Data Sheet

FEATURES

1Ω typical on resistance

0.2Ω on resistance flatness
$\pm 3.3 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$ dual supply operation
3.3 V to 16 V single supply operation

No V_{L} supply required 3 V logic-compatible inputs
Rail-to-rail operation
Continuous current per channel
LFCSP: 385 mA
TSSOP: 238 mA
16-lead TSSOP and 16-lead, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP

APPLICATIONS

Communication systems

Medical systems

Audio signal routing
Video signal routing
Automatic test equipment
Data acquisition systems
Battery-powered systems
Sample-and-hold systems
Relay replacements

GENERAL DESCRIPTION

The ADG1636 is a monolithic CMOS device containing two independently selectable single-pole/double-throw (SPDT) switches. An EN input is used to enable or disable the device. When disabled, all channels are switched off. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. Both switches exhibit break-before-make switching action for use in multiplexer applications.
The ultralow on resistance of these switches make them ideal solutions for data acquisition and gain switching applications where low on resistance and distortion is critical. The on resistance profile is very flat over the full analog input range, ensuring excellent linearity and low distortion when switching audio signals.

FUNCTIONAL BLOCK DIAGRAMS

NOTES

1. SWITCHES SHOWN FOR A LOGIC 1 INPUT. 商

Figure 1. 16-Lead TSSOP

NOTES

1. SWITCHES SHOWN FOR A 1 INPUT LOGIC. 养

Figure 2. 16-Lead LFCSP
The CMOS construction ensures ultralow power dissipation, making the devices ideally suited for portable and batterypowered instruments.

PRODUCT HIGHLIGHTS

1. 1.6Ω maximum on resistance over temperature.
2. Minimum distortion: THD $+\mathrm{N}=0.007 \%$.
3. 3 V logic-compatible digital inputs: $\mathrm{V}_{\mathrm{INH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$.
4. No VL logic power supply required.
5. Ultralow power dissipation: $<16 \mathrm{nW}$.
6. 16-lead TSSOP and 16-lead $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP.

ADG1636* Product Page Quick Links

Last Content Update: 11/01/2016

Comparable Parts \square

View a parametric search of comparable parts

Evaluation Kits

- Evaluation Board for 16 lead TSSOP Devices in the Switch/ Mux Portfolio

Documentation

Data Sheet

- ADG1636: 1Ω Typical On Resistance, $\pm 5 \mathrm{~V},+12 \mathrm{~V},+5 \mathrm{~V}$, and +3.3 V Dual SPDT Switches Data Sheet

User Guides

- UG-945: Evaluation Board for 16-Lead TSSOP Devices in the Switches and Multiplexers Portfolio

Reference Designs \square

- CN0125

Reference Materials Informational

- iCMOS Technology Enabling the $+/-10 \mathrm{~V}$ World

Product Selection Guide

- Switches and Multiplexers Product Selection Guide

Design Resources ${ }^{\square}$

- ADG1636 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

Discussions

View all ADG1636 EngineerZone Discussions

Sample and Buy \square

Visit the product page to see pricing options

Technical Support

Submit a technical question or find your regional support number

[^0]
TABLE OF CONTENTS

Features 1
Applications 1
General Description 1
Functional Block Diagrams. 1
Product Highlights 1
Revision History 2
Specifications 3
± 5 V Dual Supply 3
12 V Single Supply 4
5 V Single Supply. 5
REVISION HISTORY
3/16-Rev. A to Rev. B
Changed CP-16-13 to CP-16-26

\qquad
Throughout
Changes to Figure 3, Figure 4, and Table 7 9
Updated Outline Dimensions 16
Changes to Ordering Guide 16
9/09—Rev. 0 to Rev. A
Changes to Table 4 6
3.3 V Single Supply 6
Continuous Current per Channel, S or D 7
Absolute Maximum Ratings 8
ESD Caution. 8
Pin Configurations and Function Descriptions 9
Typical Performance Characteristics. 10
Test Circuits 13
Terminology 15
Outline Dimensions 16
Ordering Guide 16

1/09—Revision 0: Initial Version

SPECIFICATIONS

± 5 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

[^1]
ADG1636

12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V_{DD}	V	
On Resistance (Ron)	0.95			Ω typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to 10 V , $\mathrm{I}=-10 \mathrm{~mA}$; see Figure 23
	1.1	1.25	1.45	Ω max	$\mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{\text {S }}=0 \mathrm{~V}$
On Resistance Match Between Channels (Δ Ron)	0.03			Ω typ	$\mathrm{V}_{\mathrm{s}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
	0.06	0.07	0.08	Ω max	
On Resistance Flatness (Rflation)	0.2			Ω typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
	0.23	0.27	0.32	Ω max	
LEAKAGE CURRENTS					$\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$
Source Off Leakage, IS (Off)	± 0.1			$n A$ typ	$\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V} / 1 \mathrm{~V}$; see Figure 24
	± 0.25	± 1	± 4	nA max	
Drain Off Leakage, I_{D} (Off)	± 0.1			nA typ	$\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V} / 1 \mathrm{~V}$; see Figure 24
	± 0.25	± 2	± 10	nA max	
Channel On Leakage, log_{0} Is (On)	± 0.3			nA typ	$V_{S}=V_{D}=1 \mathrm{~V}$ or 10 V ; see Figure 25
	± 0.6	± 2	± 12	nA max	
DIGITAL INPUTS					
Input High Voltage, V ${ }_{\text {INH }}$			2.0	\checkmark min	
Input Low Voltage, $\mathrm{V}_{\text {INL }}$			0.8	V max	
Input Current, Ins. or linh	0.001			$\mu \mathrm{A}$ typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
			± 0.1	$\mu \mathrm{A}$ max	
Digital Input Capacitance, $\mathrm{Cl}_{\text {IN }}$	5			pF typ	
DYNAMIC CHARACTERISTICS ${ }^{1}$					
Transition Time, ttransition	100			ns typ	$\mathrm{RL}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	153	183	206	ns max	$\mathrm{V}_{\mathrm{s}}=8 \mathrm{~V}$; see Figure 30
ton (EN)	80			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	95	103	110	ns max	$\mathrm{V}_{\mathrm{s}}=8 \mathrm{~V}$; see Figure 30
toff (EN)	133			ns typ	$\mathrm{RL}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	161	187	210	ns max	$\mathrm{V}_{\mathrm{s}}=8 \mathrm{~V}$; see Figure 30
Break-Before-Make Time Delay, t_{D}	25			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
			17	ns min	$\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{52}=8 \mathrm{~V}$; see Figure 31
Charge Injection	150			pC typ	$\mathrm{V}_{S}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; see Figure 32
Off Isolation	70			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 26
Channel-to-Channel Crosstalk	90			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 28
Total Harmonic Distortion + Noise (THD + N)	0.013			\% typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=110 \Omega, 5 \mathrm{~V} \mathrm{p}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \text {; } \\ & \text { see Figure } 29 \end{aligned}$
-3 dB Bandwidth	27			MHz typ	$\mathrm{RL}_{\mathrm{L}}=50 \Omega, \mathrm{CL}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 27
Cs_{5} (Off)	65			pF typ	$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$C_{\text {d }}$ (Off)	120			pF typ	$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{On})$	216			pF typ	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS					$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$
ldo	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
			1	$\mu \mathrm{A}$ max	
IDD	230			$\mu \mathrm{A}$ typ	Digital inputs $=5 \mathrm{~V}$
			360	$\mu \mathrm{A}$ max	
$V_{D D}$			3.3/16	\checkmark min/max	

[^2]
5 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

[^3]
ADG1636

3.3 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 4.

${ }^{1}$ Guaranteed by design, not subject to production test.

