MOSFET – Power, P-Channel, High Side Load Switch with Level-Shift, SC-88

8 V, ±1.3 A

The NTJD1155L integrates a P and N–Channel MOSFET in a single package. This device is particularly suited for portable electronic equipment where low control signals, low battery voltages and high load currents are needed. The P–Channel device is specifically designed as a load switch using ON Semiconductor state–of–the–art trench technology. The N–Channel, with an external resistor (R1), functions as a level–shift to drive the P–Channel. The N–Channel MOSFET has internal ESD protection and can be driven by logic signals as low as 1.5 V. The NTJD1155L operates on supply lines from 1.8 to 8.0 V and can drive loads up to 1.3 A with 8.0 V applied to both $V_{\rm IN}$ and $V_{\rm ON/OFF}$.

Features

- Extremely Low R_{DS(on)} P-Channel Load Switch MOSFET
- Level Shift MOSFET is ESD Protected
- Low Profile, Small Footprint Package
- V_{IN} Range 1.8 to 8.0 V
- ON/OFF Range 1.5 to 8.0 V
- These Devices are Pb-Free and are RoHS Compliant

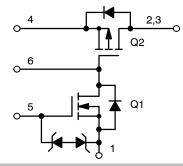
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit		
Input Voltage (V _{DSS} , P-Ch	V_{IN}	8.0	V		
ON/OFF Voltage (V _{GS} , N-	·Ch)		V _{ON/OFF}	8.0	V
Continuous Load Current	Steady	T _A = 25°C	ΙL	±1.3	Α
(Note 1)	State $T_A = 85^{\circ}C$			±0.9	
Power Dissipation	Steady	T _A = 25°C	P_{D}	0.40	W
(Note 1)	State	T _A = 85°C		0.20	
Pulsed Load Current	t _p =	10 μs	I_{LM}	±3.9	Α
Operating Junction and St	T _J , T _{STG}	–55 to 150	ô		
Source Current (Body Dio	I _S	-0.4	Α		
Lead Temperature for Solo (1/8" from case for 10 s)	dering Pur	poses	TL	260	°C

THERMAL CHARACTERISTICS

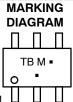
Characteristic	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	320	°C/W
Junction-to-Foot - Steady State (Note 1)	$R_{\theta JF}$	220	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



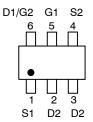
ON Semiconductor®

www.onsemi.com


V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
	130 mΩ @ -4.5 V	
8.0 V	170 mΩ @ –2.5 V	±1.3 A
	260 mΩ @ -1.8 V	

SIMPLIFIED SCHEMATIC

SC-88 (SOT-363) CASE 419B STYLE 30



TB = Device Code M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

PIN ASSIGNMENT

ORDERING INFORMATION

Device	Package	Shipping [†]
NTJD1155LT1G, NTJD1155LT2G	SC-88 (Pb-Free)	3000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

1.	Surface-mounted on FR4 board using 1 inch sq pad size (Cu area = 1.127 in sq [1 oz] including traces).

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS				•			•
Q2 Drain-to-Source Breakdown Voltage	V _{IN}	V _{GS2} = 0 V, I _{D2} =	= 250 μΑ	-8.0			V
Forward Leakage Current	I _{FL}	V _{GS1} = 0 V,	T _J = 25°C			1.0	μΑ
		$V_{DS2} = -8.0 \text{ V}$	T _J = 125°C			10	
Q1 Gate-to-Source Leakage Current	I _{GSS}	V _{DS1} = 0 V, V _{GS1}	_I = ±8.0 V			±100	nA
Q1 Diode Forward On-Voltage	V_{SD}	$I_S = -0.4 \text{ A}, V_{GS}$	_{S1} = 0 V		-0.8	-1.1	V
ON CHARACTERISTICS							
ON/OFF Voltage	V _{ON/OFF}			1.5		8.0	V
Q1 Gate Threshold Voltage	V _{GS1(th)}	V _{GS1} = V _{DS1} , I _D = 250 μA		0.4		1.0	V
Input Voltage	V _{IN}	$V_{GS1} = V_{DS1}, I_D = 250 \mu A$		1.8		8.0	V
Q2 Drain-to-Source On Resistance	R _{DS(on)}	V _{ON/OFF} = 1.5 V V _{IN} = 4.5 V I _L = 1.2 A			130	175	mΩ
			V _{IN} = 2.5 V I _L = 1.0 A		170	220	
			V _{IN} = 1.8 V I _L = 0.7 A		260	320	
Load Current	ال	$V_{DROP} \le 0.2 \text{ V, } V_{IN} = 5.0 \text{ V,} $ $V_{ON/OFF} = 1.5 \text{ V}$		1.0			Α
		V _{DROP} ≤ 0.3 V, V V _{ON/OFF} = 1	_{IN} = 2.5 V, .5 V	1.0			

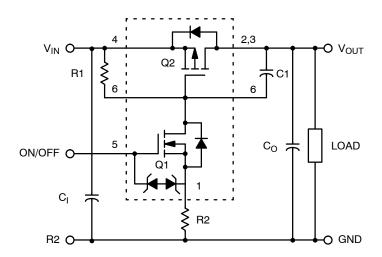
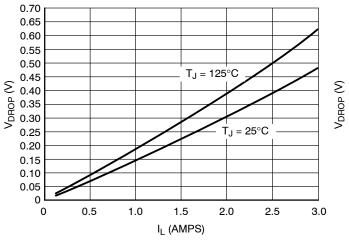
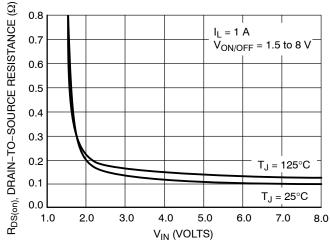



Figure 1. Load Switch Application

Components	Description	Values
R1	Pullup Resistor	Typical 10 k Ω to 1.0 M Ω^*
R2	Optional Slew-Rate Control	Typical 0 to 100 kΩ*
C _O , C _I	Output Capacitance	Usually < 1.0 μF
C1	Optional In-Rush Current Control	Typical ≤ 1000 pF

^{*}Minimum R1 value should be at least 10 x R2 to ensure Q1 turn-on.


TYPICAL PERFORMANCE CURVES ($T_J = 25^{\circ}C$ unless otherwise noted)

0.50 0.45 0.40 0.35 $T_J = 125^{\circ}C$ 0.30 0.25 0.20 $T_J = 25^{\circ}C$ 0.15 0.10 0.05 0.5 1.0 1.5 2.0 2.5 3.0 0 I_L (AMPS)

Figure 2. V_{drop} vs. $I_L @ V_{in}$ = 2.5 V

Figure 3. V_{drop} vs. $I_L @ V_{in} = 4.5 \text{ V}$

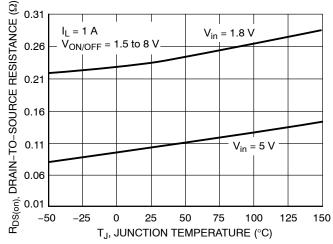
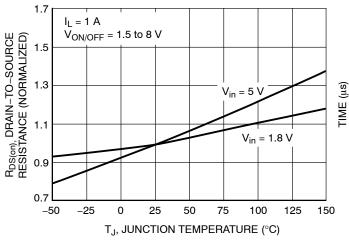



Figure 4. On-Resistance vs. Input Voltage

Figure 5. On–Resistance Variation with Temperature

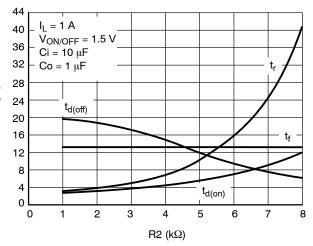


Figure 7. Switching Variation R2 @ V_{in} = 4.5 V, R1 = 20 k Ω

$\textbf{TYPICAL PERFORMANCE CURVES} \ (T_J = 25^{\circ}\text{C unless otherwise noted})$

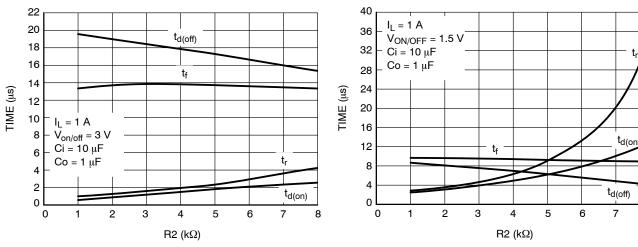


Figure 8. Switching Variation R2 @ V_{in} = 4.5 V, R1 = 20 $k\Omega$

Figure 9. Switching Variation R2 @ V_{in} = 2.5 V, R1 = 20 k Ω

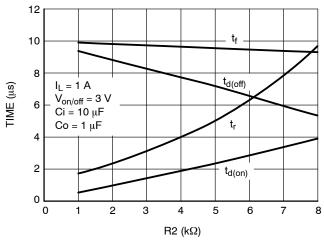


Figure 10. Switching Variation R2 @ V_{in} = 2.5 V, R1 = 20 $k\Omega$

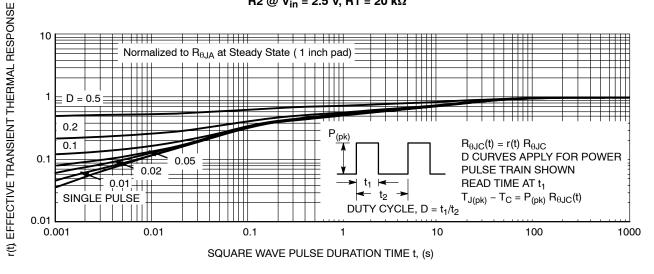
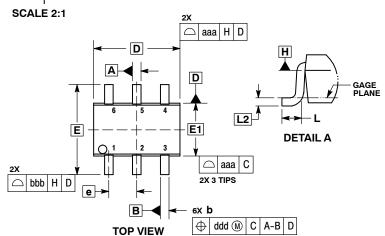
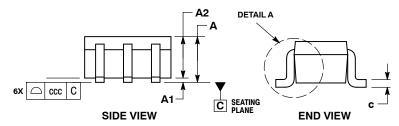




Figure 11. FET Thermal Response

SC-88/SC70-6/SOT-363 CASE 419B-02 **ISSUE Y**

DATE 11 DEC 2012

NOTES:

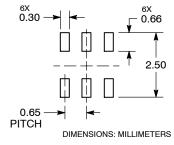
- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS
- CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH,
- DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H. DATUMS A AND B ARE DETERMINED AT DATUM H. DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP.

- DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION 6 AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

	MIL	LIMETE	ERS		INCHES	}
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α			1.10			0.043
A1	0.00		0.10	0.000		0.004
A2	0.70	0.90	1.00	0.027	0.035	0.039
b	0.15	0.20	0.25	0.006	0.008	0.010
С	0.08	0.15	0.22	0.003	0.006	0.009
D	1.80	2.00	2.20	0.070	0.078	0.086
E	2.00	2.10	2.20	0.078	0.082	0.086
E1	1.15	1.25	1.35	0.045	0.049	0.053
е		0.65 BS	С	0	.026 BS	С
L	0.26	0.36	0.46	0.010	0.014	0.018
L2		0.15 BS	C		0.006 BS	SC
aaa	0.15 0.006					
bbb	0.30			0.012		
ccc		0.10		0.004		
ddd		0.10			0.004	

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code


= Date Code*

= Pb-Free Package

(Note: Microdot may be in either location)

- *Date Code orientation and/or position may vary depending upon manufacturing location.
- *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42985B	Electronic versions are uncontrolled except when accessed directly from the Document F Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-88/SC70-6/SOT-363		PAGE 1 OF 2	

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SC-88/SC70-6/SOT-363 CASE 419B-02 ISSUE Y

DATE 11 DEC 2012

STYLE 1: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	STYLE 2: CANCELLED	STYLE 3: CANCELLED	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. COLLECTOR 4. EMITTER 5. BASE 6. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 6: PIN 1. ANODE 2 2. N/C 3. CATHODE 1 4. ANODE 1 5. N/C 6. CATHODE 2
STYLE 7: PIN 1. SOURCE 2 2. DRAIN 2 3. GATE 1 4. SOURCE 1 5. DRAIN 1 6. GATE 2	STYLE 8: CANCELLED	STYLE 9: PIN 1. EMITTER 2 2. EMITTER 1 3. COLLECTOR 1 4. BASE 1 5. BASE 2 6. COLLECTOR 2	STYLE 10: PIN 1. SOURCE 2 2. SOURCE 1 3. GATE 1 4. DRAIN 1 5. DRAIN 2 6. GATE 2	STYLE 11: PIN 1. CATHODE 2 2. CATHODE 2 3. ANODE 1 4. CATHODE 1 5. CATHODE 1 6. ANODE 2	STYLE 12: PIN 1. ANODE 2 2. ANODE 2 3. CATHODE 1 4. ANODE 1 5. ANODE 1 6. CATHODE 2
STYLE 13: PIN 1. ANODE 2. N/C 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 14: PIN 1. VREF 2. GND 3. GND 4. IOUT 5. VEN 6. VCC	STYLE 15: PIN 1. ANODE 1 2. ANODE 2 3. ANODE 3 4. CATHODE 3 5. CATHODE 2 6. CATHODE 1	STYLE 16: PIN 1. BASE 1 2. EMITTER 2 3. COLLECTOR 2 4. BASE 2 5. EMITTER 1 6. COLLECTOR 1	STYLE 17: PIN 1. BASE 1 2. EMITTER 1 3. COLLECTOR 2 4. BASE 2 5. EMITTER 2 6. COLLECTOR 1	STYLE 18: PIN 1. VIN1 2. VCC 3. VOUT2 4. VIN2 5. GND 6. VOUT1
STYLE 19: PIN 1. I OUT 2. GND 3. GND 4. V CC 5. V EN 6. V REF	STYLE 20: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR	STYLE 21: PIN 1. ANODE 1 2. N/C 3. ANODE 2 4. CATHODE 2 5. N/C 6. CATHODE 1	STYLE 22: PIN 1. D1 (i) 2. GND 3. D2 (i) 4. D2 (c) 5. VBUS 6. D1 (c)	STYLE 23: PIN 1. Vn 2. CH1 3. Vp 4. N/C 5. CH2 6. N/C	STYLE 24: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE
STYLE 25: PIN 1. BASE 1 2. CATHODE 3. COLLECTOR 2 4. BASE 2 5. EMITTER 6. COLLECTOR 1	STYLE 26: PIN 1. SOURCE 1 2. GATE 1 3. DRAIN 2 4. SOURCE 2 5. GATE 2 6. DRAIN 1	STYLE 27: PIN 1. BASE 2 2. BASE 1 3. COLLECTOR 1 4. EMITTER 1 5. EMITTER 2 6. COLLECTOR 2	STYLE 28: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE 5. DRAIN 6. DRAIN	STYLE 29: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE/ANODE 6. CATHODE	STYLE 30: PIN 1. SOURCE 1 2. DRAIN 2 3. DRAIN 2 4. SOURCE 2 5. GATE 1 6. DRAIN 1

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

DOCUMENT NUMBER:	98ASB42985B	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SC-88/SC70-6/SOT-363		PAGE 2 OF 2

ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative