.3290	0.3538	P4	0.3130	0.3290
	0.3551	0.3760		0.3376	0.3616		0.3213	0.3373
	0.3533	0.3620		0.3371	0.3490		0.3205	0.3481
	0.3451	0.3554		0.3290	0.3417		0.3115	0.3391

Note:

Samsung maintains measurement tolerance of: Cx, Cy $= \pm 0.005$
3. Typical Characteristics Graphs
a) Spectrum Distribution ($\mathrm{I}_{\mathrm{F}}=350 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=8{ }^{\circ}{ }^{\circ} \mathrm{C}$)

b) Forward Current Characteristics ($\mathrm{T}_{\mathrm{s}}=85{ }^{\circ} \mathrm{C}$)

c) Temperature Characteristics ($\mathrm{I}_{\mathrm{F}}=350 \mathrm{~mA}$)

d) Color Shift Characteristics ($\mathrm{IF}=350 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=85^{\circ} \mathrm{C}$)

e) Derating Curve and Beam Angle Characteristics ($\mathrm{IF}=350 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25{ }^{\circ} \mathrm{C}$)

4. Outline Drawing \& Dimension

1. Tolerance is $\pm 0.10 \mathrm{~mm}$
2. Do not place LEDs with pressure

Precautions:

1) Pressure on the LEDs will influence to the reliability of the LEDs. Precautions should be taken to avoid strong pressure on the LEDs. Do not put stress on the LEDs during heating.
2) Re-soldering should not be done after the LEDs have been soldered. If re-soldering is unavoidable, LED`s characteristics should be carefully checked before and after such repair.
3) Do not stack assembled PCBs together. Since materials of LEDs is soft, abrasion between two PCB assembled with LED might cause catastrophic failure of the LEDs.
5. Reliability Test Items \& Conditions
a) Test Items

Test Item	Test Condition	Test Hour / Cycle	Sample Size
Room Temperature Life Test	$25^{\circ} \mathrm{C}$, Derating maximum current	1000 h	22
High Temperature Life Test	$85^{\circ} \mathrm{C}$, Derating maximum current	1000 h	22
High Temperature Humidity Life Test	$60{ }^{\circ} \mathrm{C}, 90 \% \mathrm{RH}$, Derating maximum current	1000 h	22
Low Temperature Life Test	$-40{ }^{\circ} \mathrm{C}$, Derating maximum current	1000 h	22
Temperature Humidity Cycle Test	$-10^{\circ} \mathrm{C} \leftrightarrow 25^{\circ} \mathrm{C} 95 \% \mathrm{RH} \leftrightarrow 65{ }^{\circ} \mathrm{C} 95 \% \mathrm{RH}$ Derating maximum current	10 cycles	11
Powered Temperature Cycle Test	$-40{ }^{\circ} \mathrm{C} / 85{ }^{\circ} \mathrm{C}$ each $20 \mathrm{~min}, 100 \mathrm{~min}$ transfer power on/off each 5 min , Derating maximum current	100 cycles	11
Thermal Shock	$-45{ }^{\circ} \mathrm{C} / 15 \mathrm{~min} \leftrightarrow 125{ }^{\circ} \mathrm{C} / 15 \mathrm{~min}$ temperature change within 5 min	500 cycles	100
High Temperature Storage	$120{ }^{\circ} \mathrm{C}$	1000 h	11
Low Temperature Storage	$-40{ }^{\circ} \mathrm{C}$	1000 h	11
ESD (HBM)		5 times	30
ESD (MM)	R_{1} : $10 \mathrm{M} \Omega$ $\mathrm{R}_{2}: 0$ C: 200 pF V: $\pm 0.2 \mathrm{kV}$	5 times	30
Vibration Test	20~2000~20 Hz, $200 \mathrm{~m} / \mathrm{s}^{2}$, sweep 4 min $\mathrm{X}, \mathrm{Y}, \mathrm{Z} 3$ direction, each 1 cycle	4 cycles	11
Mechanical Shock Test	$1500 \mathrm{~g}, 0.5 \mathrm{~ms}$ 3 shocks each $X-Y-Z$ axis	5 cycles	11

b) Criteria for Judging the Damage

Item	Symbol	Test Condition $\left(T_{s}=25^{\circ} \mathrm{C}\right)$	Limit	
Forward Voltage	V_{F}	$I_{F}=350 \mathrm{~mA}$	Init. Value * 0.9	Max.
Luminous Flux	Φ_{V}	$I_{F}=350 \mathrm{~mA}$	Init. Value * 0.7	Init. Value * 1.1

SAMSUNG
6. Soldering Conditions
a) Reflow Conditions (Pb free)

Reflow frequency: 2 times max.

b) Manual Soldering Conditions

No more than 5 seconds @ max. $300^{\circ} \mathrm{C}$, under soldering iron.
7. Tape \& Reel
a) Taping Dimension

Taping Diretion

b) Reel Dimension
(unit: mm)

Width	W1	W2
8 mm	9 ± 0.3	11.9 ± 1.0

Notes:

1) Quantity: The quantity/reel is $4,000 \mathrm{pcs}$
2) Cumulative tolerance: Cumulative tolerance / 10 pitches is $\pm 0.2 \mathrm{~mm}$
3) Adhesion strength of cover tape: Adhesion strength is $0.1-0.7 \mathrm{~N}$ when the cover tape is turned off from the carrier tape at 10° angle to the carrier tape
4) Packaging: P/N, Manufacturing data code no. and quantity are indicated on the aluminum packing bag
8. Label Structure
a) Label Structure

Note: Denoted bin code and product code above is only an example (see description on page -)

Bin Code:

(a) (b): Chromaticity bin (refer to page 11)
(C) (d): Luminous Flux bin (refer to page 6-7)
(e) f : Voltage bin (refer to page 9)
b) Lot Number

The lot number is composed of the following characters:

SCP7RTF1HPLARTM34E RTM14E ||I||
 || SAMSUNG

(1)(2)	Production site (G3 : Shenzhen, China, G4 :Guangzhou, China, GB : Nanchang, China)
(3)	Product state (A : Normal, B : Bulk, C : First Production, R : Reproduction, S : Sample)
(4)	Year (Y:2014, Z : 2015, A : 2016, ...)
(5)	Month (1, 2, .., 7: July, ... A: Oct., B: Nov., C: Dec.)
(6)	Day (1~9, A: 10, .., K: 20, .. , U: 30, V:31)
(7)8(9)	Product serial number (001~999)
(a) (b) (c)	Reel number (001~999) or (AAA~ZZZ)

9. Packing Structure
a) Packing Process

Reel

SCP7RTF1HPLARTM34E RTM14E ||| G3AC1B001 / 1001 / 4000 pcs ||III|||||||||||||||||||||||||||||||||||||| SAMSUNG

Aluminum Vinyl Packing Bag

SCP7RTF1HPLARTM34E RTM14E || G3AC1B001 / 1001 / 4000 pcs

SAMSUNG

Outer Box

Material: Paper SW(B)

Type	Size (mm)			Note
	(a)	(b)	(c)	
7 inch	245 ± 5	220 ± 5	182 ± 5	Up to 10 reels

SCP7RTF1HPLARTM34E RTM14E IIIIIIII|III||||||||||||||||||||||||||||||||||||| G3AC1B001 / 1001 / 4000 pcs || SAMSUNG

b) Aluminum Vinyl Packing Bag

FM FH［ LH181A［CRI］［CCT］ RTM14E

SCP7RTF1HPLARTM34E RTM14E IIIIIIII｜｜｜
G3AC1B001／ 1001 ／ 4000 pcs ｜｜ SAMSUNG
relative humidity（RH）
2．Peak package body temperature： 240 t
3．Atter this bag is opened，devioes that will be subjocted to reflow soldor or other high temperature processes must be：
a．Mounted within 672 hours at factory conditions of equal to or less than 30C／ $60 \% \mathrm{RH}$ ，or
b．Stoned at $<10 \%$ RH
4．Devioes require bake，before mounting，if：
a．Humidity Indicator Card is $>65 \%$ when read at $23 \pm 5{ }^{\circ}$ ，or
b． 2 a is not met．
5．If baking is requined，deviocs must be baked for 1 hours at $60 \pm 5^{\circ} \mathrm{C}$
Note：i d device containers cannot be subjected to high temperature or
shorter bake times are desired，reference IPC／JEDEC J－STD－033 for
bake procedure，
Bag seal due date： \qquad
（f blank，see code label）
Note：Level and body temperature by IPC／JEDEC J－STD－020

