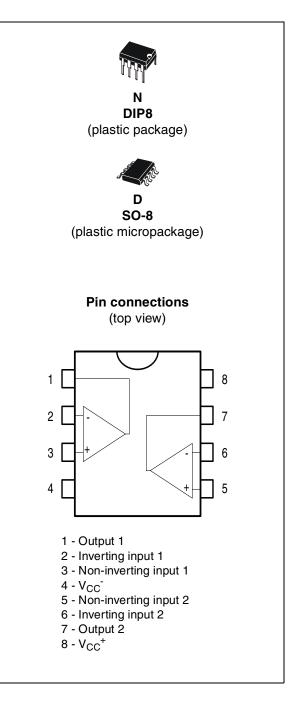


TL062, TL062A, TL062B

Low-power JFET dual operational amplifiers

Datasheet –production data


Features

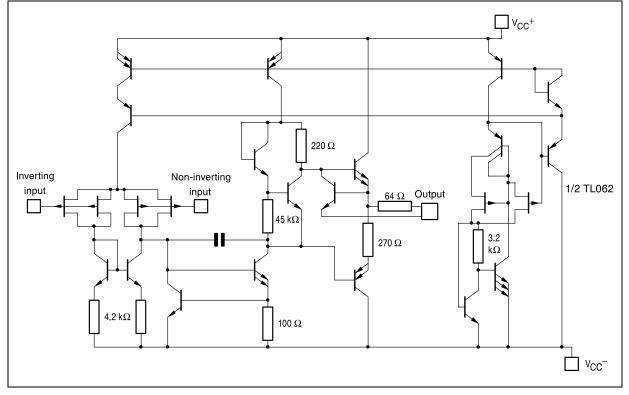
- Very low power consumption: 200 µA
- Wide common-mode (up to V_{CC}⁺) and differential voltage ranges
- Low input bias and offset currents
- Output short-circuit protection
- High input impedance JFET input stage
- Internal frequency compensation
- Latch up free operation
- High slew rate: 3.5 V/µs

Description

The TL062, TL062A and TL062B devices are high-speed JFET input single operational amplifiers. Each of these JFET input operational amplifiers incorporates well matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit.

The devices feature high slew rates, low input bias and offset currents, and a low offset voltage temperature coefficient.

September 2012


Doc ID 2294 Rev 4

www.st.com

This is information on a product in full production.

1 Schematic diagram

Figure 1. Schematic diagram

2 Absolute maximum ratings and operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	±18	V
Vi	Input voltage ⁽²⁾	±15	V
V _{id}	Differential input voltage ⁽³⁾	±30	V
P _{tot}	Power dissipation	680	mW
	Output short-circuit duration ⁽⁴⁾	Infinite	
T _{stg}	Storage temperature range		°C
R _{thja}	Thermal resistance junction-to-ambient ⁽⁵⁾ , ⁽⁶⁾ SO-8 DIP8	125 85	°C/W
R _{thjc}	Thermal resistance junction-to-case ⁽⁵⁾ , ⁽⁶⁾ SO-8 DIP8	40 41	°C/W
	HBM: human body model ⁽⁷⁾	900	V
ESD	MM: machine model ⁽⁸⁾	150	V
	CDM: charged device model ⁽⁹⁾	1.5	kV

Table 1. Absolute maximum ratings

 All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between V_{CC}⁺ and V_{CC}⁻.

2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.

3. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.

- 4. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
- 5. Short-circuits can cause excessive heating and destructive dissipation.

6. R_{th} are typical values.

7. Human body model: 100 pF discharged through a 1.5 k Ω resistor between two pins of the device, done for all couples of pin combinations with other pins floating.

 Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.

9. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to ground.

Table 2. Operating conditions

Symbol	Parameter	TL062I, AI, BI	Unit	
V _{CC}	Supply voltage range	6 tc	V	
T _{oper}	Operating free air temperature range	-40 to +105 0 to +70		°C

