USB Type-C Analog Audio Switch with Over Voltage Protection

FSA4485

PRODUCT SUMMARY

General Description

The FSA4485 is a high performance USB Type-C port multimedia switch to supports analog audio headsets. The FSA4485 allows sharing of the USB Type-C port to pass USB2.0 signals, analog audio, sideband use signals, and analog microphone signal. For enhanced audio performance the FSA4485 incorporates MOSFET gate drivers to support low resistance external analog ground switches. The FSA4485 features Over Voltage Protection on all connector facing pins as well as Over Current Protection for the analog ground switch.

Features

- VCC Range from 2.7 V to 5.5 V (Primary)
- OVP Function on Common Node Pins
- Over Current Protection for Analog Ground Switch
- Analog Audio Device Unplug Detection
- 16 V DC Tolerance on Connector Side Pins: DP_R, DN_L, GBSUx, SBUx
- 20 V DC Tolerance on CC_IN
- High Performance Audio/USB SW:
- Audio SW, THD+N <-109 dB; 1 VRMS, 32Ω Load;
- USB SW, BW: 1 GHz
- $225 \mathrm{~m} \Omega$ (Typical) Sense to GSBUx on Resistance
- $78 \mathrm{~m} \Omega$ (Typical) SBUx to AGND on Resistance
- Programmable Gate Drive for Optional External SBUx to AGND Switch
- 1.2 V Capable $\mathrm{I}^{2} \mathrm{C}$ Interface
- Two $I^{2} \mathrm{C}$ Addresses
- Optional Normally Closed Configuration for SBU Data Switch to Support Factory Test
- Moisture/Resistance Detection on DP_R, DN_L and SBUx

Applications

- Mobile Phone
- Tablet
- Notebook PC
- Media Player

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

WLCSP25 CASE 567YL

MARKING DIAGRAM

6F\&K
\&.\&2\&Z
1

6F = Alphanumeric Device Marking
\&K = Lot Run Code
\&2
\&Z
= Alphabetical Year Code
= Assembly Plant Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.

FSA4485
PRODUCT BLOCK DIAGRAM
Block Diagram

Figure 1. Block Diagram

PART NUMBERING

Ordering Information

Table 1. ORDERING INFORMATION

Part Number	Operating Temperature	Package	Top Marking
FSA4485UCX	-40 to $+85^{\circ} \mathrm{C}$	$25-$ Ball WLCSP, Non-JEDEC	6 F
		$2.16 \times 2.16 \mathrm{~mm}, 0.4 \mathrm{~mm}$ Pitch	$(\mathrm{Pb}-\mathrm{Free})$

PRODUCT PIN ASSIGNMENTS

Pin Configuration

Figure 2. Pin Configuration

Pin Descriptions

PIN DESCRIPTIONS

Pin	Name	Description
A5	VCC	Power Supply (2.7 to 5.5 V)
B5	GND	Device Ground
D5	DN_R	USB/Audio Common Connector
D4	DN_L	USB/Audio Common Connector
E5	DP	USB Data (Differential +)
E4	DN	USB Data (Differential -)
C5	R	Audio - Right Channel
C4	L	Audio - Left Channel
A3	SBU1	Sideband Use 1
A2	SBU2	Sideband Use 2
C1	MIC	Microphone Signal
B2	AGND	Audio Ground
B4	GD1	External Gate Driver
B3	GD2	External Gate Driver
E2	SENSE	Audio Ground Sense Output
C3	INT	I²C Interrupt Output, Active Low (Open Drain)
D2	CC_IN	Audio Accessory Attach Detection Input
D1	GSBU1	Audio Sense Path 1 to Headset Jack GND
E1	GSBU2	Audio Sense Path 2 to Headset Jack GND
C2	DET	Attach Detect Output, Active Low (Open Drain)
D3	SCL1/SDA2	$1^{2} \mathrm{C}$ Clock/Data
E3	SDA1/SCL2	$1^{2} \mathrm{C}$ Data/Clock
B1	S2H	Host Side Sideband use
A1	S1H	Host Side Sideband use
A4	EN	Device Enable and Precondition, 3-state Input with internal pull-up/pull-down

FSA4485

MAXIMUM RATINGS

MAXIMUM RATINGS

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
VCC	Supply Voltage		-0.5	-	6.5	V
VCC_IN	CC Voltage	CC_IN to GND	-0.5	-	20	V
VSW_USB	USB Switch Voltage	(DP_R, DN_L) to GND	-3.5	-	16	V
VSW_SBU	SBU Switch Voltage	(SBUx, GSBUx) to GND	-0.5	-	16	V
VSW_HOST	Host Side Switch Voltage	(DP, DN, S1H, S2H, SENSE, MIC) to GND	-0.5	-	6.5	V
VSW_Audio	Host Side Audio Switch Voltage	(L, R) to GND	-3.5	-	6.5	V
VCNTRL	Control Pin Voltage	(SDA, SCL, EN, DET, INT) to GND	-0.5	-	6.5	V
IIK	DC Input Diode Current		-50	-	-	mA
ISW_USB	USB Switch Current	Between DP_R and DP or DN_L and DN		-	100	mA
ISW_SBU	SBU Switch Current	(S1H, S2H, MIC) to SBUx		-	50	mA
ISW_SENSE	Sense Switch Current	GSBUx to SENSE		-	100	mA
ISW_AGND	Analog Ground Current	SBUx to AGND		-	500	mA
ISW_Audio	Audio Switch Current	DP_R to R or DN_L to L	-250	-	250	mA
ESDHBM	Human Body Model, JEDEC: JS-001-2017	All Pins	2	-	-	kV
	Connector Side Pins and Power Pins	3.5	-	-	kV	
ESDHBM_Con		Charged Device Model, JEDEC: JS-002-2018		1	-	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL PROPERTIES

THERMAL PROPERTIES

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {STG }}$	Storage Temperature		-65		150	${ }^{\circ} \mathrm{C}$
T_{A}	Operating Temperature		-40	25	85	${ }^{\circ} \mathrm{C}$

1. Junction-to-ambient thermal resistance is a function of application and board layout. This data is measured with two-layer 2s2p boards in accordance to JEDEC standard JESD51. Special attention must be paid not to exceed junction temperature $T_{J(m a x)}$ at a given ambient temperature T_{A}.

OPERATING CONDITIONS

OPERATING CONDITIONS

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
VCC	Supply Voltage		2.7	-	5.5	V
VCC_IN	CC Voltage	CC_IN to GND	0	-	5.5	V
VSW_USB	USB Switch Voltage	(DP_R, DN_L, DP, DN) to GND	0	-	3.6	V
VSW_SBU	SBU Switch Voltage	(SBUx, GSBUx) to GND	0	-	3.6	V
VSW_HOST	Host Side Switch Voltage	(DP, DN, S1H, S2H, SENSE, MIC) to GND	0	-	3.6	V
VSW_Audio	Host Side Audio Switch Voltage	(DN_L, DP_R, L, R) to GND	-3	-	3	V
VCNTRL	Control Input Voltage (EN, SCL1/SDA2, SDA1/SCL2)				VCC	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

FSA4485

ELECTRICAL SPECIFICATION TABLE

ELECTRICAL SPECIFICATIONS

(Minimum and maximum values are at $\mathrm{VCC}=2.7 \mathrm{~V}$ to 5.5 V and $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VCC}=3.3 \mathrm{~V}$)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit

CURRENT

ICC	Supply Current	USB switches on, SBUx to SBUx_H switches on		65	$\mu \mathrm{~A}$
ICC_AUDIO	Audio Supply Current	Audio switches closed, MIC switch closed and Audio GND switch closed		65	$\mu \mathrm{~A}$
ICCZ	Quiescent Current, Software Disabled	$04 H$ 'b7 = 0, EN = Low or Float		5	$\mu \mathrm{~A}$
ICCZ_H	Quiescent Current, Hardware Disable	EN = High			10

USB/AUDIO COMMON PINS

IOZ	USB Connector Side Off Leakage Current	DP_R, DN_L = 0 V to 3.6 V	-3		3	$\mu \mathrm{~A}$
IOFF	USB Connector Side Power Off Leakage Current	DP_R, DN_L $=0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{VCC}=0 \mathrm{~V}$	-3		3	$\mu \mathrm{~A}$
VOV_TRIP	Input OVP Lockout	Rising Edge of DP_R, DN_L, SBUx, GSBUx	4.7	5	5.2	V
VOV_HYS	Input OVP Hysteresis	DP_R, DN_L, SBUx, GSBUx	-	0.3	-	V

USB SWITCH

ION_USB	USB Switch ON Leakage Current	DN_L, DP_R = 0 V to 3.6 V , DP, DN, R, $\mathrm{L}=\overline{\mathrm{F}}$ loat	-3		3	$\mu \mathrm{A}$
IOZ_USB	USB Host Side Off Leakage Current	DN, DP = 0 V to 3.6 V	-3		3	$\mu \mathrm{A}$
IOFF_USB	USB Host Side Power Off Leakage Current	DN, DP $=0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{VCC}=0 \mathrm{~V}$	-3		3	$\mu \mathrm{A}$
RON_USB	USB Switch On Resistance	$\mathrm{ISW}=8 \mathrm{~mA}, \mathrm{VSW}=0.4 \mathrm{~V}$		3		Ω

