
Grove - Mini I2C Motor Driver v1.0

Introduction

This Grove - MIni I2C motor driver included two DRV8830, The DRV8830 provides an

integrated motor driver solution for battery-powered toys, printers, and other low-voltage or

battery-powered motion control applications. The module has two H-bridge drivers, and can

drive two DC motors or two winding of stepper motors, as well as other loads like solenoids.It

requires an onboard 5V voltage regulator which can power the I2C bus. All driver lines are diode

protected from back EMF.It features two LEDs for fault indicator and four LEDs to indicate

which direction each motor is running. GROVE system plug and I2C interface enables you to

daisy-chain the driver with many other devices.

Feature

 Without external power supply

 Two leds for fault indicator

 Default maximum drive current 200 mA

 Grove compatible

 I2C interface

 Motor's speed and direction can control

 Number of channels: 2

 Easy to use

Application Ideas

This motor driver can be used to drive any brushed electronic motor as long as it doesn't

consume more than 1A at 5v.

Two motors can be driven simultaneously while set to a different speed and direction.

The speed can be set fully proportional and is controlled by I2C command.

http://www.seeedstudio.com/wiki/File:Mini_I2C_motor_2.png

 Battery-Powered:

 Printers

 Toys

 Robotics

 Cameras

 Phones

 Small Actuators, Pumps, etc.

Specifications

Item Min Typical Max Unit

Working Voltage 2.75 - 6.8 VDC

Max Output Current per

channel
0.2 - 1 A

Input/output voltage on I2C

bus
3.3~5 V

Communication protocol I2C /

Interface Function

 Grove Interface - Grove products have a eco system and all have a same connector

which can plug onto the Base Shield. Connect this module to the I
2
C port of Base Shield,

and then it can work well with Arduino. However, you can also connect Grove - Mini

I2C Motor Driver to Arduino without Base Shield by jumper wires.

http://www.seeedstudio.com/wiki/index.php?title=Base_shield_v2&uselang=en
http://www.seeedstudio.com/wiki/File:Mini_motor_driver.jpg

Arduino UNO Base Shield
Grove - Mini I2C

Motor Driver

5V

I2C port

VCC

GND GND

SDA SDA

SCL SCL

 CH1 fault indicator - Channel 1 fault indicator.

 CH2 fault indicator - Channel 2 fault indicator.

 Direction indicator - Motor direction indicator.

 CH1 Output Connector - Motor 1 connector.

 CH2 Output Connector - Motor 2 connector.

Hardware function

Change Default maximum drive current

The default maximum drive current of each channel is 200mA, see the front picture of the board

Each channel (CH1,CH2) has been added a resistor, and each value of resistor (R5,R12) is 1 Ω,

so the maximum drive current is 200mA according to the following equation

http://www.seeedstudio.com/wiki/File:QQ20150817-3.png

Meantime, each channel provides a reserved solderable pad (R6 for CH1, R13 for CH2), so you

can solder a resistor onto the board to change the resistor value of each channel. Following is the

new equation if adding resistor to the board

Caution:

 Maximum working current of each channel should not be more than 1A. So the minimum

value of resistor soldered to the reserved pad should not less than 0.2 Ω.

Change Default I2C Address

The I
2
C address of each channel is changeable. Please take a look at the back side of the board,

you will find there's 4 jumper pads, A0_CH1 and A1_CH1 are for channel 1, A0_CH2 and

A1_CH2 are for channel 2. As shown below:

http://www.seeedstudio.com/wiki/File:Mini_I2C_motor_7.png
http://www.seeedstudio.com/wiki/File:Mini_I2C_motor_8.png
http://www.seeedstudio.com/wiki/File:Mini_I2C_motor_9.png
http://www.seeedstudio.com/wiki/File:Address_mini_i2c_motor_driver.png

You can solder or unsolder each jumper to change the I2C address:

 1 - You need a solder iron, just solder two sides of the jumper together

 0 - You need a solder iron, just unsolder two sides of the jumper.

Note1: The library of Grove - Mini I2C Motor driver is depended on the default address.

Getting Started

Now, Let's begin to use the Grove - Mini I2C Motor Driver.

Preparations

Now we are making a demo for Grove - Mini I2C Motor Driver v1.0 which require following

modules.

 2 * DC Motor 2V-6V

 Seeeduino Lite

Seeeduino Lite is compatible with Arduino.

If you are using an Arduino UNO or any others Arduino compatible boards that with out a Grove

connect,

You'll need a Grove Base Shield to connect the Grove easily.

If this is your first time using Arduino or Seeeduino, Please put hand on here to start your

Arduino journey.

Hardware Installation

Grove - Mini I2C Motor Driver got one Grove socket for connecting two modules above.

They are:

http://www.seeedstudio.com/depot/Seeeduino-Lite-p-1487.html
http://www.seeedstudio.com/depot/base-shield-v13-p-1378.html?cPath=132_134
http://www.seeedstudio.com/wiki/Getting_Started_with_Seeeduino
http://www.seeedstudio.com/wiki/File:Mini_I2C_motor_12.png

 2 * DC Motor 2V-6V - connnect to CH1 & CH2 Output connecter.

 Seeeduino Lite - connect Seeeduino's Grove I2C Interface to Mini Motor Driver's Grove

Interface.

As shown below:

Software Work

The Grove - Mini I2C Motor Driver can control motor which is based on the chip DRV8830.

The DRV8830 isn’t just a dual motor driver, it is a dual H-bridge. An h-bridge is basically a

specific setup of transistors that allow you to switch direction of current. You can use your

Arduino to make them spin at any speed. Because the module has 2 H-bridges, you can not only

make a robot go forwards and backwards, but also turn around by having each wheel spin in a

different direction.

Connect Seeeduino to computer use a micro USB cable.

Now, let's use the Grove - Mini I2C Motor Driver to control two DC motors rotating in the

positive or opposite direction.

The below is an example program to be used with an Arduino. The code for this is very basic,

but you can also change it up and do it your own way.

/**

Example code demonstrating the use of the Arduino Library for

the SparkFun MiniMoto board, which uses the TI DRV8830 IC for I2C

low-voltage DC motor control.

This code is beerware; if you use it, please buy me (or any other

SparkFun employee) a cold beverage next time you run into one of

us at the local.

17 Sep 2013- Mike Hord, SparkFun Electronics

http://www.seeedstudio.com/wiki/File:Mini_motor_driver_demo.jpg

Code developed in Arduino 1.0.5, on a Fio classic board.

Updated for Arduino 1.6.4 5/2015

**/

#include <SparkFunMiniMoto.h> // Include the MiniMoto library

// Create two MiniMoto instances, with different address settings.

MiniMoto motor0(0xC4); // A1 = 1, A0 = clear

MiniMoto motor1(0xC0); // A1 = 1, A0 = 1 (default)

#define FAULTn 16 // Pin used for fault detection.

// Nothing terribly special in the setup() function- prep the

// serial port, print a little greeting, and set up our fault

// pin as an input.

void setup()

{

 Serial.begin(9600);

 Serial.println("Hello, world!");

 pinMode(FAULTn, INPUT);

}

// The loop() function just spins the motors one way, then the

// other, while constantly monitoring for any fault conditions

// to occur. If a fault does occur, it will be reported over

// the serial port, and then operation continues.

void loop()

{

 Serial.println("Forward!");

 motor0.drive(100);

 motor1.drive(100);

 delayUntil(1000);

 Serial.println("Stop!");

 motor0.stop();

 motor1.stop();

 delay(1000);

 Serial.println("Reverse!");

 motor0.drive(-100);

 motor1.drive(-100);

 delayUntil(1000);

 Serial.println("Brake!");

 motor0.brake();

 motor1.brake();

 delay(1000);

}

// delayUntil() is a little function to run the motor either for

// a designated time OR until a fault occurs. Note that this is

// a very simple demonstration; ideally, an interrupt would be

// used to service faults rather than blocking the application

// during motion and polling for faults.

void delayUntil(unsigned long elapsedTime)

{

 // See the "BlinkWithoutDelay" example for more details on how

 // and why this loop works the way it does.

 unsigned long startTime = millis();

 while (startTime + elapsedTime > millis())

 {

 // If FAULTn goes low, a fault condition *may* exist. To be

 // sure, we'll need to check the FAULT bit.

 if (digitalRead(FAULTn) == LOW)

 {

 // We're going to check both motors; the logic is the same

 // for each...

 byte result = motor0.getFault();

 // If result masked by FAULT is non-zero, we've got a fault

 // condition, and we should report it.

 if (result & FAULT)

 {

 Serial.print("Motor 0 fault: ");

 if (result & OCP) Serial.println("Chip overcurrent!");

 if (result & ILIMIT) Serial.println("Load current limit!");

 if (result & UVLO) Serial.println("Undervoltage!");

 if (result & OTS) Serial.println("Over temp!");

 break; // We want to break out of the motion immediately,

 // so we can stop motion in response to our fault.

 }

 result = motor1.getFault();

 if (result & FAULT)

 {

 Serial.print("Motor 1 fault: ");

 if (result & OCP) Serial.println("Chip overcurrent!");

 if (result & ILIMIT) Serial.println("Load current limit!");

 if (result & UVLO) Serial.println("Undervoltage!");

 if (result & OTS) Serial.println("Over temp!");

 break;

 }

 }

 }

}

Now click Upload(CTRL+U) to burn testing code. Please refer to here for any error prompt and

you can also add comment on forum

Review Results

After upload completed, the motors will rotating in the positive or opposite direction in cycle.

Resources

 DRV8830 Datasheet

 Grove - Mini I2C Motor Driver_Eagle_File

 Grove - Mini I2C Motor Driver Schematic Document

 Grove - Mini I2C Motor Driver Source Library

http://www.seeedstudio.com/wiki/Arduino_Common_Error
http://www.seeedstudio.com/forum/
http://www.seeedstudio.com/wiki/File:DRV8830.pdf
http://www.seeedstudio.com/wiki/File:Grove_-_Mini_I2C_Motor_Driver_v1.0_SCH_PCB.rar
http://www.seeedstudio.com/wiki/File:Grove_-_Mini_I2C_Motor_Driver_v1.0_SCH.pdf
http://www.seeedstudio.com/wiki/File:Grove_-_I2C_mini_motor_Driver_library.rar