3 Electrical characteristics

o			TL0621		ר	L062C	;	
Symbol	Parameter		Тур.	Max.	Min.	Тур.	Max.	Unit
V _{io}	Input offset voltage ($R_S = 50 \Omega$) $T_{amb} = +25 \ ^{\circ}C$ $T_{min} \leq T_{amb} \leq T_{max}$		3	6 9		3	15 20	mV
DVio	Temperature coefficient of input offset voltage ($R_S = 50 \Omega$)		10			10		μV/°C
I _{io}	Input offset current ⁽¹⁾ $T_{amb} = +25 \text{ °C}$ $T_{min} \leq T_{amb} \leq T_{max}$		5	100 10		5	200 5	pA nA
l _{ib}	Input bias current ⁽¹⁾ $T_{amb} = +25 \ ^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		30	200 20		30	400 10	pA nA
V _{icm}	Input common mode voltage range	±11.5	+15 -12		±11.5	+15 -12		v
V _{opp}	Output voltage swing (R _L = 10 kΩ) $T_{amb} = +25 \text{ °C}$ $T_{min} \leq T_{amb} \leq T_{max}$	20 20	27		20 20	27		v
A _{vd}	Large signal voltage gain $R_L = 10 \text{ k}\Omega \text{ V}_o = \pm 10 \text{ V},$ $T_{amb} = \pm 25 \text{ °C}$ $T_{min} \leq T_{amb} \leq T_{max}$	4 4	6		3 3	6		V/mV
GBP	Gain bandwidth product T _{amb} = +25 °C, R _L =10 kΩ, C _L = 100 pF		1			1		MHz
R _i	Input resistance		10 ¹²			10 ¹²		Ω
CMR	Common mode rejection ratio $R_S = 50 \ \Omega$	80	86		70	76		dB
SVR	Supply voltage rejection ratio $R_S = 50 \ \Omega$	80	95		70	95		dB
I _{CC}	Supply current, no load T _{amb} = +25 °C, no load, no signal		200	250		200	250	μA
V ₀₁ /V ₀₂	Channel separation $A_v = 100, T_{amb} = 25 \text{ °C}$		120			120		dB
P _D	Total power consumption T _{amb} = +25 °C, no load, no signal		6	7.5		6	7.5	mW
SR	Slew rate $V_i = 10 \text{ V}, \text{ R}_L = 10 \text{ k}\Omega, \text{ C}_L = 100 \text{ pF}, \text{ A}_v = 1$	1.5	3.5		1.5	3.5		V/µs

Table 3. $V_{CC} = \pm 15 \text{ V}, T_{amb} = \pm 25 \text{ °C}$ (unless otherwise specified)

4/15

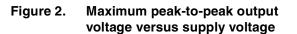
Sumbol	Provincian	TL062I			TL062C			11
Symbol	Parameter		Тур.	Max.	Min.	Тур.	Max.	Unit
t _r	Rise time $V_i = 20 \text{ mV}, R_L = 10 \text{ k}\Omega,$ $C_L = 100 \text{ pF}, A_v = 1$		0.2			0.2		μs
K _{ov}	Overshoot factor (see <i>Figure 15</i>) $V_i = 20 \text{ mV}, R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}, A_v = 1$		10			10		%
e _n	Equivalent input noise voltage $R_S = 100 \ \Omega$, f = 1 kHz		42			42		<u>nV</u> √Hz

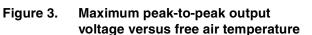
Table 3. V_{CC} = ±15 V, T_{amb} = +25 °C (unless otherwise specified) (continued)

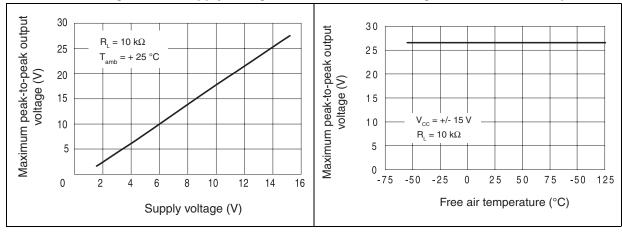
1. The input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.

