

Film Capacitors

Metallized Polypropylene Film Capacitors (MKP)

 Series/Type:
 B32671L ... B32672L

 Date:
 December 2012

© EPCOS AG 2015. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

EPCOS AG is a TDK Group Company.

Downloaded from Arrow.com.

Metallized polypropylene film capacitors (MKP)

High V AC, high temperature (wound)

B32671L ... B32672L

Typical applications

- Electronic ballasts (resonant circuits)
- SMPS
- High-frequency AC loads
- Pulse circuits

Climatic

- Max. operating temperature: 125 °C
- Climatic category (IEC 60068-1): 55/110/56

Construction

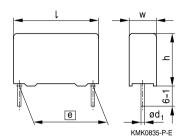
- Dielectric: metallized polypropylene (PP)
- Wound capacitor technology
- Plastic case (UL 94 V-0)
- Epoxy resin sealing

Features

- Very high AC voltages for all frequency ranges
- Very small dimensions
- High peak voltage for short time periods
- High peak current
- High pulse withstand capability
- RoHS-compatible
- Halogen-free capacitors available on request

Terminals

- Parallel wire leads, lead-free tinned
- Special lead lengths available on request


Marking

- Manufacturer's logo
- Iot number, series number
- Rated capacitance (coded)
- Capacitance tolerance (code letter)
- Rated AC voltage
- Date of manufacture (coded)

Delivery mode

- Bulk (untaped)
- Taped (Ammo pack or reel)

For notes on taping, refer to chapter "Taping and packing".

Dimensional drawing

Dimensions in mm

Lead spacing <u>e</u> ±0.4	Lead diameter d1	Туре
10	0.6	B32671L
15	0.8	B32672L

MKP

B32671L ... B32672L

High V AC, high temperature (wound)

Overview of available types

Lead spacing	10 m	m					15 mm							
Туре	B326	671L					B326	572L						
Page	4						6							
V _{RMS} (V AC)	200	250	250	500	600	700	160	200	250	250	500	600	700	900
V _R (V DC)	400	630	1000	1000	1600	2000	250	420	630	1000	1300	1600	2000	2000
C _R (nF)														
0.68														
1.0														
1.2														
1.5														
2.2														
2.7														
3.3														
3.9														
4.7														
5.6														
6.2														
6.8														
8.2														
10														
12														
15														
22														
33														
47														
56														
68														
100														
150														
220														
330														
390														
470														
680														
1000														

B32671L

High V AC, high temperature (wound)

Ordering codes and packing units (lead spacing 10 mm)

V _{RMS}	V _R	C _B	Max. dimensions	Ordering code	Ammo	Reel	Untaped
f ≤1 kHz			$w \times h \times l$	(composition see	pack	pcs./	pcs./
V AC	V DC	nF	mm	below)	, pcs./MOQ	MOQ	MOQ
200	400	22	$4.0\times 9.0\times 13.0$	B32671L4223+***	4000	6800	4000
		33	$4.0\times 9.0\times 13.0$	B32671L4333+***	4000	6800	4000
		47	$5.0\times11.0\times13.0$	B32671L4473+***	3320	5200	4000
		68	$5.0\times11.0\times13.0$	B32671L4683+***	3320	5200	4000
		100	$6.0\times12.0\times13.0$	B32671L4104+***	2720	4400	4000
250	630	15	$4.0\times 9.0\times 13.0$	B32671L6153+***	4000	6800	4000
		22	$5.0\times11.0\times13.0$	B32671L6223+***	3320	5200	4000
		33	$5.0\times11.0\times13.0$	B32671L6333+***	3320	5200	4000
		47	$6.0\times12.0\times13.0$	B32671L6473+***	2720	4400	4000
		56	$6.0\times12.0\times13.0$	B32671L6563+***	2720	4400	4000
250	1000	4.7	$4.0\times 9.0\times 13.0$	B32671L9472+***	4000	6800	4000
		6.8	$4.0\times 9.0\times 13.0$	B32671L9682+***	4000	6800	4000
		10	$5.0\times11.0\times13.0$	B32671L9103+***	3320	5200	4000
		15	$5.0\times11.0\times13.0$	B32671L9153+***	3320	5200	4000
		22	$6.0\times12.0\times13.0$	B32671L9223+***	2720	4400	4000
500	1000	3.3	$4.0\times 9.0\times 13.0$	B32671L0332+***	4000	6800	4000
		3.9	$4.0\times 9.0\times 13.0$	B32671L0392+***	4000	6800	4000
		4.7	$4.0\times 9.0\times 13.0$	B32671L0472+***	4000	6800	4000
		5.6	$5.0\times11.0\times13.0$	B32671L0562+***	3320	5200	4000
		6.2	$5.0\times11.0\times13.0$	B32671L0622+***	3320	5200	4000
		6.8	$5.0\times11.0\times13.0$	B32671L0682+***	3320	5200	4000
		8.2	$6.0\times12.0\times13.0$	B32671L0822+***	3320	5200	4000
		10	$6.0\times12.0\times13.0$	B32671L0103+***	2720	4400	4000
		12	$6.0\times12.0\times13.0$	B32671L0123+***	2720	4400	4000

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series, intermediate capacitance values and closer tolerances on request.

Composition of ordering code

- + = Capacitance tolerance code:
 - K = ±10%

 $J = \pm 5\%$

- *** = Packaging code:
 - 289 = Ammo pack
 - 189 = Reel
 - 000 = Untaped (lead length 6 -1 mm)

B32671L

High V AC, high temperature (wound)

MKP → 10 ◄

Ordering codes and packing units (lead spacing 10 mm)

V _{RMS}	V_{R}	C _R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
f ≤1 kHz			$w \times h \times I$	(composition see	pack	pcs./	pcs./
V AC	V DC	nF	mm	below)	pcs./MOQ	MOQ	MOQ
600	1600	1.2	$4.0\times 9.0\times 13.0$	B32671L1122+***	4000	6800	4000
		1.5	$4.0\times 9.0\times 13.0$	B32671L1152+***	4000	6800	4000
		2.2	$5.0\times11.0\times13.0$	B32671L1222+***	3320	5200	4000
		2.7	$5.0\times11.0\times13.0$	B32671L1272+***	3320	5200	4000
		3.3	$6.0\times12.0\times13.0$	B32671L1332+***	2720	4400	4000
		3.9	$6.0\times12.0\times13.0$	B32671L1392+***	2720	4400	4000
		4.7	$6.0\times12.0\times13.0$	B32671L1472+***	2720	4400	4000
700	2000	1.0	$4.0\times 9.0\times 13.0$	B32671L8102+***	4000	6800	4000
		1.2	$4.0\times 9.0\times 13.0$	B32671L8122+***	4000	6800	4000
		1.5	$4.0\times 9.0\times 13.0$	B32671L8152+***	4000	6800	4000
		2.2	$5.0\times11.0\times13.0$	B32671L8222+***	3320	5200	4000
		2.7	$5.0\times11.0\times13.0$	B32671L8272+***	3320	5200	4000
		3.3	$5.0\times11.0\times13.0$	B32671L8332+***	3320	5200	4000
		3.9	$6.0\times12.0\times13.0$	B32671L8392+***	2720	4400	4000
		4.7	$6.0\times12.0\times13.0$	B32671L8472+***	2720	4400	4000

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series, intermediate capacitance values and closer tolerances on request.

