

Current Transducer LA 200-P/SP4

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit.

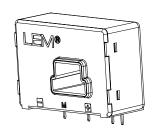
Electrical data

I_{PN} I_{PM}	Primary nominal RMS current Primary current, measuring range		200 0 ±300 T_{Δ} = 70 °C T_{Δ} = 85 °C			A A	
R_{M}	Measuring resistance @		$R_{\text{M min}}R_{\text{M max}} \mid R_{\text{M min}}R_{\text{M max}}$				
	with ±12 V	@ ±200 A _{max}	0	30	0	26	Ω
		@ ±250 A _{max}	0	8	0	4	Ω
	with ±15 V	@ ±200 A _{max}	0	60	0	56	Ω
		@ ±300 A _{max}	0	12	0	8	Ω
I_{SN}	Secondary nominal current RMS		100			mΑ	
$N_{\rm P}/N_{\rm S}$	Turns ratio		1:2000				
U_{c}	Supply voltage (±5 %)		±12 15			V	
I_{C}	Current consumption		16 (@ \pm 15 V) + $I_{\rm S}$ mA			_s mA	

Accuracy - Dynamic performance data

ε	Error @ I_{PN} , T_{Δ} = 25 °C	@ ±15 V (±5 %)	±0.40		%
	- 1 N /	@ ±12 15 V (±5 %)	±0.65		%
$\varepsilon_{_{\mathrm{I}}}$	Linearity error		< 0.15		%
_			Тур	Max	
I_{OE}	Electrical offset current @	$QI_{P} = 0, T_{A} = 25 ^{\circ}\text{C}$		±0.20	mA
I_{OM}	Magnetic offset current 1) @ $I_p = 0$ and specified R_M ,				
	;	after an overload of 3 x I_{PN}		±0.25	mA
I_{OT}	Temperature variation of	I _o 0 °C +70 °C	±0.10	±0.25	mA
		−25 °C +85 °C	±0.10	±0.40	mA
t _{D 10}	Delay time to 10 % of the	final output value for I_{PN} ste	p <	500	ns
t _{D 90}	Delay time 2)3) to 90 % of	the final output value for I_{PN}	step <	1	μs
di/dt	di/dt accurately followed	3)	> 200		A/µs
BW	Frequency bandwidth 3) (-	-1 dB)	DC	100	kHz

General data


T_{A}	Ambient operating temperature		-25 + 85	°C
T_{Ast}	Ambient storage temperature		-40 + 90	°C
$R_{\rm s}$	Resistance of secondary winding	@ $T_{A} = 70 ^{\circ}\text{C}$	76	Ω
Ü		@ T_{Δ} = 85 °C	80	Ω
m	Mass	- 1	60	g
	Standards		EN 50178: 1997	
			EN 50155: 1995	

Notes: 1) The result of the coercive field of the magnetic circuit

 $^{2)}$ With a di/dt of 100 A/ μ s

³⁾ The primary conductor is best filling the through-hole and/or the return of primary conductor is above the top of the transducer.

$I_{PN} = 200 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulating plastic case recognized according to UL 94-V0.

Special features

- Potted
- · Fastening screws included.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications
- Single or three phase inverters
- Propulsion and braking choppers
- Propulsion converters
- Auxiliary converters
- · Battery chargers.

Application domains

- Industrial
- Railway (fixed installations and onboard).

Page 1/3

Current Transducer LA 200-P/SP4

Insulation characteristics				
U_{d}	RMS voltage for AC insulation test, 50 Hz, 1 min	4.5	kV	
U_{Ni}^{u}	Impulse withstand voltage 1.2/50 μs	8.4	kV	
		Min		
d_{Cp}	Creepage distance 1)	8.8	mm	
$d_{ extsf{Cp}} \ d_{ extsf{Cl}}$	Clearance 1)	8.8	mm	
CTI	Comparative Tracking Index (group IIIa)	175		

Note: 1) On PCB with soldering pattern UTEC93-703.

Applications examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

	EN 50178	IEC 61010-1
$d_{\mathrm{Cp}},d_{\mathrm{Cl}},U_{\mathrm{Ni}}$	Rated insulation voltage	Nominal voltage
Basic insulation	600 V	600 V
Reinforced insulation	300 V	300 V

Safety

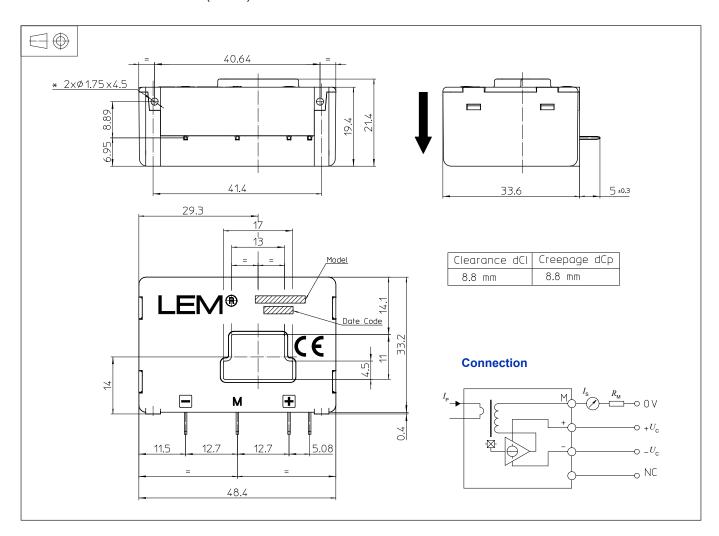
This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LA 200-P/SP4 (in mm)

Mechanical characteristics

General tolerance ±0.2 mm
 Primary through-hole 17 x 11 mm

Fastening & connection of secondary 4 pins

0.63 x 0.56 mm

Recommended PCB hole 0.9 mm

• Supplementary fastening 2 holes Ø 1.75 mm

Recommended PCB hole 2.4 mm
Recommended screws PT KA 22 x 6

(included)

Recommended fastening torque 0.5 N·m

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100 °C
- Installation of the transducer must be done unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site: https://www.lem.com/en/file/3137/download/.
- Dynamic performances (di/dt and delay time) are best with a single bar completely filling the primary hole.