Cumbal	Devemeter	TL	TL062AC, AI			TL062BC, BI		
Symbol	Parameter		Тур.	Max.	Min.	Тур.	Max.	Unit
V _{io}	Input offset voltage ($R_S = 50 \Omega$) $T_{amb} = +25 \ ^{\circ}C$ $T_{min} \leq T_{amb} \leq T_{max}$		3	3 7.5		2	3 5	mV
DV _{io}	Temperature coefficient of input offset voltage ($R_S = 50 \Omega$)		10			10		µV/°C
I _{io}	Input offset current ⁽¹⁾ $T_{amb} = +25 \text{ °C}$ $T_{min} \leq T_{amb} \leq T_{max}$		5	100 3		5	100 3	pA nA
l _{ib}	Input bias current ⁽¹⁾ $T_{amb} = +25 \ ^{\circ}C$ $T_{min} \leq T_{amb} \leq T_{max}$		30	200 7		30	200 7	nA
V _{icm}	Input common mode voltage range	±11.5	+15 -12		±11.5	+15 -12		
V _{opp}	Output voltage swing ($R_L = 10 \text{ k}\Omega$) $T_{amb} = +25 \text{ °C}$ $T_{min} \leq T_{amb} \leq T_{max}$	20 20	27		20 20	27		v
A _{vd}	Large signal voltage gain $R_L = 10 \text{ k}\Omega, \text{ V}_0 = \pm 10 \text{ V},$ $T_{amb} = +25 \text{ °C}$ $T_{min} \leq T_{amb} \leq T_{max}$	4 4	6		4 4	6		V/mV
GBP	Gain bandwidth product T _{amb} = +25 °C, R _L =10 k Ω , C _L = 100 pF		1			1		MHz
R _i	Input resistance		10 ¹²			10 ¹²		Ω
CMR	Common mode rejection ratio $R_S = 50 \ \Omega$	80	86		80	86		dB
SVR	Supply voltage rejection ratio $R_S = 50 \ \Omega$	80	95		80	95		dB

Table 4. $V_{CC} = \pm 15 \text{ V}, T_{amb} = +25 \text{ °C}$ (unless otherwise specified)




			062AC,	AI	TL062BC, BI			
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
I _{CC}	Supply current, no load T _{amb} = +25 °C, no load, no signal		200	250		200	250	μA
V _{o1} /V _{o2}	Channel separation $A_v = 100, T_{amb} = +25 \ ^{\circ}C$		120			120		
PD	Total power consumption T _{amb} = +25 °C, no load, no signal		6	7.5		6	7.5	mW
SR	Slew rate $V_i = 10 \text{ V}, \text{ R}_L = 10 \text{ k}\Omega, \text{ C}_L = 100 \text{ pF}, \text{ A}_v = 1$	1.5	3.5		1.5	3.5		V/µs
t _r	Rise time $V_i = 20 \text{ mV}, \text{ R}_L = 10 \text{ k}\Omega, \text{ C}_L = 100 \text{ pF}, \text{ A}_v = 1$		0.2			0.2		μs
K _{ov}	Overshoot factor (see <i>Figure 15</i>) $V_i = 20 \text{ mV}, R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}, A_v = 1$		10			10		%
e _n	Equivalent input noise voltage R _S = 100 Ω, f = 1 kHz		42			42		<u>nV</u> √Hz


Table 4. $V_{CC} = \pm 15 \text{ V}, T_{amb} = \pm 25 \text{ °C}$ (unless otherwise specified) (continued)

The input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.

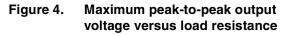
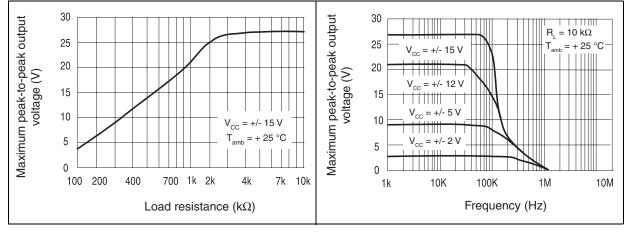
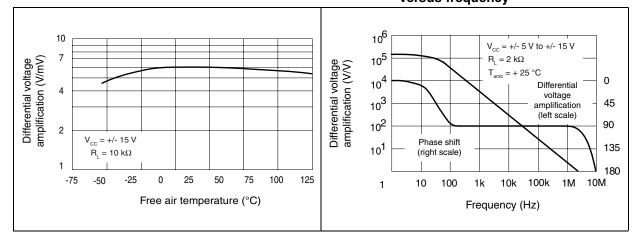
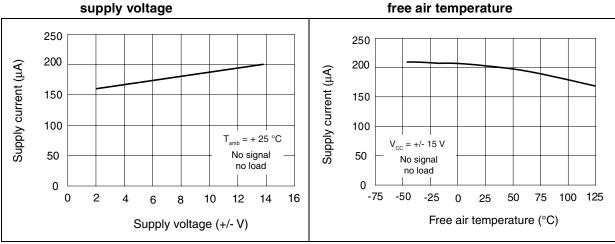


Figure 5. Maximum peak-to-peak output voltage versus frequency


Figure 6. Differential voltage amplification versus free air temperature

Large signal differential voltage amplification and phase shift versus frequency

Figure 8. Supply current per amplifier versus Figure 9. Supply current per amplifier versus supply voltage free air temperature

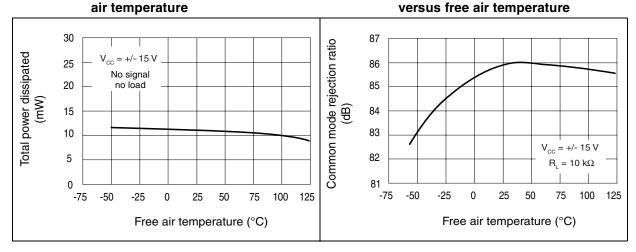
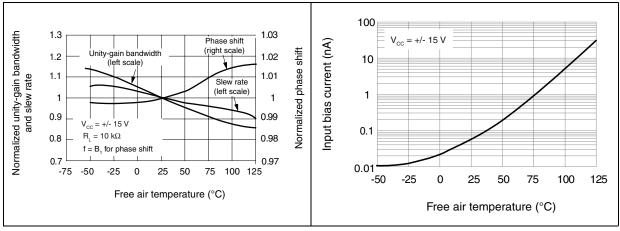
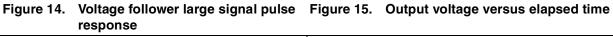
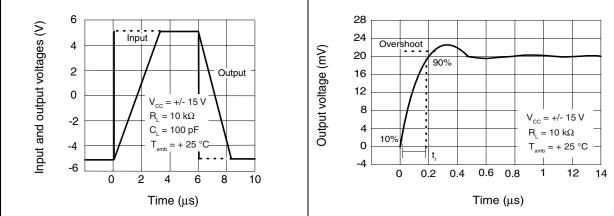
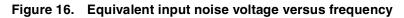
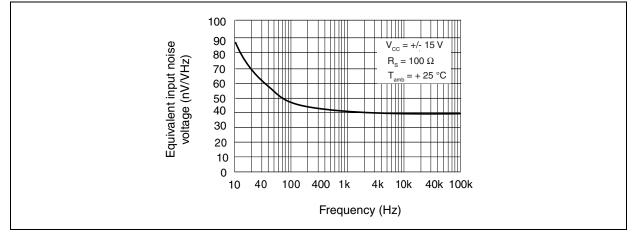



Figure 12. Normalized unity gain bandwidth slew rate and phase shift versus temperature

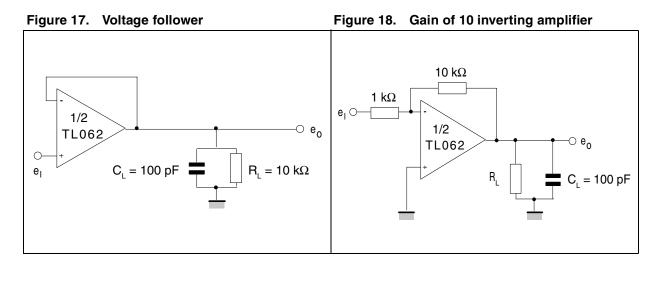

Figure 13. Input bias current versus free air temperature




8/15



9/15



Parameter measurement information

Doc ID 2294 Rev 4

57

4 Typical applications

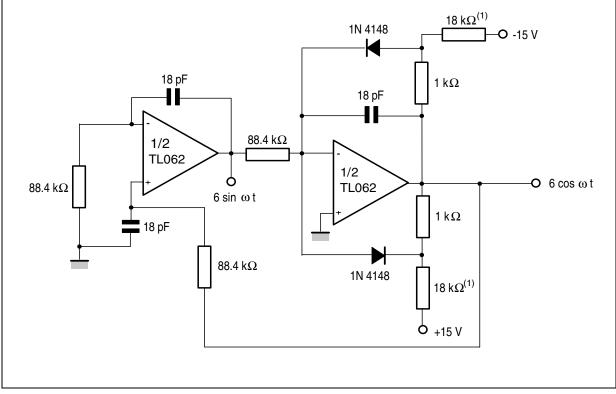
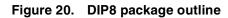
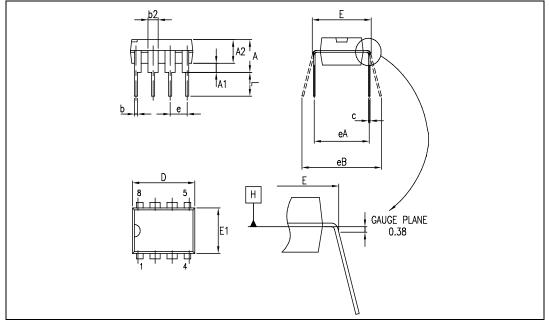


