

STF26NM60N

N-channel 600 V, 0.135 Ω typ., 20 A MDmesh™ II Power MOSFET in a TO-220FP package

Datasheet - production data

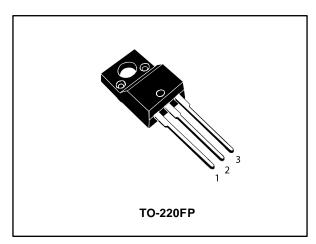
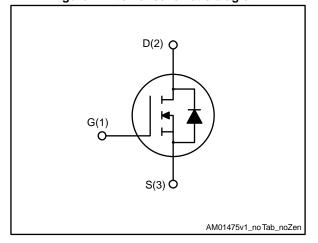



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max	ID
STF26NM60N	600 V	0.165 Ω	20 A

- 100% avalanche tested
- Low input capacitance and gate charge
- Low gate input resistance

Applications

Switching applications

Description

This device is an N-channel Power MOSFET developed using the second generation of MDmesh™ technology. This revolutionary Power MOSFET associates a vertical structure to the company's strip layout to yield one of the world's lowest on-resistance and gate charge. It is therefore suitable for the most demanding high efficiency converters.

Table 1: Device summary

Order code	Marking	Package	Packaging	
STF26NM60N	26NM60N	TO-220FP	Tube	

Contents STF26NM60N

Contents

1	Electric	al ratings	3
		cal characteristics	
	2.1	Electrical characteristics (curves)	6
3	Test cir	·cuits	8
4	Packag	e information	9
	4.1	TO-220FP package information	10
5	Revisio	on history	12

STF26NM60N Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	600	V
V_{GS}	Gate-source voltage	±30	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	20	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	12.6	Α
I _{DM} (1)(2)	Drain current (pulsed)	80	Α
Ртот	Total dissipation at T _C = 25 °C	35	W
dv/dt (3)	Peak diode recovery voltage slope	15	V/ns
Viso	Insulation withstand voltage (RMS) from all three leads to external heat sink $(t=1\ s; T_C=25\ ^\circ C)$	2500	٧
T _{stg}	Storage temperature range	55 to 150	°C
Tj	Operating junction temperature range		

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	3.6	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	62.5	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
las	Single pulse avalanche current (pulse width limited by T _{jmax})	6	Α
Eas	Single pulse avalanche energy (starting T _J =25 °C, I _D =I _{AR} , V _{DD} =50 V)	610	mJ

⁽¹⁾Limited by package.

⁽²⁾Pulse width limited by safe operating area.

 $^{^{(3)}}$ I_{SD} \leq 20 A, di/dt \leq 400 A/ μ s, V_{DS(peak)} \leq V(BR)DSS, V_{DD} \leq 80% V(BR)DSS

Electrical characteristics STF26NM60N

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 5: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0 V	600			V
	Zaro goto voltogo droin	V _{GS} = 0 V, V _{DS} = 600 V			1	
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V},$ $T_{C} = 125 \text{ °C}$ (1)			100	μΑ
Igss	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 25 \text{ V}$			±0.1	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 10 A		0.135	0.165	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	1800	ı	pF
Coss	Output capacitance	$V_{DS} = 50 \text{ V}, f = 1 \text{ MHz},$	-	115	1	pF
C _{rss}	Reverse transfer capacitance	V _{GS} = 0 V		6	ı	pF
Coss eq. (1)	Equivalent output capacitance	V _{GS} = 0 V, V _{DS} = 0 to 480 V	1	310	ı	pF
Qg	Total gate charge	$V_{DD} = 480 \text{ V}, I_D = 20 \text{ A},$	-	60	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 10 V	-	8.5	-	nC
Q_{gd}	Gate-drain charge	(see Figure 14: "Test circuit for gate charge behavior")	-	30	1	nC
Rg	Gate input resistance	f=1 MHz, I _D =0 A	-	2.8	-	Ω

Notes:

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, I_D = 10 \text{ A},$	ı	13	-	ns
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 13: "Test circuit for	-	25	-	ns
t _{d(off)}	Turn-off delay time	resistive load switching times"	-	85	-	ns
t _f	Fall time	and Figure 18: "Switching time waveform")	1	50	-	ns

⁽¹⁾Defined by design, not subject to production test.

 $^{^{(1)}}C_{oss~eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DS}

Table 8: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		-		20	Α
I _{SDM} ⁽²⁾	Source-drain current (pulsed)		-		80	Α
V _{SD} ⁽³⁾	Forward on voltage	I _{SD} = 20 A, V _{GS} = 0 V	-		1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 20 A, di/dt = 100 A/µs	-	370		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}$	-	5.8		μC
I _{RRM}	Reverse recovery current	(see Figure 15: "Test circuit for inductive load switching and diode recovery times")	-	31.6		Α
t _{rr}	Reverse recovery time	I _{SD} = 20 A, di/dt = 100 A/μs	-	450		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, T_j = 150 ^{\circ}\text{C} \text{ (see}$	-	7.5		μC
I _{RRM}	Reverse recovery current	Figure 15: "Test circuit for inductive load switching and diode recovery times")	-	32.5		Α

Notes:

⁽¹⁾Pulse width limited by package.

 $[\]ensuremath{^{(2)}}\mbox{Pulse}$ width limited by safe operating area.

 $^{^{(3)}\}text{Pulsed:}$ pulse duration = 300 $\mu\text{s,}$ duty cycle 1.5%

2.1 Electrical characteristics (curves)

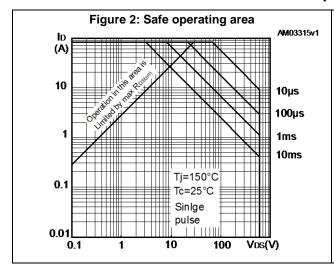
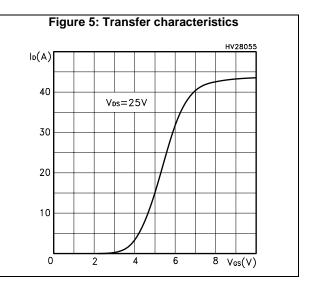
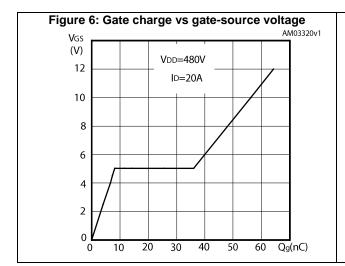
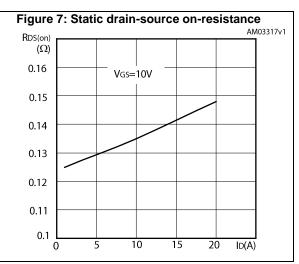


Figure 3: Thermal impedance


K $\delta = 0.5$ 0.2


0.05


0.02

0.01 $\lambda = 0.5$ $\lambda = 0.5$ 0.05 $\lambda = 0.5$ $\lambda =$

Figure 4: Output characteristics HV28050 lo(A) $V_{GS} = 10V$ 87 40 9٧ 7٧ 30 6٧ 20 5٧ 10 4V Vps(V) 15

STF26NM60N Electrical characteristics

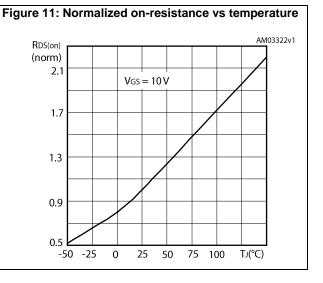
Figure 8: Capacitance variations

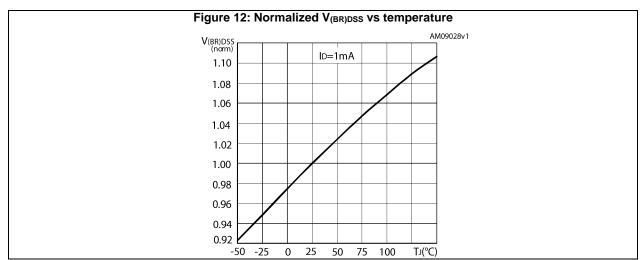
(pF)

10000

1000

Ciss


Coss


100

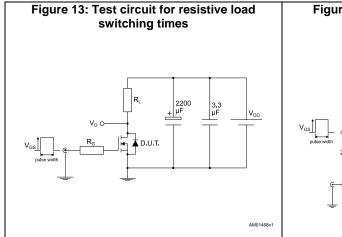
100

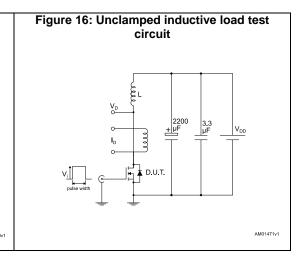
Crss

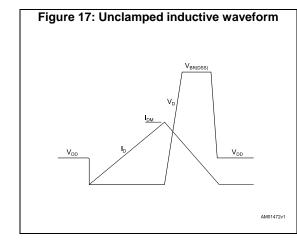
Figure 10: Normalized gate threshold voltage vs temperature AM03321v1 $V_{GS(th)}$ (norm) 1.1 $ID = 250 \mu A$ 1.0 0.9 0.8 0.7 ______ 0 25 50 75 100 T)(°C)

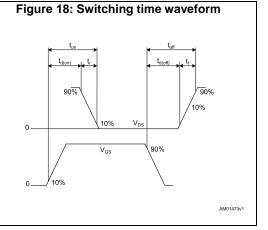
Test circuits STF26NM60N

3 Test circuits




Figure 14: Test circuit for gate charge behavior


12 V 47 kΩ 100 nF 1 kΩ


Vos 1 kΩ 1 kΩ

AM01469v1

Figure 15: Test circuit for inductive load switching and diode recovery times

STF26NM60N Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-220FP package information

Figure 19: TO-220FP package outline

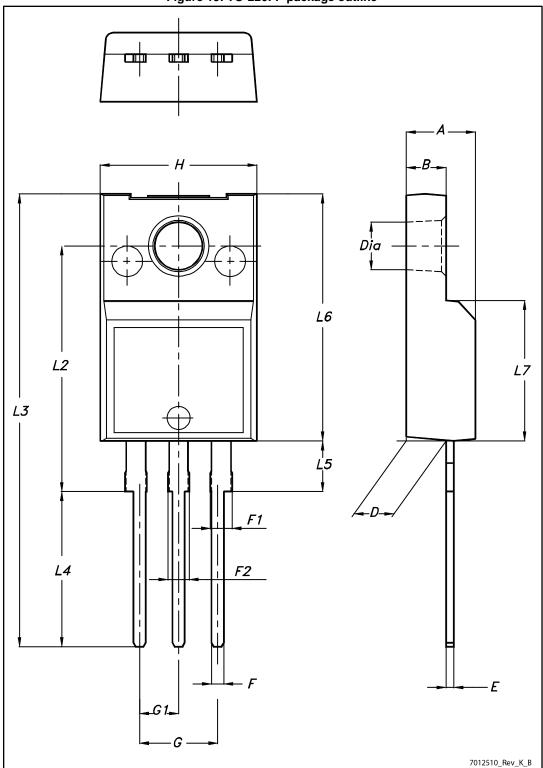


Table 9: TO-220FP package mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
Α	4.4		4.6
В	2.5		2.7
D	2.5		2.75
Е	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

Revision history STF26NM60N

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
13-Dec-2016	1	First release. Part number previously included in datasheet DocID15642

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved