Low Power JFET-Input Op Amps

ADA4062-2/ADA4062-4

FEATURES

Low input bias current: $\mathbf{5 0}$ pA maximum
 Offset voltage

1.5 mV maximum for B grade (ADA4062-2 SOIC package)
2.5 mV maximum for A grade

Offset voltage drift: $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ typical
Slew rate: $3.3 \mathrm{~V} / \mu \mathrm{s}$ typical
CMRR: 90 dB typical
Low supply current: $165 \mu \mathrm{~A}$ typical
High input impedance
Unity-gain stable
$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ dual-supply operation

Packaging

8-lead SOIC, 8-lead MSOP, 10-lead LFCSP, 14-lead TSSOP, and 16-lead LFCSP packages

APPLICATIONS

Power controls and monitoring
Active filters
Industrial/process controls
Body probe electronics
Data acquisition
Integrators
Input buffering

GENERAL DESCRIPTION

The ADA4062-2 and ADA4062-4 are dual and quad JFET-input amplifiers with industry-leading performance. They offer lower power, offset voltage, drift, and ultralow bias current. The ADA4062-2 B grade (SOIC package) features a typical low offset voltage of 0.5 mV , an offset drift of $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, and a bias current of 2 pA .

The ADA4062 family is ideal for various applications, including process controls, industrial and instrumentation equipment, active filtering, data conversion, buffering, and power control and monitoring. With a low supply current of $165 \mu \mathrm{~A}$ per amplifier, they are well suited for lower power applications.
The ADA4062 family is also specified for the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The ADA4062-2 is available in lead-free, 8 -lead SOIC, 8 -lead MSOP, and 10-lead LFCSP ($1.6 \mathrm{~mm} \times 1.3 \mathrm{~mm} \times 0.55 \mathrm{~mm}$) packages, while the ADA4062-4 is available in lead-free, 14-lead TSSOP and 16-lead LFCSP packages.

Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

PIN CONFIGURATIONS

Figure 1. 8-Lead Narrow-Body SOIC and 8-Lead MSOP

Figure 2. 10-Lead LFCSP

Figure 3. 14-Lead TSSOP

NOTES

1. NC = NO CONNECT.
2. IT IS RECOMMENDED TO CONNECT THE EXPOSED PAD TO V-. 商

Figure 4. 16-Lead LFCSP
Table 1. Low Power Op Amps

	Precision CMOS	Precision High Bandwidth	High Bandwidth
Single	AD8663	AD8641	
Dual	AD8667	AD8642	AD8682
Quad	AD8669	AD8643	AD8684

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

ADA4062-2/ADA4062-4

TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Pin Configurations 1
Revision History 2
Specifications 3
Electrical Characteristics 3
Absolute Maximum Ratings 5
Thermal Resistance 5
Power Sequencing 5
REVISION HISTORY
2/10—Rev. A to Rev. B
Added 16-Lead LFCSP Package Universal
Changes to Features Section, General Description Section, and
Table 1 1
Changes to Offset Voltage Drift Parameter, Table 2 3
Changes to Table 4 5
Changes to Typical Performance Characteristics Layout. 6
Added Figure 6 and Figure 9; Renumbered Sequentially 6
Changes to Figure 7, Figure 8, and Figure 10 6
Changes to Figure 25 and Figure 28 9
Changes to Figure 37 and Figure 40 11
Changes to Figure 41 to Figure 46 12
Changes to Figure 47 and Figure 50 13
Changes to Figure 53 to Figure 58 14
Changes to Notch Filter Section and Micropower InstrumentationAmplifier Section15
Updated Outline Dimensions 18
Changes to Ordering Guide 20
ESD Caution 5
Typical Performance Characteristics 6
Applications Information 15
Notch Filter 15
High-Side Signal Conditioning 15
Micropower Instrumentation Amplifier 15
Phase Reversal 16
Schematic 17
Outline Dimensions 18
Ordering Guide 20
7/09—Rev. 0 to Rev. A
Added ADA4062-4 Universal
Added 14-Lead TSSOP Package Universal
Added 10-Lead LFCSP Package Universal 1 1

Changes to Table 2

Changes to Table 2
Changes to Table 2. 3 3
Changes to Thermal Resistance Section 5
Changes to Figure 5, Figure 6, Figure 8, and Figure 9 6
Changes to Figure 37 and Figure 40 11
Changes to Figure 41 and Figure 44. 12
Changes to Figure 47, Figure 48, Figure 50, and Figure 51 13
Added Figure 49 and Figure 52; Renumbered Sequentially 13
Changes to Figure 57 and Figure 59 15
Changes to Phase Reversal Section and Figure 61 16
Changes to Figure 63 17
Updated Outline Dimensions 18
Changes to Ordering Guide 19
10/08-Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{SY}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2.

ADA4062-2/ADA4062-4

Parameter	Symbol	Conditions	Min	Typ	Max
NOISE PERFORMANCE					
Voltage Noise	$\mathrm{e}_{\mathrm{n}} \mathrm{p}-\mathrm{p}$	$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz	1.5	$\mathrm{\mu V} \mathrm{p}-\mathrm{p}$	
Voltage Noise Density	e_{n}	$\mathrm{f}=1 \mathrm{kHz}$	36	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$	
Current Noise Density	i_{n}	$\mathrm{f}=1 \mathrm{kHz}$	5	$\mathrm{fA} / \sqrt{ } \mathrm{Hz}$	

ADA4062-2/ADA4062-4

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Supply Voltage	$\pm 18 \mathrm{~V}$
Input Voltage	$\pm \mathrm{V}_{5 Y}$
Differential Input Voltage	$\pm \mathrm{V}_{5 \mathrm{~S}}$
Input Current	$\pm 10 \mathrm{~mA}$
Output Short-Circuit Duration to GND	Indefinite
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 sec)	$300^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. It was measured using a standard 4-layer board.

Table 4. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\text {JA }}$	$\boldsymbol{\theta}_{\text {Jc }}$	Unit
8-Lead SOIC	120	45	${ }^{\circ} \mathrm{C} / \mathrm{W}$
8-Lead MSOP	142	45	${ }^{\circ} \mathrm{C} / \mathrm{W}$
10-Lead LFCSP	132	46	${ }^{\circ} \mathrm{C} / \mathrm{W}$
14-Lead TSSOP	112	35	${ }^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP	75	12	${ }^{\circ} \mathrm{C} / \mathrm{W}$

POWER SEQUENCING

The supply voltages of the op amps must be established simultaneously with, or before, any input signals are applied. If this is not possible, the input current must be limited to 10 mA .

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADA4062-2/ADA4062-4

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Figure 5. Input Offset Voltage Distribution

Figure 6. Input Offset Voltage Drift Distribution

Figure 7. Input Offset Voltage Drift Distribution

Figure 8. Input Offset Voltage Distribution

Figure 9. Input Offset Voltage Drift Distribution

Figure 10. Input Offset Voltage Drift Distribution

Figure 11. Input Offset Voltage vs. Common-Mode Voltage

Figure 12. Input Bias Current vs. Temperature

Figure 13. Input Bias Current vs. Common-Mode Voltage

Figure 14. Input Offset Voltage vs. Common-Mode Voltage

Figure 15. Input Bias Current vs. Temperature

Figure 16. Input Bias Current vs. Common-Mode Voltage

ADA4062-2/ADA4062-4

Figure 17. Output Voltage to Supply Rail vs. Load Current

Figure 18. Supply Current/Amp vs. Supply Voltage

Figure 19. Output Voltage to Supply Rail vs. Temperature

Figure 20. Output Voltage to Supply Rail vs. Load Current

Figure 21. Supply Current/Amp vs. Temperature

Figure 22. Output Voltage to Supply Rail vs. Temperature

Figure 23. Open-Loop Gain and Phase vs. Frequency

Figure 24. Closed-Loop Gain vs. Frequency

Figure 25. Output Impedance vs. Frequency

Figure 26. Open-Loop Gain and Phase vs. Frequency

Figure 27. Closed-Loop Gain vs. Frequency

Figure 28. Output Impedance vs. Frequency

Figure 29. CMRR vs. Frequency

Figure 30. PSRR vs. Frequency

Figure 31. Small-Signal Overshoot vs. Load Capacitance

Figure 32. CMRR vs. Frequency

Figure 33. PSRR vs. Frequency

Figure 34. Small-Signal Overshoot vs. Load Capacitance

Figure 35. Large-Signal Transient Response

Figure 36. Small-Signal Transient Response

Figure 37. Negative Overload Recovery

Figure 38. Large-Signal Transient Response

Figure 39. Small-Signal Transient Response

Figure 40. Negative Overload Recovery

Figure 41. Positive Overload Recovery

Figure 42. Positive Settling Time to 0.1%

Figure 43. Negative Settling Time to 0.1\%

Figure 44. Positive Overload Recovery

Figure 45. Positive Settling Time to 0.1\%

Figure 46. Negative Settling Time to 0.1\%

Figure 47. Voltage Noise Density

Figure 48. 0.1 Hz to 10 Hz Noise

Figure 49. Channel Separation vs. Frequency (ADA4062-2 Only)

Figure 50. Voltage Noise Density

Figure 51. 0.1 Hz to 10 Hz Noise

Figure 52. Channel Separation vs. Frequency (ADA4062-2 Only)

Figure 53. Channel Separation vs. Frequency (ADA4062-4 Only)

Figure 54. $T H D+N$ vs. Amplitude

Figure 55. THD $+N$ vs. Frequency

Figure 56. Channel Separation vs. Frequency (ADA4062-4 Only)

Figure 57 THD + N vs. Amplitude

Figure 58. $T H D+N$ vs. Frequency

APPLICATIONS INFORMATION

NOTCH FILTER

A notch filter rejects a specific interfering frequency and can be implemented using a single op amp. Figure 59 shows a 60 Hz notch filter that uses the twin-T network with the ADA4062-x configured as a voltage follower. The ADA4062-x works as a buffer that provides high input resistance and low output impedance. The low bias current (2 pA typical) and high input resistance (10 T Ω typical) of the ADA4062-x enable large resistors and small capacitors to be used.
Alternatively, different combinations of resistor and capacitor values can be used to achieve the desired notch frequency. However, the major drawback to this circuit topology is the need to ensure that all the resistors and capacitors be closely matched. If they are not closely matched, the notch frequency offset and drift cause the circuit to attenuate at a frequency other than the ideal notch frequency.
Therefore, to achieve the desired performance, 1% or better component tolerances are usually required. In addition, a notch filter requires an op amp with a bandwidth of at least $100 \times$ to $200 \times$ the center frequency. Hence, using the ADA4062-x with a bandwidth of 1.4 MHz is excellent for a 60 Hz notch filter. Figure 60 shows the frequency response of the notch filter. At 60 Hz , the notch filter has about 50 dB attenuation of signal.

Figure 60. Frequency Response of the Notch Filter

HIGH-SIDE SIGNAL CONDITIONING

Many applications require the sensing of signals near the positive rail. The ADA4062-x can be used in high-side current sensing applications. Figure 61 shows a high-side signal conditioning circuit using the ADA4062-x. The ADA4062-x has an input common-mode range that includes the positive supply ($-11.5 \mathrm{~V} \leq$ $\mathrm{V}_{\mathrm{CM}} \leq+15 \mathrm{~V}$). In the circuit, the voltage drop across a low value resistor, such as the 0.1Ω shown in Figure 61, is amplified by a factor of 5 using the ADA4062-x.