Data Sheet

CONTINUOUS CURRENT PER CHANNEL, S OR D

Table 5.

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit
CONTINUOUS CURRENT, S OR D				
$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-5 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=150.4^{\circ} \mathrm{C} / \mathrm{W}$)	238	151	88	mA maximum
LFCSP ($\theta_{\mathrm{JA}}=48.7^{\circ} \mathrm{C} / \mathrm{W}$)	385	220	105	mA maximum
$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$				
TSSOP ($\theta_{\text {JA }}=150.4^{\circ} \mathrm{C} / \mathrm{W}$)	280	175	98	mA maximum
LFCSP ($\theta_{\text {JA }}=48.7^{\circ} \mathrm{C} / \mathrm{W}$)	469	259	119	mA maximum
$V_{\text {DD }}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$				
TSSOP ($\theta_{\text {JA }}=150.4^{\circ} \mathrm{C} / \mathrm{W}$)	189	126	77	mA maximum
LFCSP ($\theta_{\mathrm{JA}}=48.7^{\circ} \mathrm{C} / \mathrm{W}$)	301	182	98	mA maximum
$\mathrm{V}_{\text {DD }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=150.4^{\circ} \mathrm{C} / \mathrm{W}$)	189	130	84	mA maximum
LFCSP ($\theta_{\mathrm{JA}}=48.7^{\circ} \mathrm{C} / \mathrm{W}$)	305	189	105	mA maximum

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 6.

Parameter	Rating
V_{DD} to $\mathrm{V}_{\text {SS }}$	18 V
VDD to GND	-0.3 V to +18 V
$V_{\text {ss }}$ to GND	+0.3 V to -18 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Digital Inputs ${ }^{1}$	GND -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, S or D	850 mA (pulsed at 1 ms , 10% duty cycle maximum)
Continuous Current, S or D ${ }^{2}$	Data + 15\%
Operating Temperature Range Industrial (Y Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$ Thermal Impedance	
16-Lead TSSOP (2-Layer Board)	$150.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP (4-Layer Board)	$48.7^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering Peak Temperature, Pb free	$260^{\circ} \mathrm{C}$

[^4]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 3. 16-Lead TSSOP Pin Configuration

1. NIC = NO INTERNAL CONNECTION.
2. TIE THE EXPOSED PAD TO THE SUBSTRATE, $\mathrm{V}_{\text {SS }}$.

Figure 4. 16-Lead LFCSP Pin Configuration

Table 7. Pin Function Descriptions

Pin No.		Mnemonic	Description
TSSOP	LFCSP		
1	15	IN1	Logic Control Input.
2	16	S1A	Source Terminal. This pin can be an input or output.
3	1	D1	Drain Terminal. This pin can be an input or output.
4	2	S1B	Source Terminal. This pin can be an input or output.
5	3	$V_{\text {SS }}$	Most Negative Power Supply Potential.
6	4	GND	Ground (0 V) Reference.
7, 8, 15, 16	5, 7, 13, 14	NIC	No Internal Connection.
9	6	IN2	Logic Control Input.
10	8	S2A	Source Terminal. This pin can be an input or output.
11	9	D2	Drain Terminal. This pin can be an input or output.
12	10	S2B	Source Terminal. This pin can be an input or output.
13	11	$V_{\text {DD }}$	Most Positive Power Supply Potential.
14	12	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are off. When this pin is high, the Ax logic inputs determine the on switches.
$\mathrm{N} / \mathrm{A}^{1}$	0	EPAD	Exposed Pad. Tie the exposed pad to the substrate, $\mathrm{V}_{s s}$.

Table 8. ADG1636 TSSOP Truth Table

EN	INx	SxA	SxB
0	X	Off	Off
1	0	Off	On
1	1	On	Off

Table 9. ADG1636 LFCSP Truth Table

EN	INx	SxA	SxB
0	X	Off	Off
1	0	Off	On
1	1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Dual Supply

Figure 6. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Single Supply

Figure 7. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, ± 5 V Dual Supply

Figure 8. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures, 12 V Single Supply

Figure 9. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, 5 V Single Supply

Figure 10. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures, 3.3 V Single Supply

Figure 11. Leakage Currents as a Function of Temperature, ± 5 V Dual Supply

Figure 12. Leakage Currents as a Function of Temperature, 12 V Single Supply

Figure 13. Leakage Currents as a Function of Temperature, 5 V Single Supply

Figure 14. Leakage Currents as a Function of Temperature, 3.3 V Single Supply

Figure 15. IDD vs. Logic Level

Figure 16. Charge Injection vs. Source Voltage

Figure 17. ton/toff Times vs. Temperature

Figure 18. Off Isolation vs. Frequency

Figure 19. Crosstalk vs. Frequency

Figure 20. On Response vs. Frequency

Figure 21. ACPSRR vs. Frequency

Figure 22. $T H D+N$ vs. Frequency

TEST CIRCUITS

Figure 23. On Resistance

Figure 24. Off Leakage

Figure 25. On Leakage

Figure 26. Off Isolation

Figure 27. Bandwidth

CHANNEL-TO-CHANNEL CROSSTALK $=20 \log \frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\mathrm{S}}}$
Figure 28. Channel-to-Channel Crosstalk

Figure 29. THD + Noise

Figure 30. Switching Times

Figure 31. Break-Before-Make Time Delay

Figure 32. Charge Injection

TERMINOLOGY

IDD
The positive supply current.
Iss
The negative supply current.
$V_{D}\left(V_{s}\right)$
The analog voltage on Terminal D and Terminal S.
Ron
The ohmic resistance between Terminal D and Terminal S.
$\mathrm{R}_{\text {flat(on) }}$
Flatness that is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range.
I_{s} (Off)
The source leakage current with the switch off.

I_{D} (Off)

The drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathbf{O n})$
The channel leakage current with the switch on.
VINL
The maximum input voltage for Logic 0 .
$\mathrm{V}_{\text {INH }}$
The minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$
The input current of the digital input.
C_{s} (Off)
The off switch source capacitance, which is measured with reference to ground.
C_{D} (Off)
The off switch drain capacitance, which is measured with reference to ground.

$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)

The on switch capacitance, which is measured with reference to ground.
$\mathrm{C}_{\text {In }}$
The digital input capacitance.
$\mathbf{t}_{\text {transition }}$
The delay time between the 50% and 90% points of the digital input and switch on condition when switching from one address state to another.
$t_{\text {ON }}$ (EN)
The delay between applying the digital control input and the output switching on. See Figure 30.
$t_{\text {off }}$ (EN)
The delay between applying the digital control input and the output switching off. See Figure 30.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by 3 dB .

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.
Total Harmonic Distortion + Noise (THD + N)
The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

AC Power Supply Rejection Ratio (ACPSRR)

The ratio of the amplitude of signal on the output to the amplitude of the modulation. This is a measure of the ability of the device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p.

ADG1636

OUTLINE DIMENSIONS

Figure 33. 16-Lead Thin Shrink Small Outline Package [TSSOP] ($R U-16$)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.
Figure 34. 16-Lead Lead Frame Chip Scale Package [LFCSP] $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.75 mm Package Height (CP-16-26)
Dimensions shown in millimeters
ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADG1636BRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1636BRUZ-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1636BRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1636BCPZ-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-26
ADG1636BCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-26

[^5]
[^0]: * This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to the content on this page does not constitute a change to the revision number of the product data sheet. This content may be frequently modified.

[^1]: ${ }^{1}$ Guaranteed by design, not subject to production test

[^2]: ${ }^{1}$ Guaranteed by design, not subject to production test

[^3]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^4]: ${ }^{1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.
 ${ }^{2}$ See Table 5.

[^5]: ${ }^{1} Z=$ RoHS Compliant Part.

