

# PIC24FJ256GA705 FAMILY

## 16-Bit General Purpose Microcontrollers with 256-Kbyte Flash and 16-Kbyte RAM in Low Pin Count Packages

#### **High-Performance CPU**

- Modified Harvard Architecture
- Up to 16 MIPS Operation @ 32 MHz
- 8 MHz Fast RC Internal Oscillator:
  - 96 MHz PLL option
  - Multiple clock divide options
  - Fast start-up
- 17-Bit x 17-Bit Single-Cycle Hardware Fractional/Integer Multiplier
- · 32-Bit by 16-Bit Hardware Divider
- 16-Bit x 16-Bit Working Register Array
- · C Compiler Optimized Instruction Set Architecture
- Two Address Generation Units for Separate Read and Write Addressing of Data Memory
- Six-Channel DMA Controller

#### **Analog Features**

- Up to 14-Channel, Software Selectable, 10/12-Bit Analog-to-Digital Converter:
  - 12-bit, 200K samples/second conversion rate (single Sample-and-Hold)
  - Sleep mode operation
  - Charge pump for operating at lower AVDD
  - Band gap reference input feature
  - Windowed threshold compare feature
  - Auto-scan feature
- · Three Analog Comparators with Input Multiplexing:
  - Programmable reference voltage for comparators
- LVD Interrupt Above/Below Programmable VLVD Level
- Charge Time Measurement Unit (CTMU):
  - Allows measurement of capacitance and time
  - Operational in Sleep

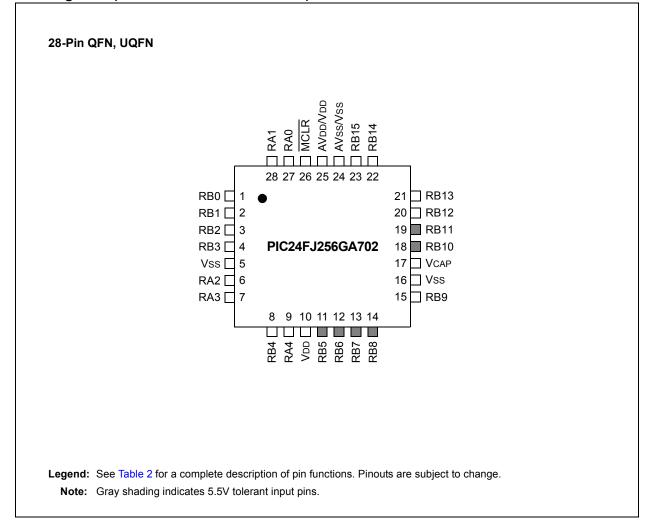
#### **Low-Power Features**

- Sleep and Idle modes Selectively Shut Down Peripherals and/or Core for Substantial Power Reduction and Fast Wake-up
- Doze mode allows CPU to Run at a Lower Clock Speed than Peripherals
- Alternate Clock modes allow On-the-Fly Switching to a Lower Clock Speed for Selective Power Reduction

#### **Special Microcontroller Features**

- Supply Voltage Range of 2.0V to 3.6V
- · Dual Voltage Regulators:
  - 1.8V core regulator
  - 1.2V regulator for Retention Sleep mode
- Operating Ambient Temperature Range of -40°C to +85°C
- ECC Flash Memory (256 Kbytes):
  - Single Error Correction (SEC)
  - Double Error Detection (DED)
  - 10,000 erase/write cycle endurance, typical
  - Data retention: 20 years minimum
  - Self-programmable under software control
- 16-Kbyte SRAM
- · Programmable Reference Clock Output
- In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>) and In-Circuit Emulation (ICE) via 2 Pins
- JTAG Boundary Scan Support
- Fail-Safe Clock Monitor Operation:
  - Detects clock failure and switches to on-chip, Low-Power RC (LPRC) Oscillator
- Power-on Reset (POR), Brown-out Reset (BOR) and Oscillator Start-up Timer (OST)
- Programmable Low-Voltage Detect (LVD)
- Flexible Watchdog Timer (WDT) with its Own RC Oscillator for Reliable Operation

#### **Peripheral Features**


- High-Current Sink/Source 18 mA/18 mA on All I/O Pins
- Independent, Low-Power 32 kHz Timer Oscillator
- Timer1: 16-Bit Timer/Counter with External Crystal Oscillator; Timer1 can Provide an A/D Trigger
- Timer2,3: 16-Bit Timer/Counter, can Create 32-Bit Timer; Timer3 can Provide an A/D Trigger
- Three Input Capture modules, Each with a 16-Bit Timer
- Three Output Compare/PWM modules, Each with a 16-Bit Timer
- Four MCCP modules, Each with a Dedicated 16/32-Bit Timer:
  - One 6-output MCCP module
  - Three 2-output MCCP modules
- Three Variable Width, Synchronous Peripheral Interface (SPI) Ports on All Devices; 3 Operation modes:
  - 3-wire SPI (supports all 4 SPI modes)
  - 8 by 16-bit or 8 by 8-bit FIFO
  - I<sup>2</sup>S mode

#### TABLE 1:PIC24FJ256GA705 FAMILY DEVICES

- Two I<sup>2</sup>C Master and Slave w/Address Masking, and IPMI Support
- Two UART modules:
  - LIN/J2602 bus support (auto-wake-up, Auto-Baud Detect (ABD), Break character support)
  - RS-232 and RS-485 support
  - IrDA<sup>®</sup> mode (hardware encoder/decoder functions)
- Five External Interrupt Pins
- Parallel Master Port/Enhanced Parallel Slave Port (PMP/EPSP), 8-Bit Data with External Programmable Control (polarity and protocol)
- Enhanced CRC module
- Reference Clock Output with Programmable
   Divider
- Two Configurable Logic Cell (CLC) Blocks:
  - Two inputs and one output, all mappable to peripherals or I/O pins
  - AND/OR/XOR logic and D/JK flip-flop functions
- Peripheral Pin Select (PPS) with Independent I/O Mapping of Many Peripherals

|                 | Men                | nory            |      |      |              | Peripherals            |             |     |                        |           |               |                  |                    |                             |                      |                          |     |      |      |
|-----------------|--------------------|-----------------|------|------|--------------|------------------------|-------------|-----|------------------------|-----------|---------------|------------------|--------------------|-----------------------------|----------------------|--------------------------|-----|------|------|
| Device          | Program<br>(bytes) | SRAM<br>(bytes) | Pins | Old9 | DMA Channels | 10/12-Bit A/D Channels | Comparators | CRC | MCCP 6-Output/2-Output | IC/OC/PWM | 16-Bit Timers | I <sup>2</sup> C | Variable Width SPI | LIN-USART/Irda <sup>®</sup> | <b>CTMU Channels</b> | EPMP (Address/Data Line) | CLC | RTCC | JTAG |
| PIC24FJ64GA705  | 64K                | 16K             | 48   | 40   | 6            | 14                     | 3           | Yes | 1/3                    | 3/3       | 3             | 2                | 3                  | 2                           | 13                   | 10/8                     | 2   | Yes  | Yes  |
| PIC24FJ128GA705 | 128K               | 16K             | 48   | 40   | 6            | 14                     | 3           | Yes | 1/3                    | 3/3       | 3             | 2                | 3                  | 2                           | 13                   | 10/8                     | 2   | Yes  | Yes  |
| PIC24FJ256GA705 | 256K               | 16K             | 48   | 40   | 6            | 14                     | 3           | Yes | 1/3                    | 3/3       | 3             | 2                | 3                  | 2                           | 13                   | 10/8                     | 2   | Yes  | Yes  |
| PIC24FJ64GA704  | 64K                | 16K             | 44   | 36   | 6            | 14                     | 3           | Yes | 1/3                    | 3/3       | 3             | 2                | 3                  | 2                           | 13                   | 10/8                     | 2   | Yes  | Yes  |
| PIC24FJ128GA704 | 128K               | 16K             | 44   | 36   | 6            | 14                     | 3           | Yes | 1/3                    | 3/3       | 3             | 2                | 3                  | 2                           | 13                   | 10/8                     | 2   | Yes  | Yes  |
| PIC24FJ256GA704 | 256K               | 16K             | 44   | 36   | 6            | 14                     | 3           | Yes | 1/3                    | 3/3       | 3             | 2                | 3                  | 2                           | 13                   | 10/8                     | 2   | Yes  | Yes  |
| PIC24FJ64GA702  | 64K                | 16K             | 28   | 22   | 6            | 10                     | 3           | Yes | 1/3                    | 3/3       | 3             | 2                | 3                  | 2                           | 12                   | No                       | 2   | Yes  | Yes  |
| PIC24FJ128GA702 | 128K               | 16K             | 28   | 22   | 6            | 10                     | 3           | Yes | 1/3                    | 3/3       | 3             | 2                | 3                  | 2                           | 12                   | No                       | 2   | Yes  | Yes  |
| PIC24FJ256GA702 | 256K               | 16K             | 28   | 22   | 6            | 10                     | 3           | Yes | 1/3                    | 3/3       | 3             | 2                | 3                  | 2                           | 12                   | No                       | 2   | Yes  | Yes  |

#### Pin Diagrams (PIC24FJ256GA702 Devices)



#### TABLE 2: COMPLETE PIN FUNCTION DESCRIPTIONS (PIC24FJ256GA702 QFN, UQFN)

| Pin | Function                                    |    | Function                                            |
|-----|---------------------------------------------|----|-----------------------------------------------------|
| 1   | PGD1/AN2/CTCMP/C2INB/ <b>RP0</b> /RB0       | 15 | TDO/C1INC/C2INC/C3INC/TMPRN/RP9/SDA1/T1CK/CTED4/RB9 |
| 2   | PGC1/AN1-/AN3/C2INA/ <b>RP1</b> /CTED12/RB1 | 16 | Vss                                                 |
| 3   | AN4/C1INB/ <b>RP2</b> /SDA2/CTED13/RB2      | 17 | VCAP                                                |
| 4   | AN5/C1INA/RP3/SCL2/CTED8/RB3                | 18 | PGD2/TDI/ <b>RP10</b> /OCM1C/CTED11/RB10            |
| 5   | Vss                                         | 19 | PGC2/TMS/REFI1/RP11/CTED9/RB11                      |
| 6   | OSCI/CLKI/C1IND/RA2                         | 20 | AN8/LVDIN/ <b>RP12</b> /RB12                        |
| 7   | OSCO/CLKO/C2IND/RA3                         | 21 | AN7/C1INC/ <b>RP13</b> /OCM1D/CTPLS/RB13            |
| 8   | SOSCI/ <b>RP4</b> /RB4                      | 22 | CVREF/AN6/C3INB/ <b>RP14</b> /CTED5/RB14            |
| 9   | SOSCO/PWRLCLK/RA4                           | 23 | AN9/C3INA/ <b>RP15</b> /CTED6/RB15                  |
| 10  | Vdd                                         | 24 | AVss/Vss                                            |
| 11  | PGD3/ <b>RP5</b> /ASDA1/OCM1E/RB5           | 25 | AVdd/Vdd                                            |
| 12  | PGC3/ <b>RP6</b> /ASCL1/OCM1F/RB6           | 26 | MCLR                                                |
| 13  | RP7/OCM1A/CTED3/INT0/RB7                    | 27 | VREF+/CVREF+/AN0/C3INC/RP26/CTED1/RA0               |
| 14  | TCK/ <b>RP8</b> /SCL1/OCM1B/CTED10/RB8      | 28 | VREF-/CVREF-/AN1/C3IND/ <b>RP27</b> /CTED2/RA1      |

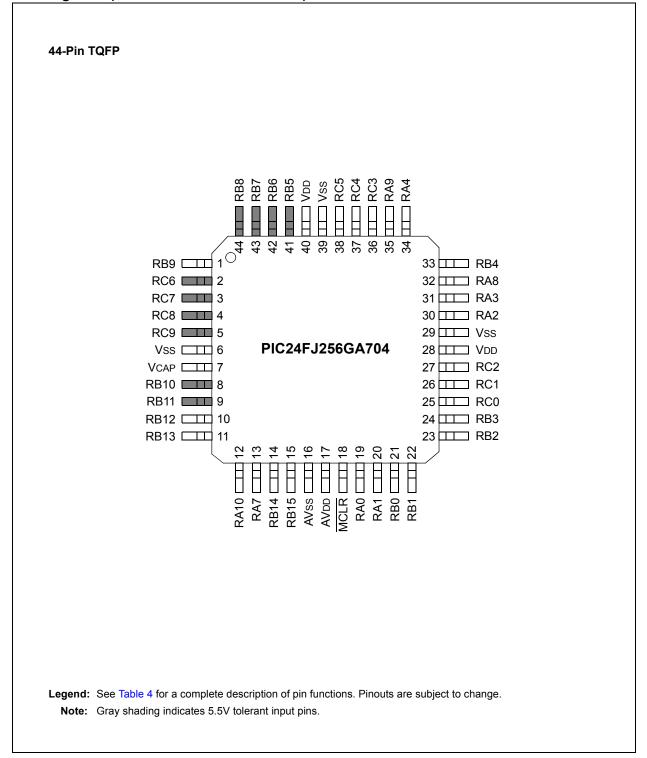
Legend: RPn represents remappable pins for Peripheral Pin Select (PPS) functions.

**Note:** Pinouts are subject to change.

#### Pin Diagrams (PIC24FJ256GA702 Devices)

28-Pin SOIC, SSOP, SPDIP

Legend: See Table 3 for a complete description of pin functions. Pinouts are subject to change.Note: Gray shading indicates 5.5V tolerant input pins.


#### TABLE 3: COMPLETE PIN FUNCTION DESCRIPTIONS (PIC24FJ256GA702 SOIC, SSOP, SPDIP)

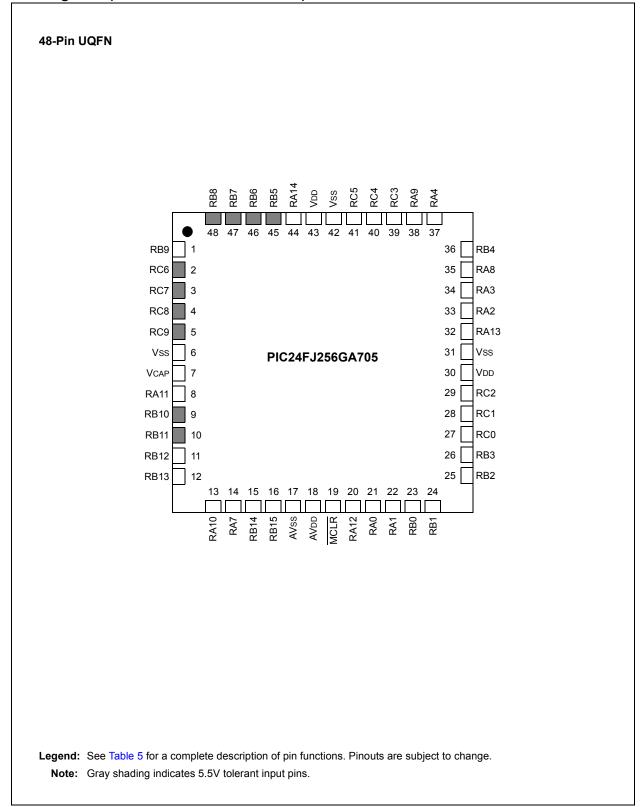
| Pin | Function                                       | Pin | Function                                            |
|-----|------------------------------------------------|-----|-----------------------------------------------------|
| 1   | MCLR                                           | 15  | PGC3/ <b>RP6</b> /ASCL1/OCM1F/RB6                   |
| 2   | VREF+/CVREF+/AN0/C3INC/RP26/CTED1/RA0          | 16  | RP7/OCM1A/CTED3/INT0/RB7                            |
| 3   | VREF-/CVREF-/AN1/C3IND/ <b>RP27</b> /CTED2/RA1 | 17  | TCK/RP8/SCL1/OCM1B/CTED10/RB8                       |
| 4   | PGD1/AN2/CTCMP/C2INB/ <b>RP0</b> /RB0          | 18  | TDO/C1INC/C2INC/C3INC/TMPRN/RP9/SDA1/T1CK/CTED4/RB9 |
| 5   | PGC1/AN1-/AN3/C2INA/ <b>RP1</b> /CTED12/RB1    | 19  | Vss                                                 |
| 6   | AN4/C1INB/ <b>RP2</b> /SDA2/CTED13/RB2         | 20  | VCAP                                                |
| 7   | AN5/C1INA/RP3/SCL2/CTED8/RB3                   | 21  | PGD2/TDI/ <b>RP10</b> /OCM1C/CTED11/RB10            |
| 8   | Vss                                            | 22  | PGC2/TMS/REFI1/RP11/CTED9/RB11                      |
| 9   | OSCI/CLKI/C1IND/RA2                            | 23  | AN8/LVDIN/ <b>RP12</b> /RB12                        |
| 10  | OSCO/CLKO/C2IND/RA3                            | 24  | AN7/C1INC/RP13/OCM1D/CTPLS/RB13                     |
| 11  | SOSCI/ <b>RP4</b> /RB4                         | 25  | CVREF/AN6/C3INB/RP14/CTED5/RB14                     |
| 12  | SOSCO/PWRLCLK/RA4                              | 26  | AN9/C3INA/ <b>RP15</b> /CTED6/RB15                  |
| 13  | VDD                                            | 27  | AVss/Vss                                            |
| 14  | PGD3/ <b>RP5</b> /ASDA1/OCM1E/RB5              | 28  | AVdd/Vdd                                            |

Legend: RPn represents remappable pins for Peripheral Pin Select (PPS) functions.

Note: Pinouts are subject to change.

#### Pin Diagrams (PIC24FJ256GA704 Devices)




| Pin | Function                                             | Pin | Function                               |
|-----|------------------------------------------------------|-----|----------------------------------------|
| 1   | C1INC/C2INC/C3INC/TMPRN/RP9/SDA1/T1CK/CTED4/PMD3/RB9 | 23  | AN4/C1INB/ <b>RP2</b> /SDA2/CTED13/RB2 |
| 2   | RP22/PMA1/PMALH/RC6                                  | 24  | AN5/C1INA/RP3/SCL2/CTED8/RB3           |
| 3   | RP23/PMA0/PMALL/RC7                                  | 25  | AN10/ <b>RP16</b> /PMBE1/RC0           |
| 4   | RP24/PMA5/RC8                                        | 26  | AN11/RP17/PMA15/PMCS2/RC1              |
| 5   | RP25/CTED7/PMA6/RC9                                  | 27  | AN12/RP18/PMACK1/RC2                   |
| 6   | Vss                                                  | 28  | Vdd                                    |
| 7   | VCAP                                                 | 29  | Vss                                    |
| 8   | PGD2/RP10/OCM1C/CTED11/PMD2/RB10                     | 30  | OSCI/CLKI/C1IND/RA2                    |
| 9   | PGC2/REFI1/RP11/CTED9/PMD1/RB11                      | 31  | OSCO/CLKO/C2IND/RA3                    |
| 10  | AN8/LVDIN/ <b>RP12</b> /PMD0/RB12                    | 32  | TDO/PMA8/RA8                           |
| 11  | AN7/C1INC/ <b>RP13</b> /OCM1D/CTPLS/PMRD/PMWR/RB13   | 33  | SOSCI/ <b>RP4</b> /RB4                 |
| 12  | TMS/ <b>RP28</b> /PMA2/PMALU/RA10                    | 34  | SOSCO/PWRLCLK/RA4                      |
| 13  | TCK/PMA7/RA7                                         | 35  | TDI/PMA9/RA9                           |
| 14  | CVREF/AN6/C3INB/ <b>RP14</b> /CTED5/PMWR/PMENB/RB14  | 36  | AN13/ <b>RP19</b> /PMBE0/RC3           |
| 15  | AN9/C3INA/ <b>RP15</b> /CTED6/PMA14/PMCS/PMCS1/RB15  | 37  | RP20/PMA4/RC4                          |
| 16  | AVss                                                 | 38  | RP21/PMA3/RC5                          |
| 17  | AVDD                                                 | 39  | Vss                                    |
| 18  | MCLR                                                 | 40  | Vdd                                    |
| 19  | VREF+/CVREF+/AN0/C3INC/ <b>RP26</b> /CTED1/RA0       | 41  | PGD3/ <b>RP5</b> /ASDA1/OCM1E/PMD7/RB5 |
| 20  | VREF-/CVREF-/AN1/C3IND/ <b>RP27</b> /CTED2/RA1       | 42  | PGC3/ <b>RP6</b> /ASCL1/OCM1F/PMD6/RB6 |
| 21  | PGD1/AN2/CTCMP/C2INB/ <b>RP0</b> /RB0                | 43  | RP7/OCM1A/CTED3/PMD5/INT0/RB7          |
| 22  | PGC1/AN1-/AN3/C2INA/ <b>RP1</b> /CTED12/RB1          | 44  | RP8/SCL1/OCM1B/CTED10/PMD4/RB8         |

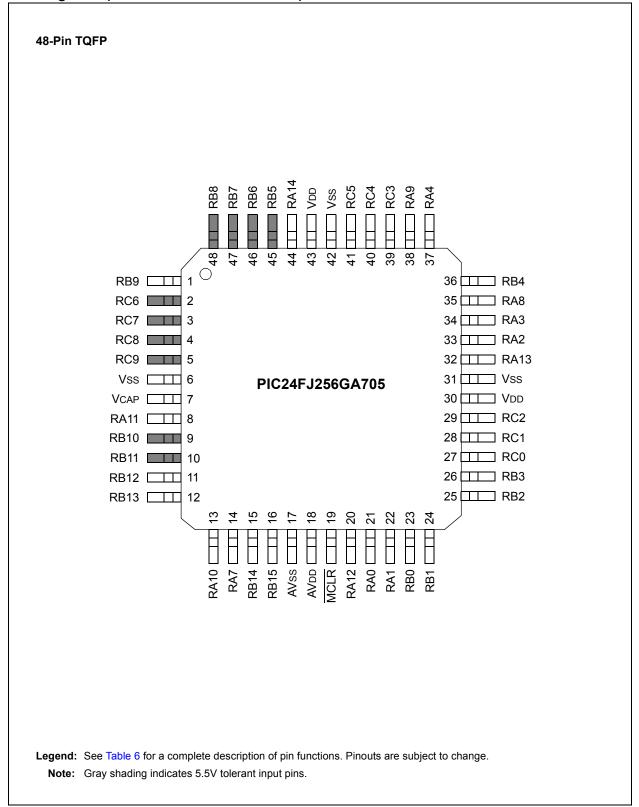
### TABLE 4: COMPLETE PIN FUNCTION DESCRIPTIONS (PIC24FJ256GA704 TQFP)

Legend: RPn represents remappable pins for Peripheral Pin Select (PPS) functions.

**Note:** Pinouts are subject to change.

#### Pin Diagrams (PIC24FJ256GA705 Devices)




| Pin | Function                                             | Pin | Function                               |  |  |
|-----|------------------------------------------------------|-----|----------------------------------------|--|--|
| 1   | C1INC/C2INC/C3INC/TMPRN/RP9/SDA1/T1CK/CTED4/PMD3/RB9 | 25  | AN4/C1INB/RP2/SDA2/CTED13/RB2          |  |  |
| 2   | RP22/PMA1/PMALH/RC6                                  | 26  | AN5/C1INA/RP3/SCL2/CTED8/RB3           |  |  |
| 3   | RP23/PMA0/PMALL/RC7                                  | 27  | AN10/ <b>RP16</b> /PMBE1/RC0           |  |  |
| 4   | RP24/PMA5/RC8                                        | 28  | AN11/RP17/PMA15/PMCS2/RC1              |  |  |
| 5   | RP25/CTED7/PMA6/RC9                                  | 29  | AN12/RP18/PMACK1/RC2                   |  |  |
| 6   | Vss                                                  | 30  | Vdd                                    |  |  |
| 7   | VCAP                                                 | 31  | Vss                                    |  |  |
| 8   | <b>RPI29</b> /RA11                                   | 32  | RPI31/RA13                             |  |  |
| 9   | PGD2/ <b>RP10</b> /OCM1C/CTED11/PMD2/RB10            | 33  | OSCI/CLKI/C1IND/RA2                    |  |  |
| 10  | PGC2/REFI1/ <b>RP11</b> /CTED9/PMD1/RB11             | 34  | OSCO/CLKO/C2IND/RA3                    |  |  |
| 11  | AN8/LVDIN/ <b>RP12</b> /PMD0/RB12                    | 35  | TDO/PMA8/RA8                           |  |  |
| 12  | AN7/C1INC/ <b>RP13</b> /OCM1D/CTPLS/PMRD/PMWR/RB13   | 36  | SOSCI/ <b>RP4</b> /RB4                 |  |  |
| 13  | TMS/ <b>RP28</b> /PMA2/PMALU/RA10                    | 37  | SOSCO/PWRLCLK/RA4                      |  |  |
| 14  | TCK/PMA7/RA7                                         | 38  | TDI/PMA9/RA9                           |  |  |
| 15  | CVREF/AN6/C3INB/RP14/CTED5/PMWR/PMENB/RB14           | 39  | AN13/ <b>RP19</b> /PMBE0/RC3           |  |  |
| 16  | AN9/C3INA/ <b>RP15</b> /CTED6/PMA14/PMCS/PMCS1/RB15  | 40  | RP20/PMA4/RC4                          |  |  |
| 17  | AVss                                                 | 41  | RP21/PMA3/RC5                          |  |  |
| 18  | AVDD                                                 | 42  | Vss                                    |  |  |
| 19  | MCLR                                                 | 43  | VDD                                    |  |  |
| 20  | RPI30/RA12                                           | 44  | RPI32/RA14                             |  |  |
| 21  | VREF+/CVREF+/AN0/C3INC/RP26/CTED1/RA0                | 45  | PGD3/ <b>RP5</b> /ASDA1/OCM1E/PMD7/RB5 |  |  |
| 22  | Vref-/CVref-/AN1/C3IND/ <b>RP27</b> /CTED2/RA1       | 46  | PGC3/ <b>RP6</b> /ASCL1/OCM1F/PMD6/RB6 |  |  |
| 23  | PGD1/AN2/CTCMP/C2INB/ <b>RP0</b> /RB0                | 47  | RP7/OCM1A/CTED3/PMD5/INT0/RB7          |  |  |
| 24  | PGC1/AN1-/AN3/C2INA/ <b>RP1</b> /CTED12/RB1          | 48  | RP8/SCL1/OCM1B/CTED10/PMD4/RB8         |  |  |

### TABLE 5: COMPLETE PIN FUNCTION DESCRIPTIONS (PIC24FJ256GA705 UQFN)

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.

**Note:** Pinouts are subject to change.

#### Pin Diagrams (PIC24FJ256GA705 Devices)



| Pin | Function                                                      | Pin | Function                               |
|-----|---------------------------------------------------------------|-----|----------------------------------------|
|     |                                                               |     |                                        |
| 1   | C1INC/C2INC/C3INC/TMPRN/ <b>RP9</b> /SDA1/T1CK/CTED4/PMD3/RB9 | 25  | AN4/C1INB/ <b>RP2</b> /SDA2/CTED13/RB2 |
| 2   | RP22/PMA1/PMALH/RC6                                           | 26  | AN5/C1INA/RP3/SCL2/CTED8/RB3           |
| 3   | RP23/PMA0/PMALL/RC7                                           | 27  | AN10/RP16/PMBE1/RC0                    |
| 4   | RP24/PMA5/RC8                                                 | 28  | AN11/RP17/PMA15/PMCS2/RC1              |
| 5   | RP25/CTED7/PMA6/RC9                                           | 29  | AN12/RP18/PMACK1/RC2                   |
| 6   | Vss                                                           | 30  | Vdd                                    |
| 7   | VCAP                                                          | 31  | Vss                                    |
| 8   | RPI29/RA11                                                    | 32  | RPI31/RA13                             |
| 9   | PGD2/RP10/OCM1C/CTED11/PMD2/RB10                              | 33  | OSCI/CLKI/C1IND/RA2                    |
| 10  | PGC2/REFI1/RP11/CTED9/PMD1/RB11                               | 34  | OSCO/CLKO/C2IND/RA3                    |
| 11  | AN8/LVDIN/ <b>RP12</b> /PMD0//RB12                            | 35  | TDO/PMA8/RA8                           |
| 12  | AN7/C1INC/RP13/OCM1D/CTPLS/PMRD/PMWR/RB13                     | 36  | SOSCI/ <b>RP4</b> /RB4                 |
| 13  | TMS/ <b>RP28</b> /PMA2/PMALU/RA10                             | 37  | SOSCO/PWRLCLK/RA4                      |
| 14  | TCK/PMA7/RA7                                                  | 38  | TDI/PMA9/RA9                           |
| 15  | CVREF/AN6/C3INB/RP14/CTED5/PMWR/PMENB/RB14                    | 39  | AN13/ <b>RP19</b> /PMBE0/RC3           |
| 16  | AN9/C3INA/RP15/CTED6/PMA14/PMCS/PMCS1/RB15                    | 40  | RP20/PMA4/RC4                          |
| 17  | AVss                                                          | 41  | RP21/PMA3/RC5                          |
| 18  | AVDD                                                          | 42  | Vss                                    |
| 19  | MCLR                                                          | 43  | VDD                                    |
| 20  | RPI30/RA12                                                    | 44  | RPI32/RA14                             |
| 21  | VREF+/CVREF+/AN0/C3INC/RP26/CTED1/RA0                         | 45  | PGD3/ <b>RP5</b> /ASDA1/OCM1E/PMD7/RB5 |
| 22  | Vref-/CVref-/AN1/C3IND/ <b>RP27</b> /CTED2/RA1                | 46  | PGC3/RP6/ASCL1/OCM1F/PMD6/RB6          |
| 23  | PGD1/AN2/CTCMP/C2INB/ <b>RP0</b> /RB0                         | 47  | RP7/OCM1A/CTED3/PMD5/INT0/RB7          |
| 24  | PGC1/AN1-/AN3/C2INA/ <b>RP1</b> /CTED12/RB1                   | 48  | RP8/SCL1/OCM1B/CTED10/PMD4/RB8         |

## TABLE 6: COMPLETE PIN FUNCTION DESCRIPTIONS (PIC24FJ256GA705 TQFP)

Legend: RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.

**Note:** Pinouts are subject to change.

#### **Table of Contents**

| 1.0   | Device Overview                                             |     |
|-------|-------------------------------------------------------------|-----|
| 2.0   | Guidelines for Getting Started with 16-Bit Microcontrollers |     |
| 3.0   | CPU                                                         |     |
| 4.0   | Memory Organization                                         |     |
| 5.0   | Direct Memory Access Controller (DMA)                       |     |
| 6.0   | Flash Program Memory                                        |     |
| 7.0   | Resets                                                      |     |
| 8.0   | Interrupt Controller                                        |     |
| 9.0   | Oscillator Configuration                                    |     |
| 10.0  | Power-Saving Features                                       | 113 |
| 11.0  | I/O Ports                                                   |     |
| 12.0  | Timer1                                                      | 159 |
| 13.0  | Timer2/3                                                    |     |
| 14.0  | Input Capture with Dedicated Timers                         |     |
| 15.0  |                                                             | 173 |
| 16.0  | Capture/Compare/PWM/Timer Modules (MCCP)                    | 183 |
| 17.0  | ••••••••••••••••••••••••••••••••••••••                      |     |
| 18.0  | ······································                      |     |
| 19.0  | Universal Asynchronous Receiver Transmitter (UART)          |     |
| 20.0  | Enhanced Parallel Master Port (EPMP)                        |     |
| 21.0  | Real-Time Clock and Calendar (RTCC) with Timestamp          |     |
| 22.0  | 32-Bit Programmable Cyclic Redundancy Check (CRC) Generator |     |
| 23.0  | Configurable Logic Cell (CLC) Generator                     |     |
| 24.0  | 12-Bit A/D Converter with Threshold Detect                  |     |
|       | Triple Comparator Module                                    |     |
| 26.0  | Comparator Voltage Reference                                | 315 |
| 27.0  | Charge Time Measurement Unit (CTMU)                         |     |
| 28.0  | 5                                                           |     |
| 29.0  | Special Features                                            | 329 |
| 30.0  | Development Support                                         |     |
| 31.0  |                                                             |     |
| 32.0  |                                                             |     |
|       | Packaging Information                                       |     |
|       | endix A: Revision History                                   |     |
| Index | Χ                                                           | 401 |
|       | Microchip Web Site                                          |     |
|       | omer Change Notification Service                            |     |
|       | omer Support                                                |     |
| Prod  | luct Identification System                                  |     |

### TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

#### Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

#### http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS3000000A is version A of document DS30000000).

#### Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; <a href="http://www.microchip.com">http://www.microchip.com</a>
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

#### **Customer Notification System**

Register on our web site at www.microchip.com to receive the most current information on all of our products.

#### **Referenced Sources**

This device data sheet is based on the following individual chapters of the *"dsPIC33/PIC24 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note 1: To access the documents listed below, browse to the documentation section of the PIC24FJ256GA705 product page of the Microchip web site (www.microchip.com) or select a family reference manual section from the following list.

> In addition to parameters, features and other documentation, the resulting page provides links to the related family reference manual sections.

- "CPU with Extended Data Space (EDS)" (DS39732)
- "Direct Memory Access Controller (DMA)" (DS39742)
- "PIC24F Flash Program Memory" (DS30009715)
- "Data Memory with Extended Data Space (EDS)" (DS39733)
- "Reset" (DS39712)
- "Interrupts" (DS70000600)
- "Oscillator" (DS39700)
- "Power-Saving Features with Deep Sleep" (DS39727)
- "I/O Ports with Peripheral Pin Select (PPS)" (DS39711)
- "Timers" (DS39704)
- "Input Capture with Dedicated Timer" (DS70000352)
- "Output Compare with Dedicated Timer" (DS70005159)
- "Capture/Compare/PWM/Timer (MCCP and SCCP)" (DS33035)
- "Serial Peripheral Interface (SPI) with Audio Codec Support" (DS70005136)
- "Inter-Integrated Circuit (I<sup>2</sup>C)" (DS70000195)
- "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582)
- "Enhanced Parallel Master Port (EPMP)" (DS39730)
- "RTCC with Timestamp" (DS70005193)
- "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS30009729)
- "Configurable Logic Cell (CLC)" (DS70005298)
- "12-Bit A/D Converter with Threshold Detect" (DS39739)
- "Scalable Comparator Module" (DS39734)
- "Dual Comparator Module" (DS39710)
- "Charge Time Measurement Unit (CTMU) and CTMU Operation with Threshold Detect" (DS30009743)
- "High-Level Integration with Programmable High/Low-Voltage Detect (HLVD)" (DS39725)
- "Watchdog Timer (WDT)" (DS39697)
- "CodeGuard™ Intermediate Security" (DS70005182)
- "High-Level Device Integration" (DS39719)
- "Programming and Diagnostics" (DS39716)
- "Comparator Voltage Reference Module" (DS39709)

NOTES:

## 1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

- PIC24FJ64GA705 PIC24FJ256GA704
- PIC24FJ128GA705 PIC24FJ64GA702
- PIC24FJ256GA705
  - PIC24FJ256GA702

PIC24FJ128GA702

PIC24FJ64GA704PIC24FJ128GA704

The PIC24FJ256GA705 family introduces large Flash and SRAM memory in smaller package sizes. This is a 16-bit microcontroller family with a broad peripheral feature set and enhanced computational performance. This family also offers a new migration option for those high-performance applications which may be outgrowing their 8-bit platforms, but do not require the numerical processing power of a Digital Signal Processor (DSP).

 Table 1-3 lists the functions of the various pins shown in the pinout diagrams.

#### 1.1 Core Features

#### 1.1.1 16-BIT ARCHITECTURE

Central to all PIC24F devices is the 16-bit modified Harvard architecture, first introduced with Microchip's dsPIC<sup>®</sup> Digital Signal Controllers (DSCs). The PIC24F CPU core offers a wide range of enhancements, such as:

- 16-bit data and 24-bit address paths with the ability to move information between data and memory spaces
- Linear addressing of up to 12 Mbytes (program space) and 32 Kbytes (data)
- A 16-element Working register array with built-in software stack support
- A 17 x 17 hardware multiplier with support for integer math
- Hardware support for 32 by 16-bit division
- An instruction set that supports multiple addressing modes and is optimized for high-level languages, such as 'C'
- Operational performance up to 16 MIPS

#### 1.1.2 POWER-SAVING TECHNOLOGY

The PIC24FJ256GA705 family of devices includes Retention Sleep, a low-power mode with essential circuits being powered from a separate low-voltage regulator.

This new low-power mode also supports the continuous operation of the low-power, on-chip Real-Time Clock/ Calendar (RTCC), making it possible for an application to keep time while the device is otherwise asleep.

Aside from this new feature, PIC24FJ256GA705 family devices also include all of the legacy power-saving features of previous PIC24F microcontrollers, such as:

- On-the-Fly Clock Switching, allowing the selection of a lower power clock during run time
- Doze Mode Operation, for maintaining peripheral clock speed while slowing the CPU clock
- Instruction-Based Power-Saving Modes, for quick invocation of the Idle and Sleep modes

## 1.1.3 OSCILLATOR OPTIONS AND FEATURES

All of the devices in the PIC24FJ256GA705 family offer six different oscillator options, allowing users a range of choices in developing application hardware. These include:

- · Two Crystal modes
- · External Clock (EC) mode
- A Phase-Locked Loop (PLL) frequency multiplier, which allows processor speeds up to 32 MHz
- An internal Fast RC Oscillator (FRC), a nominal 8 MHz output with multiple frequency divider options
- A separate internal Low-Power RC Oscillator (LPRC), 31 kHz nominal for low-power, timing-insensitive applications.

The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor (FSCM). This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

#### 1.1.4 EASY MIGRATION

Regardless of the memory size, all devices share the same rich set of peripherals, allowing for a smooth migration path as applications grow and evolve. The consistent pinout scheme used throughout the entire family also aids in migrating from one device to the next larger device.

The PIC24F family is pin-compatible with devices in the dsPIC33 family, and shares some compatibility with the pinout schema for PIC18 and dsPIC30. This extends the ability of applications to grow from the relatively simple, to the powerful and complex, yet still selecting a Microchip device.

#### 1.2 DMA Controller

PIC24FJ256GA705 family devices have a Direct Memory Access (DMA) Controller. This module acts in concert with the CPU, allowing data to move between data memory and peripherals without the intervention of the CPU, increasing data throughput and decreasing execution time overhead. Six independently programmable channels make it possible to service multiple peripherals at virtually the same time, with each channel peripheral performing a different operation. Many types of data transfer operations are supported.

#### 1.3 Other Special Features

- Peripheral Pin Select: The Peripheral Pin Select (PPS) feature allows most digital peripherals to be mapped over a fixed set of digital I/O pins. Users may independently map the input and/or output of any one of the many digital peripherals to any one of the I/O pins.
- **Configurable Logic Cell:** The Configurable Logic Cell (CLC) module allows the user to specify combinations of signals as inputs to a logic function and to use the logic output to control other peripherals or I/O pins.
- **Timing Modules:** The PIC24FJ256GA705 family provides three independent, general purpose, 16-bit timers (two of which can be combined into a 32-bit timer). The devices also include 4 multiple output advanced Capture/Compare/PWM/Timer peripherals, and 3 independent legacy Input Capture and 3 independent legacy Output Compare modules.
- **Communications:** The PIC24FJ256GA705 family incorporates a range of serial communication peripherals to handle a range of application requirements. There are 2 independent I<sup>2</sup>C modules that support both Master and Slave modes of operation. Devices also have, through the PPS feature, 2 independent UARTs with built-in IrDA<sup>®</sup> encoders/decoders and 3 SPI modules.
- Analog Features: All members of the PIC24FJ256GA705 family include a 12-bit A/D Converter (A/D) module and a triple comparator module. The A/D module incorporates a range of new features that allow the converter to assess and make decisions on incoming data, reducing CPU overhead for routine A/D conversions. The comparator module includes three analog comparators that are configurable for a wide range of operations.
- CTMU Interface: In addition to their other analog features, members of the PIC24FJ256GA705 family include the CTMU interface module. This provides a convenient method for precision time measurement and pulse generation, and can serve as an interface for capacitive sensors.

- Enhanced Parallel Master/Parallel Slave Port: This module allows rapid and transparent access to the microcontroller data bus, and enables the CPU to directly address external data memory. The parallel port can function in Master or Slave mode, accommodating data widths of 4 or 8 bits and address widths of up to 10 bits in Master modes.
- Real-Time Clock and Calendar (RTCC): This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up timer resources and program memory space for use of the core application.

#### 1.4 Details on Individual Family Members

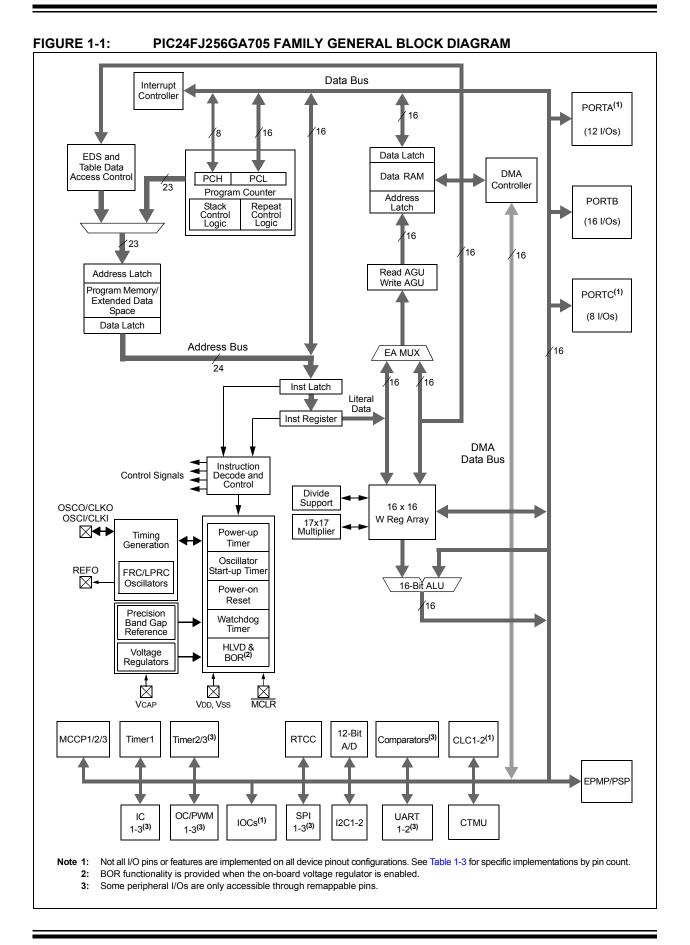
Devices in the PIC24FJ256GA705 family are available in 28-pin, 44-pin and 48-pin packages. The general block diagram for all devices is shown in Figure 1-1.

The devices are differentiated from each other in five ways:

- Flash program memory (64 Kbytes for PIC24FJ64GA70X devices, 128 Kbytes for PIC24FJ128GA70X devices, 256 Kbytes for PIC24FJ256GA70X devices).
- 2. Available I/O pins and ports (22 pins on 2 ports for 28-pin devices, and 36 and 40 pins on 3 ports for 44-pin/48-pin devices).
- 3. Enhanced Parallel Master Port (EPMP) is only available on 44-pin/48-pin devices.
- 4. Analog input channels (10 channels for 28-pin devices and 14 channels for 44-pin/48-pin devices).
- CTMU input channels (12 channels for 28-pin devices and 13 channels for 44-pin/48-pin devices)

All other features for devices in this family are identical. These are summarized in Table 1-1 and Table 1-2.

A list of the pin features available on the PIC24FJ256GA705 family devices, sorted by function, is shown in Table 1-3. Note that this table shows the pin location of individual peripheral features and not how they are multiplexed on the same pin. This information is provided in the pinout diagrams in the beginning of this data sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.


| Features                                                               | PIC24FJ64GA702                                                                                                                                                        | PIC24FJ256GA702            |        |  |  |  |  |  |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------|--|--|--|--|--|
| Operating Frequency                                                    | DC – 32 MHz                                                                                                                                                           |                            |        |  |  |  |  |  |
| Program Memory (bytes)                                                 | 64K                                                                                                                                                                   | 128K                       | 256K   |  |  |  |  |  |
| Program Memory<br>(instruction words, 24 bits)                         | 22,528                                                                                                                                                                | 45,056                     | 88,064 |  |  |  |  |  |
| Data Memory (bytes)                                                    |                                                                                                                                                                       | 16K                        | •      |  |  |  |  |  |
| Interrupt Sources<br>(soft vectors/NMI traps)                          |                                                                                                                                                                       | 124                        |        |  |  |  |  |  |
| I/O Ports                                                              |                                                                                                                                                                       | Ports A, B                 |        |  |  |  |  |  |
| Total I/O Pins                                                         |                                                                                                                                                                       | 22                         |        |  |  |  |  |  |
| Remappable Pins                                                        |                                                                                                                                                                       | 18 (18 I/Os, 0 input only) |        |  |  |  |  |  |
| DMA                                                                    |                                                                                                                                                                       | 1 6-channel                |        |  |  |  |  |  |
| 16-Bit Timers                                                          |                                                                                                                                                                       | 3 <sup>(1)</sup>           |        |  |  |  |  |  |
| Real-Time Clock and Calendar<br>(RTCC)                                 |                                                                                                                                                                       | Yes                        |        |  |  |  |  |  |
| Cyclic Redundancy Check (CRC)                                          |                                                                                                                                                                       | Yes                        |        |  |  |  |  |  |
| Input Capture Channels                                                 | 3(1)                                                                                                                                                                  |                            |        |  |  |  |  |  |
| Output Compare/PWM Channels                                            | 3(1)                                                                                                                                                                  |                            |        |  |  |  |  |  |
| Input Change Notification Interrupt                                    | 21 (remappable pins)                                                                                                                                                  |                            |        |  |  |  |  |  |
| Serial Communications:                                                 |                                                                                                                                                                       |                            |        |  |  |  |  |  |
| UART                                                                   | 2 <sup>(1)</sup>                                                                                                                                                      |                            |        |  |  |  |  |  |
| SPI (3-wire/4-wire)                                                    |                                                                                                                                                                       | 3(1)                       |        |  |  |  |  |  |
| I <sup>2</sup> C                                                       |                                                                                                                                                                       | 2                          |        |  |  |  |  |  |
| Configurable Logic Cell (CLC)                                          | 2 <sup>(1)</sup>                                                                                                                                                      |                            |        |  |  |  |  |  |
| Parallel Communications<br>(EPMP/PSP)                                  |                                                                                                                                                                       | No                         |        |  |  |  |  |  |
| Capture/Compare/PWM/Timer                                              | 4 Multiple CCPs                                                                                                                                                       |                            |        |  |  |  |  |  |
| Modules                                                                | 1 (6-output), 3 (2-output)                                                                                                                                            |                            |        |  |  |  |  |  |
| JTAG Boundary Scan                                                     | Yes                                                                                                                                                                   |                            |        |  |  |  |  |  |
| 10/12-Bit Analog-to-Digital Converter<br>(A/D) Module (input channels) | 10                                                                                                                                                                    |                            |        |  |  |  |  |  |
| Analog Comparators                                                     | 3                                                                                                                                                                     |                            |        |  |  |  |  |  |
| CTMU Interface                                                         | Yes                                                                                                                                                                   |                            |        |  |  |  |  |  |
| Universal Serial Bus Controller                                        | No                                                                                                                                                                    |                            |        |  |  |  |  |  |
| Resets (and Delays)                                                    | <u>Core</u> POR, VDD POR, BOR, RESET Instruction,<br>MCLR, WDT, Illegal Opcode, REPEAT Instruction,<br>Hardware Traps, Configuration Word Mismatch<br>(OST, PLL Lock) |                            |        |  |  |  |  |  |
| Instruction Set                                                        | 76 Base Instructions, Multiple Addressing Mode Variations                                                                                                             |                            |        |  |  |  |  |  |
| Packages                                                               | 28-Pin QFN, UQFN, SOIC, SSOP and SPDIP                                                                                                                                |                            |        |  |  |  |  |  |

#### TABLE 1-1: DEVICE FEATURES FOR THE PIC24FJXXXGA702: 28-PIN DEVICES

**Note 1:** Some peripherals are accessible through remappable pins.

| Features                                                               | PIC24FJ64GA70X                                                                                                                                                 | PIC24FJ128GA70X               | PIC24FJ256GA70X |  |  |  |  |  |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------|--|--|--|--|--|
| Operating Frequency                                                    | DC – 32 MHz                                                                                                                                                    |                               |                 |  |  |  |  |  |
| Program Memory (bytes)                                                 | 64K                                                                                                                                                            | 128K                          | 256K            |  |  |  |  |  |
| Program Memory<br>(instruction words, 24 bits)                         | 22,528                                                                                                                                                         | 45,056                        | 88,064          |  |  |  |  |  |
| Data Memory (bytes)                                                    |                                                                                                                                                                | 16K                           |                 |  |  |  |  |  |
| Interrupt Sources<br>(soft vectors/NMI traps)                          |                                                                                                                                                                | 124                           |                 |  |  |  |  |  |
| I/O Ports                                                              |                                                                                                                                                                | Ports A, B, C                 |                 |  |  |  |  |  |
| Total I/O Pins:                                                        |                                                                                                                                                                |                               |                 |  |  |  |  |  |
| 44-pin                                                                 | 35                                                                                                                                                             | 35                            | 35              |  |  |  |  |  |
| 48-pin                                                                 | 39                                                                                                                                                             | 39                            | 39              |  |  |  |  |  |
| Remappable Pins:                                                       |                                                                                                                                                                |                               |                 |  |  |  |  |  |
| 44-pin                                                                 |                                                                                                                                                                | 29 (29 I/Os, 0 input only)    |                 |  |  |  |  |  |
| 48-pin                                                                 |                                                                                                                                                                | 33 (29 I/Os, 4 input only)    |                 |  |  |  |  |  |
| DMA (6-channel)                                                        |                                                                                                                                                                | 1                             |                 |  |  |  |  |  |
| 16-Bit Timers                                                          |                                                                                                                                                                | 3 <sup>(1)</sup>              |                 |  |  |  |  |  |
| Real-Time Clock and Calendar<br>(RTCC)                                 | Yes                                                                                                                                                            |                               |                 |  |  |  |  |  |
| Cyclic Redundancy Check (CRC)                                          | Yes                                                                                                                                                            |                               |                 |  |  |  |  |  |
| Input Capture Channels                                                 | 3 <sup>(1)</sup>                                                                                                                                               |                               |                 |  |  |  |  |  |
| Output Compare/PWM Channels                                            | 3 <sup>(1)</sup>                                                                                                                                               |                               |                 |  |  |  |  |  |
| Input Change Notification Interrupt                                    | 25 (remappable pins)                                                                                                                                           |                               |                 |  |  |  |  |  |
| Serial Communications:                                                 |                                                                                                                                                                |                               |                 |  |  |  |  |  |
| UART                                                                   |                                                                                                                                                                | 2 <sup>(1)</sup>              |                 |  |  |  |  |  |
| SPI (3-wire/4-wire)                                                    |                                                                                                                                                                | 3 <sup>(1)</sup>              |                 |  |  |  |  |  |
| l <sup>2</sup> C                                                       | 2                                                                                                                                                              |                               |                 |  |  |  |  |  |
| Configurable Logic Cell (CLC)                                          | 2 <sup>(1)</sup>                                                                                                                                               |                               |                 |  |  |  |  |  |
| Parallel Communications<br>(EPMP/PSP)                                  | Yes                                                                                                                                                            |                               |                 |  |  |  |  |  |
| Capture/Compare/PWM/Timer<br>Modules (MCCP)                            | 4 Modules<br>1 (6-output), 3 (2-output)                                                                                                                        |                               |                 |  |  |  |  |  |
| JTAG Boundary Scan                                                     | Yes                                                                                                                                                            |                               |                 |  |  |  |  |  |
| 10/12-Bit Analog-to-Digital Converter<br>(A/D) Module (input channels) | 14                                                                                                                                                             |                               |                 |  |  |  |  |  |
| Analog Comparators                                                     |                                                                                                                                                                | 3                             |                 |  |  |  |  |  |
| CTMU Interface                                                         | Yes                                                                                                                                                            |                               |                 |  |  |  |  |  |
| Universal Serial Bus Controller                                        | No                                                                                                                                                             |                               |                 |  |  |  |  |  |
| Resets (and delays)                                                    | Core POR, VDD POR, BOR, RESET Instruction,<br>MCLR, WDT, Illegal Opcode, REPEAT Instruction,<br>Hardware Traps, Configuration Word Mismatch<br>(OST, PLL Lock) |                               |                 |  |  |  |  |  |
| Instruction Set                                                        | 76 Base Instru                                                                                                                                                 | ctions, Multiple Addressing N | Mode Variations |  |  |  |  |  |
| Packages                                                               | 44-P                                                                                                                                                           | in TQFP, 48-Pin TQFP and L    | JQFN            |  |  |  |  |  |

**Note 1:** Some peripherals are accessible through remappable pins.



| Dia             | 1                           | Pin Number/G        | rid Locato     |                     |     | Input  |                                      |
|-----------------|-----------------------------|---------------------|----------------|---------------------|-----|--------|--------------------------------------|
| Pin<br>Function | 28-Pin SOIC,<br>SSOP, SPDIP | 28-Pin QFN,<br>UQFN | 44-Pin<br>TQFP | 48-Pin<br>UQFN/TQFP | I/O | Buffer | Description                          |
| AN0             | 2                           | 27                  | 19             | 21                  | I   | ANA    | A/D Analog Inputs                    |
| AN1             | 3                           | 28                  | 20             | 22                  | I   | ANA    |                                      |
| AN2             | 4                           | 1                   | 21             | 23                  | I   | ANA    |                                      |
| AN3             | 5                           | 2                   | 22             | 24                  | I   | ANA    |                                      |
| AN4             | 6                           | 3                   | 23             | 25                  | I   | ANA    |                                      |
| AN5             | 7                           | 4                   | 24             | 26                  | I   | ANA    | ]                                    |
| AN6             | 25                          | 22                  | 14             | 15                  | I   | ANA    |                                      |
| AN7             | 24                          | 21                  | 11             | 12                  | I   | ANA    |                                      |
| AN8             | 23                          | 20                  | 10             | 11                  | Ι   | ANA    |                                      |
| AN9             | 26                          | 23                  | 15             | 16                  | I   | ANA    |                                      |
| AN10            | —                           | _                   | 25             | 27                  | I   | ANA    |                                      |
| AN11            | —                           | _                   | 26             | 28                  | I   | ANA    |                                      |
| AN12            | —                           | _                   | 27             | 29                  | I   | ANA    |                                      |
| AN13            | —                           | _                   | 36             | 39                  | I   | ANA    |                                      |
| AVDD            | 28                          | 25                  | 17             | 18                  | Р   | —      | Positive Supply for Analog modules   |
| AVss            | 27                          | 24                  | 16             | 17                  | Р   | —      | Ground Reference for Analog modules  |
| C1INA           | 7                           | 4                   | 24             | 26                  | Ι   | ANA    | Comparator 1 Input A                 |
| C1INB           | 6                           | 3                   | 23             | 25                  | Ι   | ANA    | Comparator 1 Input B                 |
| C1INC           | 18, 24                      | 15, 21              | 1, 11          | 1, 12               | Ι   | ANA    | Comparator 1 Input C                 |
| C1IND           | 9                           | 6                   | 30             | 33                  | Ι   | ANA    | Comparator 1 Input D                 |
| C2INA           | 5                           | 2                   | 22             | 24                  | I   | ANA    | Comparator 2 Input A                 |
| C2INB           | 4                           | 1                   | 21             | 23                  | Ι   | ANA    | Comparator 2 Input B                 |
| C2INC           | 18                          | 15                  | 1              | 1                   | Ι   | ANA    | Comparator 2 Input C                 |
| C2IND           | 10                          | 7                   | 31             | 34                  | Ι   | ANA    | Comparator 2 Input D                 |
| C3INA           | 26                          | 23                  | 15             | 16                  | I   | ANA    | Comparator 3 Input A                 |
| C3INB           | 25                          | 22                  | 14             | 15                  | I   | ANA    | Comparator 3 Input B                 |
| C3INC           | 2, 18                       | 15, 27              | 1, 19          | 1, 21               | I   | ANA    | Comparator 3 Input C                 |
| C3IND           | 3                           | 28                  | 20             | 22                  | I   | ANA    | Comparator 3 Input D                 |
| CLKI            | 9                           | 6                   | 30             | 33                  | _   | —      | Main Clock Input Connection          |
| CLKO            | 10                          | 7                   | 31             | 34                  | 0   | DIG    | System Clock Output                  |
| CTCMP           | 4                           | 1                   | 21             | 23                  | 0   | ANA    | CTMU Comparator 2 Input (Pulse mode) |

#### TABLE 1-3: PIC24FJ256GA705 FAMILY PINOUT DESCRIPTIONS

Legend: TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output

ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$  input buffer

| Dim             | F                           | Pin Number/G        | rid Locator    |                     |     | Immunt          |                                           |
|-----------------|-----------------------------|---------------------|----------------|---------------------|-----|-----------------|-------------------------------------------|
| Pin<br>Function | 28-Pin SOIC,<br>SSOP, SPDIP | 28-Pin QFN,<br>UQFN | 44-Pin<br>TQFP | 48-Pin<br>UQFN/TQFP | I/O | Input<br>Buffer | Description                               |
| CTED1           | 2                           | 27                  | 19             | 21                  | Ι   | ST              | CTMU External Edge Inputs                 |
| CTED2           | 3                           | 28                  | 20             | 22                  | Ι   | ST              |                                           |
| CTED3           | 16                          | 13                  | 43             | 47                  | Ι   | ST              |                                           |
| CTED4           | 18                          | 15                  | 1              | 1                   | Ι   | ST              |                                           |
| CTED5           | 25                          | 22                  | 14             | 15                  | Ι   | ST              |                                           |
| CTED6           | 26                          | 23                  | 15             | 16                  | Ι   | ST              |                                           |
| CTED7           | —                           | —                   | 5              | 5                   | Ι   | ST              |                                           |
| CTED8           | 7                           | 4                   | 24             | 26                  | Ι   | ST              |                                           |
| CTED9           | 22                          | 19                  | 9              | 10                  | Ι   | ST              |                                           |
| CTED10          | 17                          | 14                  | 44             | 48                  | Ι   | ST              |                                           |
| CTED11          | 21                          | 18                  | 8              | 9                   | Ι   | ST              |                                           |
| CTED12          | 5                           | 2                   | 22             | 24                  | Ι   | ST              |                                           |
| CTED13          | 6                           | 3                   | 23             | 25                  | Ι   | ST              |                                           |
| CTPLS           | 24                          | 21                  | 11             | 12                  | 0   | DIG             | CTMU Pulse Output                         |
| CVREF           | 25                          | 22                  | 14             | 15                  | 0   | ANA             | Comparator Voltage Reference Output       |
| CVREF+          | 2                           | 27                  | 19             | 21                  | Ι   | ANA             | Comparator Voltage Reference (high) Input |
| CVREF-          | 3                           | 28                  | 20             | 22                  | Ι   | ANA             | Comparator Voltage Reference (low) Input  |
| INT0            | 16                          | 13                  | 43             | 47                  | Ι   | ST              | External Interrupt Input 0                |
| IOCA0           | 2                           | 27                  | 19             | 21                  | Ι   | ST              | PORTA Interrupt-on-Change                 |
| IOCA1           | 3                           | 28                  | 20             | 22                  | Ι   | ST              |                                           |
| IOCA2           | 9                           | 6                   | 30             | 33                  | Ι   | ST              |                                           |
| IOCA3           | 10                          | 7                   | 31             | 34                  | -   | ST              |                                           |
| IOCA4           | 12                          | 9                   | 34             | 37                  | Ι   | ST              |                                           |
| IOCA7           | —                           | —                   | 13             | 14                  | Ι   | ST              |                                           |
| IOCA8           | —                           | —                   | 32             | 35                  | Ι   | ST              |                                           |
| IOCA9           | —                           | —                   | 35             | 38                  | -   | ST              |                                           |
| IOCA10          | —                           | —                   | 12             | 13                  | Ι   | ST              | ]                                         |
| IOCA11          | —                           | —                   | _              | 8                   | Ι   | ST              | ]                                         |
| IOCA12          | _                           | _                   | _              | 20                  | Ι   | ST              | ]                                         |
| IOCA13          | _                           | _                   | _              | 32                  | I   | ST              | ]                                         |
| IOCA14          |                             | _                   | _              | 44                  | I   | ST              | ]                                         |

Legend: TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer  $I^2C = I^2C/SMBus$  input buffer

| D:-             | 1                           | Pin Number/G        | rid Locato     | r                   |     |                 |                                                                               |
|-----------------|-----------------------------|---------------------|----------------|---------------------|-----|-----------------|-------------------------------------------------------------------------------|
| Pin<br>Function | 28-Pin SOIC,<br>SSOP, SPDIP | 28-Pin QFN,<br>UQFN | 44-Pin<br>TQFP | 48-Pin<br>UQFN/TQFP | I/O | Input<br>Buffer | Description                                                                   |
| IOCB0           | 4                           | 1                   | 21             | 23                  | I   | ST              | PORTB Interrupt-on-Change                                                     |
| IOCB1           | 5                           | 2                   | 22             | 24                  | Ι   | ST              |                                                                               |
| IOCB2           | 6                           | 3                   | 23             | 25                  | Ι   | ST              |                                                                               |
| IOCB3           | 7                           | 4                   | 24             | 26                  | Ι   | ST              |                                                                               |
| IOCB4           | 11                          | 8                   | 33             | 36                  | Ι   | ST              |                                                                               |
| IOCB5           | 14                          | 11                  | 41             | 45                  | I   | ST              |                                                                               |
| IOCB6           | 15                          | 12                  | 42             | 46                  | I   | ST              |                                                                               |
| IOCB7           | 16                          | 13                  | 43             | 47                  | I   | ST              |                                                                               |
| IOCB8           | 17                          | 14                  | 44             | 48                  | I   | ST              |                                                                               |
| IOCB9           | 18                          | 15                  | 1              | 1                   | I   | ST              |                                                                               |
| IOCB10          | 21                          | 18                  | 8              | 9                   | I   | ST              |                                                                               |
| IOCB11          | 22                          | 19                  | 9              | 10                  | Ι   | ST              |                                                                               |
| IOCB12          | 23                          | 20                  | 10             | 11                  | Ι   | ST              |                                                                               |
| IOCB13          | 24                          | 21                  | 11             | 12                  | Ι   | ST              |                                                                               |
| IOCB14          | 25                          | 22                  | 14             | 15                  | Ι   | ST              |                                                                               |
| IOCB15          | 26                          | 23                  | 15             | 16                  | Ι   | ST              |                                                                               |
| IOCC1           | _                           | —                   | 26             | 28                  | Ι   | ST              | PORTC Interrupt-on-Change                                                     |
| IOCC2           | _                           |                     | 27             | 29                  | Ι   | ST              |                                                                               |
| IOCC3           | _                           | —                   | 36             | 39                  | Ι   | ST              |                                                                               |
| IOCC4           | _                           | _                   | 37             | 40                  | I   | ST              |                                                                               |
| IOCC5           | _                           | _                   | 38             | 41                  | I   | ST              |                                                                               |
| IOCC6           | _                           | —                   | 2              | 2                   | I   | ST              |                                                                               |
| IOCC7           | —                           | _                   | 3              | 3                   | I   | ST              |                                                                               |
| IOCC8           | _                           | _                   | 4              | 4                   | Ι   | ST              |                                                                               |
| IOCC9           | _                           | —                   | 5              | 5                   | I   | ST              |                                                                               |
| MCLR            | 1                           | 26                  | 18             | 19                  | Ι   | ST              | Master Clear (device Reset) Input. This line is brought low to cause a Reset. |
| OCM1A           | 16                          | 13                  | 43             | 47                  | 0   | DIG             | MCCP1 Outputs                                                                 |
| OCM1B           | 17                          | 14                  | 44             | 48                  | 0   | DIG             |                                                                               |
| OCM1C           | 21                          | 18                  | 8              | 9                   | 0   | DIG             | 1                                                                             |
| OCM1D           | 24                          | 21                  | 11             | 12                  | 0   | DIG             | 1                                                                             |
| OCM1E           | 14                          | 11                  | 41             | 45                  | 0   | DIG             | 1                                                                             |
| OCM1F           | 15                          | 12                  | 42             | 46                  | 0   | DIG             | 1                                                                             |
| OSCI            | 9                           | 6                   | 30             | 33                  | I   | ANA/ST          | Main Oscillator Input Connection                                              |
| OSCO            | 10                          | 7                   | 31             | 34                  | 0   | ANA             | Main Oscillator Output Connection                                             |

Legend: TTL = TTL input buffer ANA = Analog level input ST = Schmitt Trigger input buffer

ANA = Analog level input/output DIG = Digital input/output  $I^2C = I^2C/SMBus$  input buffer

| Pin                  | F  | Pin Number/G    | rid Locator | •  |     | Innut          |                                                                             |
|----------------------|----|-----------------|-------------|----|-----|----------------|-----------------------------------------------------------------------------|
| Function             |    | Input<br>Buffer | Description |    |     |                |                                                                             |
| PGC1                 | 5  | 2               | 22          | 24 | I   | ST             | ICSP™ Programming Clock                                                     |
| PGC2                 | 22 | 19              | 9           | 10 | Ι   | ST             |                                                                             |
| PGC3                 | 15 | 12              | 42          | 46 | Ι   | ST             |                                                                             |
| PGD1                 | 4  | 1               | 21          | 23 | I/O | DIG/ST         | ICSP Programming Data                                                       |
| PGD2                 | 21 | 18              | 8           | 9  | I/O | DIG/ST         |                                                                             |
| PGD3                 | 14 | 11              | 41          | 45 | I/O | DIG/ST         |                                                                             |
| PMA0                 | —  | —               | 3           | 3  | I/O | DIG/ST/<br>TTL | Parallel Master Port Address<0>/<br>Address Latch Low                       |
| PMA1                 | —  | —               | 2           | 2  | I/O | DIG/ST/<br>TTL | Parallel Master Port Address<1>/<br>Address Latch High                      |
| PMA2                 | —  | —               | 12          | 13 | I/O | DIG/ST/<br>TTL | Parallel Master Port Address<2>                                             |
| PMA3                 | —  | _               | 38          | 41 | I/O | DIG/ST/<br>TTL | Parallel Master Port Address<3>                                             |
| PMA4                 | —  | _               | 37          | 40 | I/O | DIG/ST/<br>TTL | Parallel Master Port Address<4>                                             |
| PMA5                 | —  | _               | 4           | 4  | I/O | DIG/ST/<br>TTL | Parallel Master Port Address<5>                                             |
| PMA6                 | —  | _               | 5           | 5  | I/O | DIG/ST/<br>TTL | Parallel Master Port Address<6>                                             |
| PMA7                 | —  | —               | 13          | 14 | I/O | DIG/ST/<br>TTL | Parallel Master Port Address<7>                                             |
| PMA8                 | —  | —               | 32          | 35 | I/O | DIG/ST/<br>TTL | Parallel Master Port Address<8>                                             |
| PMA9                 | -  | —               | 35          | 38 | I/O | DIG/ST/<br>TTL | Parallel Master Port Address<9>                                             |
| PMA14/PMCS/<br>PMCS1 | -  | —               | 15          | 16 | I/O | DIG/ST/<br>TTL | Parallel Master Port Address<14>/<br>Slave Chip Select/Chip Select 1 Strobe |

Legend: TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer  $I^2C = I^2C/SMBus$  input buffer

XCVR = Dedicated Transceiver

© 2016-2018 Microchip Technology Inc.

| Pin        | F                           | Pin Number/G        | rid Locator    |                     |     | Innut           |                                                                       |
|------------|-----------------------------|---------------------|----------------|---------------------|-----|-----------------|-----------------------------------------------------------------------|
| Function   | 28-Pin SOIC,<br>SSOP, SPDIP | 28-Pin QFN,<br>UQFN | 44-Pin<br>TQFP | 48-Pin<br>UQFN/TQFP | I/O | Input<br>Buffer | Description                                                           |
| PMD0       | _                           | _                   | 10             | 11                  | I/O | DIG/ST/<br>TTL  | Parallel Master Port Data (Demultiplexed Master mode) or Address/Data |
| PMD1       | —                           | —                   | 9              | 10                  | I/O | DIG/ST/<br>TTL  | (Multiplexed Master modes)                                            |
| PMD2       | —                           | Ι                   | 8              | 9                   | I/O | DIG/ST/<br>TTL  |                                                                       |
| PMD3       | —                           | —                   | 1              | 1                   | I/O | DIG/ST/<br>TTL  |                                                                       |
| PMD4       | —                           | —                   | 44             | 48                  | I/O | DIG/ST/<br>TTL  |                                                                       |
| PMD5       | —                           | Ι                   | 43             | 47                  | I/O | DIG/ST/<br>TTL  |                                                                       |
| PMD6       | —                           | —                   | 42             | 46                  | I/O | DIG/ST/<br>TTL  |                                                                       |
| PMD7       | —                           | —                   | 41             | 45                  | I/O | DIG/ST/<br>TTL  |                                                                       |
| PMRD/PMWR  | _                           | _                   | 11             | 12                  | I/O | DIG/ST/<br>TTL  | Parallel Master Port Read Strobe/<br>Write Strobe                     |
| PMWR/PMENB | —                           | —                   | 14             | 15                  | I/O | DIG/ST/<br>TTL  | Parallel Master Port Write Strobe/<br>Enable Strobe                   |
| PWRGT      | —                           | _                   | _              | —                   | 0   | DIG             | Real-Time Clock Power Control Output                                  |
| PWRLCLK    | 12                          | 9                   | 34             | 37                  | I   | ST              | Real-Time Clock 50/60 Hz Clock Input                                  |

**Legend:** TTL = TTL input buffer

ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus$  input buffer

| Dim             | F                           | Pin Number/G        | rid Locator    |                     |     |                 |                    |
|-----------------|-----------------------------|---------------------|----------------|---------------------|-----|-----------------|--------------------|
| Pin<br>Function | 28-Pin SOIC,<br>SSOP, SPDIP | 28-Pin QFN,<br>UQFN | 44-Pin<br>TQFP | 48-Pin<br>UQFN/TQFP | I/O | Input<br>Buffer | Description        |
| RA0             | 2                           | 27                  | 19             | 21                  | I/O | DIG/ST          | PORTA Digital I/Os |
| RA1             | 3                           | 28                  | 20             | 22                  | I/O | DIG/ST          |                    |
| RA2             | 9                           | 6                   | 30             | 33                  | I/O | DIG/ST          |                    |
| RA3             | 10                          | 7                   | 31             | 34                  | I/O | DIG/ST          |                    |
| RA4             | 12                          | 9                   | 34             | 37                  | I/O | DIG/ST          |                    |
| RA7             | —                           | _                   | 13             | 14                  | I/O | DIG/ST          |                    |
| RA8             | —                           | _                   | 32             | 35                  | I/O | DIG/ST          |                    |
| RA9             | —                           | _                   | 35             | 38                  | I/O | DIG/ST          |                    |
| RA10            | —                           | _                   | 12             | 13                  | I/O | DIG/ST          |                    |
| RA11            | —                           | _                   | _              | 8                   | I/O | DIG/ST          |                    |
| RA12            | —                           | _                   | _              | 20                  | I/O | DIG/ST          |                    |
| RA13            | —                           | _                   | _              | 32                  | I/O | DIG/ST          |                    |
| RA14            | —                           | _                   | _              | 44                  | I/O | DIG/ST          |                    |
| RB0             | 4                           | 1                   | 21             | 23                  | I/O | DIG/ST          | PORTB Digital I/Os |
| RB1             | 5                           | 2                   | 22             | 24                  | I/O | DIG/ST          |                    |
| RB2             | 6                           | 3                   | 23             | 25                  | I/O | DIG/ST          |                    |
| RB3             | 7                           | 4                   | 24             | 26                  | I/O | DIG/ST          |                    |
| RB4             | 11                          | 8                   | 33             | 36                  | I/O | DIG/ST          |                    |
| RB5             | 14                          | 11                  | 41             | 45                  | I/O | DIG/ST          |                    |
| RB6             | 15                          | 12                  | 42             | 46                  | I/O | DIG/ST          |                    |
| RB7             | 16                          | 13                  | 43             | 47                  | I/O | DIG/ST          |                    |
| RB8             | 17                          | 14                  | 44             | 48                  | I/O | DIG/ST          |                    |
| RB9             | 18                          | 15                  | 1              | 1                   | I/O | DIG/ST          |                    |
| RB10            | 21                          | 18                  | 8              | 9                   | I/O | DIG/ST          |                    |
| RB11            | 22                          | 19                  | 9              | 10                  | I/O | DIG/ST          |                    |
| RB12            | 23                          | 20                  | 10             | 11                  | I/O | DIG/ST          |                    |
| RB13            | 24                          | 21                  | 11             | 12                  | I/O | DIG/ST          |                    |
| RB14            | 25                          | 22                  | 14             | 15                  | I/O | DIG/ST          |                    |
| RB15            | 26                          | 23                  | 15             | 16                  | I/O | DIG/ST          |                    |
| RC0             | —                           | _                   | 25             | 27                  | I/O | DIG/ST          | PORTC Digital I/Os |
| RC1             | —                           | —                   | 26             | 28                  | I/O | DIG/ST          | ]                  |
| RC2             | _                           | _                   | 27             | 29                  | I/O | DIG/ST          |                    |
| RC3             | _                           | _                   | 36             | 39                  | I/O | DIG/ST          | ]                  |
| RC4             | —                           | _                   | 37             | 40                  | I/O | DIG/ST          | ]                  |
| RC5             | _                           | _                   | 38             | 41                  | I/O | DIG/ST          |                    |
| RC6             | _                           | —                   | 2              | 2                   | I/O | DIG/ST          | ]                  |
| RC7             | _                           | _                   | 3              | 3                   | I/O | DIG/ST          | ]                  |
| RC8             | _                           | _                   | 4              | 4                   | I/O | DIG/ST          |                    |
| RC9             | _                           | _                   | 5              | 5                   | I/O | DIG/ST          |                    |

Legend: TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer  $I^2C = I^2C/SMBus$  input buffer XCVR = Dedicated Transceiver

| Din             | 1                           | Pin Number/G        | rid Locator    |                     |     |                 |                        |
|-----------------|-----------------------------|---------------------|----------------|---------------------|-----|-----------------|------------------------|
| Pin<br>Functior | 28-Pin SOIC,<br>SSOP, SPDIP | 28-Pin QFN,<br>UQFN | 44-Pin<br>TQFP | 48-Pin<br>UQFN/TQFP | I/O | Input<br>Buffer | Description            |
| RP0             | 4                           | 1                   | 21             | 23                  | I/O | DIG/ST          | Remappable Peripherals |
| RP1             | 5                           | 2                   | 22             | 24                  | I/O | DIG/ST          | (input or output)      |
| RP2             | 6                           | 3                   | 23             | 25                  | I/O | DIG/ST          |                        |
| RP3             | 7                           | 4                   | 24             | 26                  | I/O | DIG/ST          |                        |
| RP4             | 11                          | 8                   | 33             | 36                  | I/O | DIG/ST          |                        |
| RP5             | 14                          | 11                  | 41             | 45                  | I/O | DIG/ST          |                        |
| RP6             | 15                          | 12                  | 42             | 46                  | I/O | DIG/ST          |                        |
| RP7             | 16                          | 13                  | 43             | 47                  | I/O | DIG/ST          |                        |
| RP8             | 17                          | 14                  | 44             | 48                  | I/O | DIG/ST          |                        |
| RP9             | 18                          | 15                  | 1              | 1                   | I/O | DIG/ST          |                        |
| RP10            | 21                          | 18                  | 8              | 9                   | I/O | DIG/ST          |                        |
| RP11            | 22                          | 19                  | 9              | 10                  | I/O | DIG/ST          |                        |
| RP12            | 23                          | 20                  | 10             | 11                  | I/O | DIG/ST          | -                      |
| RP13            | 24                          | 21                  | 11             | 12                  | I/O | DIG/ST          |                        |
| RP14            | 25                          | 22                  | 14             | 15                  | I/O | DIG/ST          | -                      |
| RP15            | 26                          | 23                  | 15             | 16                  | I/O | DIG/ST          | -                      |
| RP16            | _                           | _                   | 25             | 27                  | I/O | DIG/ST          |                        |
| RP17            | _                           | _                   | 26             | 28                  | I/O | DIG/ST          |                        |
| RP18            | _                           | _                   | 27             | 29                  | I/O | DIG/ST          |                        |
| RP19            | _                           | _                   | 36             | 39                  | I/O | DIG/ST          |                        |
| RP20            | _                           | —                   | 37             | 40                  | I/O | DIG/ST          |                        |
| RP21            | _                           | _                   | 38             | 41                  | I/O | DIG/ST          | -                      |
| RP22            | _                           | —                   | 2              | 2                   | I/O | DIG/ST          |                        |
| RP23            | _                           | —                   | 3              | 3                   | I/O | DIG/ST          |                        |
| RP24            | _                           | _                   | 4              | 4                   | I/O | DIG/ST          | -                      |
| RP25            | _                           | _                   | 5              | 5                   | I/O | DIG/ST          | 1                      |
| RP26            | 2                           | 27                  | 19             | 21                  | I/O | DIG/ST          | 1                      |
| RP27            | 3                           | 28                  | 20             | 22                  | I/O | DIG/ST          | 1                      |
| RP28            | _                           | _                   | 12             | 13                  | I/O | DIG/ST          | 1                      |
| RPI29           | —                           |                     | _              | 8                   | Ι   | DIG/ST          | Remappable Peripherals |
| RPI30           | _                           | —                   | _              | 20                  | Ι   | DIG/ST          | (input only)           |
| RPI31           | _                           | _                   | _              | 32                  | Ι   | DIG/ST          | 1                      |
| RPI32           |                             | _                   | _              | 44                  | Ι   | DIG/ST          | 1                      |

Legend: TTL = TTL input buffer ANA = Analog level input/output DIG = Digital input/output ST = Schmitt Trigger input buffer

 $I^2C = I^2C/SMBus input buffer$ 

| Dia             | i                           | Pin Number/G        | rid Locator    |                     |     |                  |                                                               |  |
|-----------------|-----------------------------|---------------------|----------------|---------------------|-----|------------------|---------------------------------------------------------------|--|
| Pin<br>Function | 28-Pin SOIC,<br>SSOP, SPDIP | 28-Pin QFN,<br>UQFN | 44-Pin<br>TQFP | 48-Pin<br>UQFN/TQFP | I/O | Input<br>Buffer  | Description                                                   |  |
| SCL1            | 17                          | 14                  | 44             | 48                  | I/O | l <sup>2</sup> C | I2C1 Synchronous Serial Clock Input/Output                    |  |
| SCL2            | 7                           | 4                   | 24             | 26                  | I/O | l <sup>2</sup> C | I2C2 Synchronous Serial Clock Input/Output                    |  |
| SDA1            | 18                          | 15                  | 1              | 1                   | I/O | l <sup>2</sup> C | I2C1 Data Input/Output                                        |  |
| SDA2            | 6                           | 3                   | 23             | 25                  | I/O | l <sup>2</sup> C | I2C2 Data Input/Output                                        |  |
| SOSCI           | 11                          | 8                   | 33             | 36                  | Ι   | ANA/ST           | Secondary Oscillator/Timer1 Clock Input                       |  |
| SOSCO           | 12                          | 9                   | 34             | 37                  | 0   | ANA              | Secondary Oscillator/Timer1 Clock Output                      |  |
| T1CK            | 18                          | 15                  | 1              | 1                   | -   | ST               | Timer1 Clock                                                  |  |
| ТСК             | 17                          | 14                  | 13             | 14                  |     | ST               | JTAG Test Clock/Programming Clock Input                       |  |
| TDI             | 21                          | 18                  | 35             | 38                  | -   | ST               | JTAG Test Data/Programming Data Input                         |  |
| TDO             | 18                          | 15                  | 32             | 35                  | 0   | DIG              | JTAG Test Data Output                                         |  |
| TMPRN           | 18                          | 15                  | 1              | 1                   | -   | ST               | Tamper Detect Input                                           |  |
| TMS             | 22                          | 19                  | 12             | 13                  | Ι   | ST               | JTAG Test Mode Select Input                                   |  |
| VCAP            | 20                          | 17                  | 7              | 7                   | Р   | —                | External Filter Capacitor<br>Connection (regulator enabled)   |  |
| Vdd             | 13, 28                      | 10, 25              | 28, 40         | 30, 43              | Ρ   | —                | Positive Supply for Peripheral Digital Logic and I/O Pins     |  |
| VREF+           | 2                           | 27                  | 19             | 21                  | Ι   | ANA              | Comparator and A/D Reference Voltage (high) Input             |  |
| VREF-           | 3                           | 28                  | 20             | 22                  | I   | ANA              | Comparator and A/D Reference Voltage<br>(low) Input           |  |
| Vss             | 8, 19, 27                   | 5, 16, 24           | 6, 29, 39      | 6, 31, 42           | Р   | —                | Ground Reference for<br>Peripheral Digital Logic and I/O Pins |  |

TTL = TTL input buffer Legend: ANA = Analog level input/output DIG = Digital input/output

ST = Schmitt Trigger input buffer  $I^2C = I^2C/SMBus$  input buffer

NOTES:

### 2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT MICROCONTROLLERS

#### 2.1 Basic Connection Requirements

Getting started with the PIC24FJ256GA705 family of 16-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

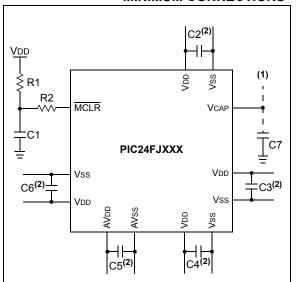
- All VDD and VSS pins (see Section 2.2 "Power Supply Pins")
- All AVDD and AVss pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")

 VCAP pin (see Section 2.4 "Voltage Regulator Pin (VCAP)")

These pins must also be connected if they are being used in the end application:

- PGCx/PGDx pins used for In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSCI and OSCO pins when an external oscillator source is used

(see Section 2.6 "External Oscillator Pins")


Additionally, the following pins may be required:

• VREF+/VREF- pins used when external voltage reference for analog modules is implemented

**Note:** The AVDD and AVss pins must always be connected, regardless of whether any of the analog modules are being used.

The minimum mandatory connections are shown in Figure 2-1.

#### FIGURE 2-1: RECOMMENDED MINIMUM CONNECTIONS



#### Key (all values are recommendations):

C1 through C6: 0.1 µF, 50V ceramic

C7: 10 µF, 16V or greater, ceramic

R1: 10 kΩ

R2: 100Ω to 470Ω

- Note 1: See Section 2.4 "Voltage Regulator Pin (VCAP)" for an explanation of voltage regulator pin connections.
  - 2: The example shown is for a PIC24F device with five VDD/VSs and AVDD/AVSs pairs. Other devices may have more or less pairs; adjust the number of decoupling capacitors appropriately.

#### 2.2 Power Supply Pins

#### 2.2.1 DECOUPLING CAPACITORS

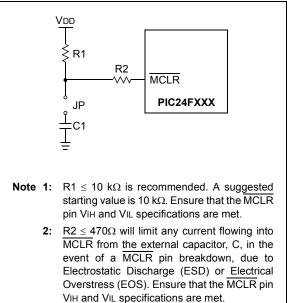
The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1  $\mu$ F (100 nF), 25V-50V capacitor is recommended. The capacitor should be a low-ESR device with a self-resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01  $\mu$ F to 0.001  $\mu$ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1  $\mu$ F in parallel with 0.001  $\mu$ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

#### 2.2.2 BULK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a bulk capacitance of 10  $\mu$ F or greater located near the MCU. The value of the capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. Typical values range from 10  $\mu$ F to 47  $\mu$ F. The capacitor should be ceramic and have a voltage rating of 25V or more to reduce DC bias effects (see Section 2.4.1 "Considerations for Ceramic Capacitors").


### 2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: device Reset, and device programming and debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented depending on the application's requirements.

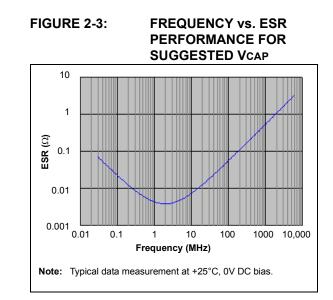
During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the MCLR pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the  $\overline{\text{MCLR}}$  pin should be placed within 0.25 inch (6 mm) of the pin.

#### FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS



#### 2.4 Voltage Regulator Pin (VCAP)


**Note:** This section applies only to PIC24FJ devices with an on-chip voltage regulator.

Refer to **Section 29.3 "On-Chip Voltage Regulator"** for details on connecting and using the on-chip regulator.

A low-ESR (< 5 $\Omega$ ) capacitor is required on the VCAP pin to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD and must use a capacitor of 10  $\mu$ F connected to ground. The type can be ceramic or tantalum. Suitable examples of capacitors are shown in Table 2-1. Capacitors with equivalent specifications can be used.

Designers may use Figure 2-3 to evaluate the ESR equivalence of candidate devices.

The placement of this capacitor should be close to VCAP. It is recommended that the trace length not exceed 0.25 inch (6 mm). Refer to **Section 32.0** "**Electrical Characteristics**" for additional information.



#### TABLE 2-1: SUITABLE CAPACITOR EQUIVALENTS (0805 CASE SIZE)

| Make   | Part #              | Nominal<br>Capacitance | Base Tolerance | Rated Voltage |
|--------|---------------------|------------------------|----------------|---------------|
| TDK    | C2012X5R1E106K085AC | 10 µF                  | ±10%           | 25V           |
| TDK    | C2012X5R1C106K085AC | 10 µF                  | ±10%           | 16V           |
| Kemet  | C0805C106M4PACTU    | 10 µF                  | ±10%           | 16V           |
| Murata | GRM21BR61E106KA3L   | 10 µF                  | ±10%           | 25V           |
| Murata | GRM21BR61C106KE15   | 10 µF                  | ±10%           | 16V           |

#### 2.4.1 CONSIDERATIONS FOR CERAMIC CAPACITORS

In recent years, large value, low-voltage, surface-mount ceramic capacitors have become very cost effective in sizes up to a few tens of microfarad. The low-ESR, small physical size and other properties make ceramic capacitors very attractive in many types of applications.

Ceramic capacitors are suitable for use with the internal voltage regulator of this microcontroller. However, some care is needed in selecting the capacitor to ensure that it maintains sufficient capacitance over the intended operating range of the application.

Typical low-cost, 10 µF ceramic capacitors are available in X5R, X7R and Y5V dielectric ratings (other types are also available, but are less common). The initial tolerance specifications for these types of capacitors are often specified as ±10% to ±20% (X5R and X7R) or -20%/ +80% (Y5V). However, the effective capacitance that these capacitors provide in an application circuit will also vary based on additional factors, such as the applied DC bias voltage and the temperature. The total in-circuit tolerance is, therefore, much wider than the initial tolerance specification.

The X5R and X7R capacitors typically exhibit satisfactory temperature stability (ex: ±15% over a wide temperature range, but consult the manufacturer's data sheets for exact specifications). However, Y5V capacitors typically have extreme temperature tolerance specifications of +22%/-82%. Due to the extreme temperature tolerance, a 10 µF nominal rated Y5V type capacitor may not deliver enough total capacitance to meet minimum internal voltage regulator stability and transient response requirements. Therefore, Y5V capacitors are not recommended for use with the internal regulator if the application must operate over a wide temperature range.

In addition to temperature tolerance, the effective capacitance of large value ceramic capacitors can vary substantially, based on the amount of DC voltage applied to the capacitor. This effect can be very significant, but is often overlooked or is not always documented.

A typical DC bias voltage vs. capacitance graph for X7R type capacitors is shown in Figure 2-4.

#### FIGURE 2-4: DC BIAS VOLTAGE vs. CAPACITANCE **CHARACTERISTICS** Change (%) 0 -10 -20 -30 Capacitance -40 -50 -60 -70 6.3V Capacitor

When selecting a ceramic capacitor to be used with the internal voltage regulator, it is suggested to select a high-voltage rating so that the operating voltage is a small percentage of the maximum rated capacitor voltage. For example, choose a ceramic capacitor rated at a minimum of 16V for the 1.8V core voltage. Suggested capacitors are shown in Table 2-1.

DC Bias Voltage (VDC)

10 11 12

#### 2.5 **ICSP** Pins

-80

2 3

The PGCx and PGDx pins are used for In-Circuit Serial Programming (ICSP) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed  $100\Omega$ .

Pull-up resistors, series diodes and capacitors on the PGCx and PGDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" pins (i.e., PGCx/PGDx) programmed into the device match the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to Section 30.0 "Development Support".

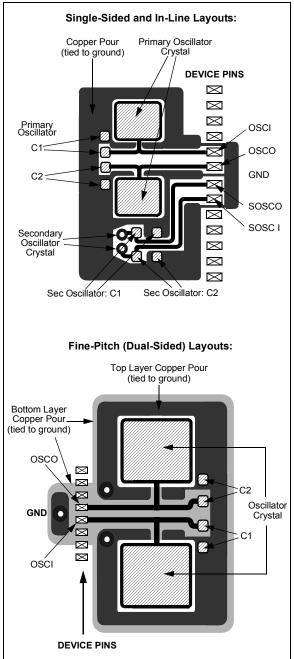
#### 2.6 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency Primary Oscillator and a low-frequency Secondary Oscillator (refer to Section 9.0 "Oscillator Configuration" for details).

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-5. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.


In planning the application's routing and I/O assignments, ensure that adjacent port pins, and other signals in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times and other similar noise).

For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com):

- AN943, "Practical PICmicro<sup>®</sup> Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"
- AN1798, "Crystal Selection for Low-Power Secondary Oscillator"

## FIGURE 2-5: SUGGESTED

#### PLACEMENT OF THE OSCILLATOR CIRCUIT



#### 2.7 Configuration of Analog and Digital Pins During ICSP Operations

If an ICSP compliant emulator is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins. This is done by clearing all bits in the ANSx registers. Refer to **Section 11.2** "**Configuring Analog Port Pins (ANSx)**" for more specific information.

The bits in these registers that correspond to the A/D pins that initialized the emulator must not be changed by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must modify the appropriate bits during initialization of the A/D module, as follows:

 Set the bits corresponding to the pin(s) to be configured as analog. Do not change any other bits, particularly those corresponding to the PGCx/PGDx pair, at any time. When a Microchip debugger/emulator is used as a programmer, the user application firmware must correctly configure the ANSx registers. Automatic initialization of these registers is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

#### 2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k $\Omega$  to 10 k $\Omega$  resistor to Vss on unused pins and drive the output to logic low.

#### 3.0 CPU

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the CPU, refer to the "dsPIC33/PIC24 Family Reference Manual", "CPU with Extended Data Space (EDS)" (DS39732), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The PIC24F CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M instructions of user program memory space. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the REPEAT instructions, which are interruptible at any point.

PIC24F devices have sixteen, 16-bit Working registers in the programmer's model. Each of the Working registers can act as a Data, Address or Address Offset register. The 16<sup>th</sup> Working register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls.

The lower 32 Kbytes of the Data Space (DS) can be accessed linearly. The upper 32 Kbytes of the Data Space are referred to as Extended Data Space (EDS), to which the extended data RAM, EPMP memory space or program memory can be mapped.

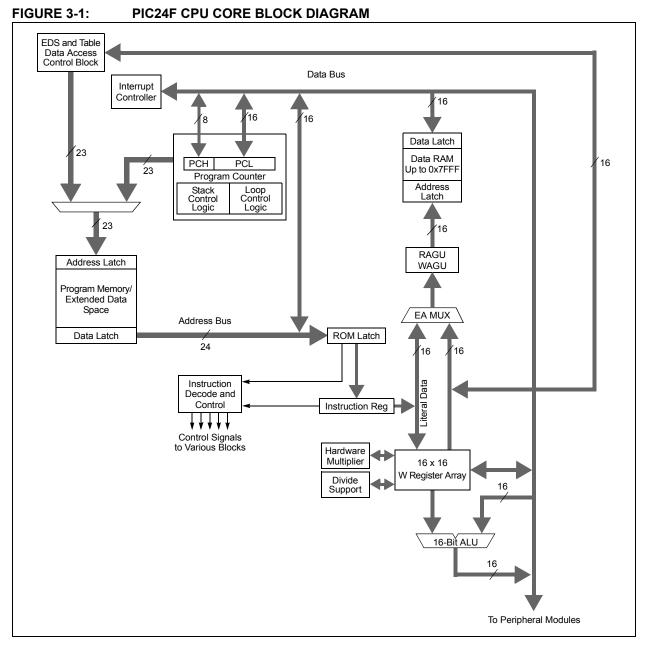
The Instruction Set Architecture (ISA) has been significantly enhanced beyond that of the PIC18, but maintains an acceptable level of backward compatibility. All PIC18 instructions and addressing modes are supported, either directly, or through simple macros. Many of the ISA enhancements have been driven by compiler efficiency needs.

The core supports Inherent (no operand), Relative, Literal, Memory Direct Addressing modes along with three groups of addressing modes. All modes support Register Direct and various Register Indirect modes. Each group offers up to seven addressing modes. Instructions are associated with predefined addressing modes depending upon their functional requirements.

For most instructions, the core is capable of executing a data (or program data) memory read, a Working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing trinary operations (for example, A + B = C) to be executed in a single cycle.

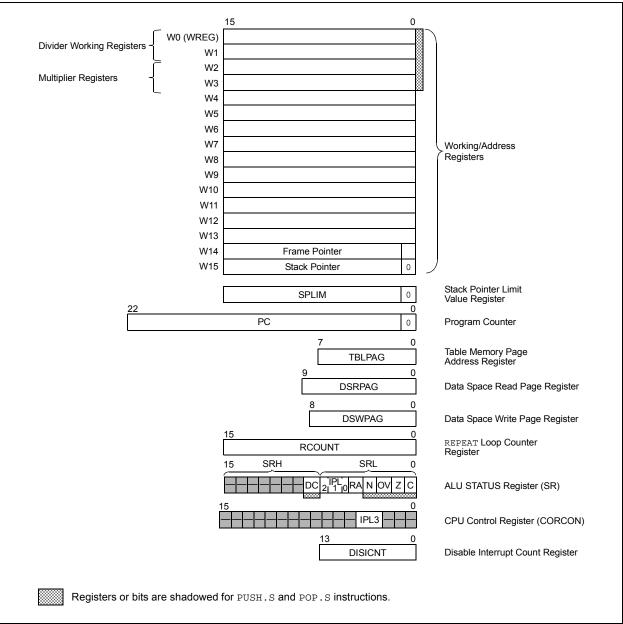
A high-speed, 17-bit x 17-bit multiplier has been included to significantly enhance the core arithmetic capability and throughput. The multiplier supports Signed, Unsigned and Mixed mode, 16-bit x 16-bit or 8-bit x 8-bit, integer multiplication. All multiply instructions execute in a single cycle.

The 16-bit ALU has been enhanced with integer divide assist hardware that supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT instruction looping mechanism and a selection of iterative divide instructions to support 32-bit (or 16-bit), divided by 16-bit, integer signed and unsigned division. All divide operations require 19 cycles to complete but are interruptible at any cycle boundary.


The PIC24F has a vectored exception scheme with up to 8 sources of non-maskable traps and up to 118 interrupt sources. Each interrupt source can be assigned to one of seven priority levels.

A block diagram of the CPU is shown in Figure 3-1.

#### 3.1 Programmer's Model


The programmer's model for the PIC24F is shown in Figure 3-2. All registers in the programmer's model are memory-mapped and can be manipulated directly by instructions.

A description of each register is provided in Table 3-1. All registers associated with the programmer's model are memory-mapped.



| Register(s) Name | Description                        |  |
|------------------|------------------------------------|--|
| W0 through W15   | Working Register Array             |  |
| PC               | 23-Bit Program Counter             |  |
| SR               | ALU STATUS Register                |  |
| SPLIM            | Stack Pointer Limit Value Register |  |
| TBLPAG           | Table Memory Page Address Register |  |
| RCOUNT           | REPEAT Loop Counter Register       |  |
| CORCON           | CPU Control Register               |  |
| DISICNT          | Disable Interrupt Count Register   |  |
| DSRPAG           | Data Space Read Page Register      |  |
| DSWPAG           | Data Space Write Page Register     |  |





# 3.2 CPU Control Registers

### REGISTER 3-1: SR: ALU STATUS REGISTER

| U-0                  | U-0                                          | U-0                                    | U-0                       | U-0                       | U-0                           | U-0               | R/W-0          |  |  |  |
|----------------------|----------------------------------------------|----------------------------------------|---------------------------|---------------------------|-------------------------------|-------------------|----------------|--|--|--|
| _                    | _                                            | _                                      | _                         | _                         | —                             | —                 | DC             |  |  |  |
| bit 15               |                                              |                                        |                           |                           |                               |                   | bit            |  |  |  |
|                      |                                              |                                        |                           |                           |                               |                   |                |  |  |  |
| R/W-0 <sup>(1)</sup> | R/W-0 <sup>(1)</sup>                         | R/W-0 <sup>(1)</sup>                   | R-0                       | R/W-0                     | R/W-0                         | R/W-0             | R/W-0          |  |  |  |
| IPL2 <sup>(2)</sup>  | IPL1 <sup>(2)</sup>                          | IPL0 <sup>(2)</sup>                    | RA                        | N                         | OV                            | Z                 | С              |  |  |  |
| bit 7                |                                              |                                        |                           |                           |                               |                   | bit            |  |  |  |
| Legend:              |                                              |                                        |                           |                           |                               |                   |                |  |  |  |
| R = Readable b       | oit                                          | W = Writable b                         | it                        | U = Unimpler              | nented bit, read              | l as '0'          |                |  |  |  |
| -n = Value at P      | OR                                           | '1' = Bit is set                       |                           | '0' = Bit is clea         | ared                          | x = Bit is unkn   | nown           |  |  |  |
|                      |                                              |                                        |                           |                           |                               |                   |                |  |  |  |
| bit 15-9             | Unimplemen                                   | ted: Read as '0'                       |                           |                           |                               |                   |                |  |  |  |
| bit 8 l              | DC: ALU Half                                 | f Carry/Borrow b                       | it                        |                           |                               |                   |                |  |  |  |
|                      | 1 = A carry o                                | ut from the 4 <sup>th</sup> lo         | w-order bit (             | for byte-sized da         | ata) or 8 <sup>th</sup> low-o | order bit (for wo | ord-sized data |  |  |  |
|                      | of the res                                   | sult occurred                          |                           | -                         | ·                             |                   |                |  |  |  |
|                      | 0 = No carry                                 | out from the 4 <sup>th</sup>           | or 8 <sup>th</sup> low-or | der bit of the res        | sult has occurre              | ed                |                |  |  |  |
| bit 7-5 I            | IPL<2:0>: CF                                 | PU Interrupt Prior                     | rity Level Sta            | tus bits <sup>(1,2)</sup> |                               |                   |                |  |  |  |
|                      | 111 = CPU lr                                 | nterrupt Priority I                    | evel is 7 (15             | ;); user interrupt        | s are disabled                |                   |                |  |  |  |
|                      | 110 = CPU Interrupt Priority Level is 6 (14) |                                        |                           |                           |                               |                   |                |  |  |  |
|                      | 101 = CPU Interrupt Priority Level is 5 (13) |                                        |                           |                           |                               |                   |                |  |  |  |
|                      | 100 = CPU Interrupt Priority Level is 4 (12) |                                        |                           |                           |                               |                   |                |  |  |  |
|                      |                                              | nterrupt Priority I                    |                           |                           |                               |                   |                |  |  |  |
|                      |                                              | nterrupt Priority I                    |                           |                           |                               |                   |                |  |  |  |
|                      | 001 = CPU lr                                 | nterrupt Priority I                    | Level is 1 (9)            |                           |                               |                   |                |  |  |  |
|                      |                                              | nterrupt Priority I<br>Loop Active bit |                           |                           |                               |                   |                |  |  |  |
|                      |                                              | •                                      |                           |                           |                               |                   |                |  |  |  |
|                      |                                              | oop is in progres                      |                           |                           |                               |                   |                |  |  |  |
|                      | N: ALU Nega                                  |                                        | -                         |                           |                               |                   |                |  |  |  |
|                      | 1 = Result wa                                | Ų                                      |                           |                           |                               |                   |                |  |  |  |
|                      |                                              | as not negative (                      | zero or posit             | ve)                       |                               |                   |                |  |  |  |
|                      | OV: ALU Ove                                  |                                        |                           |                           |                               |                   |                |  |  |  |
|                      |                                              | occurred for sigr                      | ned (2's com              | plement) arithm           | etic in this arith            | metic operatio    | n              |  |  |  |
| bit 1                | <b>z:</b> ALU Zero I                         | oit                                    |                           |                           |                               |                   |                |  |  |  |
|                      | 1 = An operat                                | tion, which affect                     | s the Z bit, h            | as set it at some         | e time in the pa              | ist               |                |  |  |  |
|                      |                                              | recent operation                       | n, which affe             | cts the Z bit, has        | cleared it (i.e.              | , a non-zero re   | sult)          |  |  |  |
|                      | C: ALU Carry                                 |                                        |                           |                           |                               |                   |                |  |  |  |
|                      |                                              | ut from the Most                       |                           |                           |                               |                   |                |  |  |  |
|                      | 0 = No carry (                               | out from the Mos                       | st Significant            | bit of the result         | occurred                      |                   |                |  |  |  |
| Note 1: The          | IPLx Status h                                | oits are read-only                     | when NSTI                 | DIS (INTCON1<             | 15>) = 1                      |                   |                |  |  |  |
|                      |                                              | oits are concater                      |                           |                           |                               | ) to form the C   |                |  |  |  |

2: The IPLx Status bits are concatenated with the IPL3 Status bit (CORCON<3>) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1.

| U-0    | U-0 | U-0 | U-0 | U-0                 | U-0                | U-0 | U-0   |
|--------|-----|-----|-----|---------------------|--------------------|-----|-------|
| —      | —   | —   | —   | —                   | —                  | —   | —     |
| bit 15 |     |     |     |                     |                    |     | bit 8 |
|        |     |     |     |                     |                    |     |       |
| U-0    | U-0 | U-0 | U-0 | R/C-0               | R/W-1              | U-0 | U-0   |
|        | —   | —   | —   | IPL3 <sup>(1)</sup> | PSV <sup>(2)</sup> | —   | —     |
| bit 7  |     |     |     | •                   |                    |     | bit 0 |
|        |     |     |     |                     |                    |     |       |

| Legend:           | C = Clearable bit |                       |                    |
|-------------------|-------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit  | U = Unimplemented bit | t, read as '0'     |
| -n = Value at POR | '1' = Bit is set  | '0' = Bit is cleared  | x = Bit is unknown |

| bit 15-4 | Unimplemented: Read as '0'                                                                                                    |
|----------|-------------------------------------------------------------------------------------------------------------------------------|
| bit 3    | IPL3: CPU Interrupt Priority Level Status bit <sup>(1)</sup>                                                                  |
|          | <ul> <li>1 = CPU Interrupt Priority Level is greater than 7</li> <li>0 = CPU Interrupt Priority Level is 7 or less</li> </ul> |
| bit 2    | <b>PSV:</b> Program Space Visibility (PSV) in Data Space Enable <sup>(2)</sup>                                                |
|          | <ul><li>1 = Program space is visible in Data Space</li><li>0 = Program space is not visible in Data Space</li></ul>           |
| bit 1-0  | Unimplemented: Read as '0'                                                                                                    |

Note 1: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level; see Register 3-1 for bit description.

2: If PSV = 0, any reads from data memory at 0x8000 and above will cause an address trap error instead of reading from the PSV section of program memory. This bit is not individually addressable.

# 3.3 Arithmetic Logic Unit (ALU)

The PIC24F ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

The PIC24F CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

## 3.3.1 MULTIPLIER

The ALU contains a high-speed, 17-bit x 17-bit multiplier. It supports unsigned, signed or mixed sign operation in several multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- · 8-bit unsigned x 8-bit unsigned

# 3.3.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

## 3.3.3 MULTI-BIT SHIFT SUPPORT

The PIC24F ALU supports both single bit and singlecycle, multi-bit arithmetic and logic shifts. Multi-bit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multi-bit shift instructions only support Register Direct Addressing for both the operand source and result destination.

A full summary of instructions that use the shift operation is provided in Table 3-2.

#### TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE BIT AND MULTI-BIT SHIFT OPERATION

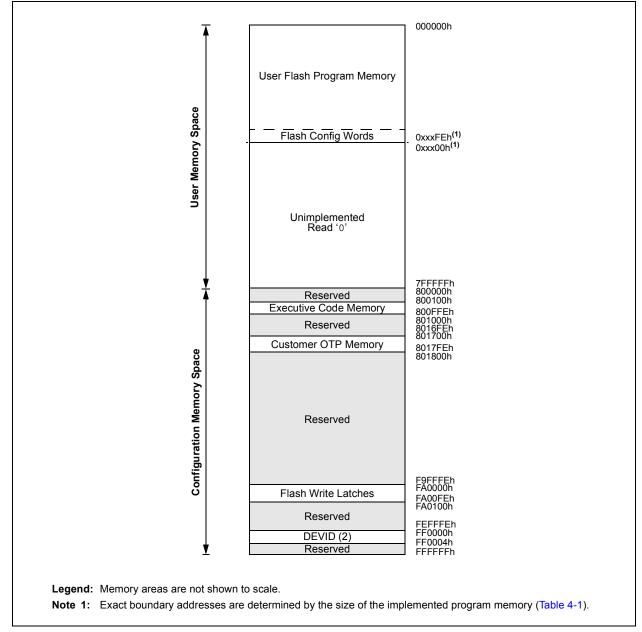
| Instruction Description |                                                             |
|-------------------------|-------------------------------------------------------------|
| ASR                     | Arithmetic Shift Right Source register by one or more bits. |
| SL                      | Shift Left Source register by one or more bits.             |
| LSR                     | Logical Shift Right Source register by one or more bits.    |

# 4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "PIC24F Flash Program Memory" (DS30009715), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

As Harvard architecture devices, PIC24F microcontrollers feature separate program and data memory spaces and buses. This architecture also allows direct access of program memory from the Data Space during code execution.