Figure 61. High-Side Signal Conditioning

MICROPOWER INSTRUMENTATION AMPLIFIER

The ADA4062-2 is a dual amplifier and is perfectly suited for applications that require lower supply currents. For supply voltages of $\pm 15 \mathrm{~V}$, the supply current per amplifier is $165 \mu \mathrm{~A}$ typical. The ADA4062-2 also offers a typical low offset voltage drift of $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and a very low bias current of 2 pA , which make it well suited for instrumentation amplifiers.
Figure 62 shows the classic 2 -op-amp instrumentation amplifier with four resistors using the ADA4062-2. The key to high CMRR for this instrumentation amplifier are resistors that are well matched to both the resistive ratio and relative drift. For true difference amplification, matching of the resistor ratio is very important, where R3/R4 = R1/R2. Assuming perfectly matched resistors, the gain of the circuit is $1+\mathrm{R} 2 / \mathrm{R} 1$, which is approximately 100. Tighter matching of two op amps in one package, as is the case with the ADA4062-2, offers a significant boost in performance over the classical 3-op-amp configuration. Overall, the circuit only requires about $330 \mu \mathrm{~A}$ of supply current.

Figure 62. Micropower Instrumentation Amplifier

ADA4062-2/ADA4062-4

PHASE REVERSAL

Phase reversal occurs in some amplifiers when the input commonmode voltage range is exceeded. When the voltage driving the input to these amplifiers exceeds the maximum input commonmode voltage range, the output of the amplifiers changes polarity. Most JFET input amplifiers have phase reversal if either input exceeds the input common-mode range.

For the ADA4062-x, the output does not phase reverse if one or both of the inputs exceeds the input voltage range but remains within the positive supply rail and 0.5 V above the negative supply rail. In other words, for an application with a supply voltage of $\pm 15 \mathrm{~V}$, the input voltage can be as high as +15 V without any output phase reversal. However, when the voltage of the inputs is driven beyond -14.5 V , phase reversal occurs due to saturation of the input stage leading to forward biasing of the gate-drain diode. Phase reversal in ADA4062-x can be prevented by using a Schottky diode to clamp the input terminals to each other. In the simple buffer circuit in Figure 63, D1 protects the op amp against phase reversal, and R limits the input current that flows into the op amp.

Figure 63. Phase Reversal Solution Circuit

SCHEMATIC

Figure 65. Simplified Schematic of the ADA4062-x

ADA4062-2/ADA4062-4

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 66. 8-Lead Mini Small Outline Package [MSOP] (RM-8)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 67. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8)
Dimensions shown in millimeters and (inches)

Figure 68. 10-Lead Lead Frame Chip Scale Package [LFCSP_UQ] $1.30 \mathrm{~mm} \times 1.60 \mathrm{~mm}$, Body, Ultra Thin Quad

$$
(C P-10-10)
$$

Dimensions shown in millimeters

Figure 69. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14)
Dimensions shown in millimeters

Figure 70. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body, Very Very Thin Quad (CP-16-22)
Dimensions shown in millimeters

ADA4062-2/ADA4062-4

ORDERING GUIDE

Model ${ }^{1}$	Temperature Range	Package Description	Package Option	Branding
ADA4062-2ARMZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead MSOP	RM-8	A25
ADA4062-2ARMZ-RL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead MSOP	RM-8	A25
ADA4062-2ARMZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead MSOP	RM-8	A25
ADA4062-2ARZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8	
ADA4062-2ARZ-R7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8	
ADA4062-2ARZ-RL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8	
ADA4062-2BRZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8	
ADA4062-2BRZ-R7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8	
ADA4062-2BRZ-RL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead SOIC_N	R-8	
ADA4062-2ACPZ-R2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead LFCSP_UQ	CP-10-10	J
ADA4062-2ACPZ-RL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead LFCSP_UQ	CP-10-10	J
ADA4062-2ACPZ-R7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead LFCSP_UQ	CP-10-10	J
ADA4062-4ARUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead TSSOP	RU-14	
ADA4062-4ARUZ-RL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Lead TSSOP	RU-14	
ADA4062-4ACPZ-R2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead LFCSP_WQ	CP-16-22	A2K
ADA4062-4ACPZ-R7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead LFCSP_WQ	CP-16-22	A2K
ADA4062-4ACPZ-RL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead LFCSP_WQ	CP-16-22	A2K

${ }^{1} Z=$ RoHS Compliant Part.