AUDIO SWITCH

ION_AUDIO	ON Leakage Current of Audio Switch	DN_L, DP_R = -3 V to $3.0 \mathrm{~V}, \mathrm{DP}, \mathrm{DN}$, $\mathrm{R}, \overline{\mathrm{L}}=\mathrm{Flo} \overline{\mathrm{a}}$	-6		6	$\mu \mathrm{A}$
IOFF_AUDIO	Power Off Leakage Current of Audio Switch L, R	$\begin{aligned} & \mathrm{L}, \mathrm{R}=0 \mathrm{~V} \text { to } 3 \mathrm{~V} ; \mathrm{DP} _\mathrm{R}, \mathrm{DN} \mathrm{~L}=\text { Float, } \\ & \mathrm{VCC}=0 \mathrm{~V} \end{aligned}$	-1		1	$\mu \mathrm{A}$
RON_AUDIO	Audio Switch On Resistance	ISW $=100 \mathrm{~mA}$, VSW $=-3 \mathrm{~V}$ to 3 V		1		Ω
RON_FLAT	Audio Switch On Resistance Flatness \dagger	$\mathrm{VSW}=-3.0 \mathrm{~V}$ to +3.0 V		10		$\mathrm{m} \Omega$
RSHUNT	Pull Down Resistor on R/L Pin when Audio Switch is Off	$\mathrm{L}=\mathrm{R}=3 \mathrm{~V}$	6	10	14	$\mathrm{k} \Omega$

SBU COMMON PINS

IOZ_SBU	Off Leakage Current (SBU1, SBU2)	SBUx $=0 \mathrm{~V}$ to 3.6 V	-3	
IOFF_SBU	Power Off Leakage Current (SBU1, SBU2)	SBUx $=0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{VCC}=0 \mathrm{~V}$	-3	

SBU DATA SWITCH

ION_SxH	ON Leakage Current of SBU Switch	SBUx = 0 V to 3.6 V, SxH = Float	-3		3	$\mu \mathrm{~A}$
IOZ_SxH	Off Leakage Current (S1H, S2H)	SxH =0 V to 3.6 V	-1		1	$\mu \mathrm{~A}$
IOFF_SxH	Power Off Leakage Current (S1H, S2H)	SxH =0 V to $3.6 \mathrm{~V}, \mathrm{VCC}=0 \mathrm{~V}$	-1		1	$\mu \mathrm{~A}$
RON_SxH	SBU Switch On Resistance to (S1H, S2H)	VSW = 0 V to $3.6 \mathrm{~V}, \mathrm{ISW}=20 \mathrm{~mA}$		3		Ω

MIC SWITCH

ION_MIC	ON Leakage Current of MIC Switch	SBUx $=0$ V to $3.6 \mathrm{~V}, \mathrm{MIC}=$ Float	-3		3	$\mu \mathrm{~A}$
IOZ_MIC	Off Leakage Current (MIC)	MIC $=0 \mathrm{~V}$ to 3.6 V	-1		1	$\mu \mathrm{~A}$

ELECTRICAL SPECIFICATIONS (continued)
(Minimum and maximum values are at $\mathrm{VCC}=2.7 \mathrm{~V}$ to 5.5 V and $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VCC}=3.3 \mathrm{~V}$)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
MIC SWITCH						
IOFF_MIC	Power Off Leakage Current (MIC)	MIC $=0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{VCC}=0 \mathrm{~V}$	-1		1	$\mu \mathrm{A}$
RON_MIC	SBU Switch On Resistance to (MIC)	$\mathrm{VSW}=0 \mathrm{~V}$ to 3.6 V , ISW $=20 \mathrm{~mA}$		3		Ω

AGND SWITCH

RON_AGND	SBUx Switch On Resistance to AGND	ISW = 100 mA on SBUx		78	125	$\mathrm{~m} \Omega$
IOC_TRIP	Input OCP Lockout SBUx to AGND	$04 h^{\prime} b 0=1,07 \mathrm{~h}=\mathrm{xx010xxxb}$ or $\mathrm{xxxxx010b}$	0.75	1.5	3.0	A

SENSE SWITCH

ION_SENSE	ON Leakage Current of SENSE switch	On GSBUx $=0 \mathrm{~V}$ to 1.0 V, Off GSBUx $=2 \mathrm{~V}$, Sense $=$ Float	-2		2
IOZ_SENSE	Off Leakage Current of SENSE	Sense $=0 \mathrm{~V}$ to 1.0 V	-3		3
IOZ_GSBU	Off Leakage Current of GSBUx	GSBUx $=0 \mathrm{~V}$ to 3.6 V	-3		3
IOFF_SENSE	Power Off Leakage Current of SENSE	Sense $=0 \mathrm{~V}$ to $1.0 \mathrm{~V}, \mathrm{VCC}=0 \mathrm{~V}$	-3		3
IOFF_GSBU	Power Off Leakage Current of GSBUx	GSBUx $=0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{VCC}=0 \mathrm{~V}$	-3		3
RON_SENSE	Sense Switch On Resistance	IOUT $=100 \mathrm{~mA}, \mathrm{VSW}=1 \mathrm{~V}$		250	400

CC_IN PIN

VTH_L_CC	Input Low Threshold			1.2		V
VTH_H_CC	Input High Threshold			1.5		V
IIN_CC	CC_IN Input Leakage Current	CC_IN = 0 V to 5.5 V			1	$\mu \mathrm{~A}$

EN PIN

VIH_EN	EN Input Voltage High		1.1			V
VIL_EN	EN Input Voltage Low				0.5	V
RFLOAT_EN	Resistance from EN to GND			900		$\mathrm{~K} \Omega$
IIN_EN	EN Input Leakage Current	EN = 0 V to 5.5 V			10	$\mu \mathrm{~A}$

DET \& INT PIN

VOL	Output Low Voltage	IOUT $=2 \mathrm{~mA}$			0.4	V

${ }^{12} \mathrm{C}$ PINS

VIL_I2C	Low Level Input Voltage				0.36	V
VIH_I2C	High Level Input Voltage		0.84			V
IIN_I2C	Input Current	SCL1/SDA2, SDA1/SCL2 $=0 \mathrm{~V}$ to 3.6 V	-2		2	$\mu \mathrm{~A}$
VOL_I2C	Low Level Output Voltage	IOL $=2 \mathrm{~mA}$			0.3	V
VOH_I2C	Low Level Output Current	VOL_I2C $=0.2 \mathrm{~V}$	10		mA	

GATE DRIVE

I_GATE	Gate Drive Current (GD1, GD2) \dagger	V_GATE $=3 \mathrm{~V}$		2		$\mu \mathrm{~A}$
V_GATE	Gate Drive Voltage (GD1, GD2) \dagger	ILoad $=200 \mathrm{nA}$		6		V
R_GATE	Gate Drive Discharge Resistance \dagger			1.0		$\mathrm{M} \Omega$

AUDIO SWITCH

tDELAY_Audio	Audio Switch Turn On Delay Time \dagger	DP_R=DN_L=1 V, RL $=32 \Omega$, SLOWW_TURN_ON $=0 \mathrm{~b}$		100	
tDELAY_Audio_Slow	Audio Switch Turn On Delay with Slow Turn On \dagger	DP R $=\mathrm{DN} \mathrm{L}=1 \mathrm{~V}, \mathrm{RL}=32 \Omega$, SLOWW_TURN_ON $=1 \mathrm{~b}$		150	

ELECTRICAL SPECIFICATIONS (continued)
(Minimum and maximum values are at $\mathrm{VCC}=2.7 \mathrm{~V}$ to 5.5 V and $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VCC}=3.3 \mathrm{~V}$)

Symbol	Parameter	Conditions	Min	Typ	Max

AUDIO SWITCH

tRISE_Audio	Audio Switch Turn On Rise Time \dagger	$\text { DP_R = DN_L = } 1 \mathrm{~V}, \mathrm{RL}=32 \Omega \text {, }$ SLOW_TURN_ON = Ob	26	$\mu \mathrm{s}$
tRISE_Audio_Slow	Audio Switch Turn On Rise Time with Slow Turn On \dagger	$\text { DP_R = DN_L = } 1 \mathrm{~V}, \mathrm{RL}=32 \Omega \text {, }$ SLŌW_TURN_ON = 1b	180	us
tOFF_Audio	Audio Switch Turn Off Time \dagger	DP_R = DN_L = $1 \mathrm{~V}, \mathrm{RL}=32 \Omega$	15	$\mu \mathrm{s}$
XTALK_Audio	Crosstalk between Left and Right \dagger	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz}, \mathrm{RL}=50 \Omega \text { to GND, } \\ & \mathrm{VSW}=1 \text { VRMS } \end{aligned}$	-100	dB
BW_Audio	-3dB Bandwidth †	$\mathrm{VSW}=200 \mathrm{mV}$, RL $=50 \Omega$	550	MHz
OIRR_Audio	Off Isolation \dagger	$\begin{aligned} & \mathrm{F}=1 \mathrm{kHz}, \mathrm{RL}=50 \Omega, \mathrm{CL}=0 \mathrm{pF}, \\ & \text { VSW }=1 \mathrm{VRMS} \end{aligned}$	-100	dB
THD+N_600	Total Harmonic Distortion + Noise Performance with A-weighting Filter \dagger	$\mathrm{RL}=600 \Omega, \mathrm{f}=20 \mathrm{~Hz} \sim 20 \mathrm{kHz}$, VSW $=2 \mathrm{VRMS}$	-100	dB
THD+N_32	Total Harmonic Distortion + Noise Performance with A-weighting Filter \dagger	$\begin{aligned} & \mathrm{RL}=32 \Omega, \mathrm{f}=20 \mathrm{~Hz} \sim 20 \mathrm{kHz}, \\ & \mathrm{VSW}=1 \text { VRMS } \end{aligned}$	-109	dB
THD+N_16	Total Harmonic Distortion + Noise Performance with A-weighting Filter \dagger	$\begin{aligned} & \mathrm{RL}=16 \Omega, \mathrm{f}=20 \mathrm{~Hz} \sim 20 \mathrm{kHz}, \\ & \mathrm{VSW}=0.5 \mathrm{VRMS} \end{aligned}$	-108	dB
PSRR_Audio	Power Supply Rejection Ratio to Audio \dagger	Supply Noise $=300 \mathrm{mVpp}, \mathrm{f}=217 \mathrm{~Hz}$, RL $=50 \Omega$, Audio Switch Closed	-70	dB