# 4.1 Program Memory Space


The program address memory space of the PIC24FJ256GA705 family devices is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from table operation or Data Space remapping, as described in Section 4.3 "Interfacing Program and Data Memory Spaces".

User access to the program memory space is restricted to the lower half of the address range (000000h to 7FFFFFh). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and customer OTP sections of the configuration memory space.

The memory map for the PIC24FJ256GA705 family of devices is shown in Figure 4-1.

# PIC24FJ256GA705 FAMILY

#### FIGURE 4-1: PROGRAM SPACE MEMORY MAP FOR PIC24FJ256GA705 DEVICES



| TABLE 4-1: | PROGRAM MEMORY SIZES AND BOUNDARIES <sup>(2)</sup> |
|------------|----------------------------------------------------|
|            |                                                    |

| Device          | Program Memory<br>Upper Boundary<br>(Instruction Words) | Write Blocks <sup>(1)</sup> | Erase Blocks <sup>(1)</sup> |
|-----------------|---------------------------------------------------------|-----------------------------|-----------------------------|
| PIC24FJ256GA70X | 02AFFEh (88,064 x 24)                                   | 1376                        | 172                         |
| PIC24FJ128GA70X | 015FFEh (45,056 x 24)                                   | 704                         | 88                          |
| PIC24FJ64GA70X  | 00AFFEh (22,528 x 24)                                   | 352                         | 44                          |

Note 1: 1 Write Block = 128 Instruction Words; 1 Erase Block (Page) = 1024 Instruction Words.

2: To maintain integer page sizes, the memory sizes are not exactly half of each other.

## 4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

## 4.1.2 HARD MEMORY VECTORS

All PIC24F devices reserve the addresses between 000000h and 000200h for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on a device Reset to the actual start of code. A GOTO instruction is programmed by the user at 000000h, with the actual address for the start of code at 000002h.

The PIC24FJ256GA705 devices can have up to two Interrupt Vector Tables (IVT). The first is located from addresses, 00004h to 0000FFh. The Alternate Interrupt Vector Table (AIVT), which can be enabled by the AIVTDIS Configuration bit, is located from 000104h to 0001FFh if no Boot Segment (BS) is present. If the user has configured a Boot Segment, the AIVT will be located at the address, (BSLIM<12:0> x 1024) – 508. These vector tables allow each of the many device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the Interrupt Vector Tables is provided in Section 8.1 "Interrupt Vector Table".

# 4.1.3 CONFIGURATION BITS OVERVIEW

The Configuration bits are stored in the last page location of implemented program memory. These bits can be set or cleared to select various device configurations. There are two types of Configuration bits: system operation bits and code-protect bits. The system operation bits determine the power-on settings for system-level components, such as the oscillator and the Watchdog Timer. The code-protect bits prevent program memory from being read and written.

Table 4-2 lists all of the Configuration registers as wellas their Configuration register locations. Refer toSection 29.0 "Special Features" for the fullConfiguration register description for each specificdevice.

| Configuration<br>Registers | PIC24FJ256GA70X | PIC24FJ128GA70X | PIC24FJ64GA70X |
|----------------------------|-----------------|-----------------|----------------|
| FSEC                       | 02AF00h         | 015F00h         | 00AF00h        |
| FBSLIM                     | 02AF10h         | 015F10h         | 00AF10h        |
| FSIGN                      | 02AF14h         | 015F14h         | 00AF14h        |
| FOSCSEL                    | 02AF18h         | 015F18h         | 00AF18h        |
| FOSC                       | 02AF1Ch         | 015F1Ch         | 00AF1Ch        |
| FWDT                       | 02AF20h         | 015F20h         | 00AF20h        |
| FPOR                       | 02AF24h         | 015F24h         | 00AF24h        |
| FICD                       | 02AF28h         | 015F28h         | 00AF28h        |
| FDEVOPT1                   | 02AF2Ch         | 015F2Ch         | 00AF2Ch        |

TABLE 4-2: CONFIGURATION WORD ADDRESSES

#### 4.1.4 CODE-PROTECT CONFIGURATION BITS

The device implements intermediate security features defined by the FSEC register. The Boot Segment (BS) is the higher privileged segment and the General Segment (GS) is the lower privileged segment. The total user code memory can be split into BS or GS. The size of the segments is determined by the BSLIM<12:0> bits. The relative location of the segments within user space does not change, such that BS (if present) occupies the memory area just after the Interrupt Vector Table (IVT) and the GS occupies the space just after the BS (or if the Alternate IVT is enabled, just after it).

The Configuration Segment (CS) is a small segment (less than a page, typically just one row) within user Flash address space. It contains all user configuration data that is loaded by the NVM Controller during the Reset sequence.

# 4.1.5 CUSTOMER OTP MEMORY

PIC24FJ256GA705 family devices provide 256 bytes of One-Time-Programmable (OTP) memory, located at addresses, 801700h through 8017FEh. This memory can be used for persistent storage of application-specific information that will not be erased by reprogramming the device. This includes many types of information, such as (but not limited to):

- Application Checksums
- Code Revision Information
- Product Information
- Serial Numbers
- System Manufacturing Dates
- · Manufacturing Lot Numbers

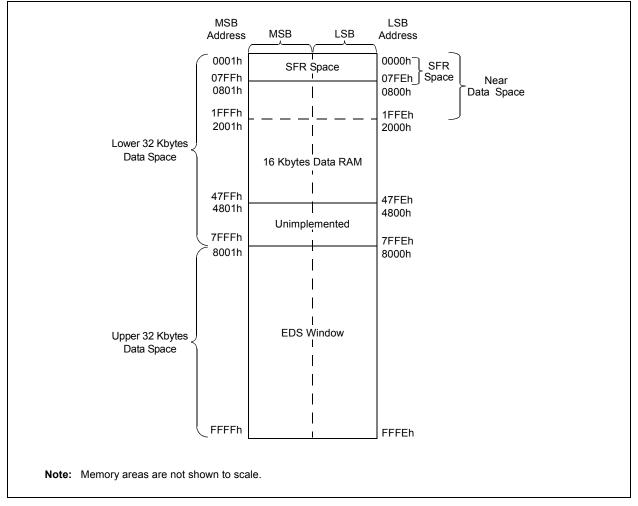
Customer OTP memory may be programmed in any mode, including user RTSP mode, but it cannot be erased. Data is not cleared by a chip erase.

Note: Do not write the OTP memory more than one time. Writing to the OTP memory more than once may result in a permanent ECC Double-Bit Error (ECCDBE) trap.

# 4.2 Data Memory Space

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Data Memory with Extended Data Space (EDS)**" (DS39733). The information in this data sheet supersedes the information in the FRM.

The PIC24F core has a 16-bit wide data memory space, addressable as a single linear range. The Data Space is accessed using two Address Generation Units (AGUs), one each for read and write operations. The Data Space memory map is shown in Figure 4-2.


The 16-bit wide data addresses in the data memory space point to bytes within the Data Space (DS). This gives a DS address range of 16 Kbytes or 8K words. The lower half (0000h to 7FFFh) is used for implemented (on-chip) memory addresses.

The upper half of data memory address space (8000h to FFFFh) is used as a window into the Extended Data Space (EDS). This allows the microcontroller to directly access a greater range of data beyond the standard 16-bit address range. EDS is discussed in detail in **Section 4.2.5 "Extended Data Space (EDS)**".

# 4.2.1 DATA SPACE WIDTH

The data memory space is organized in byteaddressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

# FIGURE 4-2: DATA SPACE MEMORY MAP FOR PIC24FJ256GA705 DEVICES



### 4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC<sup>®</sup> MCUs and improve Data Space memory usage efficiency, the PIC24F instruction set supports both word and byte operations. As a consequence of byte accessibility, all EA calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode, [Ws++], will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word, which contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address.

All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap will be generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write will not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB. The Most Significant Byte (MSB) is not modified.

A Sign-Extend (SE) instruction is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions operate only on words.

# 4.2.3 NEAR DATA SPACE

The 8-Kbyte area between 0000h and 1FFFh is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. The remainder of the Data Space is addressable indirectly. Additionally, the whole Data Space is addressable using MOV instructions, which support Memory Direct Addressing with a 16-bit address field.

# 4.2.4 SPECIAL FUNCTION REGISTER (SFR) SPACE

The first 2 Kbytes of the Near Data Space, from 0000h to 07FFh, are primarily occupied with Special Function Registers (SFRs). These are used by the PIC24F core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'. A diagram of the SFR space, showing where the SFRs are actually implemented, is shown in Table 4-3. Each implemented area indicates a 32-byte region where at least one address is implemented as an SFR. A complete list of implemented SFRs, including their addresses, is shown in Table 4-4 through 4-11.

|      |           |                      |      |      |        |      | SFR  | Space A | ddress |      |      |                  |      |      |      |      |     |
|------|-----------|----------------------|------|------|--------|------|------|---------|--------|------|------|------------------|------|------|------|------|-----|
|      | xx00      | xx10                 | xx20 | xx30 | xx40   | xx50 | xx60 | xx70    | xx80   | xx90 | xxA0 | xxB0             | xxC0 | xxD0 | xxE0 | ххF  | 0   |
| 000h | 000h Core |                      |      |      |        |      |      |         |        |      |      |                  |      |      |      |      |     |
| 100h | OSC       | Reset <sup>(1)</sup> |      | EPMP |        | CRC  | REFO | PN      | ΛD     | Tim  | ners | -                | CTMU |      | RTCC |      |     |
| 200h |           | Capture              |      |      | Compar | e    |      |         |        | M    | CCP  |                  |      |      | Comp | ANCF | -G  |
| 300h |           | MC                   | CP   |      |        | _    | —    |         |        |      | UA   | RT               |      | —    | —    |      | SPI |
| 400h |           |                      | SPI  |      |        | _    | CL   | .C      | _      | —    |      | l <sup>2</sup> C |      |      | DMA  |      |     |
| 500h | DMA       |                      |      |      |        | _    | —    |         |        | —    | —    | -                | —    | —    | —    |      |     |
| 600h | —         | _                    | _    | _    |        |      |      |         |        | 1/0  | 0    |                  |      |      |      |      |     |
| 700h | —         |                      |      | A/D  |        |      | NVM  | _       | _      |      |      |                  | PPS  |      |      |      |     |

# TABLE 4-3: IMPLEMENTED REGIONS OF SFR DATA SPACE<sup>(2)</sup>

Legend: — = No implemented SFRs in this block

Note 1: Includes HLVD control.

2: Regions shown are approximate. Refer to Table 4-4 through Table 4-11 for exact addresses.

| File Name     | Address | All Resets | File Name                        | Address | All Resets |  |  |
|---------------|---------|------------|----------------------------------|---------|------------|--|--|
| CPU CORE      |         |            | INTERRUPT CONTROLLER (CONTINUED) |         |            |  |  |
| WREG0         | 0000    | 0000       | IEC1                             | 009A    | 0000       |  |  |
| WREG1         | 0002    | 0000       | IEC2                             | 009C    | 0000       |  |  |
| WREG2         | 0004    | 0000       | IEC3                             | 009E    | 0000       |  |  |
| WREG3         | 0006    | 0000       | IEC4                             | 00A0    | 0000       |  |  |
| WREG4         | 0008    | 0000       | IEC5                             | 00A2    | 0000       |  |  |
| WREG5         | 000A    | 0000       | IEC6                             | 00A4    | 0000       |  |  |
| WREG6         | 000C    | 0000       | IEC7                             | 00A6    | 0000       |  |  |
| WREG7         | 000E    | 0000       | IPC0                             | 00A8    | 4444       |  |  |
| WREG8         | 0010    | 0000       | IPC1                             | 00AA    | 4444       |  |  |
| WREG9         | 0012    | 0000       | IPC2                             | 00AC    | 4444       |  |  |
| WREG10        | 0014    | 0000       | IPC3                             | 00AE    | 4444       |  |  |
| WREG11        | 0016    | 0000       | IPC4                             | 00B0    | 4444       |  |  |
| WREG12        | 0018    | 0000       | IPC5                             | 00B2    | 4404       |  |  |
| WREG13        | 001A    | 0000       | IPC6                             | 00B4    | 4444       |  |  |
| WREG14        | 001C    | 0000       | IPC7                             | 00B6    | 4444       |  |  |
| WREG15        | 001E    | 0800       | IPC8                             | 00B8    | 0044       |  |  |
| SPLIM         | 0020    | xxxx       | IPC9                             | 00BA    | 4444       |  |  |
| PCL           | 002E    | 0000       | IPC10                            | 00BC    | 4444       |  |  |
| PCH           | 0030    | 0000       | IPC11                            | 00BE    | 4444       |  |  |
| DSRPAG        | 0032    | 0000       | IPC12                            | 00C0    | 4444       |  |  |
| DSWPAG        | 0034    | 0000       | IPC13                            | 00C2    | 0440       |  |  |
| RCOUNT        | 0036    | xxxx       | IPC14                            | 00C4    | 4400       |  |  |
| SR            | 0042    | 0000       | IPC15                            | 00C6    | 4444       |  |  |
| CORCON        | 0044    | 0004       | IPC16                            | 00C8    | 4444       |  |  |
| DISICNT       | 0052    | xxxx       | IPC17                            | 00CA    | 4444       |  |  |
| TBLPAG        | 0054    | 0000       | IPC18                            | 00CC    | 0044       |  |  |
| INTERRUPT CON | TROLLER | •          | IPC19                            | 00CE    | 0040       |  |  |
| INTCON1       | 0080    | 0000       | IPC20                            | 00D0    | 4440       |  |  |
| INTCON2       | 0082    | 8000       | IPC21                            | 00D2    | 4444       |  |  |
| INTCON4       | 0086    | 0000       | IPC22                            | 00D4    | 4444       |  |  |
| IFS0          | 0088    | 0000       | IPC23                            | 00D6    | 4400       |  |  |
| IFS1          | 008A    | 0000       | IPC24                            | 00D8    | 4444       |  |  |
| IFS2          | 008C    | 0000       | IPC25                            | 00DA    | 0440       |  |  |
| IFS3          | 008E    | 0000       | IPC26                            | 00DC    | 0400       |  |  |
| IFS4          | 0090    | 0000       | IPC27                            | 00DE    | 4440       |  |  |
| IFS5          | 0092    | 0000       | IPC28                            | 00E0    | 4444       |  |  |
| IFS6          | 0094    | 0000       | IPC29                            | 00E2    | 0044       |  |  |
| IFS7          | 0096    | 0000       | INTTREG                          | 00E4    | 0000       |  |  |
| IEC0          | 0098    | 0000       |                                  |         | •          |  |  |

TABLE 4-4: SFR MAP: 0000h BLOCK

Legend: x = undefined. Reset values are shown in hexadecimal.

| File Name  | Address | All Resets | File Name                           | Address | All Resets |  |  |
|------------|---------|------------|-------------------------------------|---------|------------|--|--|
| OSCILLATOR |         | ·          | PMD (CONTINUED)                     |         |            |  |  |
| OSCCON     | 0100    | xxx0       | PMD3                                | 017C    | 0000       |  |  |
| CLKDIV     | 0102    | 30x0       | PMD4                                | 017E    | 0000       |  |  |
| OSCTUN     | 0108    | 0000       | PMD5                                | 0180    | 0000       |  |  |
| OSCDIV     | 010C    | 0001       | PMD6                                | 0182    | 0000       |  |  |
| OSCFDIV    | 010E    | 0000       | PMD7                                | 0184    | 0000       |  |  |
| RESET      |         | •          | PMD8                                | 0186    | 0000       |  |  |
| RCON       | 0110    | 0003       | TIMER                               |         |            |  |  |
| HLVD       |         |            | TMR1                                | 0190    | 0000       |  |  |
| HLVDCON    | 0114    | 0000       | PR1                                 | 0192    | FFFF       |  |  |
| PMP        |         |            | T1CON                               | 0194    | 0000       |  |  |
| PMCON1     | 0128    | 0000       | TMR2                                | 0196    | 0000       |  |  |
| PMCON2     | 012A    | 0000       | TMR3HLD                             | 0198    | 0000       |  |  |
| PMCON3     | 012C    | 0000       | TMR3                                | 019A    | 0000       |  |  |
| PMCON4     | 012E    | 0000       | PR2                                 | 019C    | FFFF       |  |  |
| PMCS1CF    | 0130    | 0000       | PR3                                 | 019E    | FFFF       |  |  |
| PMCS1BS    | 0132    | 0000       | T2CON                               | 01A0    | 0x00       |  |  |
| PMCS1MD    | 0134    | 0000       | T3CON                               | 01A2    | 0x00       |  |  |
| PMCS2CF    | 0136    | 0000       | СТМИ                                |         |            |  |  |
| PMCS2BS    | 0138    | 0000       | CTMUCON1L                           | 01C0    | 0000       |  |  |
| PMCS2MD    | 013A    | 0000       | CTMUCON1H                           | 01C2    | 0000       |  |  |
| PMDOUT1    | 013C    | xxxx       | CTMUCON2L                           | 01C4    | 0000       |  |  |
| PMDOUT2    | 013E    | xxxx       | REAL-TIME CLOCK AND CALENDAR (RTCC) |         |            |  |  |
| PMDIN1     | 0140    | xxxx       | RTCCON1L                            | 01CC    | xxxx       |  |  |
| PMDIN2     | 0142    | xxxx       | RTCCON1H                            | 01CE    | xxxx       |  |  |
| PMSTAT     | 0144    | 008F       | RTCCON2L                            | 01D0    | xxxx       |  |  |
| CRC        |         |            | RTCCON2H                            | 01D2    | xxxx       |  |  |
| CRCCON1    | 0158    | 00x0       | RTCCON3L                            | 01D4    | xxxx       |  |  |
| CRCCON2    | 015A    | 0000       | RTCSTATL                            | 01D8    | 00xx       |  |  |
| CRCXORL    | 015C    | 0000       | TIMEL                               | 01DC    | xx00       |  |  |
| CRCXORH    | 015E    | 0000       | TIMEH                               | 01DE    | xxxx       |  |  |
| CRCDATL    | 0160    | xxxx       | DATEL                               | 01E0    | xx0x       |  |  |
| CRCDATH    | 0162    | xxxx       | DATEH                               | 01E2    | xxxx       |  |  |
| CRCWDATL   | 0164    | xxxx       | ALMTIMEL                            | 01E4    | xx00       |  |  |
| CRCWDATH   | 0166    | xxxx       | ALMTIMEH                            | 01E6    | xxxx       |  |  |
| REFO       |         |            | ALMDATEL                            | 01E8    | xx0x       |  |  |
| REFOCONL   | 0168    | 0000       | ALMDATEH                            | 01EA    | xxxx       |  |  |
| REFOCONH   | 016A    | 0000       | TSATIMEL                            | 01EC    | xx00       |  |  |
| REFOTRIML  | 016C    | 0000       | TSATIMEH                            | 01EE    | xxxx       |  |  |
| PMD        |         |            | TSADATEL                            | 01F0    | xx0x       |  |  |
| PMD1       | 0178    | 0000       | TSADATEH                            | 01F2    | xxxx       |  |  |
| PMD2       | 017A    | 0000       |                                     |         |            |  |  |

# TABLE 4-5: SFR MAP: 0100h BLOCK

 $\label{eq:legend: set values are shown in hexadecimal.} \ensuremath{\text{Legend: }} x \ensuremath{\text{ = undefined. Reset values are shown in hexadecimal.}}$ 

| File Name      | Address           | All Resets | File Name       | Address         | All Resets        |
|----------------|-------------------|------------|-----------------|-----------------|-------------------|
| INPUT CAPTURE  |                   |            | MULTIPLE OUTPUT | CAPTURE/COMPARI | E/PWM (CONTINUED) |
| IC1CON1        | 0200              | 0000       | CCP1RAH         | 0286            | 0000              |
| IC1CON2        | 0202              | 000D       | CCP1RBL         | 0288            | 0000              |
| IC1BUF         | 0204              | 0000       | CCP1RBH         | 028A            | 0000              |
| IC1TMR         | 0206              | 0000       | CCP1BUFL        | 028C            | 0000              |
| IC2CON1        | 0208              | 0000       | CCP1BUFH        | 028E            | 0000              |
| IC2CON2        | 020A              | 000D       | CCP2CON1L       | 0290            | 0000              |
| IC2BUF         | 020C              | 0000       | CCP2CON1H       | 0292            | 0000              |
| IC2TMR         | 020E              | 0000       | CCP2CON2L       | 0294            | 0000              |
| IC3CON1        | 0210              | 0000       | CCP2CON2H       | 0296            | 0100              |
| IC3CON2        | 0212              | 000D       | CCP2CON3L       | 0298            | 0000              |
| IC3BUF         | 0214              | 0000       | CCP2CON3H       | 029A            | 0000              |
| IC3TMR         | 0216              | 0000       | CCP2STATL       | 029C            | 00x0              |
| OUTPUT COMPAR  | RE                |            | CCP2STATH       | 029E            | 0000              |
| OC1CON1        | 0230              | 0000       | CCP2TMRL        | 02A0            | 0000              |
| OC1CON2        | 0232              | 000C       | CCP2TMRH        | 02A2            | 0000              |
| OC1RS          | 0234              | xxxx       | CCP2PRL         | 02A4            | FFFF              |
| OC1R           | 0236              | xxxx       | CCP2PRH         | 02A6            | FFFF              |
| OC1TMR         | 0238              | xxxx       | CCP2RAL         | 02A8            | 0000              |
| OC2CON1        | 023A              | 0000       | CCP2RAH         | 02AA            | 0000              |
| OC2CON2        | 023C              | 000C       | CCP2RBL         | 02AC            | 0000              |
| OC2RS          | 023E              | xxxx       | CCP2RBH         | 02AE            | 0000              |
| OC2R           | 0240              | xxxx       | CCP2BUFL        | 02B0            | 0000              |
| OC2TMR         | 0242              | xxxx       | CCP2BUFH        | 02B2            | 0000              |
| OC3CON1        | 0244              | 0000       | CCP3CON1L       | 02B4            | 0000              |
| OC3CON2        | 0246              | 000C       | CCP3CON1H       | 02B6            | 0000              |
| OC3RS          | 0248              | xxxx       | CCP3CON2L       | 02B8            | 0000              |
| OC3R           | 024A              | xxxx       | CCP3CON2H       | 02BA            | 0100              |
| OC3TMR         | 024C              | xxxx       | CCP3CON3L       | 02BC            | 0000              |
| MULTIPLE OUTPU | T CAPTURE/COMPARE |            | CCP3CON3H       | 02BE            | 0000              |
| CCP1CON1L      | 026C              | 0000       | CCP3STATL       | 02C0            | 00x0              |
| CCP1CON1H      | 026E              | 0000       | CCP3STATH       | 02C2            | 0000              |
| CCP1CON2L      | 0270              | 0000       | CCP3TMRL        | 02C4            | 0000              |
| CCP1CON2H      | 0272              | 0100       | CCP3TMRH        | 02C6            | 0000              |
| CCP1CON3L      | 0274              | 0000       | CCP3PRL         | 02C8            | FFFF              |
| CCP1CON3H      | 0276              | 0000       | CCP3PRH         | 02CA            | FFFF              |
| CCP1STATL      | 0278              | 00x0       | CCP3RAL         | 02CC            | 0000              |
| CCP1STATH      | 027A              | 0000       | CCP3RAH         | 02CE            | 0000              |
| CCP1TMRL       | 027C              | 0000       | CCP3RBL         | 02D0            | 0000              |
| CCP1TMRH       | 027E              | 0000       | CCP3RBH         | 02D2            | 0000              |
| CCP1PRL        | 0280              | FFFF       | CCP3BUFL        | 02D4            | 0000              |
| CCP1PRH        | 0282              | FFFF       | CCP3BUFH        | 02D6            | 0000              |
| CCP1RAL        | 0284              | 0000       |                 | 1               | 1                 |

TABLE 4-6: SFR MAP: 0200h BLOCK

**Legend:** x = undefined. Reset values are shown in hexadecimal.

| File Name   | Address | All Resets              | File Name            | Address | All Resets |  |  |
|-------------|---------|-------------------------|----------------------|---------|------------|--|--|
| COMPARATORS |         | COMPARATORS (CONTINUED) |                      |         |            |  |  |
| CMSTAT      | 02E6    | 0000                    | CM3CON               | 02EE    | 0000       |  |  |
| CVRCON      | 02E8    | 00xx                    | ANALOG CONFIGURATION |         |            |  |  |
| CM1CON      | 02EA    | 0000                    | ANCFG                | 02F4    | 0000       |  |  |
| CM2CON      | 02EC    | 0000                    |                      |         |            |  |  |

# TABLE 4-6: SFR MAP: 0200h BLOCK (CONTINUED)

 $\label{eq:Legend: Legend: Legend: Legend: Legend: x = undefined. Reset values are shown in hexadecimal.$ 

# TABLE 4-7: SFR MAP: 0300h BLOCK

| File Name       | Address        | All Resets | File Name | Address | All Resets |
|-----------------|----------------|------------|-----------|---------|------------|
| MULTIPLE OUTPUT | CAPTURE/COMPAR | E/PWM      | UART      |         | •          |
| CCP4CON1L       | 0300           | 0000       | U1MODE    | 0398    | 0000       |
| CCP4CON1H       | 0302           | 0000       | U1STA     | 039A    | 0110       |
| CCP4CON2L       | 0304           | 0000       | U1TXREG   | 039C    | x0xx       |
| CCP4CON2H       | 0306           | 0100       | U1RXREG   | 039E    | 0000       |
| CCP4CON3L       | 0308           | 0000       | U1BRG     | 03A0    | 0000       |
| CCP4CON3H       | 030A           | 0000       | U1ADMD    | 03A2    | 0000       |
| CCP4STATL       | 030C           | 00x0       | U2MODE    | 03AE    | 0000       |
| CCP4STATH       | 030E           | 0000       | U2STA     | 03B0    | 0110       |
| CCP4TMRL        | 0310           | 0000       | U2TXREG   | 03B2    | xxxx       |
| CCP4TMRH        | 0312           | 0000       | U2RXREG   | 03B4    | 0000       |
| CCP4PRL         | 0314           | FFFF       | U2BRG     | 03B6    | 0000       |
| CCP4PRH         | 0316           | FFFF       | U2ADMD    | 03B8    | 0000       |
| CCP4RAL         | 0318           | 0000       | SPI       |         |            |
| CCP4RAH         | 031A           | 0000       | SPI1CON1L | 03F4    | 0x00       |
| CCP4RBL         | 031C           | 0000       | SPI1CON1H | 03F6    | 0000       |
| CCP4RBH         | 031E           | 0000       | SPI1CON2L | 03F8    | 0000       |
| CCP4BUFL        | 0320           | 0000       | SPI1STATL | 03FC    | 0028       |
| CCP4BUFH        | 0322           | 0000       | SPI1CON2H | 03F8    | 0000       |
|                 |                | ·          | SPI1STATH | 03FE    | 0000       |

**Legend:** x = undefined. Reset values are shown in hexadecimal.

| File Name        | Address          | All Resets | File Name                    | Address | All Resets |
|------------------|------------------|------------|------------------------------|---------|------------|
| SPI (CONTINUED   | ))               |            | I <sup>2</sup> C (CONTINUED) | 0498    | 0000       |
| SPI1BUFL         | 0400             | 0000       | I2C1BRG                      | 0498    | 0000       |
| SPI1BUFH         | 0402             | 0000       | I2C1CONL                     | 049A    | 1000       |
| SPI1BRGL         | 0404             | xxxx       | I2C1CONH                     | 049C    | 0000       |
| SPI1IMSKL        | 0408             | 0000       | I2C1STAT                     | 049E    | 0000       |
| SPI1IMSKH        | 040A             | 0000       | I2C1ADD                      | 04A0    | 0000       |
| SPI1URDTL        | 040C             | 0000       | I2C1MSK                      | 04A2    | 0000       |
| SPI1URDTH        | 040E             | 0000       | I2C2RCV                      | 04A4    | 0000       |
| SPI2CON1L        | 0410             | 0x00       | I2C2TRN                      | 04A6    | 00FF       |
| SPI2CON1H        | 0412             | 0000       | I2C2BRG                      | 04A8    | 0000       |
| SPI2CON2L        | 0414             | 0000       | I2C2CONL                     | 04AA    | 1000       |
| SPI2STATL        | 0418             | 0028       | I2C2CONH                     | 04AC    | 0000       |
| SPI2STATH        | 041A             | 0000       | I2C2STAT                     | 04AE    | 0000       |
| SPI2BUFL         | 041C             | 0000       | I2C2ADD                      | 04B0    | 0000       |
| SPI2BUFH         | 041E             | 0000       | I2C2MSK                      | 04B2    | 0000       |
| SPI2BRGL         | 0420             | xxxx       | DMA                          |         | •          |
| SPI2IMSKL        | 0424             | 0000       | DMACON                       | 04C4    | 0000       |
| SPI2IMSKH        | 0426             | 0000       | DMABUF                       | 04C6    | 0000       |
| SPI2URDTL        | 0428             | 0000       | DMAL                         | 04C8    | 0000       |
| SPI2URDTH        | 042A             | 0000       | DMAH                         | 04CA    | 0000       |
| SPI3CON1L        | 042C             | 0x00       | DMACH0                       | 04CC    | 0000       |
| SPI3CON1H        | 042E             | 0000       | DMAINT0                      | 04CE    | 0000       |
| SPI3CON2L        | 0430             | 0000       | DMASRC0                      | 04D0    | 0000       |
| SPI3STATL        | 0434             | 0028       | DMADST0                      | 04D2    | 0000       |
| SPI3STATH        | 0436             | 0000       | DMACNT0                      | 04D4    | 0001       |
| SPI3BUFL         | 0438             | 0000       | DMACH1                       | 04D6    | 0000       |
| SPI3BUFH         | 043A             | 0000       | DMAINT1                      | 04D8    | 0000       |
| SPI3BRGL         | 043C             | xxxx       | DMASRC1                      | 04DA    | 0000       |
| SPI3IMSKL        | 0440             | 0000       | DMADST1                      | 04DC    | 0000       |
| SPI3IMSKH        | 0442             | 0000       | DMACNT1                      | 04DE    | 0001       |
| SPI3URDTL        | 0444             | 0000       | DMACH2                       | 04E0    | 0000       |
| SPI3URDTH        | 0446             | 0000       | DMAINT2                      | 04E2    | 0000       |
| CONFIGURABLE     | LOGIC CELL (CLC) |            | DMASRC2                      | 04E4    | 0000       |
| CLC1CONL         | 0464             | 0000       | DMADST2                      | 04E6    | 0000       |
| CLC1CONH         | 0466             | 0000       | DMACNT2                      | 04E8    | 0001       |
| CLC1SEL          | 0468             | 0000       | DMACH3                       | 04EA    | 0000       |
| CLC1GLSL         | 046C             | 0000       | DMAINT3                      | 04EC    | 0000       |
| CLC1GLSH         | 046E             | 0000       | DMASRC3                      | 04EE    | 0000       |
| CLC2CONL         | 0470             | 0000       | DMADST3                      | 04F0    | 0000       |
| CLC2CONH         | 0472             | 0000       | DMACNT3                      | 04F2    | 0001       |
| CLC2SEL          | 0474             | 0000       | DMACH4                       | 04F4    | 0000       |
| CLC2GLSL         | 0478             | 0000       | DMAINT4                      | 04F6    | 0000       |
| CLC2GLSH         | 047A             | 0000       | DMASRC4                      | 04F8    | 0000       |
| l <sup>2</sup> C |                  |            | DMADST4                      | 04FA    | 0000       |
| 2C1RCV           | 0494             | 0000       | DMACNT4                      | 04FC    | 0001       |
| I2C1TRN          | 0496             | 00FF       | DMACH5                       | 04FE    | 0000       |

TABLE 4-8: SFR MAP: 0400h BLOCK

| File Name       | Address | All Resets      | File Name | Address | All Resets |  |
|-----------------|---------|-----------------|-----------|---------|------------|--|
| DMA (CONTINUED) |         | DMA (CONTINUED) |           |         |            |  |
| DMAINT5         | 0500    | 0000            | DMADST5   | 0504    | 0000       |  |
| DMASRC5         | 0502    | 0000            | DMACNT5   | 0506    | 0001       |  |

# TABLE 4-9: SFR MAP: 0500h BLOCK

Legend: x = undefined. Reset values are shown in hexadecimal.

#### TABLE 4-10: SFR MAP: 0600h BLOCK

| File Name | Address | All Resets | File Name       | Address           | All Resets |  |
|-----------|---------|------------|-----------------|-------------------|------------|--|
| I/O       |         |            | PORTB (CONTINUE | PORTB (CONTINUED) |            |  |
| PADCON    | 065E    | 0000       | ANSB            | 067E              | FFFF       |  |
| IOCSTAT   | 0660    | 0000       | IOCPB           | 0680              | 0000       |  |
| PORTA     |         |            | IOCNB           | 0682              | 0000       |  |
| TRISA     | 0662    | FFFF       | IOCFB           | 0684              | 0000       |  |
| PORTA     | 0664    | 0000       | IOCPUB          | 0686              | 0000       |  |
| LATA      | 0666    | 0000       | IOCPDB          | 0688              | 0000       |  |
| ODCA      | 0668    | 0000       | PORTC           |                   |            |  |
| ANSA      | 066A    | FFFF       | TRISC           | 068A              | FFFF       |  |
| IOCPA     | 066C    | 0000       | PORTC           | 068C              | 0000       |  |
| IOCNA     | 066E    | 0000       | LATC            | 068E              | 0000       |  |
| IOCFA     | 0670    | 0000       | ODCC            | 0690              | 0000       |  |
| IOCPUA    | 0672    | 0000       | ANSC            | 0692              | FFFF       |  |
| IOCPDA    | 0674    | 0000       | IOCPC           | 0694              | 0000       |  |
| PORTB     |         | ·          | IOCNC           | 0696              | 0000       |  |
| TRISB     | 0676    | FFFF       | IOCFC           | 0698              | 0000       |  |
| PORTB     | 0678    | 0000       | IOCPUC          | 069A              | 0000       |  |
| LATB      | 067A    | 0000       | IOCPDC          | 069C              | 0000       |  |
| ODCB      | 067C    | 0000       |                 | •                 | -          |  |

**Legend:** x = undefined. Reset values are shown in hexadecimal.

| File Name | Address | All Resets | File Name        | Address | All Resets |
|-----------|---------|------------|------------------|---------|------------|
| A/D       |         |            | PERIPHERAL PIN S | ELECT   |            |
| ADC1BUF0  | 0712    | xxxx       | RPINR0           | 0790    | 3F3F       |
| ADC1BUF1  | 0714    | xxxx       | RPINR1           | 0792    | 3F3F       |
| ADC1BUF2  | 0716    | xxxx       | RPINR2           | 0794    | 3F3F       |
| ADC1BUF3  | 0718    | xxxx       | RPINR3           | 0796    | 3F3F       |
| ADC1BUF4  | 071A    | xxxx       | RPINR5           | 079A    | 3F3F       |
| ADC1BUF5  | 071C    | xxxx       | RPINR6           | 079C    | 3F3F       |
| ADC1BUF6  | 071E    | xxxx       | RPINR7           | 079E    | 3F3F       |
| ADC1BUF7  | 0720    | xxxx       | RPINR8           | 07A0    | 003F       |
| ADC1BUF8  | 0722    | xxxx       | RPINR11          | 07A6    | 3F3F       |
| ADC1BUF9  | 0724    | xxxx       | RPINR12          | 07A8    | 3F3F       |
| ADC1BUF10 | 0726    | xxxx       | RPINR18          | 07B4    | 3F3F       |
| ADC1BUF11 | 0728    | xxxx       | RPINR19          | 07B6    | 3F3F       |
| ADC1BUF12 | 072A    | xxxx       | RPINR20          | 07B8    | 3F3F       |
| ADC1BUF13 | 072C    | xxxx       | RPINR21          | 07BA    | 3F3F       |
| ADC1BUF14 | 072E    | xxxx       | RPINR22          | 07BC    | 3F3F       |
| ADC1BUF15 | 0730    | xxxx       | RPINR23          | 07BE    | 3F3F       |
| AD1CON1   | 0746    | xxxx       | RPINR25          | 07C2    | 3F3F       |
| AD1CON2   | 0748    | xxxx       | RPINR28          | 07C8    | 3F3F       |
| AD1CON3   | 074A    | xxxx       | RPINR29          | 07CA    | 003F       |
| AD1CHS    | 074C    | xxxx       | RPOR0            | 07D4    | 0000       |
| AD1CSSH   | 074E    | xxxx       | RPOR1            | 07D6    | 0000       |
| AD1CSSL   | 0750    | xxxx       | RPOR2            | 07D8    | 0000       |
| AD1CON4   | 0752    | xxxx       | RPOR3            | 07DA    | 0000       |
| AD1CON5   | 0754    | xxxx       | RPOR4            | 07DC    | 0000       |
| AD1CHITL  | 0758    | xxxx       | RPOR5            | 07DE    | 0000       |
| AD1CTMENH | 075A    | 0000       | RPOR6            | 07E0    | 0000       |
| AD1CTMENL | 075C    | 0000       | RPOR7            | 07E2    | 0000       |
| AD1RESDMA | 075E    | 0000       | RPOR8            | 07E4    | 0000       |
| NVM       |         |            | RPOR9            | 07E6    | 0000       |
| NVMCON    | 0760    | 0000       | RPOR10           | 07E8    | 0000       |
| NVMADR    | 0762    | xxxx       | RPOR11           | 07EA    | 0000       |
| NVMADRU   | 0764    | 00xx       | RPOR12           | 07EC    | 0000       |
| NVMKEY    | 0766    | 0000       | RPOR13           | 07EE    | 0000       |
|           | ·       |            | RPOR14           | 07F0    | 0000       |

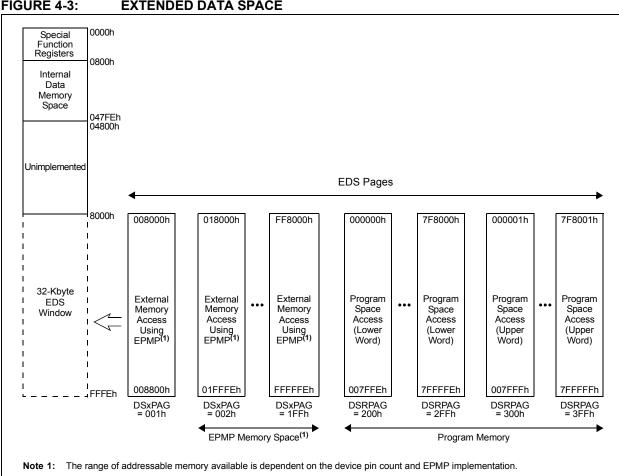
TABLE 4-11: SFR MAP: 0700h BLOCK

**Legend:** x = undefined. Reset values are shown in hexadecimal.

#### 4.2.5 EXTENDED DATA SPACE (EDS)

The Extended Data Space (EDS) allows PIC24F devices to address a much larger range of data than would otherwise be possible with a 16-bit address range. EDS includes any additional internal data memory not directly accessible by the lower 32-Kbyte data address space and any external memory through EPMP.

In addition, EDS also allows read access to the program memory space. This feature is called Program Space Visibility (PSV) and is discussed in detail in Section 4.3.3 "Reading Data from Program Memory Using EDS".


Figure 4-3 displays the entire EDS space. The EDS is organized as pages, called EDS pages, with one page equal to the size of the EDS window (32 Kbytes). A particular EDS page is selected through the Data Space Read Page register (DSRPAG) or the Data Space Write Page register (DSWPAG). For PSV, only the DSRPAG register is used. The combination of the DSRPAG register value and the 16-bit wide data address forms a 24-bit Effective Address (EA).

The data addressing range of the PIC24FJ256GA705 family devices depends on the version of the Enhanced Parallel Master Port implemented on a particular device; this is, in turn, a function of device pin count. Table 4-12 lists the total memory accessible by each of the devices in this family. For more details on accessing external memory using EPMP, refer to the "dsPIC33/PIC24 Family Reference Manual', "Enhanced Parallel Master Port (EPMP)" (DS39730).

| <b>TABLE 4-12:</b> | TOTAL ACCESSIBLE DATA |
|--------------------|-----------------------|
|                    | MEMORY                |

| Family          | Internal<br>RAM | External RAM<br>Access Using<br>EPMP |
|-----------------|-----------------|--------------------------------------|
| PIC24FJXXXGA70X | 16K             | 1K                                   |

Accessing Page 0 in the EDS window will Note: generate an address error trap as Page 0 is the base data memory (data locations, 0800h to 7FFFh, in the lower Data Space).



#### FIGURE 4-3: **EXTENDED DATA SPACE**

## 4.2.5.1 Data Read from EDS

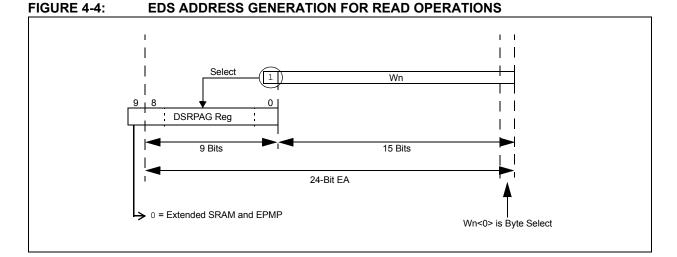

In order to read the data from the EDS space, first, an Address Pointer is set up by loading the required EDS page number into the DSRPAG register and assigning the offset address to one of the W registers. Once the above assignment is done, the EDS window is enabled by setting bit 15 of the Working register which is assigned with the offset address; then, the contents of the pointed EDS location can be read.

Figure 4-4 illustrates how the EDS space address is generated for read operations.

When the Most Significant bit (MSb) of EA is '1' and DSRPAG<9> = 0, the lower 9 bits of DSRPAG are concatenated to the lower 15 bits of EA to form a 24-bit EDS space address for read operations.

Example 4-1 shows how to read a byte, word and double word from EDS.

Note: All read operations from EDS space have an overhead of one instruction cycle. Therefore, a minimum of two instruction cycles are required to complete an EDS read. EDS reads under the REPEAT instruction; the first two accesses take three cycles and the subsequent accesses take one cycle.

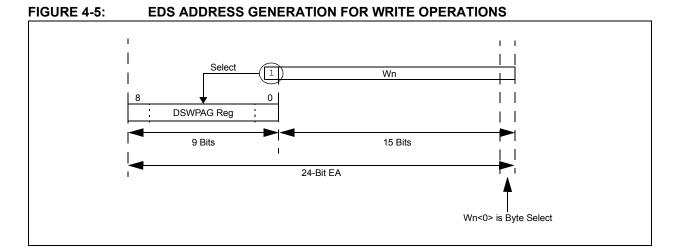


# EXAMPLE 4-1: EDS READ CODE IN ASSEMBLY

; Set the EDS page from where the data to be read mov #0x0002, w0 w0, DSRPAG ;page 2 is selected for read mov #0x0800, w1 ;select the location (0x800) to be read mov bset wl, #15 ;set the MSB of the base address, enable EDS mode ;Read a byte from the selected location mov.b [w1++], w2 ;read Low byte mov.b [w1++], w3 ;read High byte ;Read a word from the selected location mov [w1], w2 ; ;Read Double - word from the selected location mov.d [w1], w2 ;two word read, stored in w2 and w3

# 4.2.5.2 Data Write into EDS

In order to write data to EDS, such as in EDS reads, an Address Pointer is set up by loading the required EDS page number into the DSWPAG register, and assigning the offset address to one of the W registers. Once the above assignment is done, then the EDS window is enabled by setting bit 15 of the Working register, assigned with the offset address, and the accessed location can be written.


Figure 4-5 illustrates how the EDS address is generated for write operations.

When the MSbs of EA are '1', the lower 9 bits of DSWPAG are concatenated to the lower 15 bits of EA to form a 24-bit EDS address for write operations. Example 4-2 shows how to write a byte, word and double word to EDS.

The Data Space Page registers (DSRPAG/DSWPAG) do not update automatically while crossing a page boundary when the rollover happens from 0xFFFF to

0x8000. While developing code in assembly, care must be taken to update the Data Space Page registers when an Address Pointer crosses the page boundary. The 'C' compiler keeps track of the addressing, and increments or decrements the Page registers accordingly, while accessing contiguous data memory locations.

- **Note 1:** All write operations to EDS are executed in a single cycle.
  - 2: Use of Read/Modify/Write operation on any EDS location under a REPEAT instruction is not supported. For example: BCLR, BSW, BTG, RLC f, RLNC f, RRC f, RRNC f, ADD f, SUB f, SUBR f, AND f, IOR f, XOR f, ASR f, ASL f.
  - Use the DSRPAG register while performing Read/Modify/Write operations.



#### EXAMPLE 4-2: EDS WRITE CODE IN ASSEMBLY

```
; Set the EDS page where the data to be written
          #0x0002, w0
   mov
          w0, DSWPAG
                         ;page 2 is selected for write
   mov
          #0x0800, w1
                         ;select the location (0x800) to be written
   mov
          w1, #15
                         ;set the MSB of the base address, enable EDS mode
   bset
;Write a byte to the selected location
  mov #0x00A5, w2
   mov
          #0x003C, w3
   mov.b w2, [w1++]
                        ;write Low byte
   mov.b w3, [w1++]
                        ;write High byte
;Write a word to the selected location
          #0x1234, w2
   mov
                         ;
          w2, [w1]
   mov
                         ;
;Write a Double - word to the selected location
          #0x1122, w2
   mov
   mov
          #0x4455, w3
   mov.d w2, [w1]
                         ;2 EDS writes
```

| DSRPAG<br>(Data Space Read<br>Register) | DSWPAG<br>(Data Space Write<br>Register) | Source/Destination<br>Address while<br>Indirect<br>Addressing | 24-Bit EA<br>Pointing to EDS | Comment                           |
|-----------------------------------------|------------------------------------------|---------------------------------------------------------------|------------------------------|-----------------------------------|
| x <sup>(1)</sup>                        | x <sup>(1)</sup>                         | 0000h to 1FFFh                                                | 000000h to<br>001FFFh        | Near Data Space <sup>(2)</sup>    |
|                                         |                                          | 2000h to 7FFFh                                                | 002000h to<br>007FFFh        |                                   |
| 001h                                    | 001h                                     |                                                               | 008000h to<br>00FFFEh        |                                   |
| 002h                                    | 002h                                     |                                                               | 010000h to<br>017FFEh        |                                   |
| 003h<br>•                               | 003h<br>•                                | 8000h to FFFFh                                                | 018000h to<br>0187FEh        | EPMP Memory Space                 |
| •                                       | •                                        | 800011 10 FFF11                                               | •                            |                                   |
| •                                       | •                                        |                                                               | •                            |                                   |
| 1FFh                                    | 1FFh                                     |                                                               | FF8000h to<br>FFFFFEh        |                                   |
| 000h                                    | 000h                                     |                                                               | Invalid Address              | Address Error Trap <sup>(3)</sup> |

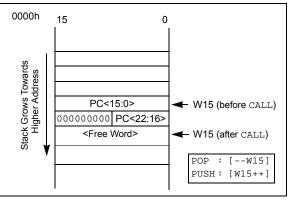
#### TABLE 4-13: EDS MEMORY ADDRESS WITH DIFFERENT PAGES AND ADDRESSES

Note 1: If the source/destination address is below 8000h, the DSRPAG and DSWPAG registers are not considered.
2: This Data Space can also be accessed by Direct Addressing.

**3:** When the source/destination address is above 8000h and DSRPAG/DSWPAG are '0', an address error trap will occur.

#### 4.2.6 SOFTWARE STACK

Apart from its use as a Working register, the W15 register in PIC24F devices is also used as a Software Stack Pointer (SSP). The pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 4-6. Note that for a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.


| Note: | A PC push during exception processing    |
|-------|------------------------------------------|
|       | will concatenate the SRL register to the |
|       | MSB of the PC prior to the push.         |

The Stack Pointer Limit Value register (SPLIM), associated with the Stack Pointer, sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' as all stack operations must be wordaligned. Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal, and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address 2000h in RAM, initialize the SPLIM with the value, 1FFEh.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0800h. This prevents the stack from interfering with the SFR space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

#### FIGURE 4-6: CALL STACK FRAME



# 4.3 Interfacing Program and Data Memory Spaces

The PIC24F architecture uses a 24-bit wide program space and 16-bit wide Data Space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the PIC24F architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the Data Space (Program Space Visibility)

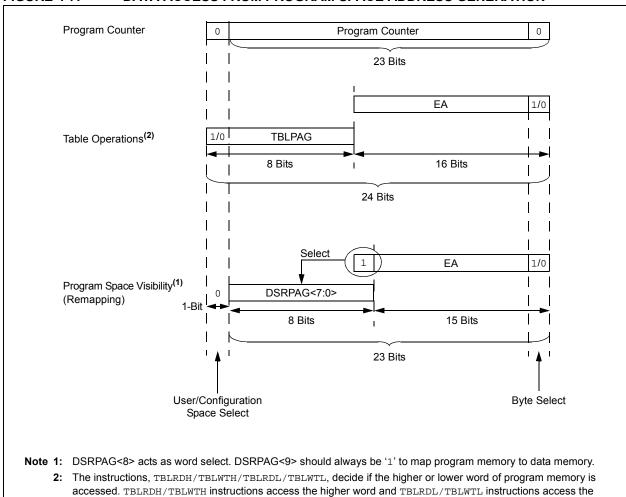
Table instructions allow an application to read or write to small areas of the program memory. This makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. It can only access the least significant word of the program word.

# 4.3.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Memory Page Address register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the MSBs of TBLPAG are used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 10-bit Extended Data Space Read register (DSRPAG) is used to define a 16K word page in the program space. When the Most Significant bit (MSb) of the EA is '1', and the MSb (bit 9) of DSRPAG is '1', the lower 8 bits of DSRPAG are concatenated with the lower 15 bits of the EA to form a 23-bit program space address. The DSRPAG<8> bit decides whether the lower word (when the bit is '0') or the higher word (when the bit is '1') of program memory is mapped. Unlike table operations, this strictly limits remapping operations to the user memory area.


Table 4-14 and Figure 4-7 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, whereas D<15:0> refers to a Data Space word.

| Access Type              | Access        | Program Space Address        |          |                                                 |                     |                  |  |
|--------------------------|---------------|------------------------------|----------|-------------------------------------------------|---------------------|------------------|--|
|                          | Space         | <23>                         | <22:16>  | <15>                                            | <14:1>              | <0>              |  |
| Instruction Access       | User          | 0                            |          | PC<22:1>                                        |                     | 0                |  |
| (Code Execution)         |               | 0xx xxxx xxxx xxxx xxxx xxx0 |          |                                                 |                     |                  |  |
| TBLRD/TBLWT              | User          | TBLPAG<7:0>                  |          | Data EA<15:0>                                   |                     |                  |  |
| (Byte/Word Read/Write)   |               | 0xxx xxxx                    |          | XXX                                             | xxxx xxxx xxxx xxxx |                  |  |
|                          | Configuration | TBLPAG<7:0>                  |          | Data EA<15:0>                                   |                     |                  |  |
|                          |               | 1xxx xxxx                    |          | xxxx xxxx xxxx xxxx                             |                     | xxx              |  |
| Program Space Visibility | User          | 0 DSRP                       |          | :0> <sup>(2)</sup> Data EA<14:0> <sup>(1)</sup> |                     | l:0>( <b>1</b> ) |  |
| (Block Remap/Read)       |               | 0                            | XXXX XXX | xx                                              | xxx xxxx xx         | xx xxxx          |  |

# TABLE 4-14: PROGRAM SPACE ADDRESS CONSTRUCTION

**Note 1:** Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is DSRPAG<0>.

2: DSRPAG<9> is always '1' in this case. DSRPAG<8> decides whether the lower word or higher word of program memory is read. When DSRPAG<8> is '0', the lower word is read, and when it is '1', the higher word is read.



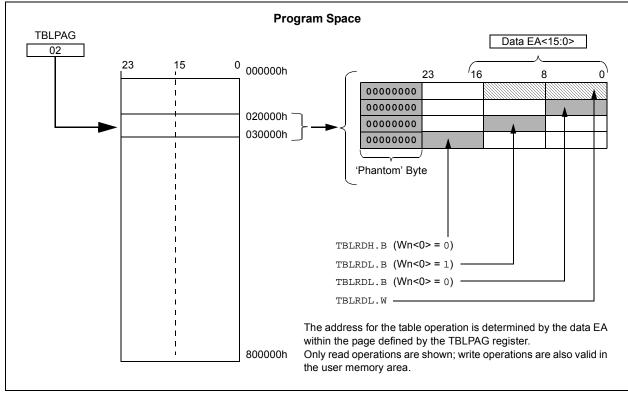
lower word. Table Read operations are permitted in the configuration memory space.

# FIGURE 4-7: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

#### 4.3.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two, 16-bit word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.


Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

 TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>). In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom' byte, will always be '0'. In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (byte select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are described in Section 6.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

Note: Only Table Read operations will execute in the configuration memory space where Device IDs are located. Table Write operations are not allowed.



# FIGURE 4-8: ACCESS PROGRAM MEMORY WITH TABLE INSTRUCTIONS

# 4.3.3 READING DATA FROM PROGRAM MEMORY USING EDS

The upper 32 Kbytes of Data Space may optionally be mapped into any 16K word page of the program space. This provides transparent access of stored constant data from the Data Space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the Data Space occurs when the MSb of EA is '1' and the DSRPAG<9> bit is also '1'. The lower 8 bits of DSRPAG are concatenated to the Wn<14:0> bits to form a 23-bit EA to access program memory. The DSRPAG<8> decides which word should be addressed; when the bit is '0', the lower word, and when '1', the upper word of the program memory is accessed.

The entire program memory is divided into 512 EDS pages, from 200h to 3FFh, each consisting of 16K words of data. Pages, 200h to 2FFh, correspond to the lower words of the program memory, while 300h to 3FFh correspond to the upper words of the program memory.

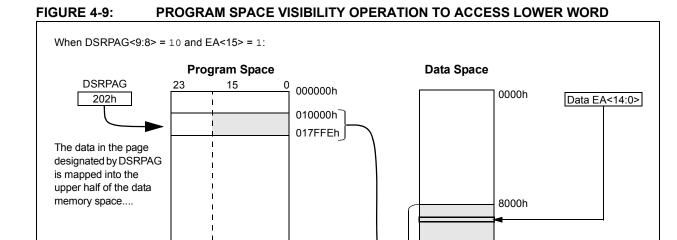
Using this EDS technique, the entire program memory can be accessed. Previously, the access to the upper word of the program memory was not supported. Table 4-15 provides the corresponding 23-bit EDS address for program memory with EDS page and source addresses.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV. D instructions will require one instruction cycle in addition to the specified execution time. All other instructions will require two instruction cycles in addition to the specified execution time.

For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.


| DSRPAG<br>(Data Space Read Register) | Source Address while<br>Indirect Addressing | 23-Bit EA Pointing<br>to EDS | Comment                            |  |
|--------------------------------------|---------------------------------------------|------------------------------|------------------------------------|--|
| 200h                                 |                                             | 000000h to 007FFEh           | Lower words of 4M program          |  |
| •                                    |                                             | •                            | instructions (8 Mbytes) for        |  |
| •                                    |                                             | •                            | read operations only.              |  |
| •                                    |                                             | •                            |                                    |  |
| 2FFh                                 |                                             | 7F8000h to 7FFFFEh           |                                    |  |
| 300h                                 | 8000h to FFFFh                              | 000001h to 007FFFh           | Upper words of 4M program          |  |
| •                                    |                                             | •                            | instructions (4 Mbytes remaining;  |  |
| •                                    |                                             | •                            | 4 Mbytes are phantom bytes) for    |  |
| •                                    |                                             | •                            | read operations only.              |  |
| 3FFh                                 |                                             | 7F8001h to 7FFFFFh           |                                    |  |
| 000h                                 |                                             | Invalid Address              | Address error trap. <sup>(1)</sup> |  |

# TABLE 4-15: EDS PROGRAM ADDRESS WITH DIFFERENT PAGES AND ADDRESSES

**Note 1:** When the source/destination address is above 8000h and DSRPAG/DSWPAG is '0', an address error trap will occur.

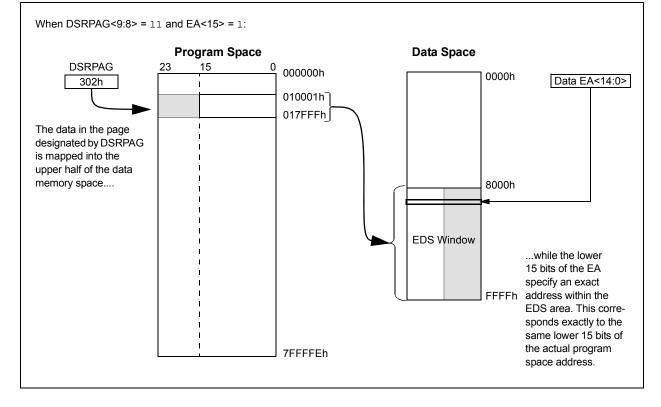
# EXAMPLE 4-3: EDS READ CODE FROM PROGRAM MEMORY IN ASSEMBLY

| ; Set the  | EDS page from where the dat | a to be read                                              |
|------------|-----------------------------|-----------------------------------------------------------|
| mov        | #0x0202, w0                 |                                                           |
| mov        | w0, DSRPAG                  | ;page 0x202, consisting lower words, is selected for read |
| mov        | #0x000A, w1                 | ;select the location (0x0A) to be read                    |
| bset       | w1, #15                     | ;set the MSB of the base address, enable EDS mode         |
| ;Read a by | te from the selected locati | on                                                        |
| mov.b      | [w1++], w2                  | ;read Low byte                                            |
| mov.b      | [w1++], w3                  | ;read High byte                                           |
| ;Read a wo | rd from the selected locati | on                                                        |
| mov        | [w1], w2                    | i                                                         |
| ;Read Doub | le - word from the selected | llocation                                                 |
| mov.d      | [w1], w2                    | ;two word read, stored in w2 and w3                       |
|            |                             |                                                           |



EDS Window

FFFFh


...while the lower 15 bits of the EA specify an exact address within the

space address.

EDS area. This corresponds exactly to the same lower 15 bits of the actual program

#### FIGURE 4-10: PROGRAM SPACE VISIBILITY OPERATION TO ACCESS UPPER WORD

7FFFFEh

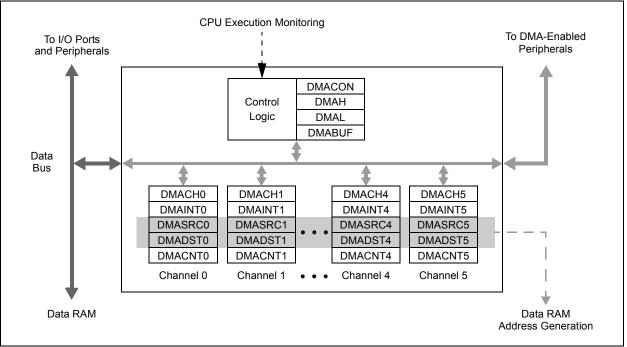


# 5.0 DIRECT MEMORY ACCESS CONTROLLER (DMA)

Note: This data sheet summarizes the features of the PIC24FJ256GA705 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Direct Memory Access Controller (DMA)" (DS39742), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Direct Memory Access (DMA) Controller is designed to service high throughput data peripherals operating on the SFR bus, allowing them to access data memory directly and alleviating the need for CPU intensive management. By allowing these data intensive peripherals to share their own data path, the main data bus is also deloaded, resulting in additional power savings.

The DMA Controller functions both as a peripheral and a direct extension of the CPU. It is located on the microcontroller data bus between the CPU and DMA-enabled peripherals, with direct access to SRAM. This partitions the SFR bus into two buses, allowing the DMA Controller access to the DMA capable peripherals located on the new DMA SFR bus. The controller serves as a master device on the DMA SFR bus, controlling data flow from DMA capable peripherals.


The controller also monitors CPU instruction processing directly, allowing it to be aware of when the CPU requires access to peripherals on the DMA bus and automatically relinquishing control to the CPU as needed. This increases the effective bandwidth for handling data without DMA operations causing a processor stall. This makes the controller essentially transparent to the user.

The DMA Controller has these features:

- Six Independent and Independently
   Programmable Channels
- Concurrent Operation with the CPU (no DMA caused Wait states)
- DMA Bus Arbitration
- · Five Programmable Address modes
- Four Programmable Transfer modes
- Four Flexible Internal Data Transfer modes
- · Byte or Word Support for Data Transfer
- 16-Bit Source and Destination Address Register for Each Channel, Dynamically Updated and Reloadable
- 16-Bit Transaction Count Register, Dynamically Updated and Reloadable
- · Upper and Lower Address Limit Registers
- Counter Half-Full Level Interrupt
- · Software Triggered Transfer
- Null Write mode for Symmetric Buffer Operations

A simplified block diagram of the DMA Controller is shown in Figure 5-1.





# 5.1 Summary of DMA Operations

The DMA Controller is capable of moving data between addresses according to a number of different parameters. Each of these parameters can be independently configured for any transaction; in addition, any or all of the DMA channels can independently perform a different transaction at the same time. Transactions are classified by these parameters:

- Source and destination (SFRs and data RAM)
- · Data size (byte or word)
- Trigger source
- Transfer mode (One-Shot, Repeated or Continuous)
- Addressing modes (Fixed Address or Address Blocks, with or without Address Increment/ Decrement)

In addition, the DMA Controller provides channel priority arbitration for all channels.

#### 5.1.1 SOURCE AND DESTINATION

Using the DMA Controller, data may be moved between any two addresses in the Data Space. The SFR space (0000h to 07FFh), or the data RAM space (0800h to FFFFh), can serve as either the source or the destination. Data can be moved between these areas in either direction or between addresses in either area. The four different combinations are shown in Figure 5-2.

If it is necessary to protect areas of data RAM, the DMA Controller allows the user to set upper and lower address boundaries for operations in the Data Space above the SFR space. The boundaries are set by the DMAH and DMAL Limit registers. If a DMA channel attempts an operation outside of the address boundaries, the transaction is terminated and an interrupt is generated.

# 5.1.2 DATA SIZE

The DMA Controller can handle both 8-bit and 16-bit transactions. Size is user-selectable using the SIZE bit (DMACHn<1>). By default, each channel is configured for word-sized transactions. When byte-sized transactions are chosen, the LSb of the source and/or destination address determines if the data represents the upper or lower byte of the data RAM location.

#### 5.1.3 TRIGGER SOURCE

The DMA Controller can use any one of the device's interrupt sources to initiate a transaction. The DMA Trigger sources are listed in reverse order of their natural interrupt priority and are shown in Table 5-1.

Since the source and destination addresses for any transaction can be programmed independently of the trigger source, the DMA Controller can use any trigger to perform an operation on any peripheral. This also allows DMA channels to be cascaded to perform more complex transfer operations.

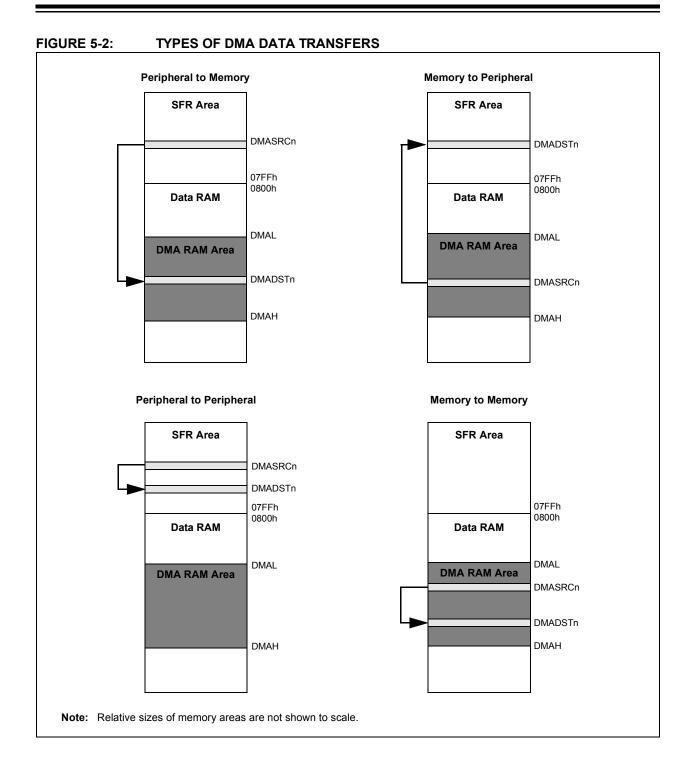
# 5.1.4 TRANSFER MODE

The DMA Controller supports four types of data transfers, based on the volume of data to be moved for each trigger.

- One-Shot: A single transaction occurs for each trigger.
- Continuous: A series of back-to-back transactions occur for each trigger; the number of transactions is determined by the DMACNTn transaction counter.
- Repeated One-Shot: A single transaction is performed repeatedly, once per trigger, until the DMA channel is disabled.
- Repeated Continuous: A series of transactions are performed repeatedly, one cycle per trigger, until the DMA channel is disabled.

All transfer modes allow the option to have the source and destination addresses, and counter value automatically reloaded after the completion of a transaction. Repeated mode transfers do this automatically.

## 5.1.5 ADDRESSING MODES


The DMA Controller also supports transfers between single addresses or address ranges. The four basic options are:

- Fixed-to-Fixed: Between two constant addresses
- Fixed-to-Block: From a constant source address to a range of destination addresses
- Block-to-Fixed: From a range of source addresses to a single, constant destination address
- Block-to-Block: From a range to source addresses to a range of destination addresses

The option to select auto-increment or auto-decrement of source and/or destination addresses is available for Block Addressing modes.

In addition to the four basic modes, the DMA Controller also supports Peripheral Indirect Addressing (PIA) mode, where the source or destination address is generated jointly by the DMA Controller and a PIA capable peripheral. When enabled, the DMA channel provides a base source and/or destination address, while the peripheral provides a fixed range offset address.

For PIC24FJ256GA705 family devices, the 12-bit A/D Converter module is the only PIA capable peripheral. Details for its use in PIA mode are provided in Section 24.0 "12-Bit A/D Converter with Threshold Detect".



# 5.1.6 CHANNEL PRIORITY

Each DMA channel functions independently of the others, but also competes with the others for access to the data and DMA buses. When access collisions occur, the DMA Controller arbitrates between the channels using a user-selectable priority scheme. Two schemes are available:

- Round-Robin: When two or more channels collide, the lower numbered channel receives priority on the first collision. On subsequent collisions, the higher numbered channels each receive priority, based on their channel number.
- Fixed: When two or more channels collide, the lowest numbered channel always receives priority, regardless of past history; however, any channel being actively processed is not available for an immediate retrigger. If a higher priority channel is continually requesting service, it will be scheduled for service after the next lower priority channel with a pending request.

# 5.2 Typical Setup

To set up a DMA channel for a basic data transfer:

- Enable the DMA Controller (DMAEN = 1) and select an appropriate channel priority scheme by setting or clearing PRSSEL.
- 2. Program DMAH and DMAL with the appropriate upper and lower address boundaries for data RAM operations.
- 3. Select the DMA channel to be used and disable its operation (CHEN = 0).
- Program the appropriate source and destination addresses for the transaction into the channel's DMASRCn and DMADSTn registers. For PIA mode addressing, use the base address value.
- 5. Program the DMACNTn register for the number of triggers per transfer (One-Shot or Continuous modes) or the number of words (bytes) to be transferred (Repeated modes).
- 6. Set or clear the SIZE bit to select the data size.
- 7. Program the TRMODE<1:0> bits to select the Data Transfer mode.
- 8. Program the SAMODE<1:0> and DAMODE<1:0> bits to select the addressing mode.
- 9. Enable the DMA channel by setting CHEN.
- 10. Enable the trigger source interrupt.

# 5.3 Peripheral Module Disable

Unlike other peripheral modules, the channels of the DMA Controller cannot be individually powered down using the Peripheral Module Disable (PMD) registers. Instead, the channels are controlled as two groups. The DMA0MD bit (PMD7<4>) selectively controls DMACH0 through DMACH3. The DMA1MD bit (PMD7<5>) controls DMACH4 and DMACH5. Setting both bits effectively disables the DMA Controller.

# 5.4 DMA Registers

The DMA Controller uses a number of registers to control its operation. The number of registers depends on the number of channels implemented for a particular device.

There are always four module-level registers (one control and three buffer/address):

- DMACON: DMA Engine Control Register (Register 5-1)
- DMAH and DMAL: DMA High and Low Address Limit Registers
- DMABUF: DMA Data Buffer

Each of the DMA channels implements five registers (two control and three buffer/address):

- DMACHn: DMA Channel n Control Register (Register 5-2)
- DMAINTn: DMA Channel n Interrupt Register (Register 5-3)
- DMASRCn: DMA Data Source Address Pointer for Channel n
- DMADSTn: DMA Data Destination Address Pointer for Channel n
- DMACNTn: DMA Transaction Counter for Channel n

For PIC24FJ256GA705 family devices, there are a total of 34 registers.

| R/W-0  | U-0    |
|--------|-----|-----|-----|-----|-----|-----|--------|
| DMAEN  | —   | —   | —   | _   | —   | —   | —      |
| bit 15 |     |     |     |     |     |     | bit 8  |
|        |     |     |     |     |     |     |        |
| U-0    | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0  |
| —      | —   | —   | —   | _   | —   | —   | PRSSEL |
| bit 7  |     |     |     |     |     |     | bit 0  |
|        |     |     |     |     |     |     |        |

# REGISTER 5-1: DMACON: DMA ENGINE CONTROL REGISTER

# Legend:

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15 DMAEN: DMA Module Enable bit

1 = Enables module

0 = Disables module and terminates all active DMA operation(s)

bit 14-1 Unimplemented: Read as '0'

bit 0 PRSSEL: Channel Priority Scheme Selection bit

1 = Round-robin scheme

0 = Fixed priority scheme

| U-0           | U-0                | U-0                              | r-0             | U-0               | R/W-0             | R/W-0                 | R/W-0                  |
|---------------|--------------------|----------------------------------|-----------------|-------------------|-------------------|-----------------------|------------------------|
| _             | _                  | _                                | _               |                   | NULLW             | RELOAD <sup>(1)</sup> | CHREQ <sup>(3)</sup>   |
| bit 15        |                    |                                  | •               | •                 | •                 | •                     | bit                    |
| R/W-0         | R/W-0              | R/W-0                            | R/W-0           | R/W-0             | R/W-0             | R/W-0                 | R/W-0                  |
| SAMODE1       | SAMODE0            | DAMODE1                          | DAMODE0         | TRMODE1           | TRMODE0           | SIZE                  | CHEN                   |
| bit 7         |                    |                                  |                 |                   |                   |                       | bit                    |
| Legend:       |                    | r = Reserved                     | bit             |                   |                   |                       |                        |
| R = Readable  | e bit              | W = Writable                     | bit             | U = Unimplen      | nented bit, read  | l as '0'              |                        |
| -n = Value at | POR                | '1' = Bit is set                 |                 | '0' = Bit is clea | ared              | x = Bit is unkn       | own                    |
| bit 15-13     | Unimplemen         | ted: Read as '                   | )'              |                   |                   |                       |                        |
| bit 12        | Reserved: Ma       | aintain as '0'                   |                 |                   |                   |                       |                        |
| bit 11        | Unimplemen         | ted: Read as '                   | י)              |                   |                   |                       |                        |
| bit 10        | NULLW: Null        | Write Mode bit                   |                 |                   |                   |                       |                        |
|               |                    | / write is initiate              |                 | n for every writ  | e to DMADSTr      | ı                     |                        |
|               |                    | ny write is initia               |                 |                   |                   |                       |                        |
| bit 9         |                    | Idress and Cou                   |                 |                   |                   |                       |                        |
|               |                    | on, DMADSTn<br>ne next operatio  |                 | n registers are   | reloaded to th    | eir previous va       | lues upon th           |
|               |                    |                                  |                 | n are not reload  | led on the start  | of the next ope       | eration <sup>(2)</sup> |
| bit 8         |                    | A Channel Soft                   |                 |                   |                   |                       |                        |
|               | 1 = A DMA re       |                                  | ed by software; |                   | cleared upon c    | ompletion of a        | DMA transfe            |
| bit 7-6       |                    | 0>: Source Add                   | •               | lection bits      |                   |                       |                        |
|               |                    | Cn is used in F                  |                 |                   | and remains u     | nchanged              |                        |
|               | 10 = DMASR         | Cn is decreme                    | nted based on   | the SIZE bit aff  | ter a transfer co | ompletion             |                        |
|               |                    | Cn is incremen                   |                 |                   |                   | mpletion              |                        |
|               |                    | Cn remains un                    |                 |                   |                   |                       |                        |
| bit 5-4       |                    | 0>: Destination                  |                 |                   |                   | nahanaad              |                        |
|               |                    | Tn is used in P<br>Tn is decreme |                 |                   |                   |                       |                        |
|               |                    | Tn is incremen                   |                 |                   |                   |                       |                        |
|               | 00 = DMADS         | Tn remains un                    | changed after a | a transfer comp   | oletion           |                       |                        |
| bit 3-2       |                    | 0>: Transfer Mo                  |                 | oits              |                   |                       |                        |
|               |                    | ed Continuous i                  | node            |                   |                   |                       |                        |
|               | 10 = Continue      | ed One-Shot m                    | ode             |                   |                   |                       |                        |
|               | 00 = One-Sho       |                                  | Juc             |                   |                   |                       |                        |
| bit 1         | SIZE: Data Si      | ize Selection bi                 | t               |                   |                   |                       |                        |
|               | 1 = Byte (8-bi     | t)                               |                 |                   |                   |                       |                        |
|               | 0 = Word (16-      | ,                                |                 |                   |                   |                       |                        |
| bit 0         |                    | Channel Enabl                    |                 |                   |                   |                       |                        |
|               |                    | sponding chan                    |                 |                   |                   |                       |                        |
|               | u – The corre      | sponding chan                    |                 |                   |                   |                       |                        |
|               | nly the original [ |                                  | -               |                   | -                 |                       | DMADSTn.               |
| 2: DN         | MASPCn DMA         | DSTn and DM/                     | ACNITh are alw  | ave releaded in   | n Reneated mo     | da transfore          |                        |

- DMASRCn, DMADSTn and DMACNTn are always reloaded in Repeated mode transfers (DMACHn<2> = 1), regardless of the state of the RELOAD bit.
- 3: The number of transfers executed while CHREQ is set depends on the configuration of TRMODE<1:0>.

# REGISTER 5-3: DMAINTn: DMA CHANNEL n INTERRUPT REGISTER

| R-0                     | R/W-0                                                                                                                                                                          | R/W-0                              | R/W-0                  | R/W-0                                                         | R/W-0           | R/W-0           | R/W-0           |  |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------|---------------------------------------------------------------|-----------------|-----------------|-----------------|--|--|
| DBUFWF <sup>(1)</sup>   | CHSEL6                                                                                                                                                                         | CHSEL5                             | CHSEL4                 | CHSEL3                                                        | CHSEL2          | CHSEL1          | CHSEL0          |  |  |
| bit 15                  |                                                                                                                                                                                |                                    |                        | 1 1                                                           |                 | 1               | bit 8           |  |  |
|                         |                                                                                                                                                                                |                                    |                        |                                                               |                 |                 |                 |  |  |
| R/W-0                   | R/W-0                                                                                                                                                                          | R/W-0                              | R/W-0                  | R/W-0                                                         | U-0             | U-0             | R/W-0           |  |  |
| HIGHIF <sup>(1,2)</sup> | LOWIF <sup>(1,2)</sup>                                                                                                                                                         | DONEIF <sup>(1)</sup>              | HALFIF <sup>(1)</sup>  | OVRUNIF <sup>(1)</sup>                                        | _               | _               | HALFEN          |  |  |
| bit 7                   |                                                                                                                                                                                |                                    |                        |                                                               |                 |                 | bit             |  |  |
|                         |                                                                                                                                                                                |                                    |                        |                                                               |                 |                 |                 |  |  |
| Legend:                 |                                                                                                                                                                                |                                    |                        |                                                               |                 |                 |                 |  |  |
| R = Readable            |                                                                                                                                                                                | W = Writable                       |                        | U = Unimplem                                                  |                 |                 |                 |  |  |
| -n = Value at           | POR                                                                                                                                                                            | '1' = Bit is set                   |                        | '0' = Bit is clea                                             | ared            | x = Bit is unkr | nown            |  |  |
| bit 15                  | 1 = The cont<br>DMASRO                                                                                                                                                         | Cn in Null Write<br>ent of the DMA | A buffer has r<br>mode | bit <sup>(1)</sup><br>not been written<br>n written to the lo |                 | ·               |                 |  |  |
| bit 14-8                | CHSEL<6:0>                                                                                                                                                                     | : DMA Channe                       | I Trigger Selec        | ction bits                                                    |                 |                 |                 |  |  |
|                         |                                                                                                                                                                                | for a complete                     |                        |                                                               |                 |                 |                 |  |  |
| bit 7                   | <b>HIGHIF:</b> DMA High Address Limit Interrupt Flag bit <sup>(1,2)</sup><br>1 = The DMA channel has attempted to access an address higher than DMAH or the upper limit of the |                                    |                        |                                                               |                 |                 |                 |  |  |
|                         | 1 = The DMA<br>data RAN                                                                                                                                                        |                                    | ttempted to ac         | cess an address                                               | s higher than I | DMAH or the up  | per limit of th |  |  |
|                         |                                                                                                                                                                                |                                    | ot invoked the         | high address li                                               | mit interrupt   |                 |                 |  |  |
| bit 6                   | <ul> <li>0 = The DMA channel has not invoked the high address limit interrupt</li> <li>LOWIF: DMA Low Address Limit Interrupt Flag bit<sup>(1,2)</sup></li> </ul>              |                                    |                        |                                                               |                 |                 |                 |  |  |
|                         | the SFR                                                                                                                                                                        | range (07FFh)                      |                        | ccess the DMA                                                 |                 | lower than DM   | AL, but abov    |  |  |
| L:1 F                   |                                                                                                                                                                                |                                    |                        | low address lin                                               | nit interrupt   |                 |                 |  |  |
| bit 5                   | If CHEN = 1:                                                                                                                                                                   | A Complete Op                      | eration interru        | Ipt Flag bit                                                  |                 |                 |                 |  |  |
|                         |                                                                                                                                                                                | ious DMA sess                      | ion has ended          | with completior                                               | ı               |                 |                 |  |  |
|                         |                                                                                                                                                                                | ent DMA sessio                     |                        |                                                               |                 |                 |                 |  |  |
|                         | If CHEN = 0:                                                                                                                                                                   |                                    |                        |                                                               |                 |                 |                 |  |  |
|                         | -                                                                                                                                                                              |                                    |                        | with completion                                               |                 |                 |                 |  |  |
| h:+ 4                   | •                                                                                                                                                                              |                                    |                        | without comple                                                | tion            |                 |                 |  |  |
| bit 4                   |                                                                                                                                                                                | A 50% Waterma<br>In has reached    |                        |                                                               |                 |                 |                 |  |  |
|                         |                                                                                                                                                                                | In has not reac                    |                        |                                                               |                 |                 |                 |  |  |
| bit 3                   | OVRUNIF: DMA Channel Overrun Flag bit <sup>(1)</sup>                                                                                                                           |                                    |                        |                                                               |                 |                 |                 |  |  |
|                         |                                                                                                                                                                                | channel is trig                    |                        | s still completing                                            | the operation   | based on the p  | revious trigge  |  |  |
| bit 2-1                 |                                                                                                                                                                                | ted: Read as '                     |                        | a                                                             |                 |                 |                 |  |  |
| bit 0                   | -                                                                                                                                                                              | Ifway Completi                     |                        | bit                                                           |                 |                 |                 |  |  |
|                         |                                                                                                                                                                                | s are invoked w                    | hen DMACNT             | n has reached i                                               |                 | nt and at compl | etion           |  |  |
|                         |                                                                                                                                                                                | upi is invokeu c                   | ing at the com         | piecion of the tra                                            |                 |                 |                 |  |  |
| Note 1: Se              | tting these flag                                                                                                                                                               | -                                  | -                      | ate an interrupt.                                             |                 |                 |                 |  |  |

DMAL) is NOT done before the actual access.

| CHSEL<6:0> | Trigger (Interrupt)          | CHSEL<6:0> | Trigger (Interrupt)                 |  |
|------------|------------------------------|------------|-------------------------------------|--|
| 0000000    | Off                          | 1000001    | UART2 TX Interrupt                  |  |
| 0001001    | MCCP4 IC/OC Interrupt        | 1000010    | UART2 RX Interrupt                  |  |
| 0001010    | MCCP4 Timer Interrupt        | 1000011    | UART2 Error Interrupt               |  |
| 0001011    | MCCP3 IC/OC Interrupt        | 1000100    | UART1 TX Interrupt                  |  |
| 0001100    | MCCP3 Timer Interrupt        | 1000101    | UART1 RX Interrupt                  |  |
| 0001101    | MCCP2 IC/OC Interrupt        | 1000110    | UART1 Error Interrupt               |  |
| 0001110    | MCCP2 Timer Interrupt        | 1001011    | DMA Channel 5 Interrupt             |  |
| 0001111    | MCCP1 IC/OC Interrupt        | 1001100    | DMA Channel 4 Interrupt             |  |
| 0010000    | MCCP1 Timer Interrupt        | 1001101    | DMA Channel 3 Interrupt             |  |
| 0010100    | OC3 Interrupt                | 1001110    | DMA Channel 2 Interrupt             |  |
| 0010101    | OC2 Interrupt                | 1001111    | DMA Channel 1 Interrupt             |  |
| 0010110    | OC1 Interrupt                | 1010000    | DMA Channel 0 Interrupt             |  |
| 0011010    | IC3 Interrupt                | 1010001    | A/D Interrupt                       |  |
| 0011011    | IC2 Interrupt                | 1010011    | PMP Interrupt                       |  |
| 0011100    | IC1 Interrupt                | 1010100    | HLVD Interrupt                      |  |
| 0100000    | SPI3 Receive Interrupt       | 1010101    | CRC Interrupt                       |  |
| 0100001    | SPI3 Transmit Interrupt      | 1011011    | CLC2 Out                            |  |
| 0100010    | SPI3 General Interrupt       | 1011100    | CLC1 Out                            |  |
| 0100011    | SPI2 Receive Interrupt       | 1011110    | RTCC Alarm Interrupt                |  |
| 0100100    | SPI2 Transmit Interrupt      | 1100001    | TMR3 Interrupt                      |  |
| 0100101    | SPI2 General Interrupt       | 1100010    | TMR2 Interrupt                      |  |
| 0100110    | SPI1 Receive Interrupt       | 1100011    | TMR1 Interrupt                      |  |
| 0100111    | SPI1 Transmit Interrupt      | 1100110    | CTMU Trigger                        |  |
| 0101000    | SPI1 General Interrupt       | 1100111    | Comparator Interrupt                |  |
| 0101111    | I2C2 Slave Interrupt         | 1101000    | INT4 Interrupt                      |  |
| 0110000    | I2C2 Master Interrupt        | 1101001    | INT3 Interrupt                      |  |
| 0110001    | I2C2 Bus Collision Interrupt | 1101010    | INT2 Interrupt                      |  |
| 0110010    | I2C1 Slave Interrupt         | 1101011    | INT1 Interrupt                      |  |
| 0110011    | I2C1 Master Interrupt        | 1101100    | INT0 Interrupt                      |  |
| 0110100    | I2C1 Bus Collision Interrupt | 1101101    | Interrupt-on-Change (IOC) Interrupt |  |

# TABLE 5-1: DMA TRIGGER SOURCES

# 6.0 FLASH PROGRAM MEMORY

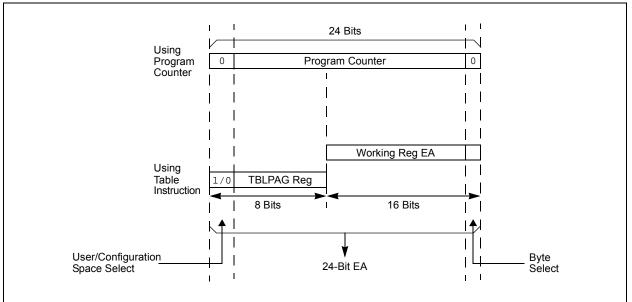
Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "PIC24F Flash Program Memory" (DS30009715), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The PIC24FJ256GA705 family of devices contains internal Flash program memory for storing and executing application code. The program memory is readable, writable and erasable. The Flash memory can be programmed in four ways:

- In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>)
- Run-Time Self-Programming (RTSP)
- JTAG
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows a PIC24FJ256GA705 family device to be serially programmed while in the end application circuit. This is simply done with two lines for the programming clock and programming data (named PGCx and PGDx, respectively), and three other lines for power (VDD), ground (Vss) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed. RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user may write program memory data in blocks of 128 instructions (384 bytes) at a time and erase program memory in blocks of 1024 instructions (3072 bytes) at a time.

The device implements a 7-bit Error Correcting Code (ECC). The NVM block contains a logic to write and read ECC bits to and from the Flash memory. The Flash is programmed at the same time as the corresponding ECC parity bits. The ECC provides improved resistance to Flash errors. ECC single bit errors can be transparently corrected; ECC double-bit errors result in a trap.


# 6.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG<7:0> bits and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 6-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

#### FIGURE 6-1: ADDRESSING FOR TABLE REGISTERS



# 6.2 RTSP Operation

The PIC24F Flash program memory array is organized into rows of 128 instructions or 384 bytes. RTSP allows the user to erase blocks of eight rows (1024 instructions) at a time and to program one row at a time. It is also possible to program two instruction word blocks.

The 8-row erase blocks and single row write blocks are edge-aligned, from the beginning of program memory, on boundaries of 3072 bytes and 384 bytes, respectively.

When data is written to program memory using TBLWT instructions, the data is not written directly to memory. Instead, data written using Table Writes is stored in holding latches until the programming sequence is executed.

Any number of TBLWT instructions can be executed and a write will be successfully performed. However, 128 TBLWT instructions are required to write the full row of memory.

To ensure that no data is corrupted during a write, any unused address should be programmed with FFFFFFh. This is because the holding latches reset to an unknown state, so if the addresses are left in the Reset state, they may overwrite the locations on rows which were not rewritten.

The basic sequence for RTSP programming is to set the Table Pointer to point to the programming latches, do a series of TBLWT instructions to load the buffers and set the NVMADRU/NVMADR registers to point to the destination. Programming is performed by setting the control bits in the NVMCON register.

Data can be loaded in any order and the holding registers can be written to multiple times before performing a write operation. Subsequent writes, however, will wipe out any previous writes.

**Note:** Writing to a location multiple times without erasing is *not* recommended.

All of the Table Write operations are single-word writes (2 instruction cycles), because only the buffers are written. A programming cycle is required for programming each row.

# 6.3 JTAG Operation

The PIC24F family supports JTAG boundary scan. Boundary scan can improve the manufacturing process by verifying pin to PCB connectivity.

# 6.4 Enhanced In-Circuit Serial Programming

Enhanced In-Circuit Serial Programming uses an onboard bootloader, known as the Program Executive (PE), to manage the programming process. Using an SPI data frame format, the Program Executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

# 6.5 Control Registers

There are four SFRs used to read and write the program Flash memory: NVMCON, NVMADRU, NVMADR and NVMKEY.

The NVMCON register (Register 6-1) controls which blocks are to be erased, which memory type is to be programmed and when the programming cycle starts.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. Refer to **Section 6.6 "Programming Operations"** for further details.

The NVMADRU/NVMADR registers contain the upper byte and lower word of the destination of the NVM write or erase operation. Some operations (chip erase) operate on fixed locations and do not require an address value.

# 6.6 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. During a programming or erase operation, the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

| REGISTER                 | 6-1: NV                                              | MCON: FLAS                                         | SH MEMOR                                   | Y CONTROL F                                                | REGISTER              |                       |                       |  |
|--------------------------|------------------------------------------------------|----------------------------------------------------|--------------------------------------------|------------------------------------------------------------|-----------------------|-----------------------|-----------------------|--|
| R/S-0, HC <sup>(1)</sup> | R/W-0 <sup>(1)</sup>                                 | R-0, HSC <sup>(1)</sup>                            | R/W-0                                      | r-0                                                        | r-0                   | U-0                   | U-0                   |  |
| WR                       | WREN                                                 | WRERR                                              | NVMSIDL                                    | —                                                          | —                     | —                     | —                     |  |
| bit 15                   |                                                      |                                                    |                                            |                                                            |                       |                       | bit                   |  |
| U-0                      | U-0                                                  | U-0                                                | U-0                                        | R/W-0 <sup>(1)</sup>                                       | R/W-0 <sup>(1)</sup>  | R/W-0 <sup>(1)</sup>  | R/W-0 <sup>(1)</sup>  |  |
| _                        | _                                                    |                                                    | _                                          | NVMOP3 <sup>(2)</sup>                                      | NVMOP2 <sup>(2)</sup> | NVMOP1 <sup>(2)</sup> | NVMOP0 <sup>(2)</sup> |  |
| bit 7                    |                                                      |                                                    |                                            |                                                            |                       |                       | bit                   |  |
| Legend:                  |                                                      | S = Settable                                       | hit                                        | HC = Hardware                                              | Clearable bit         | r = Reserved b        | nit                   |  |
| R = Readable             | a hit                                                | W = Writable                                       |                                            | '0' = Bit is clear                                         |                       | x = Bit is unkn       |                       |  |
| -n = Value at            |                                                      | '1' = Bit is se                                    |                                            |                                                            |                       |                       | Own                   |  |
|                          |                                                      | e/Clearable bit                                    | ι                                          | 0 – Unimpierne                                             | ented bit, read as    | 5 0                   |                       |  |
|                          |                                                      |                                                    |                                            |                                                            |                       |                       |                       |  |
| bit 15                   | cleared                                              | s a Flash merr<br>I by hardware c                  | once the oper                              | or erase operat<br>ation is complete<br>plete and inactive |                       | on is self-timed      | and the bit           |  |
| bit 14                   | -                                                    | te Enable bit <sup>(1)</sup>                       |                                            |                                                            |                       |                       |                       |  |
|                          | 1 = Enable                                           | s Flash progra                                     | m/erase operation                          | ations                                                     |                       |                       |                       |  |
|                          | 0 = Inhibits                                         | Flash program                                      | /erase opera                               | tions                                                      |                       |                       |                       |  |
| bit 13                   | WRERR: Write Sequence Error Flag bit <sup>(1)</sup>  |                                                    |                                            |                                                            |                       |                       |                       |  |
|                          | automa                                               | atically on any s                                  | set attempt of                             | sequence attem<br>the WR bit)<br>mpleted normally          | -                     | ion has occurr        | ed (bit is s          |  |
| bit 12                   | •                                                    | NVM Stop in Id                                     | •                                          | inplotod normally                                          |                       |                       |                       |  |
| 511 12                   | 1 = Remov                                            | es power from                                      | the program                                | memory when de                                             |                       |                       |                       |  |
| bit 11-10                |                                                      | Maintain as '0'                                    | ,                                          | ,                                                          |                       |                       |                       |  |
| bit 9-4                  |                                                      | ented: Read as                                     | ; 'O'                                      |                                                            |                       |                       |                       |  |
| bit 3-0                  | •                                                    | 0>: NVM Operation                                  |                                            | oits <sup>(1,2)</sup>                                      |                       |                       |                       |  |
|                          | 1110 = Chi<br>0100 = Unu<br>0011 = Era<br>0010 = Rov | p erases user r<br>ısed                            | nemory (does<br>program or ex<br>operation | s not erase Devic<br>ecutive memory                        | e ID, customer (      | OTP or executiv       | ve memory)            |  |
|                          | iese bits can                                        | only be reset of                                   | on a Power-o                               | n Reset.                                                   |                       |                       |                       |  |
| 2: Al                    | l other comb                                         | other combinations of NVMOP<3:0> are unimplemented |                                            |                                                            |                       |                       |                       |  |

# REGISTER 6-1: NVMCON: FLASH MEMORY CONTROL REGISTER

**2:** All other combinations of NVMOP<3:0> are unimplemented.

#### 6.6.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time. To do this, it is necessary to erase the 8-row erase block containing the desired row. The general process is:

- 1. Read eight rows of program memory (1024 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 6-1):
  - a) Set the NVMOP<3:0> bits (NVMCON<3:0>) to '0011' to configure for block erase. Set the WREN (NVMCON<14>) bit.
  - b) Write the starting address of the block to be erased into the NVMADRU/NVMADR registers.
  - c) Write 55h to NVMKEY.
  - d) Write AAh to NVMKEY.
  - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.
- 4. Update the TBLPAG register to point to the programming latches on the device. Update the NVMADRU/NVMADR registers to point to the destination in the program memory.

#### TABLE 6-1: EXAMPLE PAGE ERASE

- 5. Write the first 128 instructions from data RAM into the program memory buffers (see Table 6-1).
- 6. Write the program block to Flash memory:
  - a) Set the NVMOPx bits to '0010' to configure for row programming. Set the WREN bit.
  - b) Write 55h to NVMKEY.
  - c) Write AAh to NVMKEY.
  - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat Steps 4 through 6, using the next available 128 instructions from the block in data RAM, by incrementing the value in NVMADRU/ NVMADR until all 1024 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 6-2.

| Step 1: | Set the NVMCON register to erase a page.                                 |
|---------|--------------------------------------------------------------------------|
| MOV     | #0x4003, W0                                                              |
| MOV     | W0, NVMCON                                                               |
| Step 2: | Load the address of the page to be erased into the NVMADR register pair. |
| MOV     | <pre>#PAGE_ADDR_LO, W0</pre>                                             |
| MOV     | W0, NVMADR                                                               |
| MOV     | <pre>#PAGE_ADDR_HI, W0</pre>                                             |
| MOV     | W0, NVMADRU                                                              |
| Step 3: | Set the WR bit.                                                          |
| MOV     | #0x55, W0                                                                |
| MOV     | W0, NVMKEY                                                               |
| MOV     | #OxAA, WO                                                                |
| MOV     | W0, NVMKEY                                                               |
| BSET    | NVMCON, #WR                                                              |
| NOP     |                                                                          |
| NOP     |                                                                          |
| NOP     |                                                                          |

# EXAMPLE 6-1: ERASING A PROGRAM MEMORY BLOCK ('C' LANGUAGE CODE)

| <pre>// C example using MPLAB XC16     unsigned long progAddr = 0xXXXXXX;     unsigned int offset;</pre> | // Address of row to write                             |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| //Set up pointer to the first memory location                                                            | to be written                                          |
| NVMADRU = progAddr>>16;                                                                                  | // Initialize PM Page Boundary SFR                     |
| NVMADR = progAddr & 0xFFFF;                                                                              | <pre>// Initialize lower word of address</pre>         |
| $NVMCON = 0 \times 4003;$                                                                                | // Initialize NVMCON                                   |
| asm("DISI #5");                                                                                          | <pre>// Block all interrupts with priority &lt;7</pre> |
|                                                                                                          | // for next 5 instructions                             |
| builtin_write_NVM();                                                                                     | // check function to perform unlock                    |
|                                                                                                          | // sequence and set WR                                 |

#### TABLE 6-2: CODE MEMORY PROGRAMMING EXAMPLE: ROW WRITES

| Step 1: Set | t the NVMCON register to program 128 instruction words.                                       |
|-------------|-----------------------------------------------------------------------------------------------|
| MOV         | #0x4002, W0                                                                                   |
| MOV         | W0, NVMCON                                                                                    |
|             | ialize the TBLPAG register for writing to the latches.                                        |
| MOV         | #0xFA, W12                                                                                    |
| MOV         | W12, TBLPAG                                                                                   |
|             | ad W0:W5 with the next 4 instruction words to program.                                        |
| MOV         | # <lsw0>, W0</lsw0>                                                                           |
| MOV         | # <msb1:msb0>, W1</msb1:msb0>                                                                 |
| MOV         | # <lsw1>, W2</lsw1>                                                                           |
| MOV         | # <lsw2>, W3</lsw2>                                                                           |
| MOV         | # <msb3:msb2>, W4</msb3:msb2>                                                                 |
| MOV         | # <lsw3>, W5</lsw3>                                                                           |
| Step 4: Set | t the Read Pointer (W6) and load the (next set of) write latches.                             |
| CLR         | W6                                                                                            |
| CLR         | W7                                                                                            |
| TBLWTL      | [W6++], [W7]                                                                                  |
| TBLWTH.B    | [W6++], [W7++]                                                                                |
| TBLWTH.B    | [W6++], [++W7]                                                                                |
| TBLWTL      | [W6++], [W7++]                                                                                |
| TBLWTL      | [W6++], [W7]                                                                                  |
| TBLWTH.B    | [W6++], [W7++]                                                                                |
| TBLWTH.B    | [W6++], [++W7]                                                                                |
| TBLWTL      | [W6++], [W7++]                                                                                |
| Step 5: Re  | peat Steps 4 and 5, for a total of 32 times, to load the write latches with 128 instructions. |
| Step 6: Set | t the NVMADRU/NVMADR register pair to point to the correct address.                           |
| MOV         | <pre>#DestinationAddress&lt;15:0&gt;, W3</pre>                                                |
| MOV         | #DestinationAddress<23:16>, W4                                                                |
| MOV         | W3, NVMADR                                                                                    |
| MOV         | W4, NVMADRU                                                                                   |
| Step 7: Exe | ecute the WR bit unlock sequence and initiate the write cycle.                                |
| MOV         | #0x55, W0                                                                                     |
| MOV         | W0, NVMKEY                                                                                    |
| MOV         | #0xAA, WO                                                                                     |
| MOV         | W0, NVMKEY                                                                                    |
| BSET        | NVMCON, #WR                                                                                   |
| NOP         |                                                                                               |
| NOP         |                                                                                               |
| NOP         |                                                                                               |

| DISI                         | #5                                                 | ; Block all interrupts with priority <7<br>; for next 5 instructions           |
|------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------|
| MOV.B<br>MOV<br>MOV.B<br>MOV | #0x55, W0<br>W0, NVMKEY<br>#0xAA, W1<br>W1, NVMKEY | <pre>/ Hor next 5 instructions / Write the 0x55 key / Write the 0xAA key</pre> |
| BSET<br>NOP<br>NOP           | NVMCON, #WR                                        | ; Start the programming sequence<br>; Required delays                          |
| BTSC<br>BRA                  | NVMCON, #15<br>\$-2                                | ; and wait for it to be<br>; completed                                         |

#### EXAMPLE 6-2: INITIATING A PROGRAMMING SEQUENCE

#### 6.6.2 PROGRAMMING A DOUBLE WORD OF FLASH PROGRAM MEMORY

If a Flash location has been erased, it can be programmed using Table Write instructions to write two instruction words (2 x 24-bit) into the write latch. The TBLPAG register is loaded with the address of the write latches and the NVMADRU/NVMADR registers are loaded with the address of the first of the two instruction words to be programmed. The TBLWTL and TBLWTH instructions write the desired data into the write latches. To configure the NVMCON register for a two-word write, set the NVMOPx bits (NVMCON<3:0>) to '0001'. The write is performed by executing the unlock sequence and setting the WR bit. An equivalent procedure in 'C', using the MPLAB<sup>®</sup> XC16 compiler and built-in hardware functions, is shown in Example 6-3.

#### TABLE 6-3: PROGRAMMING A DOUBLE WORD OF FLASH PROGRAM MEMORY

| Step 1: Init | ialize the TBLPAG register for writing to the latches.                                    |
|--------------|-------------------------------------------------------------------------------------------|
| MOV          | #0xFA, W12                                                                                |
| MOV          | W12, TBLPAG                                                                               |
| Step 2: Loa  | ad W0:W2 with the next two packed instruction words to program.                           |
| MOV          | # <lsw0>, W0</lsw0>                                                                       |
| MOV          | # <msb1:msb0>, W1</msb1:msb0>                                                             |
| MOV          | # <lsw1>, W2</lsw1>                                                                       |
| Step 3: Se   | t the Read Pointer (W6) and Write Pointer (W7), and load the (next set of) write latches. |
| CLR          | W6                                                                                        |
| CLR          | W7                                                                                        |
| TBLWTL       | [W6++], [W7]                                                                              |
|              | [W6++], [W7++]                                                                            |
|              | [W6++], [++W7]                                                                            |
| TBLWTL.W     | [W6++], [W7++]                                                                            |
| Step 4: Se   | t the NVMADRU/NVMADR register pair to point to the correct address.                       |
| MOV          | <pre>#DestinationAddress&lt;15:0&gt;, W3</pre>                                            |
| MOV          | #DestinationAddress<23:16>, W4                                                            |
| MOV          | W3, NVMADR                                                                                |
| MOV          | W4, NVMADRU                                                                               |
| Step 5: Se   | t the NVMCON register to program two instruction words.                                   |
| MOV          | #0x4001, W10                                                                              |
| MOV          | W10, NVMCON                                                                               |
| NOP          |                                                                                           |
| Step 6: Init | iate the write cycle.                                                                     |
| MOV          | #0x55, W1                                                                                 |
| MOV          | W1, NVMKEY                                                                                |
| MOV          | #0xAA, W1                                                                                 |
| MOV          | W1, NVMKEY                                                                                |
| BSET         | NVMCON, #WR                                                                               |
| NOP          |                                                                                           |
| NOP          |                                                                                           |
| NOP          |                                                                                           |

#### EXAMPLE 6-3: PROGRAMMING A DOUBLE WORD OF FLASH PROGRAM MEMORY ('C' LANGUAGE CODE)

| // C example using MPLAB XC16               |                                                        |
|---------------------------------------------|--------------------------------------------------------|
| unsigned long progAddr = 0xXXXXXX;          | // Address of word to program                          |
| unsigned int progDatalL = 0xXXXX;           | // Data to program lower word of word 1                |
| unsigned char progDatalH = 0xXX;            | // Data to program upper byte of word 1                |
| unsigned int progData2L = 0xXXXX;           | // Data to program lower word of word 2                |
| unsigned char progData2H = 0xXX;            | // Data to program upper byte of word 2                |
| //Set up NVMCON for word programming        |                                                        |
| $NVMCON = 0 \times 4001;$                   | // Initialize NVMCON                                   |
| TBLPAG = 0xFA;                              | // Point TBLPAG to the write latches                   |
| //Set up pointer to the first memory locati | on to be written                                       |
| NVMADRU = progAddr>>16;                     | // Initialize PM Page Boundary SFR                     |
| NVMADR = progAddr & 0xFFFF;                 | // Initialize lower word of address                    |
| //Perform TBLWT instructions to write latch | es                                                     |
| builtin_tblwtl(0, progDatalL);              | // Write word 1 to address low word                    |
| builtin_tblwth(0, progData2H);              | // Write word 1 to upper byte                          |
| builtin_tblwtl(1, progData2L);              | // Write word 2 to address low word                    |
| builtin_tblwth(1, progData2H);              | // Write word 2 to upper byte                          |
| <pre>asm("DISI #5");</pre>                  | // Block interrupts with priority <7 for next 5 $$     |
|                                             | // instructions                                        |
| builtin_write_NVM();                        | // XC16 function to perform unlock sequence and set WR |

# 7.0 RESETS

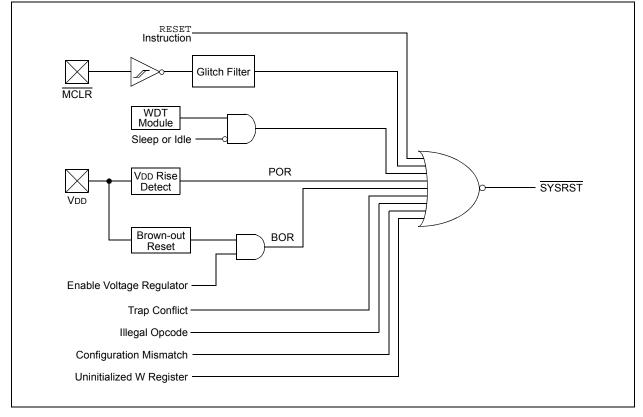
Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Reset" (DS39712), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Reset module combines all Reset <u>sources</u> and controls the device Master Reset Signal, <u>SYSRST</u>. The following is a list of device Reset sources:

- POR: Power-on Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDT: Watchdog Timer Reset
- · BOR: Brown-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Opcode Reset
- UWR: Uninitialized W Register Reset

A simplified block diagram of the Reset module is shown in Figure 7-1.

Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on POR and unchanged by all other Resets.


Note: Refer to the specific peripheral or CPU section of this manual for register Reset states.

All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 7-1). A POR will clear all bits, except for the BOR and POR (RCON<1:0>) bits, which are set. The user may set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software will not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this data sheet.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register values after a device Reset will be meaningful.

#### FIGURE 7-1: RESET SYSTEM BLOCK DIAGRAM



© 2016-2018 Microchip Technology Inc.

**RCON: RESET CONTROL REGISTER** 

**REGISTER 7-1:** 

| R/W-0                | R/W-0                                   | R/W-1                               | R/W-0                    | U-0                                 | U-0                           | R/W-0              | R/W-0                |
|----------------------|-----------------------------------------|-------------------------------------|--------------------------|-------------------------------------|-------------------------------|--------------------|----------------------|
| TRAPR <sup>(1)</sup> |                                         | SBOREN <sup>(5)</sup>               | RETEN <sup>(2)</sup>     |                                     | _                             | CM <sup>(1)</sup>  | VREGS <sup>(3)</sup> |
| bit 15               |                                         | OBOILEN                             |                          |                                     |                               | OW                 | bit 8                |
|                      |                                         |                                     |                          |                                     |                               |                    | bit 0                |
| R/W-0                | R/W-0                                   | R/W-0                               | R/W-0                    | R/W-0                               | R/W-0                         | R/W-1              | R/W-1                |
| EXTR <sup>(1)</sup>  | SWR <sup>(1)</sup>                      | SWDTEN <sup>(4)</sup>               | WDTO <sup>(1)</sup>      | SLEEP <sup>(1)</sup>                | IDLE <sup>(1)</sup>           | BOR <sup>(1)</sup> | POR <sup>(1)</sup>   |
| bit 7                |                                         |                                     |                          |                                     |                               |                    | bit 0                |
|                      |                                         |                                     |                          |                                     |                               |                    |                      |
| Legend:              | la hit                                  |                                     | .:.                      |                                     | anted hit read                |                    |                      |
| R = Readab           |                                         | W = Writable k                      | DIT                      | -                                   | ented bit, read               |                    |                      |
| -n = Value a         | t POR                                   | '1' = Bit is set                    |                          | '0' = Bit is clea                   | ared                          | x = Bit is unkr    | IOWN                 |
| bit 15               | TRAPR: Tran                             | Reset Flag bit <sup>(</sup>         | 1)                       |                                     |                               |                    |                      |
|                      | •                                       | onflict Reset has                   |                          |                                     |                               |                    |                      |
|                      |                                         | onflict Reset has                   |                          |                                     |                               |                    |                      |
| bit 14               | IOPUWR: Illeg                           | gal Opcode or l                     | Jninitialized W          | / Register Acce                     | ss Reset Flag                 | bit <sup>(1)</sup> |                      |
|                      |                                         |                                     |                          | I address mode                      | e or Uninitializ              | ed W register      | is used as an        |
|                      |                                         | Pointer and cau                     |                          |                                     |                               |                    |                      |
| L:1 4 0              | -                                       | -                                   |                          | gister Reset has                    | s not occurred                |                    |                      |
| bit 13               | 1 = BOR is er                           | ftware Control (                    | Jver the BOR             | Function Dit                        |                               |                    |                      |
|                      | 0 = BOR is dis                          |                                     |                          |                                     |                               |                    |                      |
| bit 12               |                                         | ntion Mode Ena                      | able bit <sup>(2)</sup>  |                                     |                               |                    |                      |
|                      |                                         |                                     |                          | e is in Sleep mo<br>tage levels are |                               | ator supplies to   | o the core)          |
| bit 11-10            |                                         | ted: Read as '0                     |                          |                                     | present                       |                    |                      |
| bit 9                | -                                       | ation Word Misi                     |                          | lag bit <sup>(1)</sup>              |                               |                    |                      |
| Sit 0                | •                                       | ration Word Mis                     |                          | •                                   |                               |                    |                      |
|                      |                                         |                                     |                          | has not occurre                     | ed                            |                    |                      |
| bit 8                | VREGS: Fast                             | Wake-up from                        | Sleep bit <sup>(3)</sup> |                                     |                               |                    |                      |
|                      |                                         | e-up is disabled<br>e-up is enabled | · · · ·                  |                                     |                               |                    |                      |
| bit 7                |                                         | al Reset (MCLI                      |                          | ,                                   |                               |                    |                      |
|                      |                                         | Clear (pin) Res                     | -                        | d                                   |                               |                    |                      |
|                      |                                         | Clear (pin) Res                     |                          |                                     |                               |                    |                      |
| bit 6                | SWR: Softwar                            | re reset (Instr                     | uction) Flag bi          | t <sup>(1)</sup>                    |                               |                    |                      |
|                      |                                         | instruction has l                   |                          |                                     |                               |                    |                      |
|                      | 0 <b>= A</b> reset i                    | instruction has                     | not been exec            | uted                                |                               |                    |                      |
|                      | Il of the Reset sta<br>ause a device Re | -                                   | e set or cleare          | d in software. S                    | etting one of th              | nese bits in soft  | ware does not        |
|                      | the LPCFG Con                           |                                     | '1' (unprograr           | nmed), the rete                     | ntion regulator               | is disabled an     | d the RETEN          |
|                      | it has no effect. I                     |                                     |                          |                                     |                               |                    |                      |
| <b>3</b> : R         | Re-enabling the re                      | gulator after it e                  | nters Standby            | mode will add a                     | delay, TVREG,                 | when waking u      | • •                  |
|                      | pplications that d                      |                                     |                          |                                     | -                             | -                  | -                    |
|                      | the FWDTEN<1                            | •                                   | on bits are '11          | ' (unprogramm                       | ed), the WDT is               | s always enabl     | ed, regardless       |
|                      | f the SWDTEN b<br>he BOREN<1.0>         | •                                   | Configuration h          | vite must be set t                  | o (01 <sup>°</sup> in order f | for SBODEN to      | have an affact       |

#### 5: The BOREN<1:0> (FPOR<1:0>) Configuration bits must be set to '01' in order for SBOREN to have an effect.

#### REGISTER 7-1: RCON: RESET CONTROL REGISTER (CONTINUED)

| bit 5 | :                | SWDTEN: Software Enable/Disable of WDT bit <sup>(4)</sup>                  |
|-------|------------------|----------------------------------------------------------------------------|
|       |                  | 1 = WDT is enabled                                                         |
|       |                  | 0 = WDT is disabled                                                        |
| bit 4 |                  | WDTO: Watchdog Timer Time-out Flag bit <sup>(1)</sup>                      |
|       |                  | 1 = WDT time-out has occurred                                              |
|       |                  | 0 = WDT time-out has not occurred                                          |
| bit 3 | :                | SLEEP: Wake from Sleep Flag bit <sup>(1)</sup>                             |
|       |                  | 1 = Device has been in Sleep mode                                          |
|       |                  | 0 = Device has not been in Sleep mode                                      |
| bit 2 |                  | IDLE: Wake-up from Idle Flag bit <sup>(1)</sup>                            |
|       |                  | 1 = Device has been in Idle mode                                           |
|       |                  | 0 = Device has not been in Idle mode                                       |
| bit 1 |                  | BOR: Brown-out Reset Flag bit <sup>(1)</sup>                               |
|       |                  | 1 = A Brown-out Reset has occurred (also set after a Power-on Reset)       |
|       |                  | 0 = A Brown-out Reset has not occurred                                     |
| bit 0 |                  | POR: Power-on Reset Flag bit <sup>(1)</sup>                                |
|       |                  | 1 = A Power-on Reset has occurred                                          |
|       |                  | 0 = A Power-on Reset has not occurred                                      |
| Noto  | <b>1</b> • All c | of the Reset status hits may be set or cleared in software. Setting one of |

- 2: If the LPCFG Configuration bit is '1' (unprogrammed), the retention regulator is disabled and the RETEN bit has no effect. Retention mode preserves the SRAM contents during Sleep.
- **3:** Re-enabling the regulator after it enters Standby mode will add a delay, TVREG, when waking up from Sleep. Applications that do not use the voltage regulator should set this bit to prevent this delay from occurring.
- 4: If the FWDTEN<1:0> Configuration bits are '11' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.
- 5: The BOREN<1:0> (FPOR<1:0>) Configuration bits must be set to '01' in order for SBOREN to have an effect.

| Flag Bit          | Setting Event                                     | Clearing Event                  |
|-------------------|---------------------------------------------------|---------------------------------|
| TRAPR (RCON<15>)  | Trap Conflict Event                               | POR                             |
| IOPUWR (RCON<14>) | Illegal Opcode or Uninitialized W Register Access | POR                             |
| CM (RCON<9>)      | Configuration Mismatch Reset                      | POR                             |
| EXTR (RCON<7>)    | MCLR Reset                                        | POR                             |
| SWR (RCON<6>)     | RESET Instruction                                 | POR                             |
| WDTO (RCON<4>)    | WDT Time-out                                      | CLRWDT, PWRSAV Instruction, POR |
| SLEEP (RCON<3>)   | PWRSAV #0 Instruction                             | POR                             |
| IDLE (RCON<2>)    | PWRSAV #1 Instruction                             | POR                             |
| BOR (RCON<1>)     | POR, BOR                                          | —                               |
| POR (RCON<0>)     | POR                                               | —                               |

#### TABLE 7-1: RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

**Note 1:** All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset.

#### 7.1 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the FNOSC<2:0> bits in the FOSCSEL Flash Configuration Word (see Table 7-2). The RCFGCAL and NVMCON registers are only affected by a POR.

# 7.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 7-3. Note that the Master Reset Signal, SYSRST, is released after the POR delay time expires.

The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The Fail-Safe Clock Monitor (FSCM) delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

# 7.3 Brown-out Reset (BOR)

PIC24FJ256GA705 family devices implement a BOR circuit that provides the user with several configuration and power-saving options. The BOR is controlled by the BOREN<1:0> (FPOR<1:0>) Configuration bits.

When BOR is enabled, any drop of VDD below the BOR threshold results in a device BOR. Threshold levels are described in **Section 32.1 "DC Characteristics"**.

# 7.4 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 7-2. If clock switching is disabled, the system clock source is always selected according to the Oscillator Configuration bits. For more information, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Oscillator"** (DS39700).

# TABLE 7-2:OSCILLATOR SELECTION vs.TYPE OF RESET (CLOCK<br/>SWITCHING ENABLED)

| Reset Type | Clock Source Determinant                  |  |  |
|------------|-------------------------------------------|--|--|
| POR        | FNOSC<2:0> Configuration bits             |  |  |
| BOR        | (FOSCSEL<2:0>)                            |  |  |
| MCLR       |                                           |  |  |
| WDTO       | COSC<2:0> Control bits<br>(OSCCON<14:12>) |  |  |
| SWR        |                                           |  |  |

| Reset Type      | Clock Source | SYSRST Delay           | System Clock<br>Delay | Notes         |
|-----------------|--------------|------------------------|-----------------------|---------------|
| POR             | EC           | TPOR + TSTARTUP + TRST |                       | 1, 2, 3       |
|                 | ECPLL        | TPOR + TSTARTUP + TRST | Тьоск                 | 1, 2, 3, 5    |
|                 | XT, HS, SOSC | TPOR + TSTARTUP + TRST | Тоѕт                  | 1, 2, 3, 4    |
|                 | XTPLL, HSPLL | TPOR + TSTARTUP + TRST | TOST + TLOCK          | 1, 2, 3, 4, 5 |
|                 | FRC, OSCFDIV | TPOR + TSTARTUP + TRST | TFRC                  | 1, 2, 3, 6, 7 |
|                 | FRCPLL       | TPOR + TSTARTUP + TRST | TFRC + TLOCK          | 1, 2, 3, 5, 6 |
|                 | LPRC         | TPOR + TSTARTUP + TRST | TLPRC                 | 1, 2, 3, 6    |
| BOR             | EC           | TSTARTUP + TRST        | _                     | 2, 3          |
|                 | ECPLL        | TSTARTUP + TRST        | Тьоск                 | 2, 3, 5       |
|                 | XT, HS, SOSC | TSTARTUP + TRST        | Тоѕт                  | 2, 3, 4       |
|                 | XTPLL, HSPLL | TSTARTUP + TRST        | TOST + TLOCK          | 2, 3, 4, 5    |
|                 | FRC, OSCFDIV | TSTARTUP + TRST        | TFRC                  | 2, 3, 6, 7    |
|                 | FRCPLL       | TSTARTUP + TRST        | TFRC + TLOCK          | 2, 3, 5, 6    |
|                 | LPRC         | TSTARTUP + TRST        | TLPRC                 | 2, 3, 6       |
| MCLR            | Any Clock    | Trst                   | _                     | 3             |
| WDT             | Any Clock    | Trst                   | _                     | 3             |
| Software        | Any clock    | Trst                   | _                     | 3             |
| Illegal Opcode  | Any Clock    | Trst                   | _                     | 3             |
| Uninitialized W | Any Clock    | Trst                   | _                     | 3             |
| Trap Conflict   | Any Clock    | Trst                   |                       | 3             |

TABLE 7-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

**Note 1:** TPOR = Power-on Reset delay (10  $\mu$ s nominal).

- **2**: TSTARTUP = TVREG.
- **3**: TRST = Internal State Reset Time (2 μs nominal).
- **4:** TOST = Oscillator Start-up Timer (OST). A 10-bit counter counts 1024 oscillator periods before releasing the oscillator clock to the system.
- **5**: TLOCK = PLL Lock Time.
- **6**: TFRC and TLPRC = RC Oscillator Start-up Times.
- 7: If Two-Speed Start-up is enabled, regardless of the Primary Oscillator selected, the device starts with FRC so the system clock delay is just TFRC, and in such cases, FRC start-up time is valid; it switches to the Primary Oscillator after its respective clock delay.

#### 7.4.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) will have a relatively long start-up time. Therefore, <u>one or more of the following conditions</u> is possible after SYSRST is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

#### 7.4.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it will begin to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device will automatically switch to the FRC Oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine (TSR).

# 8.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the PIC24FJ256GA705 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Interrupts" (DS70000600) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
  - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The PIC24FJ256GA705 family interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC24FJ256GA705 family CPU.

The interrupt controller has the following features:

- Up to Eight Processor Exceptions and Software Traps
- Seven User-Selectable Priority Levels
- Interrupt Vector Table (IVT) with a Unique Vector for Each Interrupt or Exception Source
- Fixed Priority within a Specified User Priority Level
- Fixed Interrupt Entry and Return Latencies

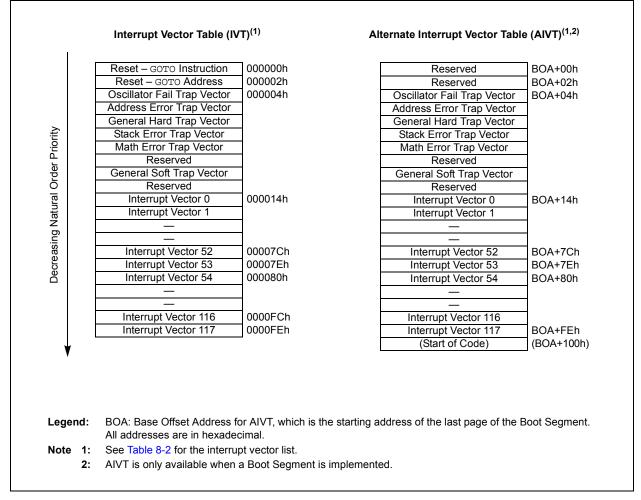
# 8.1 Interrupt Vector Table

The PIC24FJ256GA705 family Interrupt Vector Table (IVT), shown in Figure 8-1, resides in program memory starting at location, 000004h. The IVT contains 6 non-maskable trap vectors and up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 takes priority over interrupts at any other vector address.

#### 8.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 8-1. The AIVTEN (INTCON2<8>) control bit provides access to the AIVT. If the AIVTEN bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.


The AIVT supports emulation and debugging efforts by providing a means to switch between an application, and a support environment, without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

#### 8.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24FJ256GA705 family devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

**Note:** Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

#### FIGURE 8-1: PIC24F INTERRUPT VECTOR TABLES



#### TABLE 8-1: TRAP VECTOR DETAILS

| Vector Number | IVT Address | AIVT Address                           | Trap Source            |
|---------------|-------------|----------------------------------------|------------------------|
| 0             | 000004h     | BOA+04h                                | Oscillator Failure     |
| 1             | 000006h     | BOA+06h                                | Address Error          |
| 2             | 000008h     | BOA+08h                                | General Hardware Error |
| 3             | 00000Ah     | BOA+0Ah                                | Stack Error            |
| 4             | 00000Ch     | BOA+0Ch                                | Math Error             |
| 5             | 00000Eh     | BOA+0Eh                                | Reserved               |
| 6             | 000010h     | 000010h BOA+10h General Software Error |                        |
| 7             | 000012h     | BOA+12h                                | Reserved               |

**Legend:** BOA = Base Offset Address for AIVT segment, which is the starting address of the last page of the Boot Segment.

#### TABLE 8-2: INTERRUPT VECTOR DETAILS

|                                     | IRQ       | IVT Address       | In                   | terrupt Bit Lo | ocation     |
|-------------------------------------|-----------|-------------------|----------------------|----------------|-------------|
| Interrupt Source                    | #         | IVI Address       | Flag                 | Enable         | Priority    |
|                                     | Highest N | atural Order Pric | ority                |                |             |
| INT0 – External Interrupt 0         | 0         | 000014h           | IFS0<0>              | IEC0<0>        | IPC0<2:0>   |
| IC1 – Input Capture 1               | 1         | 000016h           | IFS0<1>              | IEC0<1>        | IPC0<6:4>   |
| OC1 – Output Compare 1              | 2         | 000018h           | IFS0<2>              | IEC0<2>        | IPC0<10:8>  |
| T1 – Timer1                         | 3         | 00001Ah           | IFS0<3>              | IEC0<3>        | IPC0<14:12> |
| DMA0 – Direct Memory Access 0       | 4         | 00001Ch           | IFS0<4>              | IEC0<4>        | IPC1<2:0>   |
| IC2 – Input Capture 2               | 5         | 00001Eh           | IFS0<5>              | IEC0<5>        | IPC1<6:4>   |
| OC2 – Output Compare 2              | 6         | 000020h           | IFS0<6>              | IEC0<6>        | IPC1<10:8>  |
| T2 – Timer2                         | 7         | 000022h           | IFS0<7>              | IEC0<7>        | IPC1<14:12> |
| T3 – Timer3                         | 8         | 000024h           | IFS0<8>              | IEC0<8>        | IPC2<2:0>   |
| SPI1 – SPI1 General                 | 9         | 000026h           | IFS0<9>              | IEC0<9>        | IPC2<6:4>   |
| SPI1TX – SPI1 Transfer Done         | 10        | 000028h           | IFS0<10>             | IEC0<10>       | IPC2<10:8>  |
| U1RX – UART1 Receiver               | 11        | 00002Ah           | IFS0<11>             | IEC0<11>       | IPC2<14:12> |
| U1TX – UART1 Transmitter            | 12        | 00002Ch           | IFS0<12>             | IEC0<12>       | IPC3<2:0>   |
| ADC1 – A/D Converter 1              | 13        | 00002Eh           | IFS0<13>             | IEC0<13>       | IPC3<6:4>   |
| DMA1 – Direct Memory Access 1       | 14        | 000030h           | IFS0<14>             | IEC0<14>       | IPC3<10:8>  |
| NVM – NVM Program/Erase Complete    | 15        | 000032h           | IFS0<15>             | IEC0<15>       | IPC3<14:12> |
| SI2C1 – I2C1 Slave Events           | 16        | 000034h           | IFS1<0>              | IEC1<0>        | IPC4<2:0>   |
| MI2C1 – I2C1 Master Events          | 17        | 000036h           | IFS1<1>              | IEC1<1>        | IPC4<6:4>   |
| Comp – Comparator                   | 18        | 000038h           | IFS1<2>              | IEC1<2>        | IPC4<10:8>  |
| IOC – Interrupt-on-Change Interrupt | 10        | 00003Ah           | IFS1<3>              | IEC1<3>        | IPC4<14:12> |
| INT1 – External Interrupt 1         | 20        | 00003Ch           | IFS1<4>              | IEC1<4>        | IPC5<2:0>   |
|                                     | 20        |                   |                      |                |             |
|                                     | 21        |                   |                      |                |             |
|                                     | 22        |                   |                      |                |             |
| DMA2 – Direct Memory Access 2       | 23        | 000044h           | IFS1<8>              | IEC1<8>        | IPC6<2:0>   |
| OC3 – Output Compare 3              | 25        | 000044h           | IFS1<9>              | IEC1<0>        | IPC6<6:4>   |
| 005 – Output Compare 5              | 26        | 00004011          | 11 01 - 92           |                | 11 00 0.42  |
|                                     | 20        |                   |                      |                |             |
|                                     |           |                   |                      |                |             |
| INT2 – External Interrupt 2         | 28        |                   |                      |                |             |
| U2RX – UART2 Receiver               | 29        | 00004Eh           | IFS1<13><br>IFS1<14> | IEC1<13>       | IPC7<6:4>   |
|                                     | 30        | 000050h           |                      | IEC1<14>       | IPC7<10:8>  |
| U2TX – UART2 Transmitter            | 31        | 000052h           | IFS1<15>             | IEC1<15>       | IPC7<14:12> |
| SPI2 – SPI2 General                 | 32        | 000054h           | IFS2<0>              | IEC2<0>        | IPC8<2:0>   |
| SPI2TX – SPI2 Transfer Done         | 33        | 000056h           | IFS2<1>              | IEC2<1>        | IPC8<6:4>   |
| —                                   | 34        |                   |                      |                |             |
|                                     | 35        | -                 |                      |                |             |
| DMA3 – Direct Memory Access 3       | 36        | 00005Ch           | IFS2<4>              | IEC2<4>        | IPC9<2:0>   |
| IC3 – Input Capture 3               | 37        | 00005Eh           | IFS2<5>              | IEC2<5>        | IPC9<6:4>   |
|                                     | 38        | —                 | —                    | —              |             |
|                                     | 39        | —                 | —                    | —              |             |
|                                     | 40        | —                 | —                    | —              |             |
| CCT3 – Capture/Compare Timer3       | 43        | 00006Ah           | IFS2<11>             | IEC2<11>       | IPC10<14:12 |

© 2016-2018 Microchip Technology Inc.

| <b>TABLE 8-2:</b> | INTERRUPT VECTOR DETAILS (CONTINUED) |
|-------------------|--------------------------------------|
|-------------------|--------------------------------------|

| Interment Course                    | IRQ |             | In       | terrupt Bit Lo | ocation      |
|-------------------------------------|-----|-------------|----------|----------------|--------------|
| Interrupt Source                    | #   | IVT Address | Flag     | Enable         | Priority     |
| CCT4 – Capture/Compare Timer        | 44  | 00006Ch     | IFS2<12> | IEC2<12>       | IPC11<2:0>   |
| PMP – Parallel Master Port          | 45  | 00006Eh     | IFS2<13> | IEC2<13>       | IPC11<6:4>   |
| DMA4 – Direct Memory Access 4       | 46  | 000070h     | IFS2<14> | IEC2<14>       | IPC11<10:8>  |
|                                     | 47  |             | _        | —              |              |
|                                     | 48  |             |          | —              |              |
| SI2C2 – I2C2 Slave Events           | 49  | 000076h     | IFS3<1>  | IEC3<1>        | IPC12<6:4>   |
| MI2C2 – I2C2 Master Events          | 50  | 000078h     | IFS3<2>  | IEC3<2>        | IPC12<10:8>  |
|                                     | 51  |             |          | —              |              |
| _                                   | 52  |             |          | _              | _            |
| INT3 – External Interrupt 3         | 53  | 00007Eh     | IFS3<5>  | IEC3<5>        | IPC13<6:4>   |
| INT4 – External Interrupt 4         | 54  | 000080h     | IFS3<6>  | IEC3<6>        | IPC13<10:8>  |
| _                                   | 55  | _           | _        | _              |              |
| _                                   | 56  | —           | _        | —              |              |
|                                     | 57  |             |          | —              |              |
| SPI1RX – SPI1 Receive Done          | 58  | 000088h     | IFS3<10> | IEC3<10>       | IPC14<10:8>  |
| SPI2RX – SPI2 Receive Done          | 59  | 00008Ah     | IFS3<11> | IEC3<11>       | IPC14<14:12> |
| SPI3RX – SPI3 Receive Done          | 60  | 00008Ch     | IFS3<12> | IEC3<12>       | IPC15<2:0>   |
| DMA5 – Direct Memory Access 5       | 61  | 00008Eh     | IFS3<13> | IEC3<13>       | IPC15<6:4>   |
| RTCC – Real-Time Clock and Calendar | 62  | 000090h     | IFS3<14> | IEC3<14>       | IPC15<10:8>  |
| CCP1 – Capture/Compare 1            | 63  | 000092h     | IFS3<15> | IEC3<15>       | IPC15<14:12> |
| CCP2 – Capture/Compare 2            | 64  | 000094h     | IFS4<0>  | IEC4<0>        | IPC16<2:0>   |
| U1E – UART1 Error                   | 65  | 000096h     | IFS4<1>  | IEC4<1>        | IPC16<6:4>   |
| U2E – UART2 Error                   | 66  | 000098h     | IFS4<2>  | IEC4<2>        | IPC16<10:8>  |
| CRC – Cyclic Redundancy Check       | 67  | 00009Ah     | IFS4<3>  | IEC4<3>        | IPC16<14:12> |
| _                                   | 68  | —           |          | —              | _            |
| _                                   | 69  | —           | _        | _              |              |
| _                                   | 70  | —           |          | —              | _            |
| —                                   | 71  | —           | —        | —              | —            |
| HLVD – High/Low-Voltage Detect      | 72  | 0000A4h     | IFS4<8>  | IEC4<8>        | IPC18<2:0>   |
| —                                   | 73  | —           | —        | —              | —            |
| —                                   | 74  | —           | —        | —              | —            |
| —                                   | 75  | —           | _        | —              |              |
| —                                   | 76  | —           | —        | —              | —            |
| CTMU – Interrupt                    | 77  | 0000AEh     | IFS4<13> | IEC4<13>       | IPC19<6:4>   |
|                                     | 78  |             | _        | —              |              |
| _                                   | 79  | —           |          | _              |              |
|                                     | 80  |             |          |                |              |
| _                                   | 81  | _           | _        | _              |              |
|                                     | 82  | —           |          |                |              |
| _                                   | 83  |             |          | _              |              |

|                                    | IRQ |             | In       | terrupt Bit Lo | ocation      |
|------------------------------------|-----|-------------|----------|----------------|--------------|
| Interrupt Source                   | #   | IVT Address | Flag     | Enable         | Priority     |
| I2C1BC – I2C1 Bus Collision        | 84  | 0000BCh     | IFS5<4>  | IEC5<4>        | IPC21<2:0>   |
| I2C2BC – I2C2 Bus Collision        | 85  | 0000BEh     | IFS5<5>  | IEC5<5>        | IPC21<6:4>   |
| _                                  | 86  | _           | _        |                | _            |
| _                                  | 87  |             | _        | _              | _            |
| _                                  | 88  | —           |          |                |              |
| _                                  | 89  | _           | _        |                | _            |
| SPI3 – SPI3 General                | 90  | 0000C8h     | IFS5<10> | IEC5<10>       | IPC22<10:8>  |
| SPI3TX – SPI3 Transfer Done        | 91  | 0000CAh     | IFS5<11> | IEC5<11>       | IPC22<14:12> |
| _                                  | 92  | 92          | _        |                | _            |
| _                                  | 93  | 93          | _        |                | _            |
| CCP3 – Capture/Compare 3           | 94  | 0000D0h     | IFS5<14> | IEC5<14>       | IPC23<10:8>  |
| CCP4 – Capture/Compare 4           | 95  | 0000D2h     | IFS5<15> | IEC5<15>       | IPC23<14:12> |
| CLC1 – Configurable Logic Cell 1   | 96  | 0000D4h     | IFS6<0>  | IEC6<0>        | IPC24<2:0>   |
| CLC2 – Configurable Logic Cell 2   | 97  | 0000D6h     | IFS6<1>  | IEC6<1>        | IPC24<6:4>   |
| _                                  | 98  |             | _        | _              |              |
| _                                  | 99  | _           |          |                |              |
| _                                  | 100 | _           |          |                |              |
| CCT1 – Capture/Compare Timer1      | 101 | 0000DEh     | IFS6<5>  | IEC6<5>        | IPC25<6:4>   |
| CCT2 – Capture/Compare Timer2      | 102 | 0000E0h     | IFS6<6>  | IEC6<6>        | IPC25<10:8>  |
|                                    | 103 | —           |          |                |              |
| _                                  | 104 |             | _        | _              | _            |
| _                                  | 105 | _           |          |                |              |
| FST – FRC Self-Tuning Interrupt    | 106 | 0000E8h     | IFS6<10> | IEC6<10>       | IPC26<10:8>  |
| _                                  | 107 | _           | _        |                | _            |
| ECCIE – ECC Single Bit Error       | 108 | 0000ECh     | IFS6<12> | IEC6<12>       | IPC27<2:0>   |
|                                    | 109 | _           | _        | _              |              |
| RTCCTS – Real-Time Clock Timestamp | 110 | 0000F0h     | IFS6<14> | IEC6<14>       | IPC27<10:8>  |
| _                                  | 111 | _           |          |                |              |
| _                                  | 112 | —           |          |                |              |
| _                                  | 113 | _           | _        | —              |              |
| _                                  | 114 | _           | _        | —              |              |
|                                    | 115 | _           | —        | —              | _            |
| _                                  | 116 | —           | _        | —              |              |
| JTAG – JTAG                        | 117 | 0000FEh     | IFS7<5>  | IEC7<5>        | IPC29<6:4>   |

 TABLE 8-2:
 INTERRUPT VECTOR DETAILS (CONTINUED)

# 8.3 Interrupt Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

| Note: | In the event you are not able to access the product page using the link above, enter this URL in your browser: |
|-------|----------------------------------------------------------------------------------------------------------------|
|       | http://www.microchip.com/wwwproducts/<br>Devices.aspx?dDocName=en555464                                        |

#### 8.3.1 KEY RESOURCES

- "Interrupts" (DS70000600) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

# 8.4 Interrupt Control and Status Registers

PIC24FJ256GA705 family devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON4
- IFS0 through IFS7
- IEC0 through IEC7
- IPC0 through ICP29
- INTTREG

#### 8.4.1 INTCON1-INTCON4

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources.

The INTCON2 register controls global interrupt generation, the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table (AIVT).

The INTCON4 register contains the Software Generated Hard Trap bit (SGHT) and ECC Double-Bit Error (ECCDBE) trap.

#### 8.4.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal, and is cleared via software.

#### 8.4.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

#### 8.4.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

#### 8.4.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number bits (VECNUM<7:0>) and Interrupt Priority Level bits (ILR<3:0>) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 8-2. For example, the INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IPx bits in the first position of IPC0 (IPC0<2:0>).

#### 8.4.6 STATUS/CONTROL REGISTERS

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers, refer to "CPU with Extended Data Space (EDS)" (DS39732) in the "dsPIC33/PIC24 Family Reference Manual".

- The CPU STATUS Register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit, which together with the IPL<2:0> bits, also indicates the current CPU Interrupt Priority Level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 8-3 through Register 8-6 in the following pages.

| REGISTER 8-1: | SR: ALU STATUS REGISTER <sup>(1)</sup> |
|---------------|----------------------------------------|
|---------------|----------------------------------------|

| U-0    | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 |
|--------|-----|-----|-----|-----|-----|-----|-------|
| —      | —   | —   | —   | —   | —   | —   | DC    |
| bit 15 |     |     |     |     |     |     | bit 8 |

| R/W-0 <sup>(3)</sup> | R/W-0 <sup>(3)</sup> | R/W-0 <sup>(3)</sup> | R-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
|----------------------|----------------------|----------------------|-----|-------|-------|-------|-------|
| IPL2 <sup>(2)</sup>  | IPL1 <sup>(2)</sup>  | IPL0 <sup>(2)</sup>  | RA  | Ν     | OV    | Z     | C     |
| bit 7                |                      |                      |     |       |       |       | bit 0 |

| Legend:                                                              |                 |                      |                    |  |  |
|----------------------------------------------------------------------|-----------------|----------------------|--------------------|--|--|
| R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' |                 |                      |                    |  |  |
| -n = Value at POR                                                    | '1'= Bit is set | '0' = Bit is cleared | x = Bit is unknown |  |  |

| bit 7-5 | IPL<2:0>: CPU Interrupt Priority Level Status bits <sup>(2,3)</sup><br>111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled<br>110 = CPU Interrupt Priority Level is 6 (14)<br>101 = CPU Interrupt Priority Level is 5 (13)<br>100 = CPU Interrupt Priority Level is 4 (12)<br>011 = CPU Interrupt Priority Level is 3 (11)<br>010 = CPU Interrupt Priority Level is 2 (10)<br>001 = CPU Interrupt Priority Level is 1 (9) |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | 001 = CPU Interrupt Priority Level is 1 (9)<br>000 = CPU Interrupt Priority Level is 0 (8)                                                                                                                                                                                                                                                                                                                                                       |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

**Note 1:** For complete register details, see Register 3-1.

- 2: The IPL<2:0> Status bits are concatenated with the IPL3 Status bit (CORCON<3>) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1. User interrupts are disabled when IPL3 = 1.
- 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

# REGISTER 8-2: CORCON: CPU CORE CONTROL REGISTER<sup>(1)</sup>

| U-0    | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0   |
|--------|-----|-----|-----|-----|-----|-----|-------|
| —      | —   |     |     | —   | —   |     | —     |
| bit 15 |     |     |     |     |     |     | bit 8 |
|        |     |     |     |     |     |     |       |

| U-0   | U-0 | U-0 | U-0 | R/C-0               | R/W-1 | U-0 | U-0   |
|-------|-----|-----|-----|---------------------|-------|-----|-------|
| —     | —   | —   | —   | IPL3 <sup>(2)</sup> | PSV   | —   | —     |
| bit 7 |     |     |     |                     |       |     | bit 0 |

| Legend:           | C = Clearable bit |                       |                    |
|-------------------|-------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit  | U = Unimplemented bit | , read as '0'      |
| -n = Value at POR | '1'= Bit is set   | '0' = Bit is cleared  | x = Bit is unknown |

bit 15-4 Unimplemented: Read as '0'

bit 3 IPL3: CPU Interrupt Priority Level Status bit<sup>(2)</sup> 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less

bit 2 **PSV:** Not used as part of the interrupt module

bit 1-0 Unimplemented: Read as '0'

**Note 1:** For complete register details, see Register 3-2.

2: The IPL<2:0> Status bits are concatenated with the IPL3 Status bit (CORCON<3>) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1. User interrupts are disabled when IPL3 = 1.

| R/W-0              | U-0                                | U-0                                                          | U-0                                               | U-0                  | U-0             | U-0                | U-0 |  |  |  |  |
|--------------------|------------------------------------|--------------------------------------------------------------|---------------------------------------------------|----------------------|-----------------|--------------------|-----|--|--|--|--|
| NSTDIS             |                                    | _                                                            | —                                                 | _                    |                 | —                  | —   |  |  |  |  |
| bit 15             |                                    |                                                              |                                                   |                      |                 |                    | bit |  |  |  |  |
|                    |                                    |                                                              |                                                   |                      |                 |                    |     |  |  |  |  |
| U-0                | U-0                                | U-0                                                          | R/W-0                                             | R/W-0                | R/W-0           | R/W-0              | U-0 |  |  |  |  |
| —                  | —                                  |                                                              | MATHERR                                           | ADDRERR              | STKERR          | OSCFAIL            | —   |  |  |  |  |
| bit 7              |                                    |                                                              |                                                   |                      |                 |                    | bit |  |  |  |  |
| <u> </u>           |                                    |                                                              |                                                   |                      |                 |                    |     |  |  |  |  |
| Legend:            | - 1-14                             |                                                              | - 1-:4                                            |                      |                 | (0)                |     |  |  |  |  |
| R = Readable       |                                    | W = Writable                                                 |                                                   |                      | ented bit, read |                    |     |  |  |  |  |
| -n = Value at      | POR                                | '1' = Bit is se                                              | et                                                | '0' = Bit is cleared |                 | x = Bit is unknown |     |  |  |  |  |
| bit 15<br>bit 14-5 | 1 = Interrupt<br>0 = Interrupt     | errupt Nesting<br>nesting is dis<br>nesting is en            | abled<br>abled                                    |                      |                 |                    |     |  |  |  |  |
| bit 4              | -                                  | Unimplemented: Read as '0'<br>MATHERR: Math Error Status bit |                                                   |                      |                 |                    |     |  |  |  |  |
| 511 4              | 1 = Math err                       | or trap has or<br>or trap has no                             | curred                                            |                      |                 |                    |     |  |  |  |  |
| bit 3              | 1 = Address                        | error trap has                                               | r Trap Status bit<br>s occurred<br>s not occurred |                      |                 |                    |     |  |  |  |  |
| bit 2              | STKERR: Si<br>1 = Stack en         | tack Error Tra<br>ror trap has o<br>ror trap has n           | p Status bit<br>ccurred                           |                      |                 |                    |     |  |  |  |  |
| bit 1              | <b>OSCFAIL:</b> O<br>1 = Oscillato | Scillator Failu<br>r failure trap l                          | ire Trap Status bi                                | it                   |                 |                    |     |  |  |  |  |
| bit 0              | Unimpleme                          | nted: Read a                                                 | <b>s</b> '0'                                      |                      |                 |                    |     |  |  |  |  |
|                    |                                    |                                                              |                                                   |                      |                 |                    |     |  |  |  |  |