Composition of ordering code

- + = Capacitance tolerance code:
 - K = ±10%
 - $J = \pm 5\%$

*** = Packaging code:

- 289 = Ammo pack
- 189 = Reel
- 000 = Untaped (lead length 6 -1 mm)

公TDK

B32672L

High V AC, high temperature (wound)

Ordering codes and packing units (lead spacing 15 mm)

V _{RMS}	V _R	C _R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
f ≤1 kHz			$w \times h \times I$	(composition see	pack	pcs./	pcs./
V AC	V DC	nF	mm	below)	pcs./MOQ	MOQ	MOQ
160	250	150	5.0 imes 10.5 imes 18.0	B32672L2154+***	4680	5200	4000
		220	$6.0\times11.0\times18.0$	B32672L2224+***	3840	4400	4000
		330	$7.0\times12.5\times18.0$	B32672L2334+***	3320	3600	4000
		470	$8.5 \times 14.5 \times 18.0$	B32672L2474+***	2720	2800	2000
		680	$9.0\times17.5\times18.0$	B32672L2684+***	2560	2800	2000
		1000	$11.0\times18.5\times18.0$	B32672L2105+***	-	2200	1000
200	420	68	$5.0\times10.5\times18.0$	B32672L4683+***	4680	5200	4000
		100	$5.0\times10.5\times18.0$	B32672L4104+***	4680	5200	4000
		150	$6.0\times11.0\times18.0$	B32672L4154+***	3840	4400	4000
		220	$7.0\times12.5\times18.0$	B32672L4224+***	3320	3600	4000
		330	$8.0\times14.0\times18.0$	B32672L4334+***	2920	3000	2000
		470	$9.0\times17.5\times18.0$	B32672L4474+***	2560	2800	2000
		680	$11.0\times18.5\times18.0$	B32672L4684+***	-	2200	1000
250	630	33	$5.0\times10.5\times18.0$	B32672L6333+***	4680	5200	4000
		47	$5.0\times10.5\times18.0$	B32672L6473+***	4680	5200	4000
		68	$6.0\times11.0\times18.0$	B32672L6683+***	3840	4400	4000
		100	$7.0\times12.5\times18.0$	B32672L6104+***	3320	3600	4000
		150	$8.5 \times 14.5 \times 18.0$	B32672L6154+***	2720	2800	2000
		220	$9.0\times17.5\times18.0$	B32672L6224+***	2560	2800	2000
		390	$11.0\times18.5\times18.0$	B32672L6394J***	-	2200	1000
250	1000	10	$5.0\times10.5\times18.0$	B32672L0103+***	4680	5200	4000
		15	$5.0\times10.5\times18.0$	B32672L0153+***	4680	5200	4000
		22	$5.0\times10.5\times18.0$	B32672L0223+***	4680	5200	4000
		33	$6.0\times11.0\times18.0$	B32672L0333+***	3840	4400	4000
		47	$7.0\times12.5\times18.0$	B32672L0473+***	3320	3600	4000
		68	$8.5 \times 14.5 \times 18.0$	B32672L0683+***	2720	2800	2000
		100	$9.0\times17.5\times18.0$	B32672L0104+***	2560	2800	2000
		150	$11.0\times18.5\times18.0$	B32672L0154J***	-	2200	1000

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series, intermediate capacitance values and closer tolerances on request.

Composition of ordering code

- + = Capacitance tolerance code:
 - $K = \pm 10\%$
 - $J = \pm 5\%$

*** = Packaging code:

289 = Ammo pack

189 = Reel

000 = Untaped (lead length 6 -1 mm)

B32672L High V AC, high temperature (wound) MKP → 15 ◄

Ordering codes and packing units (lead spacing 15 mm)

V _{RMS}	V_{R}	C _R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
f ≤1 kHz			$w \times h \times I$	(composition see	pack	pcs./	pcs./
V AC	V DC	nF	mm	below)	pcs./MOQ	MOQ	MOQ
500	1300	6.8	$5.0\times10.5\times18.0$	B32672L7682+***	4680	5200	4000
		10	$5.0\times10.5\times18.0$	B32672L7103+***	4680	5200	4000
		22	$7.0\times12.5\times18.0$	B32672L7223+***	3320	3600	4000
		33	$8.5\times14.5\times18.0$	B32672L7333+***	2720	2800	2000
		47	$9.0\times17.5\times18.0$	B32672L7473+***	2560	2800	2000
		68	$11.0\times18.5\times18.0$	B32672L7683J***	—	2200	1000
600	1600	6.2	$5.0\times10.5\times18.0$	B32672L1622+***	4680	5200	4000
		6.8	$5.0\times10.5\times18.0$	B32672L1682+***	4680	5200	4000
		8.2	$6.0\times11.0\times18.0$	B32672L1822+***	3840	4400	4000
		10	$6.0\times11.0\times18.0$	B32672L1103+***	3840	4400	4000
		12	$6.0\times12.0\times18.0$	B32672L1123+***	3840	4400	4000
		15	$7.0\times12.5\times18.0$	B32672L1153+***	3320	3600	4000
		22	$8.5\times14.5\times18.0$	B32672L1223+***	2720	2800	2000
		33	$9.0\times17.5\times18.0$	B32672L1333+***	2560	2800	2000
		47	$11.0\times18.5\times18.0$	B32672L1473J***	-	2200	1000
700	2000	1.0	$5.0\times10.5\times18.0$	B32672L8102+***	4680	5200	4000
		1.2	$5.0\times10.5\times18.0$	B32672L8122+***	4680	5200	4000
		1.5	$5.0\times10.5\times18.0$	B32672L8152+***	4680	5200	4000
		2.2	$5.0\times10.5\times18.0$	B32672L8222+***	4680	5200	4000
		2.7	$5.0\times10.5\times18.0$	B32672L8272+***	4680	5200	4000
		3.3	$5.0\times10.5\times18.0$	B32672L8332+***	4680	5200	4000
		3.9	$5.0\times10.5\times18.0$	B32672L8392+***	4680	5200	4000
		4.7	$5.0\times10.5\times18.0$	B32672L8472+***	4680	5200	4000
		5.6	$6.0\times11.0\times18.0$	B32672L8562+***	3840	4400	4000
		6.2	$6.0\times11.0\times18.0$	B32672L8622+***	3840	4400	4000
		6.8	$6.0\times11.0\times18.0$	B32672L8682+***	3840	4400	4000
		8.2	$6.0\times12.0\times18.0$	B32672L8822+***	3840	4400	4000

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series, intermediate capacitance values and closer tolerances on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

 $J = \pm 5\%$

*** = Packaging code: 289 = Ammo pack 189 = Reel 000 = Untaped (lead length 6 -1 mm)

公TDK

B32672L

High V AC, high temperature (wound)

Ordering codes and packing units (lead spacing 15 mm)

V _{RMS}	V _R	C _R	Max. dimensions	Ordering code	Ammo	Reel	Untaped
f ≤1 kHz			$w \times h \times I$	(composition see	pack	pcs./	pcs./
V AC	V DC	nF	mm	below)	pcs./MOQ	MOQ	MOQ
700	2000	10	$7.0\times12.5\times18.0$	B32672L8103+***	3320	3600	4000
		12	$8.5\times14.5\times18.0$	B32672L8123+***	2720	2800	2000
		15	$8.5\times14.5\times18.0$	B32672L8153+***	2720	2800	2000
		22	$9.0\times17.5\times18.0$	B32672L8223+***	2560	2800	2000
		33	$11.0\times18.5\times18.0$	B32672L8333J***	-	2200	1000
900	2000	0.68	$5.0\times10.5\times18.0$	B32672L9681+***	4680	5200	4000
		1.0	$5.0\times10.5\times18.0$	B32672L9102+***	4680	5200	4000
		1.2	$6.0\times11.0\times18.0$	B32672L9122J***	3840	4400	4000
		1.5	$6.0\times11.0\times18.0$	B32672L9152+***	3840	4400	4000
		2.2	$7.0\times12.5\times18.0$	B32672L9222+***	3320	3600	4000
		2.7	$8.0\times14.5\times18.0$	B32672L9272J***	2920	3000	2000
		3.3	$8.5\times14.5\times18.0$	B32672L9332+***	2720	2800	2000
		3.9	$9.0\times17.5\times18.0$	B32672L9392J***	2560	2800	2000
		4.7	$9.0\times17.5\times18.0$	B32672L9472+***	2560	2800	2000
		5.6	$11.0\times18.5\times18.0$	B32672L9562+***	-	2200	1000
		6.2	$11.0\times18.5\times18.0$	B32672L9622J***	-	2200	1000
		6.8	$11.0\times18.5\times18.0$	B32672L9682K***	-	2200	1000

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series, intermediate capacitance values and closer tolerances on request.

Composition of ordering code

- + = Capacitance tolerance code:
 - $K = \pm 10\%$

 $J = \pm 5\%$

*** = Packaging code:

289 = Ammo pack

- 189 = Reel
- 000 = Untaped (lead length 6 -1 mm)

MKP

High V AC, high temperature (wound)

r~~	∼∽∎

Technical data

$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Operating temperature range	Max. operati	ng temp	erature T _{op,max}	+125 °C		
$\begin{tabular}{ c c c c c c } \hline Patted temperature T_R $+85 °C$ \\ \hline Patted temperature T_R $+85 °C$ \\ \hline Patter T_R $-100 $Pi $Pi $Pi $Pi $Pi $Pi $Pi $Pi $Pi Pi		Upper catego	ory temp	perature T _{max}	+110 °C		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Lower catego	ory temp	perature T _{min}	−55 °C		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Rated tempe	rature 7	- R	+85 °C		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Dissipation factor tan δ (in 10 ⁻³)	at	≤27 nF	27 nF< C _R ≤0.1 μF	0.1 μF < C _R ≤1 μF	>1 μF	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	at 20 °C	1 kHz	0.8	0.8	0.8	0.8	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	(upper limit values)	10 kHz	1.0	1.0	1.0	-	
at 20 °C, rel. humidity $\leq 65\%$ (minimum as-delivered values) DC test voltage ($\sim 30000 \text{ s} (C_R > 0.33 \mu\text{F})$ Category voltage V _c ($T_A (^{\circ}\text{C})$ DC voltage derating AC voltage derating (continuous operation with V _{DC} $T_A \leq 85$ V _C = V _R V _{C,RMS} = V _{RMS} or V _{AC} at f ≤ 1 kHz) 85 <t<sub>A≤ 110 V_C = V_R ($165-T_A$)/80 V_{C,RMS}=V_{RMS} · ($165-T_A$)/80 Operating voltage V_{op} for $T_A (^{\circ}\text{C})$ DC voltage (max. hours) AC voltage (max. hours) short operating periods $T_A \leq 100$ V_{op} = $1.25 \cdot V_C$ (2000 h) V_{op} = $1.0 \cdot V_{C,RMS}$ (2000 h) ($V_{DC} \text{ or } V_{AC} \text{ at } f \leq 1 \text{ kHz}$) $100 < T_A \leq 125$ V_o (2000 h) V_{op} = $1.0 \cdot V_{C,RMS}$ (2000 h) Damp heat test $56 \text{ days}/40 \circ C/93\%$ relative humidity Limit values after damp beat test Dissipation factor change $\Delta \tan \delta \leq 1.0 \cdot 10^3$ (at 1 kHz) Insulation resistance $R_{ins} \geq 50 \text{ G}\Omega$ Reliability: Failure rate λ 1 fit ($\leq 1 \cdot 10^{\circ}$/h) at $0.5 \cdot V_R$, $40 \circ C$ Service life t_{SL} 200 000 h at $1.0 \cdot V_R$, $85 \circ C$ For conversion to other operating conditions and temperatures, refer to chapter "Quality, 2 Reliability". Failure criteria: Total failure Short circuit or open circuit Failure due to variation of parameters Dissipation factor tan $\delta > 4 \cdot$ upper limit values</t<sub>		100 kHz	2.0	3.0	-	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Insulation resistance R _{ins}	> 100 GΩ (C	, R ≤ 0.33	βμF)			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	at 20 °C, rel. humidity \leq 65%	< 30000 s (C	C _R > 0.33	3 μF)			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(minimum as-delivered values)	3)					
$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$	DC test voltage	$1.6\cdot V_{\textrm{R}}, 2\textrm{s}$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Category voltage V_c	T _A (°C) DC voltage derating			AC voltage derati	ng	
$ \begin{array}{ c c c c c c } \hline Operating voltage V_{op} for $$ for short operating periods $$ T_A (°C) & DC voltage (max. hours) & AC voltage (max. hours) \\ \hline T_A \leq 100 & V_{op} = 1.25 \cdot V_C (2000 h) & V_{op} = 1.0 \cdot V_{C,RMS} (2000 h) \\ \hline O_{op} = 1.0 \cdot V_{C,RMS} (1000 h) & 100 < T_A \leq 125 & V_C (1000 h) & V_{op} = 1.0 \cdot V_{C,RMS} (1000 h) \\ \hline Damp heat test & 56 days/40 °C/93\% relative humidity \\ Limit values after damp & Capacitance change \Delta C/C & \leq 2\% \\ heat test & Dissipation factor change Δ tan δ & \leq 1.0 \cdot 10^{-3} (at 1 \text{ kHz}) \\ Insulation resistance R_{ins} & \geq 50 $G\Omega$ \\ \hline Reliability: & Failure rate λ & 1 fit ($\leq 1 \cdot 10^{-9}/h$) at 0.5 \cdot V_{R}, 40 °C$ \\ Service life t_{SL} & 200 000 h at 1.0 \cdot V_{R}, 85 °C \\ \hline For conversion to other operating conditions and temperatures, refer to chapter "Quality, 2 Reliability". \\ \hline Failure criteria: \\ \hline Total failure \\ \hline Failure due to variation of parameters & Dissipation factor tan δ & > 4 \cdot upper limit values \\ \hline \end{array}$	(continuous operation with $V_{\mbox{\tiny DC}}$	$T_A \le 85$ $V_C = V_R$			$V_{C,RMS} = V_{RMS}$		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	or V_{AC} at f \leq 1 kHz)	$85 < T_A \le 110$ $V_C = V_R \cdot (165 - T_A)/80$			$V_{C,RMS} = V_{RMS} \cdot (16)$	5-T _A)/80	
$\begin{array}{l lllllllllllllllllllllllllllllllllll$	Operating voltage V_{op} for	T _A (°C)	DC vol	tage (max. hours)	AC voltage (max.	hours)	
$\begin{array}{l lllllllllllllllllllllllllllllllllll$	short operating periods	$T_A \le 100$	$V_{op} = 1$.25 \cdot V _c (2000 h)	$V_{op} = 1.0 \cdot V_{C,RMS} (2000 \text{ h})$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(V_{DC} or V_{AC} at f \leq 1 kHz)	100 <t<sub>A≤125</t<sub>	$V_{op} = 1$.25 · V _c (1000 h)	$V_{op} = 1.0 \cdot V_{C,RMS}$	(1000 h)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Damp heat test	56 days/40 °	C/93% ı	relative humidity			
$\begin{tabular}{ c c c c } \hline Insulation resistance R_{Ins} $\geq 50 $G\Omega$ \\ \hline Reliability: $Failure rate λ $1 fit ($\leq 1 \cdot 10^{9}$/h$) at 0.5 \cdot V_{R}, 40 °C$ \\ \hline Service life t_{SL} $200 000 h at 1.0 \cdot V_{R}, 85 °C$ \\ \hline For conversion to other operating conditions and temperatures, refer to chapter "Quality, 2 Reliability". \\ \hline Failure criteria: $Total failure$ $Short circuit or open circuit$ \\ \hline Failure due to variation$ $Capacitance change $ \Delta C/C $ $> 10% $ $0 f parameters$ $Dissipation factor tan δ $> 4 \cdot upper limit values$ $\end{tabular}$	Limit values after damp	Capacitance	change	e ∆C/C	≤2%		
$ \begin{array}{c c} \mbox{Reliability:} & & \\ \mbox{Failure rate } \lambda & & 1 \mbox{ fit } (\leq 1 \cdot 10^{.9}/h) \mbox{ at } 0.5 \cdot V_{\text{R}}, \mbox{ 40 °C} \\ \mbox{Service life } t_{\text{SL}} & & 200 \mbox{ 000 h at } 1.0 \cdot V_{\text{R}}, \mbox{ 85 °C} \\ \mbox{For conversion to other operating conditions and temperatures, refer to chapter "Quality, 2 Reliability".} \\ \mbox{Failure criteria:} \\ \mbox{Total failure} & & \\ \mbox{Short circuit or open circuit} \\ \mbox{Failure due to variation} & & \\ \mbox{of parameters} & & \\ \mbox{Dissipation factor tan } \delta & & > 4 \cdot \mbox{upper limit values} \\ \end{array} $	heat test	Dissipation fa	actor ch	ange Δ tan δ	≤ 1.0 · 10 ⁻³ (at 1 k	κHz)	
$ \begin{array}{lll} \mbox{Failure rate λ} & 1 \mbox{ fit $(\leq 1 \cdot 10^{\circ}\mbox{/}h$) at $0.5 \cdot V_{R}$, $40 \ ^{\circ}\mbox{C}$} \\ \mbox{Service life t_{SL}} & 200 \ 000 \ h \ at $1.0 \cdot V_{R}$, $85 \ ^{\circ}\mbox{C}$} \\ \mbox{For conversion to other operating conditions and temperatures, refer to chapter "Quality, 2 Reliability".} \\ \mbox{Failure criteria:} & & & & & & \\ \mbox{Total failure} & & & & & & & \\ \mbox{Failure due to variation} & & & & & & \\ \mbox{Gapacitance change $ \Delta C/C $} & & & & & & & \\ \mbox{Jossipation factor tan δ} & & & & & & & \\ \mbox{Jossipation factor tan δ} & & & & & & & \\ \end{tabular} $		Insulation rea	sistance	R _{ins}	\geq 50 G Ω		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Reliability:						
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Failure rate λ	1 fit (≤ 1 · 10	⁻⁹ /h) at (0.5 · V _R , 40 °C			
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Service life t _{SL}	200 000 h at	1.0 · V	_R , 85 °C			
Failure criteria: Total failureShort circuit or open circuitFailure due to variation of parametersCapacitance change $ \Delta C/C $ > 10%> Dissipation factor tan δ > 4 \cdot upper limit values		For conversi	on to otl	her operating condit	tions and temperat	ures,	
Total failureShort circuit or open circuitFailure due to variationCapacitance change $ \Delta C/C $ > 10%of parametersDissipation factor tan δ > 4 \cdot upper limit values		refer to chap	ter "Qua	ality, 2 Reliability".			
Failure due to variation of parametersCapacitance change $ \Delta C/C $ > 10%> Dissipation factor tan δ > 4 \cdot upper limit values	Failure criteria:						
of parameters Dissipation factor $\tan \delta$ > 4 \cdot upper limit values	Total failure	Short circuit	or open	circuit			
	Failure due to variation	Capacitance	change	$ \Delta C/C $	> 10%		
Insulation resistance R_{ins} < 1500 M Ω	of parameters	Dissipation fa	actor tar	nδ	> 4 \cdot upper limit v	alues	
		Insulation rea	sistance	R _{ins}	< 1500 MΩ		

High V AC, high temperature (wound)

Pulse handling capability

"dV/dt" represents the maximum permissible voltage change per unit of time for non-sinusoidal voltages, expressed in $V/\mu s$.

"k_0" represents the maximum permissible pulse characteristic of the waveform applied to the capacitor, expressed in V²/ μ s.

Note:

The values of dV/dt and k_0 provided below must not be exceeded in order to avoid damaging the capacitor.

Lead spacing	10 mm					
Туре	B32671L					
V _{RMS} (V AC)	200	250		500	600	700
V _R (V DC)	400	630	1000	1000	1600	2000
C _R (nF)	dV/dt in V/µs	i				
1.0	—	—	—	-	_	11000
1.2	—	_	_	—	6000	10000
1.5	—	_	_	—	5600	9500
2.2	—	_	_	—	5200	9000
2.7	—	_	_	—	5000	8600
3.3	-	-	-	4700	4700	8500
3.9	-	-	-	4300	4500	8200
4.7	-	-	810	3800	4000	8000
5.6	-	-	-	3400	-	-
6.2	—	_	—	3200	—	—
6.8	—	_	810	3100	—	—
8.2	—	_	_	2700	—	—
10	—	_	810	2500	—	—
12	-	-	-	2300	-	—
15	-	540	810	-	-	—
22	400	540	810	-	-	—
33	400	540	_	-	—	_
47	400	540	-	-	—	—
56	—	540	-	-	—	—
68	400	-	_	-	—	_
100	400	-	-	-	-	-

dV/dt values

MKP

B32671L ... B32672L

High V AC, high temperature (wound)

dV/dt values

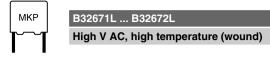
Lead spacing	15 mm							
Туре	B32672	!L						
V _{RMS} (V AC)	160	200		250	500	600	700	900
V _R (V DC)	250	420	630	1000	1300	1600	2000	2000
C _R (nF)	dV/dt in	V/µs						
0.68	-	-	_	_	-	_	-	15000
1.0	-	-	-	-	-	_	10000	15000
1.2	-	-	-	-	-	_	9400	14100
1.5	-	-	-	-	-	-	9000	13500
2.2	-	-	-	-	-	-	7500	11000
2.7	-	-	-	-	-	_	7100	10600
3.3	-	-	-	-	-	_	6800	10000
3.9	-	-	-	-	-	_	6000	9000
4.7	-	-	-	-	-	-	5500	8200
5.6	-	-	-	-	-	-	5000	7500
6.2	-	-	-	-	-	3600	4700	7000
6.8	-	-	-	-	1000	3500	4500	6700
8.2	-	-	-	-	-	3100	4200	_
10	-	-	-	445	1000	2800	3900	_
12	-	-	-	-	-	2600	3600	_
15	-	-	-	445	-	2300	3300	_
22	-	-	-	445	1000	2000	2900	_
33	-	-	300	445	1000	1700	2300	_
47	-	-	300	445	1000	1400	-	_
56	-	-	-	-	-	_	-	_
68	-	200	300	445	1000	_	-	_
100	-	200	300	445	-	_	-	_
150	170	200	300	445	-	_	-	_
220	170	200	300	-	-	_	-	_
330	170	200	-	-	-	_	-	-
390	-	-	300	-	-	_	-	-
470	170	200	-	-	-	_	-	-
680	170	200	-	-	-	_	-	-
1000	170	-	-	-	-	-	-	_

High V AC, high temperature (wound)

k₀ values

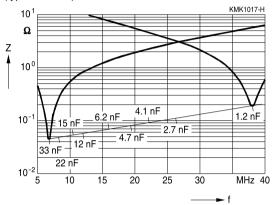
Lead spacing	10 mm					
Туре	B32671L					
V _{RMS} (V AC)	200	250		500	600	700
V _R (V DC)	400	630	1000	1000	1600	2000
C _R (nF)	k_0 in V ² /µs					
1.0	-	-	-	Ι	١	25000000
1.2	-	-	-	Ι	14400000	23000000
1.5	-	-	-	Ι	14000000	22500000
2.2	_	-	-		13800000	22000000
2.7	-	-	-	-	13600000	21500000
3.3	-	-	-	9400000	13300000	21000000
3.9	-	-	-	8600000	13100000	20900000
4.7	-	-	400000	8200000	12000000	20800000
5.6	-	-	-	7600000	-	
6.2	-	-	-	6800000	-	
6.8	-	-	400000	6200000	-	
8.2	-	-	-	5400000	-	
10	-	-	400000	5000000	Ι	
12	-	-	-	4600000	-	
15	-	200000	400000	-	-	
22	150000	200000	400000	-	-	
33	150000	200000	-	_	-	
47	150000	200000	-	-	-	
56	-	200000	-	-	-	
68	150000	_	_	_	-	
100	150000	-	-	_	_	

MKP


B32671L ... B32672L

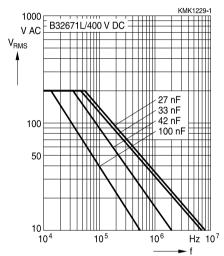
High V AC, high temperature (wound)

k₀ values

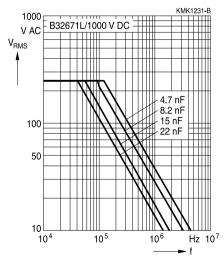

Lead spacing	15 mm							
Туре	B32672L							
V _{RMS} (V AC)	160	200	250		500	600	700	900
V _R (V DC)	250	420	630	1000	1300	1600	2000	2000
C _R (nF)	k_0 in V ² /	μs						
0.68	-	-	-	-	-	-	-	30000000
1.0	-	-	-	-	-	-	20300000	30000000
1.2	-	-	-	-	-	-	19600000	29400000
1.5	-	-	-		-	-	19200000	28000000
2.2	-	-	-		-	-	18600000	27500000
2.7	-	-	-		-	-	18200000	27300000
3.3	-	-	-		-	-	18000000	27000000
3.9	-	-	-		-	-	16800000	25200000
4.7	-	-	-		-	-	15800000	23500000
5.6	-	-	-		-	-	13100000	19500000
6.2	-	-	-		-	11520000	12700000	19000000
6.8	-	-	-	1	3000000	11200000	12300000	18400000
8.2	-	-	-	-	-	9920000	11800000	-
10	-	1	-	1000000	3000000	8960000	11100000	-
12	-	1	-	-	-	8320000	10600000	-
15	-	1	-	1000000	-	7360000	10400000	-
22	-	1	-	1000000	3000000	6400000	9300000	-
33	-	1	500000	1000000	3000000	5440000	9000000	-
47	-	1	500000	1000000	3000000	4480000		-
56	-	1	-	-	-	-		-
68	-	120000	500000	1000000	3000000	-		-
100	-	120000	500000	1000000	-	-		-
150	100000	120000	500000	1000000	-	-		-
220	100000	120000	500000	-	-	-		-
330	100000	120000	-	-	-	-		-
390	-	1	500000	-	-	-		-
470	100000	120000	-	-	-	-	-	
680	100000		-	-	-	-	-	
1000	100000	_	_	-	-	-	-	_

Impedance Z versus frequency f

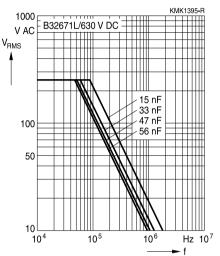
(typical values)

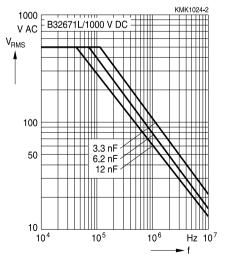

B32671L

High V AC, high temperature (wound)


Permissible AC voltage V_{RMS} **versus frequency f (for sinusoidal waveforms** $T_A \le 100 \degree$ **C)** For $T_A > 100 \degree$ C, please refer to "General technical information", section 3.2.3.

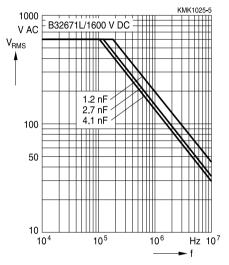
Lead spacing 10 mm

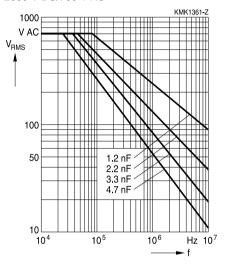

400 V DC/200 V AC


1000 V DC/250 V AC

630 V DC/250 V AC

Please read *Cautions and warnings* and Downloaded from Arrow.com.

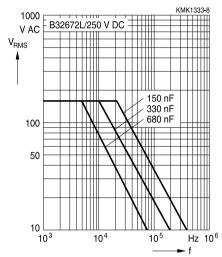


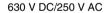

Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms $T_A \le 100$ °C) For $T_A > 100$ °C, please refer to "General technical information", section 3.2.3.

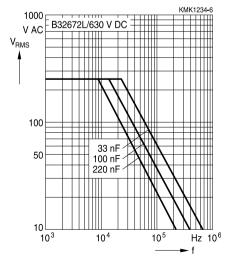
Lead spacing 10 mm

1600 V DC/600 V AC

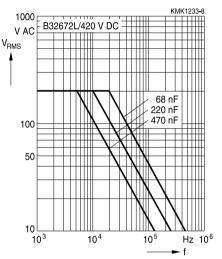
2000 V DC/700 V AC

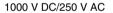


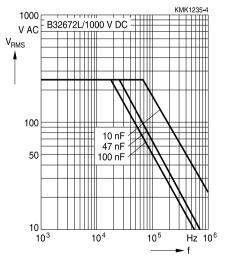



Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms T_A \leq 100 °C) For T_A >100 °C, please refer to "General technical information", section 3.2.3.

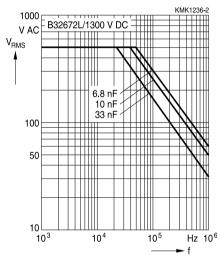
Lead spacing 15 mm

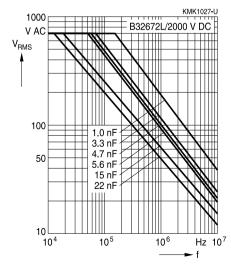

250 V DC/160 V AC



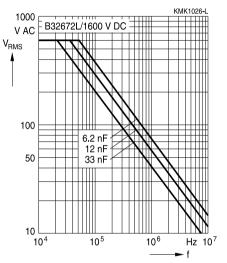


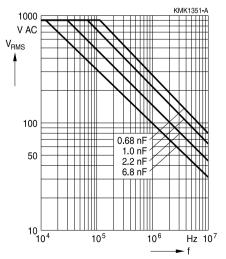
420 V DC/200 V AC



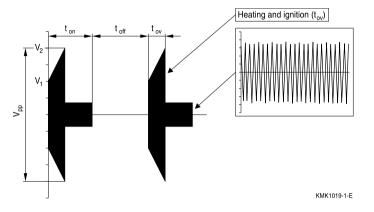

Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms $T_A \le 100$ °C) For $T_A > 100$ °C, please refer to "General technical information", section 3.2.3.

Lead spacing 15 mm


1300 V DC/500 V AC


2000 V DC/700 V AC

1600 V DC/600 V AC


Please read *Cautions and warnings* and Downloaded from Arrow.com.

Operation at overvoltages during heating and ignition of lamps ($T_A \leq 40 \ ^{\circ}C$)

In lighting applications, the capacitors can be subjected to overvoltages during the heating and ignition periods. An overvoltage occurs when the operation voltage exceeds the permissible AC voltage at the resonant frequency f_r .

For a repetitive application of on/off switching pulses (as for example in the life tests applied by electronic ballast manufacturers), limits have to be imposed on the time periods under overvoltage and on the duty cycle, in order to keep the capacitance value within the required margins:

- The overvoltage time t_{ov} should be less than 1 sec.
- The maximum duty cycle of the overvoltage is given by

$$\frac{t_{OV}}{t_{on} + t_{off}} \leq \left(\frac{V_{RMS}}{V_{RMS,OV}}\right)^{2} \cdot 0.5$$

where $V_{\text{RMS,ov}}$ is the RMS voltage during period t_{ov}

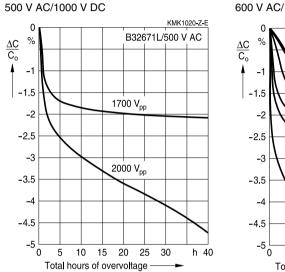
$$V_{\text{rms,OV}} = \sqrt{\frac{V_1^2 + V_1 \cdot V_2 + V_2^2}{6}}$$

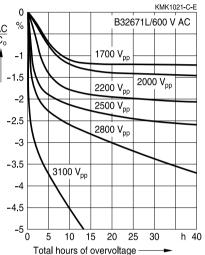
and V_{RMS} is the permissible AC voltage for continuous operation at the resonant frequency f_r (given by the "permissible AC voltage versus frequency f" graphics in the previous pages).

The drift of capacitance depends on the V_{pp} attained, and the total time under overvoltage, which is calculated in hours as follows:

(N_i · t_{ov}) / 3600

where N_{i} is the number of overvoltage impulses and t_{ov} is expressed in seconds.


The maximum drift of capacitance as a function of both parameters is provided graphically in the following pages.

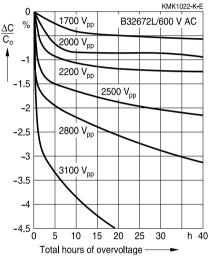


Estimation of the maximum drift of capacitance value in function of the number of total hours overvoltage

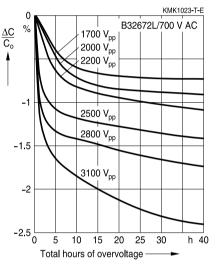
Lead spacing 10 mm

600 V AC/1600 V DC

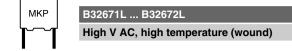
B32672L


MKP → 15 →

High V AC, high temperature (wound)


Estimation of the maximum drift of capacitance value in function of the number of total hours overvoltage

Lead spacing 15 mm


600 V AC/1600 V DC

700 V AC/2000 V DC

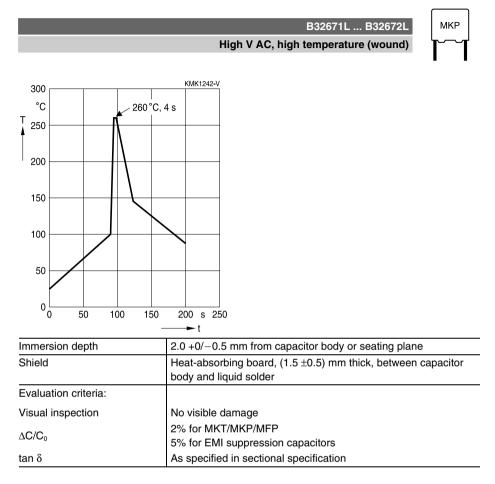
Mounting guidelines

1 Soldering

1.1 Solderability of leads

The solderability of terminal leads is tested to IEC 60068-2-20, test Ta, method 1.

Before a solderability test is carried out, terminals are subjected to accelerated ageing (to IEC 60068-2-2, test Ba: 4 h exposure to dry heat at 155 °C). Since the ageing temperature is far higher than the upper category temperature of the capacitors, the terminal wires should be cut off from the capacitor before the ageing procedure to prevent the solderability being impaired by the products of any capacitor decomposition that might occur.


Solder bath temperature	235 ±5 °C
Soldering time	2.0 ±0.5 s
Immersion depth	2.0 + 0/-0.5 mm from capacitor body or seating plane
Evaluation criteria:	
Visual inspection	Wetting of wire surface by new solder \geq 90%, free-flowing solder

1.2 Resistance to soldering heat

Resistance to soldering heat is tested to IEC 60068-2-20, test Tb, method 1A. Conditions:

Series		Solder bath temperature	Soldering time
MKT	boxed (except $2.5 \times 6.5 \times 7.2$ mm) coated uncoated (lead spacing > 10 mm)	260 ±5 °C	10 ±1 s
MFP MKP	(lead spacing > 7.5 mm)		
MKT	boxed (case $2.5 \times 6.5 \times 7.2$ mm)		5±1 s
МКР МКТ	(lead spacing \leq 7.5 mm) uncoated (lead spacing \leq 10 mm) insulated (B32559)		< 4 s recommended soldering profile for MKT uncoated (lead spacing \leq 10 mm) and insulated (B32559)

⊗TDK

High V AC, high temperature (wound)

1.3 General notes on soldering

Permissible heat exposure loads on film capacitors are primarily characterized by the upper category temperature T_{max} . Long exposure to temperatures above this type-related temperature limit can lead to changes in the plastic dielectric and thus change irreversibly a capacitor's electrical characteristics. For short exposures (as in practical soldering processes) the heat load (and thus the possible effects on a capacitor) will also depend on other factors like:

- Pre-heating temperature and time
- Forced cooling immediately after soldering
- Terminal characteristics:
- diameter, length, thermal resistance, special configurations (e.g. crimping)
- Height of capacitor above solder bath
- Shadowing by neighboring components
- Additional heating due to heat dissipation by neighboring components
- Use of solder-resist coatings

The overheating associated with some of these factors can usually be reduced by suitable countermeasures. For example, if a pre-heating step cannot be avoided, an additional or reinforced cooling process may possibly have to be included.

EPCOS recommends the following conditions:

- Pre-heating with a maximum temperature of 110 °C
- Temperature inside the capacitor should not exceed the following limits:
 - MKP/MFP 110 °C
 - MKT 160 °C
- When SMD components are used together with leaded ones, the leaded film capacitors should not pass into the SMD adhesive curing oven. The leaded components should be assembled after the SMD curing step.
- Leaded film capacitors are not suitable for reflow soldering.

Uncoated capacitors

For uncoated MKT capacitors with lead spacings \leq 10 mm (B32560/B32561) the following measures are recommended:

- pre-heating to not more than 110 °C in the preheater phase
- rapid cooling after soldering

MKP

High V AC, high temperature (wound)

Cautions and warnings

- Do not exceed the upper category temperature (UCT).
- Do not apply any mechanical stress to the capacitor terminals.
- Avoid any compressive, tensile or flexural stress.
- Do not move the capacitor after it has been soldered to the PC board.
- Do not pick up the PC board by the soldered capacitor.
- Do not place the capacitor on a PC board whose PTH hole spacing differs from the specified lead spacing.
- Do not exceed the specified time or temperature limits during soldering.
- Avoid external energy inputs, such as fire or electricity.
- Avoid overload of the capacitors.

The table below summarizes the safety instructions that must always be observed. A detailed description can be found in the relevant sections of the chapters "General technical information" and "Mounting guidelines".

Торіс	Safety information	Reference chapter "General technical information"
Storage conditions	Make sure that capacitors are stored within the specified range of time, temperature and humidity conditions.	4.5 "Storage conditions"
Flammability	Avoid external energy, such as fire or electricity (passive flammability), avoid overload of the capacitors (active flammability) and consider the flammability of materials.	5.3 "Flammability"
Resistance to vibration	Do not exceed the tested ability to withstand vibration. The capacitors are tested to IEC 60068-2-6. EPCOS offers film capacitors specially designed for operation under more severe vibration regimes such as those found in automotive applications. Consult our catalog "Film Capacitors for Automotive Electronics".	5.2 "Resistance to vibration"

мкр

B32671L ... B32672L

High V AC, high temperature (wound)

Торіс	Safety information	Reference chapter "Mounting guidelines"
Soldering	Do not exceed the specified time or temperature limits during soldering.	1 "Soldering"
Cleaning	Use only suitable solvents for cleaning capacitors.	2 "Cleaning"
Embedding of capacitors in finished assemblies	When embedding finished circuit assemblies in plastic resins, chemical and thermal influences must be taken into account. Caution: Consult us first, if you also wish to embed other uncoated component types!	3 "Embedding of capacitors in finished assemblies"

MKP

High V AC, high temperature (wound)

Symbols and terms

Symbol	English	German
α	Heat transfer coefficient	Wärmeübergangszahl
α _c	Temperature coefficient of capacitance	Temperaturkoeffizient der Kapazität
A	Capacitor surface area	Kondensatoroberfläche
βc	Humidity coefficient of capacitance	Feuchtekoeffizient der Kapazität
С	Capacitance	Kapazität
C _R	Rated capacitance	Nennkapazität
ΔC	Absolute capacitance change	Absolute Kapazitätsänderung
$\Delta C/C$	Relative capacitance change (relative	Relative Kapazitätsänderung (relative
	deviation of actual value)	Abweichung vom Ist-Wert)
$\Delta C/C_R$	Capacitance tolerance (relative deviation	Kapazitätstoleranz (relative Abweichung
	from rated capacitance)	vom Nennwert)
dt	Time differential	Differentielle Zeit
Δt	Time interval	Zeitintervall
ΔT	Absolute temperature change	Absolute Temperaturänderung
	(self-heating)	(Selbsterwärmung)
∆tan δ	Absolute change of dissipation factor	Absolute Änderung des Verlustfaktors
ΔV	Absolute voltage change	Absolute Spannungsänderung
dV/dt	Time differential of voltage function (rate	Differentielle Spannungsänderung
	of voltage rise)	(Spannungsflankensteilheit)
$\Delta V / \Delta t$	Voltage change per time interval	Spannungsänderung pro Zeitintervall
E	Activation energy for diffusion	Aktivierungsenergie zur Diffusion
ESL	Self-inductance	Eigeninduktivität
ESR	Equivalent series resistance	Ersatz-Serienwiderstand
f	Frequency	Frequenz
f ₁	Frequency limit for reducing permissible	Grenzfrequenz für thermisch bedingte
	AC voltage due to thermal limits	Reduzierung der zulässigen
		Wechselspannung
f ₂	Frequency limit for reducing permissible	Grenzfrequenz für strombedingte
	AC voltage due to current limit	Reduzierung der zulässigen
,		Wechselspannung
f _r	Resonant frequency	Resonanzfrequenz
F _D	Thermal acceleration factor for diffusion	Therm. Beschleunigungsfaktor zur Diffusion
F⊤	Derating factor	Deratingfaktor
i	Current (peak)	Stromspitze
I _c	Category current (max. continuous	Kategoriestrom (max. Dauerstrom)
	current)	

мкр **Т**-----

B32671L ... B32672L

High V AC, high temperature (wound)

Symbol	English	German
I _{RMS}	(Sinusoidal) alternating current, root-mean-square value	(Sinusförmiger) Wechselstrom
i _z	Capacitance drift	Inkonstanz der Kapazität
k _o	Pulse characteristic	Impulskennwert
L _s	Series inductance	Serieninduktivität
λ	Failure rate	Ausfallrate
λο	Constant failure rate during useful	Konstante Ausfallrate in der
	service life	Nutzungsphase
λ_{test}	Failure rate, determined by tests	Experimentell ermittelte Ausfallrate
P _{diss}	Dissipated power	Abgegebene Verlustleistung
P _{gen}	Generated power	Erzeugte Verlustleistung
Q	Heat energy	Wärmeenergie
ρ	Density of water vapor in air	Dichte von Wasserdampf in Luft
R	Universal molar constant for gases	Allg. Molarkonstante für Gas
R	Ohmic resistance of discharge circuit	Ohmscher Widerstand des Entladekreises
R _i	Internal resistance	Innenwiderstand
R _{ins}	Insulation resistance	Isolationswiderstand
R _P	Parallel resistance	Parallelwiderstand
Rs	Series resistance	Serienwiderstand
S	severity (humidity test)	Schärfegrad (Feuchtetest)
t	Time	Zeit
т	Temperature	Temperatur
τ	Time constant	Zeitkonstante
tan δ	Dissipation factor	Verlustfaktor
$\tan \delta_{D}$	Dielectric component of dissipation factor	Dielektrischer Anteil des Verlustfaktors
tan δ _₽	Parallel component of dissipation factor	Parallelanteil des Verlfustfaktors
tan δ _s	Series component of dissipation factor	Serienanteil des Verlustfaktors
T₄	Ambient temperature	Umgebungstemperatur
T _{max}	Upper category temperature	Obere Kategorietemperatur
T _{min}	Lower category temperature	Untere Kategorietemperatur
t _{oL}	Operating life at operating temperature	Betriebszeit bei Betriebstemperatur und
<u>.</u>	and voltage	-spannung
T _{op}	Operating temperature	Beriebstemperatur
T _R	Rated temperature	Nenntemperatur
T _{ref}	Reference temperature	Referenztemperatur
t _{SL}	Reference service life	Referenz-Lebensdauer
V _{AC}	AC voltage	Wechselspannung

MKP

B32671L ... B32672L

High V AC, high temperature (wound)

Symbol	English	German
Vc	Category voltage	Kategoriespannung
V _{C,RMS}	Category AC voltage	(Sinusförmige)
		Kategorie-Wechselspannung
V_{CD}	Corona-discharge onset voltage	Teilentlade-Einsatzspannung
V_{ch}	Charging voltage	Ladespannung
V_{DC}	DC voltage	Gleichspannung
V_{FB}	Fly-back capacitor voltage	Spannung (Flyback)
Vi	Input voltage	Eingangsspannung
Vo	Output voltage	Ausgangssspannung
V_{op}	Operating voltage	Betriebsspannung
V _p	Peak pulse voltage	Impuls-Spitzenspannung
V_{pp}	Peak-to-peak voltage Impedance	Spannungshub
V _R	Rated voltage	Nennspannung
ν̂ _R	Amplitude of rated AC voltage	Amplitude der Nenn-Wechselspannung
V_{RMS}	(Sinusoidal) alternating voltage, root-mean-square value	(Sinusförmige) Wechselspannung
V_{sc}	S-correction voltage	Spannung bei Anwendung "S-correction"
V_{sn}	Snubber capacitor voltage	Spannung bei Anwendung "Beschaltung"
Z	Impedance	Scheinwiderstand
е	Lead spacing	Rastermaß

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, BAOKE, Alu-X, CeraDiode, CeraLink, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, FilterCap, FormFit, MiniBlue, MiniCell, MKD, MKK, MLSC, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.