주의 사항

이 안루히눕 지퍼 빽은 슴기 및 정전기로ㅂㅜㅜㅌㅓ 제품을 별호하 기 위하여 제작되었습니다．개봉 후에는 족시 솔더 작업을 실 시하는 것을 권장합니다．
슊기 및 정진기로부터 제품을 보호 하기 위혜서 개붕 후 사용 하지 않는 자재는 븐 双嘈 놓이 보新 하시기 바랍니다．사용하 지 않는 자재를 본 팩에 넣을 때는 반드시 동붕뎐 드라이 패 과 합께 넣고 지퍼부불을 완전하게 밀붕하여 주시기 바랍니다．

－Important

This Al Zipper bag is designed to protect the enclosed products from moisture and ESD．Once opened，the products should be soldered onto the printed circuit board immediately．When not in use，please do not leave the products unprotected by the Al Zipper Bag． To repack unused products．，please ensure the zip－lock is completely sealed with the dry pack left inside．
c）Silica Gel \＆Humidity Indicator Card inside Aluminum Vinyl Bag

10．Precautions in Handling \＆Use

1) For over-current protection, users are recommended to apply resistors connected in series with the LEDs to mitigate sudden change of the forward current caused by shift of forward voltage.
2) This device should not be used in any type of fluid such as water, oil, organic solvent, etc. When cleaning is required, IPA is recommended as the cleaning agent. Some solvent-based cleaning agent may damage the silicone resins used in the device.
3) When the device is in operation, the forward current should be carefully determined considering the maximum ambient temperature and corresponding junction temperature.
4) LEDs must be stored in a clean environment.
5) After storage bag is opened, device subjected to soldering, solder reflow, or other high temperature processes must be:
a. Mounted within 672 hours (28 days) at an assembly line with a condition of no more than $30{ }^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$, or
b. Stored at <10\% RH
6) Repack unused devices with anti-moisture packing, fold to close any opening and then store in a dry place.
7) Devices require baking before mounting, if humidity card reading is $>60 \%$ at $23 \pm 5{ }^{\circ} \mathrm{C}$.
8) Devices must be baked for 1 hour at $60 \pm 5^{\circ} \mathrm{C}$, if baking is required.
9) The LEDs are sensitive to the static electricity and surge current. It is recommended to use a wrist band or antielectrostatic glove when handling the LEDs. If voltage exceeding the absolute maximum rating is applied to LEDs, it may cause damage or even destruction to LED devices. Damaged LEDs may show some unusual characteristics such as increase in leakage current, lowered turn-on voltage, or abnormal lighting of LEDs at low current.
10) VOCs (Volatile Organic Compounds) can be generated from adhesives, flux, hardener or organic additives used in luminaires (fixtures). Transparent LED silicone encapsulant is permeable to those chemicals and they may lead to a discoloration of encapsulant when they exposed to heat or light. This phenomenon can cause a significant loss of light emitted (output) from the luminaires. In order to prevent these problems, we recommend users to know the physical properties of materials used in luminaires and they must be carefully selected.
11) Risk of sulfurization (or tarnishing)

The LED from Samsung does not use a silver-plated lead frame but if the LED is attached in silver-plated substrate, the surface color of substrate may change to black (or dark colored) when it is exposed to sulfur (S), chlorine (CI) or other halogen compound. Sulfurization of substrate may cause intensity degradation, change of chromaticity coordinates and, in extreme cases, open circuit, It requires caution. Due to possible sulfurization of substrate, LED should not be used and stored together with oxidizing substances made of materials such as rubber, plain paper, lead solder cream, etc.

Legal and additional information.

Abstract

About Samsung Electronics Co., Ltd. Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions. For the latest news, please visit the Samsung Newsroom at news.samsung.com

Copyright © 2020 Samsung Electronics Co., Ltd. All rights reserved.
Samsung is a registered trademark of Samsung Electronics Co., Ltd
Specifications and designs are subject to change without notice. Non-metric
weights and measurements are approximate. All data were deemed correct at time of creation. Samsung is not liable for errors or omissions. All brand, product, service names and logos are trademarks and/or registered trademarks of their respective owners and are hereby recognized and acknowledged.

Samsung Electronics Co., Ltd

1, Samsung-ro
Giheung-gu
Yongin-si, Gyeonggi-do, 17113
KOREA
www.samsungled.com