Figure 19. 100 kHz quadrature oscillator

1. These resistor values may be adjusted for a symmetrical output.



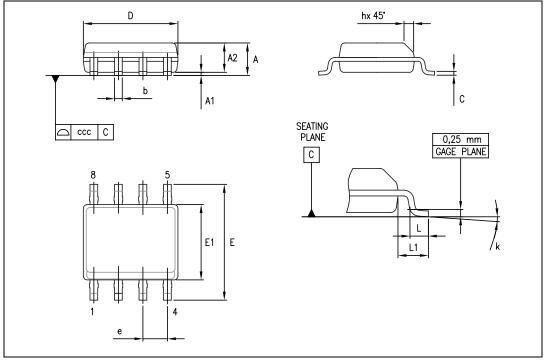

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK is an ST trademark.

5.1 DIP8 package information

Table 5.DIP8 package mechanical data

	Dimensions								
Symbol	Millimeters			Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.			
А			5.33			0.210			
A1	0.38			0.015					
A2	2.92	3.30	4.95	0.115	0.130	0.195			
b	0.36	0.46	0.56	0.014	0.018	0.022			
b2	1.14	1.52	1.78	0.045	0.060	0.070			
с	0.20	0.25	0.36	0.008	0.010	0.014			
D	9.02	9.27	10.16	0.355	0.365	0.400			
E	7.62	7.87	8.26	0.300	0.310	0.325			
E1	6.10	6.35	7.11	0.240	0.250	0.280			
е		2.54			0.100				
eA		7.62			0.300				
eB			10.92			0.430			
L	2.92	3.30	3.81	0.115	0.130	0.150			


Note: Dimensions "D" and "E1" do not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.25 mm in total (both sides). Datum plane "H" coincides with the bottom of the lead, where the lead exits the body.

12/15

5.2 SO-8 package information

Figure 21. SO-8 package outline

Table 6.SO-8 package mechanical data

	Dimensions								
Symbol		Millimeters			Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.			
А			1.75			0.069			
A1	0.10		0.25	0.004		0.010			
A2	1.25			0.049					
b	0.28		0.48	0.011		0.019			
С	0.17		0.23	0.007		0.010			
D	4.80	4.90	5.00	0.189	0.193	0.197			
Е	5.80	6.00	6.20	0.228	0.236	0.244			
E1	3.80	3.90	4.00	0.150	0.154	0.157			
е		1.27			0.050				
h	0.25		0.50	0.010		0.020			
L	0.40		1.27	0.016		0.050			
L1		1.04			0.040				
k	0		8°	1 °		8°			
CCC			0.10			0.004			

6 Ordering information

Part number	Temperature range	Package	Packaging	Marking	
TL062IN TL062AIN TL062BIN	40 °C . 105 °C	DIP8	Tube	TL062IN TL062AIN TL062BIN	
TL062ID/IDT TL062AID/AIDT TL062BID/BIDT	-40 °C, +105 °C	SO-8	Tube or tape and reel	0621 062AI 062BI	
TL062CN TL062ACN TL062BCN	D62ACN DIP8		Tube	TL062CN TL062ACN TL062BCN	
TL062CD/CDT TL062ACD/ACDT TL062BCD/BCDT	0 °C, +70 °C	SO-8	Tube or tape and reel	062C 062AC 062BC	

Table 7. Order codes

7 Revision history

Date	Revision	Changes
28-Mar-2001	1	Initial release.
27-Jul-2007	2	Added values for R _{thja} and R _{thjc} in <i>Table 1: Absolute maximum ratings</i> . Added <i>Table 2: Operating conditions</i> . Updated format.
15-Mar-2010	3	Updated document format. Added TL062A and TL062B in title on cover page. Updated package information in <i>Chapter 5</i> .
21-Sep-2012	4	Removed TL062M, AM, BM /TL062I, AI, BI / TL062C, AC, BC part numbers and temperature ranges from <i>Table 1</i> . and TL062M, AM, BM from <i>Table 2</i> . Removed TL062M, updated min. "Input common mode voltage range" for TL062C device in <i>Table 3</i> . Removed TL062AM and TL062BM devices, updated max. "Input offset voltage - T _{amb} " for TL062AC, AI devices in <i>Table 4</i> . Removed TL062MN, TL062AMN, TL062BMN, TL062MD/MDT, TL062AMD/AMDT, TL062BMD/BMDT part numbers from <i>Table 7</i> . Minor corrections throughout document.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