USB SWITCH

tON_USB	USB Switch Turn-on Time \dagger	DP_R $=$ DN_L $=1.5 \mathrm{~V}, \mathrm{RL}=50 \Omega$	33	$\mu \mathrm{s}$
tOFF_USB	USB Switch Turn -off Time \dagger	DP_R $=$ DN_L $=1.5 \mathrm{~V}, \mathrm{RL}=50 \Omega$	15	$\mu \mathrm{s}$
BW_USB	-3 dB Differential Bandwidth †	$\mathrm{RL}=50 \Omega$	1	GHz
IL_USB	Insetrion Loss †	$\mathrm{RL}=50 \Omega, \mathrm{f}=720 \mathrm{MHz}$	-2.2	dB
OIRR_USB	Off Isolation between DP, DN and Common Node Pins \dagger	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{RL}=50 \Omega, \mathrm{CL}=0 \mathrm{pF},$ VSW = 1 VRMS	-100	dB
tOVP_USB	DP_R and DN_L pins OVP Response Time \dagger	Rising edge of DP_R or DN_L $\geq 4.8 \mathrm{~V}$ to falling edge of $\overline{D P}$ or $D N$ or L or $\mathrm{R} \leq 4.8 \mathrm{~V}$, RL on DP or $\mathrm{DN}=1 \mathrm{k} \Omega$	600	ns

MIC/AUDIO GROUND SWITCH

tDELAY_MIC	MIC Switch Turn On Delay Time with Slow Turn On Disabled \dagger	SBUx = $1 \mathrm{~V}, \mathrm{RL}=50 \Omega$, SLOW_TURN_ON = Ob	90	$\mu \mathrm{s}$
tDELAY_MIC_Slow	MIC Switch Turn On Delay with Slow Turn On Enabled \dagger	SBUx = $1 \mathrm{~V}, \mathrm{RL}=50 \Omega$, SLOW_TURN_ON = 1 b	200	$\mu \mathrm{s}$
tRISE_MIC	MIC Switch Turn On Rising Time with Slow Turn On Disabled \dagger	SBUx = $1 \mathrm{~V}, \mathrm{RL}=50 \Omega$, SLOW TURN ON = Ob	40	us
tRISE_MIC_Slow	MIC Switch Turn On Rising Time with Slow Turn On Enabled \dagger	$\text { SBUx = } 1 \mathrm{~V}, \mathrm{RL}=50 \Omega,$ SLOW_TURN_ON = 1 b	300	us
tDELAY_AGND	AGND Switch Turn On Time with Slow Turn On Disabled \dagger	SBUx pulled up to 0.5 V by 16Ω, AGND connect to GND, SLOW TURN ON = Ob	660	$\mu \mathrm{S}$
tDELAY_AGND_Slow	AGND Switch Turn On Time with Slow Turn On Enabled \dagger	SBUx pulled up to 0.5 V by 16Ω, AGND connect to GND, SLOW_TURN_ON = 1 b	1100	us
tRISE_AGND	AGND Switch Turn On Rise Time with Slow Turn On Disabled \dagger	SBUx pulled up to 0.5 V by 16Ω, AGND connect to GND, SLOW-TURN_ON = Ob	270	$\mu \mathrm{s}$

ELECTRICAL SPECIFICATIONS (continued)
(Minimum and maximum values are at $\mathrm{VCC}=2.7 \mathrm{~V}$ to 5.5 V and $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VCC}=3.3 \mathrm{~V}$)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit

MIC/AUDIO GROUND SWITCH

tRISE_AGND_Slow	AGND Switch Turn On Rise Time with Slow Turn On Enabled \dagger	SBUx pulled up to 0.5 V by 16Ω, AGND connect to GND, SLOW-TURN_ON $=1 \mathrm{~b}$		720	
tOFF_MIC	MIC Switch Turn Off Time \dagger	SBUx $=2.5 \mathrm{~V}, \mathrm{RL}=50 \Omega$			
tOFF_AGND	AGND Switch Turn Off Time \dagger	SBUx: Vsource $=2.5 \mathrm{~V}$, clamp to 10 mA		15	
BW	MIC Switch Bandwidth \dagger	RL $=50 \Omega$	15		$\mu \mathrm{~s}$
tOC_DEB	SBUx to AGND Over Current Debounce Time \dagger			35	

SBU SWITCH

tON_SBU	SBUx_H Switch Turn On Time \dagger	SBUx $=2.5 \mathrm{~V}, \mathrm{RL}=50 \Omega$		75		$\mu \mathrm{~s}$
tOFF_SBU	SBUx_H Switch Turn Off Time \dagger	SBUx $=2.5 \mathrm{~V}, \mathrm{RL}=50 \Omega$		15		$\mu \mathrm{~s}$
BW_SBU	Bandwidth \dagger	RL $=50 \Omega$		35		MHz
tOVP_SBU	SBUx Pins OVP Response Time \dagger	Rising edge of SBUx $\geq 4.8 \mathrm{~V}$ to falling edge of SxH $\leq 4.8 \mathrm{~V}, \mathrm{RL}$ on $\mathrm{SxH}=1 \mathrm{k} \Omega$	250	ns		

SENSE SWITCH

tDELAY_SENSE	Sense Switch Turn On Delay with Slow Turn On Disabled \dagger	$\begin{aligned} & \text { GSBUx =1 V, RL = } 50 \Omega, \\ & \text { SLOW_TURN_ON = 0b } \end{aligned}$	150	$\mu \mathrm{s}$
tDELAY_SENSE_Slow	Sense Switch Turn On Delay with Slow Turn On Enabled \dagger	$\begin{aligned} & \text { GSBUx = } 1 \mathrm{~V}, \mathrm{RL}=50 \Omega, \\ & \text { SLOW_TURN_ON }=1 \mathrm{~b} \end{aligned}$	110	$\mu \mathrm{s}$
tRISE_SENSE	Sense Switch Turn On Rise Time with Slow Turn On Disabled \dagger	GSBUx $=1 \mathrm{~V}, \mathrm{RL}=50 \Omega$, SLOW_TURN_ON = Ob	110	$\mu \mathrm{s}$
tRISE_SENSE_Slow	Sense Switch Turn On Rise Time with Slow Turn On Enabled \dagger	$\begin{aligned} & \text { GSBUx = } 1 \mathrm{~V}, \mathrm{RL}=50 \Omega, \\ & \text { SLOW_TURN_ON = } 1 \mathrm{~b} \end{aligned}$	110	$\mu \mathrm{s}$
tOFF_SENSE	Sense Switch Turn Off Time \dagger	GSBUx $=1 \mathrm{~V}, \mathrm{RL}=50 \Omega$	15	us
tOVP_SENSE	GSBUx Pins OVP Response Time \dagger	Rising edge of GSBU $x \geq 4.8 \mathrm{~V}$ to falling edge of SENSE $\leq 4.8 \mathrm{~V}$, RL on SENSE = $1 \mathrm{k} \Omega$	250	ns
BW_SENSE	Bandwidth \dagger	$\mathrm{RL}=50 \Omega$	108	MHz

DET DELAY

tDELAY_DET	DET Response Delay \dagger	Transition from High-Z to 0 V		2.5		$\mu \mathrm{~s}$

${ }^{12} \mathrm{C}$ SPECIFICATIONS
$\left.\begin{array}{|c|l|l|l|l|l|l|}\hline \text { fSCL } & \text { I2C_SCL Clock Frequency } & & & 400 & \mathrm{kHz} \\ \hline \text { tHD; STA } & \text { Hold Time (Repeated) START Condition } \dagger & & 0.6 & & & \mu \mathrm{~s} \\ \hline \text { tLOW } & \text { Low Period of I2C_SCL Clock } \dagger & & 1.3 & & & \mu \mathrm{~s} \\ \hline \text { tHIGH } & \text { High Period of I2C_SCL Clock } \dagger & & 0.6 & & & \mu \mathrm{~s} \\ \hline \text { tSU; STA } & \begin{array}{l}\text { Set-up Time for Repeated START } \\ \text { Condition } \dagger\end{array} & & 0.6 & & \mu \mathrm{~s} \\ \hline \text { tHD; DAT } & \text { Data Hold Time } \dagger & & 0 & & 0.9 & \mu \mathrm{~s} \\ \hline \text { tSU; DAT } & \text { Data Set-up Time } \dagger & & 100 & 20+ \\ 0.1 \mathrm{Cb}\end{array}\right)$

ELECTRICAL SPECIFICATIONS (continued)
(Minimum and maximum values are at $\mathrm{VCC}=2.7 \mathrm{~V}$ to 5.5 V and $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VCC}=3.3 \mathrm{~V}$)

Symbol	Parameter	Conditions	Min	Typ	Max	Unit

$I^{2} \mathrm{C}$ SPECIFICATIONS

tBUF	Bus-Free Time between STOP and START Conditions \dagger	1.3		$\mu \mathrm{~s}$	
tSP	Pulse Width of Spikes that Must Be Suppressed by the Input Filter \dagger		0		50

CAPACITANCE

CON_USB	On Capacitance of USB Common Pins \dagger	$\mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mVPK}-\mathrm{PK}, 100 \mathrm{mV} \mathrm{DC}$		8.5		pF
COFF_USB	Off Capacitance of USB Common Pins \dagger	$\mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mVPK}-\mathrm{PK}, 100 \mathrm{mV} \mathrm{DC}$		9.5		pF
COFF_USBHost	Off Capacitance of USB Host Pins \dagger	$\mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mVPK}-\mathrm{PK}, 100 \mathrm{mV} \mathrm{DC}$		3.0		pF
CON_SENSE	On Capacitance of GSBUx \dagger	$\mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mVPK}-\mathrm{PK}, 100 \mathrm{mV} \mathrm{DC}$		34		pF
COFF_SENSE	Off Capacitance of GSBUx \dagger	$\mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mVPK}-\mathrm{PK}, 100 \mathrm{mV} \mathrm{DC}$		44		pF
CON_MIC	On Capacitance of SBUx to MIC Switch \dagger	$\mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mVPK}-\mathrm{PK}, 100 \mathrm{mV} \mathrm{DC}$		115	pF	
COFF_MIC	Off Capacitance of MIC \dagger	$\mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mVPK}-\mathrm{PK}, 100 \mathrm{mV} \mathrm{DC}$		8.5	pF	
CON_AGND	On Capacitance of SBUx to AGND Switch \dagger	$\mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mVPK}-\mathrm{PK}, 100 \mathrm{mV} \mathrm{DC}$	94.5	pF		
CON_SBU	On Capacitance of SBUx to SxH Switch \dagger	$\mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mVPK}-\mathrm{PK}, 100 \mathrm{mV} \mathrm{DC}$		114	pF	
COFF_SBU	Off Capacitance of SBUx \dagger	$\mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mVPK}-\mathrm{PK}, 100 \mathrm{mV} \mathrm{DC}$	108	pF		
COFF_SBUHost	On Capacitance of SBUx to SxH Switch \dagger	$\mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mVPK}-\mathrm{PK}, 100 \mathrm{mV} \mathrm{DC}$	9.0	pF		
CCNTRL	Control Input Pin Capacitance \dagger	$\mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mVPK}-\mathrm{PK}, 100 \mathrm{mV} \mathrm{DC}$	5.0	pF		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
Guarantee Levels:
\dagger Guaranteed by Design. Characterized on the ATE or Bench.

FUNCTIONAL SPECIFICATIONS

$1^{2} \mathrm{C}$ Interface

The FSA4485 includes a full $\mathrm{I}^{2} \mathrm{C}$ slave controller. The $\mathrm{I}^{2} \mathrm{C}$ slave fully complies with the $\mathrm{I}^{2} \mathrm{C}$ specification version 2.1 requirements. This block is designed for fast mode, 400 kHz , signals. Examples of an $\mathrm{I}^{2} \mathrm{C}$ write and read sequence are shown in below figures respectively.

The $\mathrm{I}^{2} \mathrm{C}$ Address can be selected by routing the SDA/SCL signals per the Table 2 below. The FSA4485 will detect the clock and automatically configure the I/O and address. The $\mathrm{I}^{2} \mathrm{C}$ interface will operate with VDDIO pull up from 1.2 V to 1.8 V .

Table 2. $1^{2} \mathrm{C}$ SLAVE ADDRESS

SDA	SCL	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SDA1	SCL1	1	0	0	0	0	1	0	R/W
SDA2	SCL2	1	0	0	0	0	1	1	R/W

NOTE: \quad Single Byte read is initiated by Master with P immediately following first data byte.
Figure $\mathbf{3 . ~}^{1}{ }^{2} \mathrm{C}$ Write Example

Figure 4. $\mathrm{I}^{2} \mathrm{C}$ Read Example

Over Voltage Protection

FSA4485 features over voltage protection (OVP) on the receptacle side pins. This will automatically switch open the internal signal routing path if the input voltage exceeds the OVP threshold. If OVP has occurred an interrupt signal will be send using the INT signal. The OVP_INTERRUPT register will indicate which pin had the OVP event. If the over voltage is no longer present, indicated by the OVP_STAT register, the signal path can be restored manually from the SWITCH_SEL register.

Over Current Protection

When the EN_OCP register is set to Enable and the SBUx switch is closed to AGND Over Current Protection (OCP) will be enabled. OCP monitors the voltage drop from SBUx to AGND across the closed switch to limit the current to 1.5 A for $500 \mu \mathrm{~s}$. This will prevent a short from VBUS to AGND through SBUx. OCP will not automatically reset. When an OCP event occurs an interrupt will be sent to the processor. The interrupt is cleared by reading the

I_OCP_AGND register. The SBUx to AGND switch can be closed after an OCP event by setting AGND_EN $=1 \mathrm{~b}$.

MIC Switch Auto-Off

MIC switch auto-off is controlled by the MIC_AUTO_OFF register (12h, Bit 2). If enabled, when the port is configured for audio (L, R, MIC, AGND switches are closed) and a detach is detected (CC_IN > 1.5 V) the receptacle side of the MIC switch will connect to ground for $50 \mu \mathrm{~s}$ prior to becoming high impedance.

Headset Detection

Headset detection is performed by the CC_IN input and indicated by the CC_IN_STAT register (11h, Bit 2). Headset detection can also be indicated by the DET output. DET is an Open Drain user configurable attach/detach detection output. It can be configured or disabled from the $\mathrm{I}^{2} \mathrm{C}$ register DET_FUNCT. The DET output once triggered can be cleared by reading the Detection Interrupt Register I_DET_FUNCT. When configured for Type-C or Audio

FSA4485

Accessory attach detection DET will clear automatically when the Type-C device or audio accessory is detached.

Value	DET_FUNCT	Description
00b	00b: Type-C Attach Detection, DET = LOW if CC_IN_STAT = Ob	Type-C Attach Detect
01b	01b: Audio Accessory Attach Detection, DET $=$ LOW if NO_AUDIO_ACC = 0b	Audio Accessory Attach Detect
10b	10b: Audio Accessory Detach Detection, DET $=$ LOW if CC_IN_STAT transitions from 0b to 1b	Audio Accessory Detach Detect
11b	Disabled, DET $=$ Hi-Z (DEFAULT)	Disabled

Figure 5. Detect Pin Function

Gate Drive

The FSA4485 includes two gate drive outputs GD1 and GD2 to allow a low resistance external switch to be used for AGND. The gate drives are enabled from the $\mathrm{I}^{2} \mathrm{C}$ register GATE_DRIVE_EN and will follow automatic orientation detection. When enabled, if SBU1 = AGND then GD1 = High, If SBU2 = AGND then GD2 $=$ High.

The gate to source voltage (Vgs) will be held at V_GATE to ensure low on resistance. The maximum gate drive current can be selected from the $\mathrm{I}^{2} \mathrm{C}$ register GATE_DRIVE_CURR to control switch turn on time.

GATE DRIVE CURRENT

Register Value	GATE_DRIVE_CURR
00 b	$1 \mu \mathrm{~A}$
01 b	$1.5 \mu \mathrm{~A}$
10 b	$2.0 \mu \mathrm{~A}$ (default)
11 b	$3.0 \mu \mathrm{~A}$

EN and Factory Mode

The enable input (EN) is a 3 state input which sets the USB and SBU data switch initial conditions during device power up. It has a weak internal pull down which will set the default condition to High-Z if no input level is present. For applications using the SBU signals for data the EN input can
be floated or connected to a GPIO in High-Z state at power up. For typical conditions EN can be tied to GND. EN is tied to GND using a $10 \mathrm{k} \Omega$ resistor if also using the EN input to disable the device. It is not recommended that the $\mathrm{EN}=$ High-Z condition be used if the system uses SBU for the DisplayPort Aux channel.

EN	Initial Condition			Operating Condition		
	USB 2.0	SBUx	Device	USB 2.0	SBUx	Device
LOW	DP/DN	OPEN	Enabled	Set from I2C Register	Enabled	
High-Z	DP/DN	S1H/S2H	Enabled	Set from I2C Register	Enabled	
HIGH	OPEN	OPEN	Disabled	OPEN	OPEN	Disabled

Figure 6. EN Input Truth Table

Moisture Detection

The moisture detection function is controlled the RES_DETECT register (12h, Bit 1). It will detect moisture or any foreign object that creates resistance between the receptacle side pins and ground. During resistance detection, the switch associated with the pin will be open.

The detection result will be saved in the RES_VALUE register (14h). The measurement range is from $1 \mathrm{k} \Omega$ to $2.56 \mathrm{M} \Omega$ and is controlled by the RES_DET_RANGE register (12h, Bit 5). Detection can be performed manually or an automatic detection interval can be set to $100 \mathrm{~ms}, 1 \mathrm{~s}$ or 10 s by the RED_DET_INTV register (16h).

Figure 7. Moisture Detection Procedure

Test Diagrams

Figure 9. On Resistance
$\mathrm{R}_{\mathrm{ON}}=\mathrm{V}_{\mathrm{ON}} / \mathrm{I}_{\mathrm{SW}}$

NOTE: Each switch port is tested separately.

Figure 8. Off Leakage (IOZ)

Figure 10. On Leakage

Figure 12. Test Circuit Load

NOTE: Each switch port is tested separately.

Figure 11. Power Off Leakage (IOFF)

Figure 13. Manual Mode Turn On/Off Waveform
 C_{L} includes test fixture and stray capacitance

Figure 14. Bandwidth

Figure 15. Channel Off Isolation

$$
\text { OFF }- \text { Isolation }=20 \log \left(\mathrm{~V}_{\mathrm{OUT}} / \mathrm{V}_{\mathrm{IN}}\right)
$$

Figure 16. Adjacent Channel Crosstalk

Figure 17. Channel Off Capacitance

Figure 18. Channel Off Capacitance

C_{L} includes test fixture and stray capacitance
Figure 19. Total Harmonic Distortion (THD + N)

FSA4485

REGISTER MAPPING TABLE

REGISTER MAPPING

					Read Only	Write Only	Read / Write	Read / Clear	Write / Clear
Address	Name	Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]
0x00	DEVID	VENID		VERID			REVID		
0x01	OVP_MASK	M_OCP_AGND	M_OVP_ALL	M_OVP_DP_R	M_OVP_DN_L	M_OVP_SBU1	M_OVP_SBU2	M_OVP_GSBU1	M_OVP_GSBU2
0×02	OVP_INTERRUPT	I_OCP_AGND	I_OVP_ALL	I_OVP_DP_R	I_OVP_DN_L	I_OVP_SBU1	I_OVP_SBU2	I_OVP_GSBU1	I_OVP_GSBU2
0x03	OVP_STAT	Reserved	$\begin{gathered} \text { OCP_STAT } \\ \text { _AĞND } \end{gathered}$	$\begin{gathered} \text { OVP_STAT } \\ \text { _DP_R } \end{gathered}$	OVP_STAT _DN_L	OVP_STAT SBUU1	OVP_STAT SBUU2	OVP STAT	OVP_STAT GSBBU2
0x04	SWITCH_EN	DEVICE_EN	S1H_EN	S2H_EN	DN_L_EN	DP_R_EN	SENSE_EN	MIC_EN	AGND_EN
0x05	SWITCH_SEL	Reserved	S1H_SEL	S2H_SEL	DN_L_SEL	DP_R_SEL	SENSE_SEL	MIC_SEL	AGND_SEL
0x06	SWITCH_STAT_1	Reserved		SENSE_STAT		DP_R_STAT		DN_L_STAT	
0x07	SWITCH_STAT_2	Reserved		SBU2_STAT			SBU1_STAT		
0x08	AUDIO_SLO W_LEFT	AUDIO_SLOW_LEFT							
0x09	AUDIO_SLO W_RIGHT	AUDIO_SLOW_RIGHT							
0x0A	MIC_SLOW	MIC_SLOW							
0x0B	SENSE_SLOW	SENSE_SLOW							
$0 \times 0 \mathrm{C}$	AGND_SLOW	AGND_SLOW							
$0 \times 0 \mathrm{D}$	L2R_EN_DELAY	L2R_EN_DELAY							
0x0E	MIC2L_EN_ DELAY	$\begin{gathered} \text { MIC2L_EN } \\ \text { _DELAY } \end{gathered}$							
0x0F	SENSE2L_EN_DELAY	SENSE2L_EN_DELAY							
0x10	AGND2L_EN_DELAY	AGND2L_EN_DELAY							
0x11	AUDIO_ACC_STAT	Reserved						CC_IN_STAT	DET_STAT
0x12	FUNCTION_EN	DET_FUNCT		RES DET _RANGE	HIZ_ACC_DET	$\begin{gathered} \hline \text { SLOW_TURN } \\ \text { _ŌN } \end{gathered}$	MIC_AUT_OFF	RES_DETECT	$\begin{gathered} \text { AUDIO JACK } \\ \text { _DET } \end{gathered}$
0×13	RES_PIN_SEL	Reserved					RES_PIN_SEL		
0×14	RES_VALUE	RES_VALUE							
0x15	RES_DET_THRESH	RES_DET_THRESH							
0x16	RES_DET_INTV	Reserved						RES_DET_INTV	
0x17	AUDIO_JACK_STAT	Reserved			UNKNOWN _AUDIO_ACC	4POLE_A	4POLE_B	3 POLE	NO_AUDIO_ACC
0×18	DET_INTERRUPT	Reserved			I_DISABLE	I_DET_FUNCT	$\underset{\substack{\text { I_AUDIO_JACK } \\ \text { _DET }}}{\text { In }}$	I_LOW_RES	$\begin{aligned} & \text { I_RES_DET } \\ & \text { _COMP } \end{aligned}$
0x19	DET_MASK	Reserved			M_DISABLE	M_DET	M AUDIO _JĀCk_DET	M_LOW_RES	M_RES
0x1A	AUDIO_JACK_DET1	AUDIO_JACK_DET1							
0x1B	AUDIO_JACK_DET2	AUDIO_JACK_DET2							
0x1C	MIC_DET_TH_LOW	MIC_DET_TH_LOW							
$0 \times 1 \mathrm{D}$	MIC_DET_TH_UP	MIC_DET_TH_UP							
0x1E	I2C_RESET	Reserved							I2C_RESET
0x1F	CURR_SOURCE_SET	Reserved						CURR_SOURCE_SET	
0x20	CURR_SOURCE_STAT	Reserved						CURR_SOURCE_STAT	
0x21	GATE_DRIVE	Reserved					$\begin{gathered} \hline \text { GATE_DRIVE } \\ \text { _EN } \end{gathered}$	GATE_DRIVE_CURR	
0x22	PROTECTION_EN	Reserved						EN_OVP	EN_OCP
0x23	PROTECTION_STAT	Reserved		USB_OVP	GSBU_OVP	SBU1_OVP	SBU2_OVP	OCP1	OCP2

REGISTER DETAILS

Table 3. DEVICE ID

0x00 DEVID				Default = 00001001
Bit	Name	Default	Type	Description
7:6	VENID	00	Read	Vendor ID
5:3	VERID	001	Read	Revision ID Low: 001h A_[Revision ID]: 0x001 (e.g. A_revA) B_[Revision ID]: 0×010 (e.g. B_{-}^{-}revA) C_[Revision ID]: 0x011 (e.g. C_revA) etc
2:0	REVID	001	Read	Revision ID Low: 001h A_[Revision ID]: 0x001 (e.g. A_revA) B_[Revision ID]: 0×010 (e.g. A_revB) C_[Revision ID]: 0x011 (e.g. A_revC) etc

Table 4. OVP/OCP INTERRUPT MASK

Ox01 OVP_MASK				Default = 000000000
Bit	Name	Default	Type	Description
7	M_OCP_AGND	0	R/W	Ob: Do not mask OCP interrupt 1b: Mask OCP interrupt on SBUx to AGND
6	M_OVP_ALL	0	R/W	Ob: OCP Mask is controled by bit 7, OVP Mask is controled by bit [5:0] 1b: Mask OVP/OCP interrupt on all connector side pins
5	M_OVP_DP_R	0	R/W	Ob: Do not mask OVP interrupt 1b: Mask OVP interrupt on DP_R
4	M_OVP_DN_L	0	R/W	Ob: Do not mask OVP interrupt 1b: Mask OVP interrupt on DN_L
3	M_OVP_SBU1	0	R/W	Ob: Do not mask OVP interrupt 1b: Mask OVP interrupt on SBU1
2	M_OVP_SBU2	0	R/W	Ob: Do not mask OVP interrupt 1b: Mask OVP interrupt on SBU2
1	M_OVP_GSBU1	0	R/W	Ob: Do not mask OVP interrupt 1b: Mask OVP interrupt on GSBU1
0	M_OVP_GSBU2	0	R/W	Ob: Do not mask OVP interrupt 1b: Mask OVP interrupt on GSBU2

Table 5. OVP/OCP INTERRUPT FLAG

Ox02 OVP_INTERRUPT				Default = 00000000
Bit	Name	Default	Type	Description
7	I_OCP_AGND	0	R/CLR	Ob: OCP has not occured 1b: OCP event has occured on SBUx to AGND
6	I_OVP_ALL	0	R/CLR	Ob: OVP or OCP event has not occurred 1b: OVP or OCP event has occurred
5	I_OVP_DP_R	0	R/CLR	Ob: OVP event has not occured 1b: OVP event has occurred on DP_R
4	I_OVP_DN_L	0	R/CLR	Ob: OVP event has not occured 1b: OVP event has occurred on DN_L
3	I_OVP_SBU1	0	R/CLR	Ob: OVP event has not occured 1b: OVP event has occurred on SBU1
2	I_OVP_SBU2	0	R/CLR	Ob: OVP event has not occured 1b: OVP event has occurred on SBU2
1	I_OVP_GSBU1	0	R/CLR	Ob: OVP event has not occured 1b: OVP event has occurred on GSBU1
0	I_OVP_GSBU2	0	R/CLR	Ob: OVP event has not occured 1b: OVP event has occurred on GSBU2

Table 6. OVP/OCP STATUS

0x03 OVP_STAT				Default = 000000000
Bit	Name	Default	Type	Description
7	Reserved	0	Read	Do Not Use
6	OCP_STAT_AGND	0	Read	Ob: OCP event has not occured 1b: OCP event has occurred on SBUx to AGND
5	OVP_STAT_DP_R	0	Read	Ob: OVP event has not occured 1b: OVP event has occurred on DP R
4	OVP_STAT_DN_L	0	Read	Ob: OVP event has not occured 1b: OVP event has occurred on DN L
3	OVP_STAT_SBU1	0	Read	Ob: OVP event has not occured $1 \mathrm{~b}: ~ O V P ~ e v e n t ~ h a s ~ o c c u r r e d ~ o n ~ S B U 1 ~$
2	OVP_STAT_SBU2	0	Read	Ob: OVP event has not occured 1b: OVP event has occurred on SBU2
1	OVP_STAT_GSBU1	0	Read	Ob: OVP event has not occured $1 b: ~ O V P ~ e v e n t ~ h a s ~ o c c u r r e d ~ o n ~ G S B U 1 ~$
0	OVP_STAT_GSBU2	0	Read	Ob: OVP event has not occured $1 \mathrm{~b}: ~ O V P ~ e v e n t ~ h a s ~ o c c u r r e d ~ o n ~ G S B U 2 ~$

FSA4485

Table 7. SWITCH ENABLE

0x04 SWITCH_EN				Default $=10011000$
Bit	Name	Default	Type	Description
7	DEVICE_EN	1	R/W	Ob: Device Disabled, L and R = $10 \mathrm{k} \Omega$ Pull Down, All Other Switches $=$ High $-Z$, this overrides EN = Low 1b: Device Enabled, All Switches are Enabled, this can be overridden by EN = High
6	S1H_EN	0	R/W	Ob: Switch Disabled, S1H = High-Z 1b: SBUx to S1H Switch Enabled
5	S2H_EN	0	R/W	Ob: Switch Disabled, S2H = High-Z 1b: SBUx to S2H Switch Enabled
4	DN_L_EN	1	R/W	Ob: Switch Disabled, DN = High-Z, L = $10 \mathrm{k} \Omega$ Pull Down 1b: DN L Switch Enabled
3	DP_R_EN	1	R/W	Ob: Switch Disabled, DP = High-Z, R = $10 \mathrm{k} \Omega$ Pull Down 1b: DP R Switch Enabled
2	SENSE_EN	0	R/W	Ob: Switch Disabled, SENSE, GSBU1 and GSBU2 = High-Z 1b: SENSE Switch Enabled
1	MIC_EN	0	R/W	Ob: Switch Disabled, MIC = High-Z 1b: MIC to SBUx Switch Enabled If S1H EN and/or S2H EN = 1b then MIC will $=$ High $-Z$ when MIC EN $=1 b$
0	AGND_EN	0	R/W	Ob: Switch Disabled, AGND = High-Z 1b: AGND to SBUx Switch Enabled If S1H EN and/or S2H EN = 1b then AGND will = High-Z when AGND EN = 1b

Table 8. SWITCH SELECT

Ox05 SWITCH_SEL				Default = 00011000
Bit	Name	Default	Type	Description
7	Reserved	0	R/W	Do Not Use
6	S1H_SEL	0	R/W	Ob: S1H to SBU1 switch is CLOSED 1b: S1H to SBU2 switch is CLOSED
5	S2H_SEL	0	R/W	0b: S2H to SBU2 switch is CLOSED 1b: S2H to SBU1 switch is CLOSED
4	DN_L_SEL	1	R/W	Ob: DN_L to L switch is CLOSED 1b: DN L to DN switch is CLOSED
3	DP_R_SEL	1	R/W	Ob: DP_R to R switch is CLOSED 1b: DP R to DP switch is CLOSED
2	SENSE_SEL	0	R/W	Ob: SENSE to GSBU1 switch is CLOSED 1b: SENSE to GSBU2 switch is CLOSED
1	MIC_SEL	0	R/W	Ob: MIC to SBU2 switch is CLOSED 1b: MIC to SBU1 switch is CLOSED If: AGND_SEL = Ob and MIC_SEL = 1b when AGND_EN and MIC EN = 1b then MIC = High-Z If AGND SEL = 1b and MIC SEL = Ob when AGND EN and MIC EN = 1b then MIC = High-Z
0	AGND_SEL	0	R/W	Ob: AGND to SBU1 switch is CLOSED 1b: AGND to SBU2 switch is CLOSED

Table 9. SWITCH STATUS 1

0x06 SWITCH_STAT_1				Default = 00000000
Bit	Name	Default	Type	Description
$7: 6$	Reserved	00	Read	Do Not Use
$5: 4$	SENSE_STAT	00	Read	00b: SENSE switch is OPEN 01b: SENSE switch is CLOSED to GSBU1 10b: SENSE Switch is CLOSED to GSBU2 11b: Not Valid
$3: 2$	DP_R_STAT	00	Read	00b: DP_R switch is OPEN 01b: DP_R switcc is CLOSED to DP 10b: DP_R Switch is CLOSED to R 11b: Not Valid
$1: 0$	DN_L_STAT	00	Read	00b: DN_L switch is OPEN 01b: DN_L switch is CLOSED to DN 10b: DN_L Switch is CLOSED to L $11 \mathrm{~b}:$ Not Valid

Table 10. SWITCH STATUS 2

0x07 SWITCH_STAT_2				Default $\mathbf{0} 00000000$
Bit	Name	Default	Type	Description
7:6	Reserved	00	Read	Do Not Use
5:3	SBU2_STAT	000	Read	000b: SBU2 switch is OPEN 001b: SBU2 switch is CLOSED to MIC 010b: SBU2 Switch is CLOSED to AGND 011b: SBU2 Switch is CLOSED to S1H 100b: SBU2 Switch is CLOSED to S2H 101b: SBU2 Switch is CLOSED to both S1H and S2H 110b: Not Valid 111b: Not Valid
2:0	SBU1_STAT	000	Read	000b: SBU1 switch is OPEN 001b: SBU1 switch is CLOSED to MIC 010b: SBU1 Switch is CLOSED to AGND 011b: SBU1 Switch is CLOSED to S1H 100b: SBU1 Switch is CLOSED to S2H 101b: SBU1 Switch is CLOSED to both S1H and S2H 110b: Not Valid 111b: Not Valid

Table 11. AUDIO SWITCH LEFT CHANNEL SLOW TURN ON TIME

0x08 AUDIO_SLOW_LEFT				Default = 00000001
Bit	Name	Default	Type	Description
$7: 0$	AUDIO_SLOW_LEFT	00000001	R/W	$00000000 \mathrm{~b}:=180 \mu \mathrm{~s}$ $00000001 \mathrm{~b}:=330 ~ \mu \mathrm{~S}$ (DEFAULT) Typical turn on time (tON) is incremented approximately $150 ~ \mu \mathrm{~s} \mathrm{per} \mathrm{bit}$

Table 12. AUDIO SWITCH RIGHT CHANNEL SLOW TURN ON TIME

Ox09 AUDIO_SLOW_RIGHT				Default $=00000001$
Bit	Name	Default	Type	Description
$7: 0$	AUDIO_SLOW_RIGHT	00000001	R/W	$00000000 \mathrm{~b}:=180 ~ \mu \mathrm{~s}$ $00000001 \mathrm{~b}:=330$ us (DEFAULT) Typical turn on time (tON) is incremented approximately $150 ~ \mu s$ per bit

Table 13. MIC SWITCH SLOW TURN ON TIME

0xOA MIC_SLOW				Default = 00000010
Bit	Name	Default	Type	Description
$7: 0$	MIC_SLOW	00000010	R/W	$00000000 \mathrm{~b}:=$ Do Not Use $00000001 \mathrm{~b}:=370 \mu \mathrm{~s}$ $00000010 \mathrm{~b}:=520 \mu \mathrm{~s}$ (DEFAULT)
				Typical turn on time (tON) is incremented approximately $150 ~ \mu \mathrm{~s}$ per bit

Table 14. SENSE SWITCH SLOW TURN ON TIME

0xOB SENSE_SLOW				Default = 00000001
Bit	Name	Default	Type	Description
$7: 0$	SENSE_SLOW	00000001	R/W	$00000000 \mathrm{~b}:=160 \mu \mathrm{~s}$ $00000001 \mathrm{~b}:=220 \mu \mathrm{~s}$ (DEFAULT) Typical turn on time (tON) is incremented approximately $60 ~ \mu \mathrm{~s} \mathrm{per} \mathrm{bit}$

Table 15. AGND SWITCH SLOW TURN ON TIME

0x0C AGND_SLOW				Default $=00000001$
Bit	Name	Default	Type	Description
$7: 0$	AGND_SLOW	00000001	R/W	$00000000 \mathrm{~b}:=900 \mu \mathrm{~s}$ $00000001 \mathrm{~b}:=1750 \mu \mathrm{~S}$ (DEFAULT) Typical turn on time (tON) is incremented approximately $850 ~ \mu \mathrm{~s}$ per bit

Table 16. TIMING DELAY BETWEEN AUDIO L AND AUDIO R SWITCH ENABLE

0x0D L2R_EN_DELAY				Default $=\mathbf{0 0 0 0 0 0 0 0}$
Bit	Name	Default	Type	Description
$7: 0$	L2R_EN_DELAY	00000000	R/W	$00000000 \mathrm{~b}:=0 \mu \mathrm{~s}$ (DEFAULT) $00000001 \mathrm{~b}:=100 \mu \mathrm{~s}$ $\ldots \ldots \ldots$. $1111111 \mathrm{~b}:=25500 \mu \mathrm{~s}$ Increment size is $100 \mu \mathrm{~s}$ per bit

Table 17. TIMING DELAY BETWEEN AUDIO MIC AND AUDIO L SWITCH ENABLE

Ox0E MIC2L_EN_DELAY			Default $=00000000$	
Bit	Name	Default	Type	Description
$7: 0$	MIC2L_EN_DELAY	00000000	R/W	$00000000 \mathrm{~b}:=0 \mu \mathrm{~s}$ (DEFAULT) $00000001 \mathrm{~b}:=100 \mu \mathrm{~s}$ $\ldots \ldots \ldots .$. $1111111 \mathrm{~b}:=25500 \mu \mathrm{~s}$ Increment size is 100 us per bit

Table 18. TIMING DELAY BETWEEN SENSE SWITCH AND AUDIO L SWITCH ENABLE

0x0F SENSE2L_EN_DELAY				$\frac{\text { Default }=00000000}{\text { Description }}$
Bit	Name	Default	Type	
7:0	SENSE2L_EN_DELAY	00000000	R/W	$\begin{aligned} & 00000000 \mathrm{~b}:=0 \mu \mathrm{~s} \text { (DEFAULT) } \\ & 00000001 \mathrm{~b}:=100 \mu \mathrm{~s} \\ & \ldots \ldots . . \\ & 1111111 \mathrm{~b}:=25500 \mu \mathrm{~s} \\ & \text { Increment size is } 100 \mu \mathrm{~s} \text { per bit } \end{aligned}$

Table 19. TIMING DELAY BETWEEN AGND SWITCH AND AUDIO L SWITCH ENABLE

0x10 AGND2L_EN_DELAY			Default $=\mathbf{0 0 0 0 0 0 0 0}$	
Bit	Name	Default	Type	Description
7:0	AGND2L_EN_DELAY	00000000	R/W	$00000000 \mathrm{~b}:=0 \mu \mathrm{~s}$ (DEFAULT) $00000001 \mathrm{~b}:=100 \mu \mathrm{~s}$ $\cdots \ldots \ldots$. $111111 \mathrm{~b}:=25500 \mu \mathrm{~s}$ Increment size is $100 \mu \mathrm{~s}$ per bit

Table 20. AUDIO ACCESSORY STATUS

0x11 AUDIO_ACC_STAT				Default = 00000011	
Bit	Name	Default	Type		Description
$7: 2$	Reserved	000000	Read	Reserved	
1	CC_IN_STAT	1	Read	Ob: CC_IN < V_TH_L_CC 1b: CC_IN > V_TH_H_CC	
0	DET_STAT	1	Read	Ob: DET output is LOW 1b: DET output is High-Z	

FSA4485

Table 21. AUTOMATIC FUNCTION ENABLE

Ox12 FUNCTION_EN				Default = 11001000
Bit	Name	Default	Type	Description
$7: 6$	DET_FUNCT	11	R/W	DET Output Configuration 00b: Type-C Attach Detection, DET = LOW if CC_IN_STAT = Ob 01b: Audio Accessory Attach Detection, DET = LOW if NO_AUDIO_ACC = 0b 10b: Audio Accessory Detach Detection, DET = LOW if CC_IN_STAT transitions from Ob to 1b 11b: Disabled, DET = High-Z (DEFAULT)
5	RES_DET_RANGE	0	R/W	Resistor Detection Range Setting Ob: $1 \mathrm{k} \Omega$ to 256 k Ω 1b: 10 k Ω to 2560 k Ω
4	HIZ_ACC_DET	0	R/W	High Impedance Audio Accessory Detection Ob: Automatic Hi-Z Accessory Detection is disabled 1b: Automatic Hi-Z Accessory Detection is enabled
3	SLOW_TURN_ON	1	R/W	Switch Slow Turn On Control Enable Ob: Disabled 1b: Enabled
2	MIC_AUTO_OFF	0	R/W	Ob: MIC Switch Auto Off Function is Disabled 1b: MIC Switch Auto Off Function is Enabled
1	RES_DETECT	0	R/W	Resistance Detection Enabled Ob: Resistance Detection is Disabled 1b: Resistance Detection is Enabled Automatically reset to Ob by I LOW RES = 1b
0	AUDIO_JACK_DET	0	R/W	Audio Jack Detection and Configuration Enabled Ob: Audio Jack Detection is Disabled 1b: Audio Jack Detection and Configuration is Enabled Automatically reset to Ob by I AUDIO JACK DET = 1b

Table 22. RESISTOR DETECTION PIN SELECTION

0x13 RES_PIN_SEL				Default = 00000001
Bit	Name	Default	Type	Description
$7: 3$	Reserved	00000	R/W	Do Not Use
2:0	RES_PIN_SEL	001	R/W	000b: Not Valid 001b: DP_R (DEFAULT) 010b: DN_L 011b: SBU1 100b: SBU2 101b to 111b: Not Valid RES PIN SEL must be set prior to setting RES DETECT to Enabled

Table 23. DETECTED RESISTOR VALUE

0x14 RES_VALUE				Default = 11111111
Bit	Name	Default	Type	Description
$7: 0$	RES_VALUE	11111111	Read	$00000000 \mathrm{~b}: \mathrm{R}<=1 \mathrm{k} \Omega / 10 \mathrm{k} \Omega$ $11111111 \mathrm{~b}: \mathrm{R}>=256 \mathrm{k} \Omega / 2.56 \mathrm{M} \Omega$ Increment $=10 \mathrm{k} \Omega$ per bit if $R E S _D E T _R A N G E ~=~ 0 b ~ I n c r e m e n t ~$$=1 \mathrm{k} \Omega$ per bit if
RES DET RANGE $=1 \mathrm{~b}$				

Table 24. RESISTOR DETECTION THRESHOLD

0x15 RES_DET_THRESH				Default $=00010110$
Bit	Name	Default	Type	Description
7:0	RES_DET_THRESH	00010110	R/W	```00000000\textrm{b}:1\textrm{k}\Omega/10\textrm{k}\Omega 00010110b: 23 k\Omega / 230 k\Omega (DEFAULT) 11111111b: 256 k\Omega / 2560 k\Omega Increment = 10 k\Omega per bit if RES_DET_RANGE = 0b Increment = 1 k\Omega per bit if RES DET RANGE = 1b```

Table 25. AUTOMATIC RESISTANCE DETECTION TIME INTERVAL

Ox16 RES_DET_INTV				Default = $\mathbf{0 0 0 0 0 0 0 0}$
Bit	Name	Default	Type	Description
$7: 2$	Reserved	000000	R/W	Do Not Use
$1: 0$	RES_DET_INTV	00	R/W	00b: One Time Detection 01b: Detection is performed every 100 ms 10b: Detection is performed every 1s 11b: Detection is performed every 10 s

Table 26. AUDIO JACK STATUS

Ox17 AUDIO_JACK_STAT				Default = 00000001
Bit	Name	Default	Type	Description
$7: 5$	Reserved	000	Read	Do Not Use
4	UNKNOWN_AUDIO_ACC	0	Read	Ob: OTHER 1b: Unknown Audio Accessory
3	4POLE_A	0	Read	Ob: OTHER 1b: 4 Pole Audio, SBU2 to MIC, SBU1 to AGND
2	4POLE_B	0	Read	Ob: OTHER 1b: 4 Pole Audio, SBU1 to MIC, SBU2 to AGND
1	3POLE	0	Read	Ob: OTHER 1b: 3 Pole Audio
0	NO_AUDIO_ACC	1	Read	Ob: Audio Accessory Attached 1b: No Audio Accessory

FSA4485

Table 27. RESISTANCE AND AUDIO JACK DETECTION INTERRUPT

0x18 DET_INTERRUPT				Default = 00000000
Bit	Name	Default	Type	Description
$7: 5$	Reserved	000	R/CLR	Do Not Use
4	I_DISABLE	0	R/CLR	A hardware disable has occurred due to EN = High Ob: The device has not been disabled 1b: The device was disabled
3	I_DET_FUNCT	0	R/CLR	Audio Accessory Detach has occurred Ob: DET_FUNCT = 00b, 01b, 11b, or DET_FUNCT = 10b and DET_STAT= 1b 1b: DET_FUNCT = 10b and DET_STAT = 0b Clearing I DET FUNCT will return the DET output to High-Z
2	I_AUDIO_JACK_DET	0	R/CLR	Ob: Audio Jack Detection and Configuration has not occurred 1b: Audio Jack Detection and Configuration has occurred
1	I_LOW_RES	0	R/CLR	Ob: A Resistance < RES_DET_THRESH has not been detected 1b: A Resistance < RES DET THRESH has been detected
0	I_RES_DET_COMP	0	R/CLR	Ob: Resistance Detection has not been completed 1b: Resistance Detection has been completed

Table 28. RESISTANCE AND AUDIO JACK DETECTION INTERRUPT MASK

Ox19 DET_MASK				Default = $\mathbf{0 0 0 0 1 0 0 0}$
Bit	Name	Default	Type	Description
$7: 5$	Reserved	000	R/W	Do Not Use
4	M_DISABLE	0	R/W	Ob: Do not mask Device Disable interrupt 1b: Mask Device Disable interrupt
3	M_DET_FUNCT	1	R/W	Ob: Do not mask Audio Accessory Detach interrupt 1b: Mask Audio Accessory Detach interrupt
2	M_AUDIO_JACK_DET	0	R/W	Ob: Do not mask Audio Jack Detection and Configuration interrupt 1b: Mask Audio Jack Detection and Configuration interrupt
1	M_LOW_RES	0	R/W	Ob: Do not mask Low Resistance Detection interrupt 1b: Mask Low Resistance Detection interrupt
0	M_RES_DET_COMP	0	R/W	Ob: Do not mask Resistance Detection completed interrupt 1b: Mask Resistance Detection completed interrupt

Table 29. AUDIO JACK MIC/AGND ORIENTATION DETECTION 1

0x1A AUDIO_JACK_DET1				Default $=00000000$
Bit	Name	Default	Type	Description
7:0	AUDIO_JACK_DET1	00000000	Read	Voltage from resistance between SBU1 and SBU2 (SBU2 = ground) 00000000b: $=0 \mathrm{~V}$ $11111111 \mathrm{~b}:=2.4 \mathrm{~V}$ Increment is 9.375 mV per bit Resistance is calculated as AUDIO_JACK_DET1 / CURR_SOURCE_SET

Table 30. AUDIO JACK MIC/AGND ORIENTATION DETECTION 2

0x1B AUDIO_JACK_DET2				Default = 00000000
Bit	Name	Default	Type	Description
7:0	AUDIO_JACK_DET2	00000000	Read	Voltage from resistance between SBU2 and SBU1 (SBU1 = ground) $00000000 \mathrm{~b}:=0 \mathrm{~V}$ $\ldots \ldots \ldots$. $1111111 \mathrm{~b}:=2.4 \mathrm{~V}$ Increment is 9.375 mV per bit Resistance is calculated as AUDIO_JACK_DET2 / CURR_SOURCE_SET

Table 31. LOWER MIC DETECTION THRESHOLD VOLTAGE

0x1C MIC_DET_TH_LOW				Default = 00100000
Bit	Name	Default	Type	Description
7:0	MIC_DET_TH_LOW	00100000	R/W	$00000000 \mathrm{~b}:=0 \mathrm{mV}$ $\ldots \ldots \ldots .$. $00100000 \mathrm{~b}:=300 \mathrm{mV}$ (DEFAULT) $\ldots \ldots \ldots$. $1111111 \mathrm{~b}:=2.4 \mathrm{~V}$ Increment $=9.375 \mathrm{mV}$ per bit

Table 32. UPPER MIC DETECTION THRESHOLD VOLTAGE

0x1D MIC_DET_TH_UP				Default = 11111111	
Bit	Name	Default	Type	Description	
7:0	MIC_DET_TH_UP	11111111	R/W	$00000000 \mathrm{~b}:=0 \mathrm{mV}$ $\ldots \ldots \ldots .$. $00100000 \mathrm{~b}:=300 \mathrm{mV}$ $\ldots \ldots .$. $1111111 \mathrm{~b}:=2.4 \mathrm{~V}$ (DEFAULT) Increment $=9.375 \mathrm{mV}$ per bit	

Table 33. ${ }^{2}$ C REGISTER RESET

0x1E I2C_RESET				Default = 00000000	
Bit	Name	Default	Type	Description	
$7: 1$	Reserved	0000000	W1CLR	Do Not Use	
0	I2C_RESET 4	0	W1CLR	Ob: DEFAULT 1b: Reset all I $2 \mathrm{C} ~ R e g i s t e r ~ V a l u e s ~ t o ~ D e f a u l t ~$	

Table 34. RESISTANCE DETECTION CURRENT SOURCE

0x1F CURR_SOURCE_SET				Default = 00000010	
Bit	Name	Default	Type	Description	
$7: 2$	Reserved	000000	Write	Do Not Use	
$1: 0$	CURR_SOURCE_SET	10	Write	$00 \mathrm{~b}: 20 \mu \mathrm{~A}$ $01 \mathrm{~b}: 100 \mu \mathrm{~A}$ $10 \mathrm{~b}: 700 \mu \mathrm{~A}$ (DEFAULT) $11 \mathrm{~b}: 1500 \mu \mathrm{~A}$	

Table 35. DETECTION CURRENT STATUS

0x20 CURR_SOURCE_STAT				Default = 00000010	
Bit	Name	Default	Type	Description	
$7: 2$	Reserved	000000	Read	Do Not Use	
$1: 0$	CURR_SOURCE_STAT	10	Read	$00 \mathrm{~b}: 20 \mu \mathrm{~A}$ $01 \mathrm{~b}: 100 \mu \mathrm{~A}$ $10 \mathrm{~b}: 700 \mu \mathrm{~A}$ (DEFAULT) $11 \mathrm{~b}: 1500 \mu \mathrm{~A}$	

Table 36. EXTERNAL GATE DRIVE OUTPUT CONTROL

0x21 GATE_DRIVE				Default $=\mathbf{0 0 0 0 0 0 0 0}$
Bit	Name	Default	Type	Description
$7: 3$	Reserved	00000	R/W	Do Not Use
2	GATE_DRIVE_EN	0	R/W	Ob: External Gate Drive GD1 and GD2 are Disabled (DEFAULT) 1b: External Gate Drive GD1 and GS2 are Enabled
$1: 0$	GATE_DRIVE_CURR	00	R/W	$00 \mathrm{~b}: 1 \mu \mathrm{~A}$ (DEFAULT) $01 \mathrm{~b}: 1.5 \mu \mathrm{~A}$ $10 \mathrm{~b}: 2 \mu \mathrm{~A}$ $11 \mathrm{~b}: 3 \mu \mathrm{~A}$

Table 37. OVER VOLTAGE AND OVER CURRENT PROTECTION ENABLE

0x22 PROTECTION_EN				Default =00000011
Bit	Name	Default	Type	Description
$7: 2$	Reserved	000000	R/W	Do Not Use
1	EN_OVP	1	R/W	Ob: Over Voltage Protection is Disabled 1b: Over Voltage Protection is Enabled (DEFAULT)
0	EN_OCP	1	R/W	Ob: Over Current Protection is Disabled 1b: Over Current Protection is Enabled (DEFAULT)

Table 38. OVER VOLTAGE AND OVER CURRENT PROTECTION STATUS

0x23 PROTECTION_STAT				Default = 00100000
Bit	Name	Default	Type	Description
$7: 6$	Reserved	00	Read	Do Not Use
5	USB_OVP	1	Read	Ob: Over Voltage Protection on DP_R and DN_L is Disabled 1b: Over Voltage Protection on DP_R and DN_L is Enabled (DEFAULT)
4	GSBU_OVP	0	Read	Ob: Over Voltage Protection on GSBUx is Disabled (DEFAULT) 1b: Over Voltage Protection on GSBUx is Enabled
3	SBU1_OVP	0	Read	Ob: Over Voltage Protection on SBU1 is Disabled (DEFAULT) 1b: Over Voltage Protection on SBU1 is Enabled
2	SBU2_OVP	0	Read	Ob: Over Voltage Protection on SBU2 is Disabled (DEFAULT) 1b: Over Voltage Protection on SBU2 is Enabled
1	OCP1	0	Read	Ob: Over Current Protection from SBU1 to AGND is Disabled (DEFAULT) $1 \mathrm{lb:} \mathrm{SBU1} \mathrm{STAT} \mathrm{=} \mathrm{010b} ,\mathrm{Over} \mathrm{Current} \mathrm{Protection} \mathrm{from} \mathrm{SBU1} \mathrm{to} \mathrm{AGND} \mathrm{is}$ Enabled
0	OCP2	0	Read	Ob: Over Current Protection from SBU2 to AGND is Disabled (DEFAULT) $1 \mathrm{lb:} \mathrm{SBU2} \mathrm{_STAT} \mathrm{=} \mathrm{010b} ,\mathrm{Over} \mathrm{Current} \mathrm{Protection} \mathrm{from} \mathrm{SBU2} \mathrm{to} \mathrm{AGND} \mathrm{is}$ Enabled

APPLICATION CIRCUIT

Application Circuit Diagram

Figure 20. Application Example with Factory Test Mode

Figure 21. Application Example with Factory Test Mode

PACKAGE DIMENSIONS

WLCSP25 2.16x2.16x0.574

CASE 567YL
ISSUE O

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
2. CONTROLLING DIMENSION: MILLIMETERS
3. DATUM C APPLIES TO THE SPHERICAL CROWN OF THE SOLDER BALLS

DIM	MILLIMETERS				
	MIN.	NOM.	MAX.		
A	0.536	0.574	0.612		
A1	0.176	0.196	0.216		
A2	0.338	0.353	0.368		
A3	0.022	0.025	0.028		
b	0.24	0.26	0.28		
D	2.13	2.16	2.19		
E	2.13	0.16			2.19
e	0.40 BASIC				
x	0.265	0.280	0.295		
y	0.265	0.280	0.295		

*FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

> ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

TECHNICAL SUPPORT

North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support

Phone: 00421337902910
For additional information, please contact your local Sales Representative