#### REGISTER 8-3: INTCON1: INTERRUPT CONTROL REGISTER 1

| R/W-1         | R-0                                                                                                                      | R/W-0                                   | U-0    | U-0             | U-0               | U-0             | R/W-0  |  |  |  |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------|-----------------|-------------------|-----------------|--------|--|--|--|--|
| GIE           | DISI                                                                                                                     | SWTRAP                                  |        | _               |                   |                 | AIVTEN |  |  |  |  |
| bit 15        | •                                                                                                                        |                                         |        |                 |                   |                 | bit    |  |  |  |  |
|               |                                                                                                                          |                                         |        |                 |                   |                 |        |  |  |  |  |
| U-0           | U-0                                                                                                                      | U-0                                     | R/W-0  | R/W-0           | R/W-0             | R/W-0           | R/W-0  |  |  |  |  |
|               |                                                                                                                          | —                                       | INT4EP | INT3EP          | INT2EP            | INT1EP          | INT0EP |  |  |  |  |
| bit 7         |                                                                                                                          |                                         |        |                 |                   |                 | bit    |  |  |  |  |
| Legend:       |                                                                                                                          |                                         |        |                 |                   |                 |        |  |  |  |  |
| R = Readable  | e bit                                                                                                                    | W = Writable                            | bit    | U = Unimpler    | nented bit, read  | l as '0'        |        |  |  |  |  |
| -n = Value at | Value at POR '1' = Bit is set                                                                                            |                                         |        |                 | ared              | x = Bit is unkr | nown   |  |  |  |  |
|               |                                                                                                                          |                                         |        |                 |                   |                 |        |  |  |  |  |
| bit 15        | GIE: Global                                                                                                              | Interrupt Enable                        | e bit  |                 |                   |                 |        |  |  |  |  |
|               | •                                                                                                                        | ts and associate                        | •      |                 | abled             |                 |        |  |  |  |  |
|               | •                                                                                                                        | ts are disabled, I                      | •      | still enabled   |                   |                 |        |  |  |  |  |
| bit 14        | DISI: DISI Instruction Status bit<br>1 = DISI instruction is active                                                      |                                         |        |                 |                   |                 |        |  |  |  |  |
|               |                                                                                                                          | struction is active struction is not a  |        |                 |                   |                 |        |  |  |  |  |
| bit 13        |                                                                                                                          | Software Trap St                        |        |                 |                   |                 |        |  |  |  |  |
|               |                                                                                                                          | e trap is enabled                       |        |                 |                   |                 |        |  |  |  |  |
|               | 0 = Software                                                                                                             | e trap is disabled                      | ł      |                 |                   |                 |        |  |  |  |  |
| bit 12-9      | Unimpleme                                                                                                                | nted: Read as '                         | 0'     |                 |                   |                 |        |  |  |  |  |
| bit 8         | AIVTEN: Alternate Interrupt Vector Table Enable bit                                                                      |                                         |        |                 |                   |                 |        |  |  |  |  |
|               |                                                                                                                          | ernate Interrupt \<br>ndard Interrupt \ |        |                 | onfiguration bits | )               |        |  |  |  |  |
| bit 7-5       | Unimpleme                                                                                                                | nted: Read as '                         | 0'     |                 |                   |                 |        |  |  |  |  |
| bit 4         | INT4EP: External Interrupt 4 Edge Detect Polarity Select bit                                                             |                                         |        |                 |                   |                 |        |  |  |  |  |
|               | 1 = Interrupt on negative edge                                                                                           |                                         |        |                 |                   |                 |        |  |  |  |  |
|               | <ul> <li>0 = Interrupt on positive edge</li> <li>INT3EP: External Interrupt 3 Edge Detect Polarity Select bit</li> </ul> |                                         |        |                 |                   |                 |        |  |  |  |  |
| bit 3         |                                                                                                                          |                                         |        | Polarity Select | bit               |                 |        |  |  |  |  |
|               | 1 = Interrupt on negative edge<br>0 = Interrupt on positive edge                                                         |                                         |        |                 |                   |                 |        |  |  |  |  |
| bit 2         |                                                                                                                          | ternal Interrupt 2                      |        | Polarity Select | bit               |                 |        |  |  |  |  |
|               |                                                                                                                          | t on negative ed                        | -      | ,               |                   |                 |        |  |  |  |  |
|               | 0 = Interrupt                                                                                                            | t on positive edg                       | е      |                 |                   |                 |        |  |  |  |  |
| bit 1         |                                                                                                                          | ternal Interrupt 1                      | -      | Polarity Select | bit               |                 |        |  |  |  |  |
|               |                                                                                                                          | t on negative ed<br>t on positive edg   |        |                 |                   |                 |        |  |  |  |  |
| bit 0         | •                                                                                                                        | ternal Interrupt (                      |        | Polaritv Select | t bit             |                 |        |  |  |  |  |
|               |                                                                                                                          | t on negative ed                        |        |                 |                   |                 |        |  |  |  |  |
|               |                                                                                                                          | t on positive edg                       |        |                 |                   |                 |        |  |  |  |  |

#### REGISTER 8-4: INTCON2: INTERRUPT CONTROL REGISTER 2

#### REGISTER 8-5: INTCON4: INTERRUPT CONTROL REGISTER 4

|        | U-0    | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0   |
|--------|--------|-----|-----|-----|-----|-----|-----|-------|
| bit 15 | —      | —   | —   | —   | —   | —   | —   | —     |
|        | bit 15 |     |     |     |     |     |     | bit 8 |

| U-0   | U-0 | U-0 | U-0 | U-0 | U-0 | R/C-0  | R/C-0 |
|-------|-----|-----|-----|-----|-----|--------|-------|
| —     | —   |     | —   | —   | —   | ECCDBE | SGHT  |
| bit 7 |     |     |     |     |     |        | bit 0 |

| Legend:           | C = Clearable bit |                       |                    |
|-------------------|-------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit  | U = Unimplemented bit | , read as '0'      |
| -n = Value at POR | '1' = Bit is set  | '0' = Bit is cleared  | x = Bit is unknown |

bit 15-2 Unimplemented: Read as '0'

bit 1 ECCDBE: ECC Double-Bit Error Trap bit 1 = ECC Double-Bit Error trap has occurred 0 = ECC Double-Bit Error trap has not occurred

bit 0 SGHT: Software Generated Hard Trap Status bit

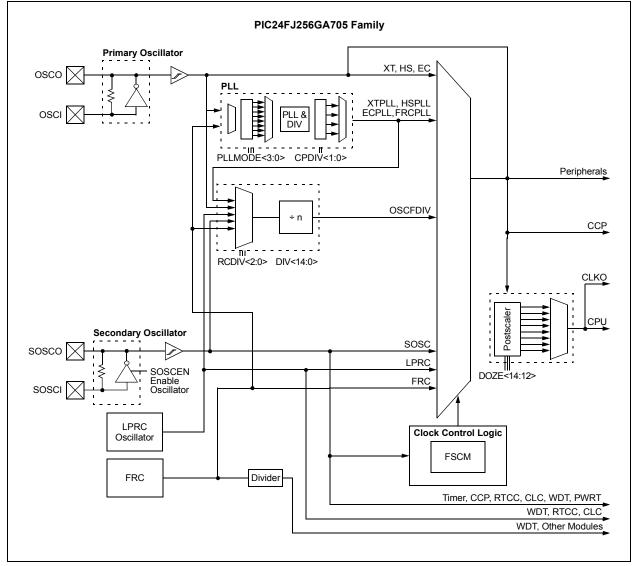
1 = Software generated hard trap has occurred

0 = Software generated hard trap has not occurred

| R-0           | U-0                                                                                                                                                          | R/W-0                                                                                                          | U-0                                                                                          | R-0               | R-0              | R-0                                    | R-0            |  |  |  |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------|------------------|----------------------------------------|----------------|--|--|--|--|
| CPUIRQ        |                                                                                                                                                              | VHOLD                                                                                                          |                                                                                              | ILR3              | ILR2             | ILR1                                   | ILR0           |  |  |  |  |
| bit 15        |                                                                                                                                                              |                                                                                                                |                                                                                              |                   |                  |                                        | bit 8          |  |  |  |  |
| R-0           | R-0                                                                                                                                                          | R-0                                                                                                            | R-0                                                                                          | R-0               | R-0              | R-0                                    | R-0            |  |  |  |  |
| VECNUM7       | VECNUM6                                                                                                                                                      | VECNUM5                                                                                                        | VECNUM4                                                                                      | VECNUM3           | VECNUM2          | VECNUM1                                | VECNUMO        |  |  |  |  |
| bit 7         | VECKOMO                                                                                                                                                      | VECHOING                                                                                                       | VEONOMI                                                                                      | VEONO             | VEONOMIZ         | VEORO                                  | bit (          |  |  |  |  |
| Legend:       |                                                                                                                                                              |                                                                                                                |                                                                                              |                   |                  |                                        |                |  |  |  |  |
| R = Readable  | e bit                                                                                                                                                        | W = Writable                                                                                                   | bit                                                                                          | U = Unimplen      | nented bit, read | 1 as '0'                               |                |  |  |  |  |
| -n = Value at |                                                                                                                                                              | '1' = Bit is set                                                                                               |                                                                                              | '0' = Bit is clea |                  | x = Bit is unkr                        | nown           |  |  |  |  |
|               |                                                                                                                                                              |                                                                                                                |                                                                                              |                   |                  |                                        |                |  |  |  |  |
| bit 15        | CPUIRQ: Inte                                                                                                                                                 | errupt Request                                                                                                 | from Interrupt                                                                               | Controller to C   | PU bit           |                                        |                |  |  |  |  |
|               |                                                                                                                                                              |                                                                                                                |                                                                                              |                   |                  | jed by the CPU                         | ; this happens |  |  |  |  |
|               |                                                                                                                                                              | e CPU priority is                                                                                              |                                                                                              |                   | ority            |                                        |                |  |  |  |  |
| bit 14        |                                                                                                                                                              | upt request is u<br>i <b>ted:</b> Read as 'i                                                                   | -                                                                                            | eu                |                  |                                        |                |  |  |  |  |
| bit 13        | -                                                                                                                                                            |                                                                                                                |                                                                                              | ation hit         |                  |                                        |                |  |  |  |  |
| DIT 13        | <ul> <li>VHOLD: Vector Number Capture Configuration bit</li> <li>1 = The VECNUMx bits contain the value of the highest priority pending interrupt</li> </ul> |                                                                                                                |                                                                                              |                   |                  |                                        |                |  |  |  |  |
|               | 0 = The VEC                                                                                                                                                  | NUMx bits cor                                                                                                  | ntain the value                                                                              | of the last Ac    | knowledged in    | terrupt (i.e., the<br>terrupts are per |                |  |  |  |  |
| bit 12        | Unimplemen                                                                                                                                                   | ted: Read as '                                                                                                 | D'                                                                                           |                   |                  |                                        | -              |  |  |  |  |
| bit 11-8      | ILR<3:0>: New CPU Interrupt Priority Level bits                                                                                                              |                                                                                                                |                                                                                              |                   |                  |                                        |                |  |  |  |  |
|               | 1111 = CPU Interrupt Priority Level is 15                                                                                                                    |                                                                                                                |                                                                                              |                   |                  |                                        |                |  |  |  |  |
|               | •                                                                                                                                                            |                                                                                                                |                                                                                              |                   |                  |                                        |                |  |  |  |  |
|               |                                                                                                                                                              |                                                                                                                |                                                                                              |                   |                  |                                        |                |  |  |  |  |
|               | •<br>0001 = CPU Interrupt Priority Level is 1                                                                                                                |                                                                                                                |                                                                                              |                   |                  |                                        |                |  |  |  |  |
|               | 0000 = CPU Interrupt Priority Level is 0                                                                                                                     |                                                                                                                |                                                                                              |                   |                  |                                        |                |  |  |  |  |
| bit 7-0       | VECNUM<7:                                                                                                                                                    | 0>: Vector Num                                                                                                 | ber of Pendin                                                                                | g Interrupt bits  |                  |                                        |                |  |  |  |  |
|               | 11111111 =                                                                                                                                                   | VECNUM<7:0>: Vector Number of Pending Interrupt bits<br>11111111 = 255, Reserved; do not use                   |                                                                                              |                   |                  |                                        |                |  |  |  |  |
|               | •                                                                                                                                                            |                                                                                                                |                                                                                              |                   |                  |                                        |                |  |  |  |  |
|               | •                                                                                                                                                            |                                                                                                                | , 40 1101 400                                                                                |                   |                  |                                        |                |  |  |  |  |
|               | •<br>•                                                                                                                                                       |                                                                                                                |                                                                                              |                   |                  |                                        |                |  |  |  |  |
|               | •<br>•<br>00001001 =                                                                                                                                         | 9, IC1 – Input (                                                                                               |                                                                                              |                   |                  |                                        |                |  |  |  |  |
|               | 00001000 =                                                                                                                                                   | 8, INT0 – Exter                                                                                                | Capture 1<br>rnal Interrupt C                                                                | )                 |                  |                                        |                |  |  |  |  |
|               | 00001000 =<br>00000111 =                                                                                                                                     | 8, INT0 – Exter<br>7, Reserved; d                                                                              | Capture 1<br>nal Interrupt C<br>o not use                                                    | )                 |                  |                                        |                |  |  |  |  |
|               | 00001000 =<br>00000111 =<br>00000110 =                                                                                                                       | 8, INT0 – Exter<br>7, Reserved; d<br>6, Generic soft                                                           | Capture 1<br>mal Interrupt C<br>o not use<br>error trap                                      | )                 |                  |                                        |                |  |  |  |  |
|               | 00001000 =<br>00000111 =<br>00000110 =<br>00000101 =                                                                                                         | 8, INT0 – Exter<br>7, Reserved; d                                                                              | Capture 1<br>mal Interrupt C<br>o not use<br>error trap<br>o not use                         | )                 |                  |                                        |                |  |  |  |  |
|               | 00001000 =<br>00000111 =<br>00000110 =<br>00000101 =<br>00000100 =<br>00000011 =                                                                             | 8, INT0 – Exter<br>7, Reserved; d<br>6, Generic soft<br>5, Reserved; d<br>4, Math error tr<br>3, Stack error t | Capture 1<br>rnal Interrupt C<br>o not use<br>error trap<br>o not use<br>ap<br>rap           | )                 |                  |                                        |                |  |  |  |  |
|               | 00001000 =<br>00000111 =<br>00000110 =<br>00000101 =<br>00000100 =<br>00000011 =<br>00000010 =                                                               | 8, INT0 – Exter<br>7, Reserved; d<br>6, Generic soft<br>5, Reserved; d<br>4, Math error tr                     | Capture 1<br>rnal Interrupt C<br>o not use<br>error trap<br>o not use<br>ap<br>rap<br>t trap | )                 |                  |                                        |                |  |  |  |  |

# REGISTER 8-6: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

# 9.0 OSCILLATOR CONFIGURATION


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Oscillator" (DS39700), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The oscillator system for the PIC24FJ256GA705 family devices has the following features:

 An On-Chip PLL Block to provide a Range of Frequency Options for the System Clock

- Software-Controllable Switching between Various Clock Sources
- Software-Controllable Postscaler for Selective Clocking of CPU for System Power Savings
- A Fail-Safe Clock Monitor (FSCM) that Detects Clock Failure and Permits Safe Application Recovery or Shutdown
- A Separate and Independently Configurable System Clock Output for Synchronizing External Hardware

A simplified diagram of the oscillator system is shown in Figure 9-1.



#### FIGURE 9-1: PIC24FJ256GA705 FAMILY CLOCK DIAGRAM

# 9.1 CPU Clocking Scheme

The system clock source can be provided by one of four sources:

- Primary Oscillator (POSC) on the OSCI and OSCO pins
- Secondary Oscillator (SOSC) on the SOSCI and SOSCO pins
- Fast Internal RC (FRC) Oscillator
- · Low-Power Internal RC (LPRC) Oscillator

The Primary Oscillator and FRC sources have the option of using the internal PLL block, which can generate a 4x, 6x or 8x PLL clock. If the PLL is used, the PLL clocks can then be postscaled, if necessary, and used as the system clock. Refer to **Section 9.5 "Oscillator Modes"** for additional information. The internal FRC provides an 8 MHz clock source.

Each clock source (PRIPLL, FRCPLL, PRI, FRC, LPRC and SOSC) can be used as an input to an additional divider, which can then be used to produce a divided clock source for use as a system clock (OSCFDIV).

The selected clock source generates the processor and peripheral clock sources. The processor clock source is divided by two to produce the internal instruction cycle clock, FCY. In this document, the instruction cycle clock is also denoted by FOSC/2. The internal instruction cycle clock, FOSC/2, can be provided on the OSCO I/O pin for some operating modes of the Primary Oscillator.

# 9.2 Initial Configuration on POR

The oscillator source (and operating mode) that is used at a device Power-on Reset event is selected using Configuration bit settings. The Oscillator Configuration bit settings are located in the Configuration registers in the program memory (refer to Section 29.1 "Configuration Bits" for further details). The Primary Oscillator Configuration bits, POSCMD<1:0> (FOSC<1:0>), and the Oscillator Select Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), select the oscillator source that is used at a Power-on Reset. The OSCFDIV clock source is the default (unprogrammed) selection; the default input source to the OSCFDIV divider is the FRC clock source. Other oscillators may be chosen by programming these bit locations.

The Configuration bits allow users to choose between the various Clock modes shown in Table 9-1.

#### 9.2.1 CLOCK SWITCHING MODE CONFIGURATION BITS

The FCKSM<1:0> Configuration bits (FOSC<7:6>) are used to jointly configure device clock switching and the Fail-Safe Clock Monitor (FSCM). Clock switching is enabled only when FCKSM1 is programmed ('0'). The FSCM is enabled only when FCKSM<1:0> are both programmed ('00').

| Oscillator Mode                                    | Oscillator Source | POSCMD<1:0> | FNOSC<2:0> | Notes   |
|----------------------------------------------------|-------------------|-------------|------------|---------|
| Oscillator with Frequency Division (OSCFDIV)       | Internal/External | 11          | 111        | 1, 2, 3 |
| Low-Power RC Oscillator (LPRC)                     | Internal          | 11          | 101        | 3       |
| Secondary (Timer1) Oscillator<br>(SOSC)            | Secondary         | 11          | 100        | 3       |
| Primary Oscillator (XT) with PLL<br>Module (XTPLL) | Primary           | 01          | 011        |         |
| Primary Oscillator (EC) with PLL<br>Module (ECPLL) | Primary           | 00          | 011        |         |
| Primary Oscillator (HS)                            | Primary           | 10          | 010        |         |
| Primary Oscillator (XT)                            | Primary           | 01          | 010        |         |
| Primary Oscillator (EC)                            | Primary           | 00          | 010        |         |
| Fast RC Oscillator with PLL Module (FRCPLL)        | Internal          | 11          | 001        | 3       |
| Fast RC Oscillator (FRC)                           | Internal          | 11          | 000        | 3       |

#### TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

**Note 1:** The input oscillator to the OSCFDIV Clock mode is determined by the RCDIV<2:0> (CLKDIV<10:8) bits. At POR, the default value selects the FRC module.

- 2: This is the default Oscillator mode for an unprogrammed (erased) device.
- 3: OSCO pin function is determined by the OSCIOFCN Configuration bit.

### 9.3 Control Registers

The operation of the oscillator is controlled by five Special Function Registers:

- OSCCON
- CLKDIV
- OSCTUN
- OSCDIV
- OSCFDIV

The OSCCON register (Register 9-1) is the main control register for the oscillator. It controls clock source switching and allows the monitoring of clock sources. OSCCON is protected by a write lock to prevent inadvertent clock switches. See Section 9.4 "Clock Switching Operation" for more information. The CLKDIV register (Register 9-2) controls the features associated with Doze mode, as well as the postscalers for the OSCFDIV Clock mode and the PLL module.

The OSCTUN register (Register 9-3) allows the user to fine-tune the FRC Oscillator over a range of approximately  $\pm 1.5\%$ .

The OSCDIV and OSCFDIV registers provide control for the system oscillator frequency divider.

| U-0                   | R-x <sup>(2)</sup>                     | R-x <sup>(2)</sup>                                      | R-x <sup>(2)</sup>    | U-0                 | R/W-x <sup>(2)</sup> | R/W-x <sup>(2)</sup> | R/W-x <sup>(2)</sup> |  |  |  |  |
|-----------------------|----------------------------------------|---------------------------------------------------------|-----------------------|---------------------|----------------------|----------------------|----------------------|--|--|--|--|
| _                     | COSC2                                  | COSC1                                                   | COSC0                 |                     | NOSC2                | NOSC1                | NOSC0                |  |  |  |  |
| bit 15                |                                        |                                                         |                       |                     |                      |                      | bit 8                |  |  |  |  |
|                       |                                        | (1)                                                     |                       |                     |                      |                      |                      |  |  |  |  |
| R/W-0                 | R/W-0                                  | R-0 <sup>(4)</sup>                                      | U-0                   | R/CO-0              | R/W-0                | R/W-0                | R/W-0                |  |  |  |  |
| CLKLOCK               | IOLOCK <sup>(3)</sup>                  | LOCK                                                    | —                     | CF                  | POSCEN               | SOSCEN               | OSWEN                |  |  |  |  |
| bit 7                 |                                        |                                                         |                       |                     |                      |                      | bit (                |  |  |  |  |
|                       |                                        | 00 01.000                                               |                       |                     |                      |                      |                      |  |  |  |  |
| Legend:<br>R = Readat | ala hit                                | CO = Clearal<br>W = Writable                            | -                     |                     | nented bit, read     |                      |                      |  |  |  |  |
|                       |                                        |                                                         |                       | '0' = Bit is cle    |                      |                      |                      |  |  |  |  |
| -n = Value a          | al POR                                 | '1' = Bit is se                                         |                       |                     | areu                 | x = Bit is unkn      | OWN                  |  |  |  |  |
| bit 15                | Unimplemen                             | ted: Read as '                                          | ٥'                    |                     |                      |                      |                      |  |  |  |  |
| bit 14-12             |                                        |                                                         | e<br>ator Selection b | oits <sup>(2)</sup> |                      |                      |                      |  |  |  |  |
| 511112                |                                        |                                                         | ency Divider (O       |                     |                      |                      |                      |  |  |  |  |
|                       | 110 = Reserv                           | /ed                                                     |                       | ,                   |                      |                      |                      |  |  |  |  |
|                       |                                        | ower RC Oscill                                          |                       |                     |                      |                      |                      |  |  |  |  |
|                       |                                        | dary Oscillator                                         |                       | (XTPLL, ECPL        |                      |                      |                      |  |  |  |  |
|                       |                                        | y Oscillator (X                                         |                       |                     | L)                   |                      |                      |  |  |  |  |
|                       |                                        |                                                         | th PLL module         | (FRCPLL)            |                      |                      |                      |  |  |  |  |
|                       |                                        | C Oscillator (F                                         | -                     |                     |                      |                      |                      |  |  |  |  |
| bit 11                |                                        | ted: Read as '                                          |                       |                     |                      |                      |                      |  |  |  |  |
| bit 10-8              |                                        | NOSC<2:0>: New Oscillator Selection bits <sup>(2)</sup> |                       |                     |                      |                      |                      |  |  |  |  |
|                       |                                        | 11 = Oscillator with Frequency Divider (OSCFDIV)        |                       |                     |                      |                      |                      |  |  |  |  |
|                       | 110 = Reserv                           | ower RC Oscill                                          | ator (LPRC)           |                     |                      |                      |                      |  |  |  |  |
|                       |                                        | dary Oscillator                                         |                       |                     |                      |                      |                      |  |  |  |  |
|                       |                                        |                                                         |                       | (XTPLL, ECPL        | L)                   |                      |                      |  |  |  |  |
|                       |                                        | y Oscillator (X                                         |                       |                     |                      |                      |                      |  |  |  |  |
|                       |                                        | C Oscillator wi                                         | th PLL module<br>RC)  | (FRGPLL)            |                      |                      |                      |  |  |  |  |
| bit 7                 |                                        |                                                         | Lock Enable b         | bit                 |                      |                      |                      |  |  |  |  |
|                       |                                        | nabled (FCKSN                                           |                       |                     |                      |                      |                      |  |  |  |  |
|                       | 1 = Clock an                           | d PLL selection                                         | ns are locked         |                     |                      |                      |                      |  |  |  |  |
|                       |                                        |                                                         |                       | ed and may be       | modified by se       | tting the OSWE       | N bit                |  |  |  |  |
|                       |                                        | sabled (FCKS                                            |                       | and may be m        | odified by setti     | ng the OSWEN         | hit                  |  |  |  |  |
| bit 6                 |                                        | Lock Enable b                                           |                       | and may be m        |                      | ig the cover         | Dit.                 |  |  |  |  |
|                       | 1 = I/O lock is                        |                                                         |                       |                     |                      |                      |                      |  |  |  |  |
|                       | 0 = I/O lock is                        | s not active                                            |                       |                     |                      |                      |                      |  |  |  |  |
| bit 5                 | LOCK: PLL L                            | ock Status bit <sup>(</sup>                             | 4)                    |                     |                      |                      |                      |  |  |  |  |
|                       |                                        |                                                         |                       | start-up timer is   |                      |                      |                      |  |  |  |  |
|                       | 0 = PLL mod                            | lule is out of lo                                       | ck, PLL start-up      | o timer is runnir   | ng or PLL is dis     | abled                |                      |  |  |  |  |
|                       | OSCCON is prote<br>Switching Opera     |                                                         |                       | nt inadvertent c    | lock switches.       | See Section 9.       | 4 "Clock             |  |  |  |  |
|                       | Reset values for t                     |                                                         |                       | the FNOSCx C        | onfiguration bits    | 5.                   |                      |  |  |  |  |
| 3: 1                  | The state of the loaddition, if the IO | OLOCK bit car                                           | only be chang         | jed once an un      | locking sequen       | ce has been ex       |                      |  |  |  |  |
|                       | This hit also rese                     | -                                                       |                       |                     |                      |                      |                      |  |  |  |  |

# REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER<sup>(1)</sup>

4: This bit also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.

# **REGISTER 9-1:** OSCCON: OSCILLATOR CONTROL REGISTER<sup>(1)</sup> (CONTINUED)

- bit 4 Unimplemented: Read as '0'
- bit 3 **CF:** Clock Fail Detect bit
  - 1 = FSCM has detected a clock failure
  - 0 = No clock failure has been detected
- bit 2 **POSCEN:** Primary Oscillator Sleep Enable bit
  - 1 = Primary Oscillator continues to operate during Sleep mode
    - 0 = Primary Oscillator is disabled during Sleep mode
- bit 1 SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit
  - 1 = Enables Secondary Oscillator
  - 0 = Disables Secondary Oscillator
- bit 0 OSWEN: Oscillator Switch Enable bit
  - 1 = Initiates an oscillator switch to a clock source specified by the NOSC<2:0> bits
  - 0 = Oscillator switch is complete
- Note 1: OSCCON is protected by a write lock to prevent inadvertent clock switches. See Section 9.4 "Clock Switching Operation" for more information.
  - 2: Reset values for these bits are determined by the FNOSCx Configuration bits.
  - **3:** The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In addition, if the IOL1WAY Configuration bit is '1', once the IOLOCK bit is set, it cannot be cleared.
  - 4: This bit also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.

| ROI                                                                                                                                      | R/W-0                                                                                                                                                                                                                                                                              | R/W-1                                                                                                                                                                                                                                      | R/W-1                                                                                                               | R/W-0                                                 | R/W-0                               | R/W-0           | R/W-0  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------|-----------------|--------|--|--|--|--|
|                                                                                                                                          | DOZE2                                                                                                                                                                                                                                                                              | DOZE1                                                                                                                                                                                                                                      | DOZE0                                                                                                               | DOZEN <sup>(1)</sup>                                  | RCDIV2                              | RCDIV1          | RCDIV0 |  |  |  |  |
| bit 15                                                                                                                                   |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                            |                                                                                                                     |                                                       |                                     |                 | bit    |  |  |  |  |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                            |                                                                                                                     |                                                       |                                     |                 |        |  |  |  |  |
| R/W-0                                                                                                                                    | R/W-0                                                                                                                                                                                                                                                                              | R/W-0                                                                                                                                                                                                                                      | U-0                                                                                                                 | U-0                                                   | U-0                                 | U-0             | U-0    |  |  |  |  |
| CPDIV1                                                                                                                                   | CPDIV0                                                                                                                                                                                                                                                                             | PLLEN                                                                                                                                                                                                                                      | _                                                                                                                   |                                                       | _                                   |                 |        |  |  |  |  |
| bit 7                                                                                                                                    |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                            |                                                                                                                     |                                                       |                                     |                 | bit    |  |  |  |  |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                            |                                                                                                                     |                                                       |                                     |                 |        |  |  |  |  |
| Legend:                                                                                                                                  | L:4                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                            |                                                                                                                     |                                                       |                                     |                 |        |  |  |  |  |
| R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknow |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                            |                                                                                                                     |                                                       |                                     |                 |        |  |  |  |  |
| -n = value at F                                                                                                                          | POR                                                                                                                                                                                                                                                                                | '1' = Bit is set                                                                                                                                                                                                                           |                                                                                                                     | 0 = Bit is clea                                       | ared                                | x = Bit is unkn | IOWN   |  |  |  |  |
| bit 15                                                                                                                                   | ROI: Recover                                                                                                                                                                                                                                                                       | on Interrupt bi                                                                                                                                                                                                                            | ŀ                                                                                                                   |                                                       |                                     |                 |        |  |  |  |  |
| bit 10                                                                                                                                   |                                                                                                                                                                                                                                                                                    | pheral clock ra                                                                                                                                                                                                                            | tio to 1:1                                                                                                          |                                                       |                                     |                 |        |  |  |  |  |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                    | have no effect                                                                                                                                                                                                                             |                                                                                                                     |                                                       |                                     |                 |        |  |  |  |  |
| bit 14-12                                                                                                                                | DOZE<2:0>:                                                                                                                                                                                                                                                                         | CPU Periphera                                                                                                                                                                                                                              | I Clock Ratio                                                                                                       | Select bits                                           |                                     |                 |        |  |  |  |  |
|                                                                                                                                          | 111 <b>= 1:128</b>                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                            |                                                                                                                     |                                                       |                                     |                 |        |  |  |  |  |
|                                                                                                                                          | 110 = 1:64                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                            |                                                                                                                     |                                                       |                                     |                 |        |  |  |  |  |
|                                                                                                                                          | 101 = 1:32<br>100 = 1:16                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                            |                                                                                                                     |                                                       |                                     |                 |        |  |  |  |  |
|                                                                                                                                          | 011 = 1:8 (de                                                                                                                                                                                                                                                                      | fault)                                                                                                                                                                                                                                     |                                                                                                                     |                                                       |                                     |                 |        |  |  |  |  |
|                                                                                                                                          | 010 = 1:4                                                                                                                                                                                                                                                                          | laany                                                                                                                                                                                                                                      |                                                                                                                     |                                                       |                                     |                 |        |  |  |  |  |
|                                                                                                                                          | 001 = 1:2                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                            |                                                                                                                     |                                                       |                                     |                 |        |  |  |  |  |
|                                                                                                                                          | 000 = 1:1                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                            |                                                                                                                     |                                                       |                                     |                 |        |  |  |  |  |
| bit 11                                                                                                                                   | DOZEN: Doze Enable bit <sup>(1)</sup>                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                            |                                                                                                                     |                                                       |                                     |                 |        |  |  |  |  |
|                                                                                                                                          |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                            |                                                                                                                     | oheral clock ratio                                    | 0                                   |                 |        |  |  |  |  |
|                                                                                                                                          | <ul> <li>0 = CPU peripheral clock ratio is set to 1:1</li> <li>RCDIV&lt;2:0&gt;: System Frequency Divider Clock Source Select bits</li> </ul>                                                                                                                                      |                                                                                                                                                                                                                                            |                                                                                                                     |                                                       |                                     |                 |        |  |  |  |  |
| bit 10-8                                                                                                                                 | •                                                                                                                                                                                                                                                                                  | System Frequ                                                                                                                                                                                                                               | ency Divider C                                                                                                      | lock Source Se                                        | lect bits                           |                 |        |  |  |  |  |
| bit 10-8                                                                                                                                 | RCDIV<2:0>:                                                                                                                                                                                                                                                                        | System Freque<br>ed; do not use                                                                                                                                                                                                            | ency Divider C                                                                                                      | Clock Source Se                                       | lect bits                           |                 |        |  |  |  |  |
| bit 10-8                                                                                                                                 | RCDIV<2:0>:<br>111 = Reserv<br>110 = Reserv                                                                                                                                                                                                                                        | ed; do not use                                                                                                                                                                                                                             | -                                                                                                                   | Clock Source Se                                       | lect bits                           |                 |        |  |  |  |  |
| bit 10-8                                                                                                                                 | RCDIV<2:0>:<br>111 = Reserv<br>110 = Reserv<br>101 = Low-Pc                                                                                                                                                                                                                        | ed; do not use<br>ed<br>ower RC Oscilla                                                                                                                                                                                                    | ator (LPRC)                                                                                                         | Clock Source Se                                       | lect bits                           |                 |        |  |  |  |  |
| bit 10-8                                                                                                                                 | RCDIV<2:0>:<br>111 = Reserv<br>110 = Reserv<br>101 = Low-Po<br>100 = Second                                                                                                                                                                                                        | ed; do not use<br>ed<br>ower RC Oscilla<br>dary Oscillator                                                                                                                                                                                 | ator (LPRC)<br>(SOSC)                                                                                               |                                                       |                                     | ECPLL)          |        |  |  |  |  |
| bit 10-8                                                                                                                                 | RCDIV<2:0>:<br>111 = Reserv<br>110 = Reserv<br>101 = Low-Pc<br>100 = Second<br>011 = Primary                                                                                                                                                                                       | ed; do not use<br>ed<br>ower RC Oscilla<br>dary Oscillator<br>y Oscillator (XT                                                                                                                                                             | ator (LPRC)<br>(SOSC)<br>, HS, EC) with                                                                             | Clock Source Se                                       |                                     | ECPLL)          |        |  |  |  |  |
| bit 10-8                                                                                                                                 | RCDIV<2:0>:<br>111 = Reserv<br>110 = Reserv<br>101 = Low-Po<br>100 = Second<br>011 = Primary<br>010 = Primary                                                                                                                                                                      | ed; do not use<br>ed<br>ower RC Oscilla<br>dary Oscillator<br>y Oscillator (XT<br>y Oscillator (XT                                                                                                                                         | ator (LPRC)<br>(SOSC)<br>, HS, EC) with<br>, HS, EC)                                                                | PLL module (X                                         | TPLL, HSPLL                         | ECPLL)          |        |  |  |  |  |
| bit 10-8                                                                                                                                 | RCDIV<2:0>:<br>111 = Reserv<br>110 = Reserv<br>101 = Low-Po<br>100 = Second<br>011 = Primary<br>010 = Primary<br>001 = Fast R                                                                                                                                                      | ed; do not use<br>ed<br>ower RC Oscilla<br>dary Oscillator<br>y Oscillator (XT<br>y Oscillator (XT                                                                                                                                         | ator (LPRC)<br>(SOSC)<br>; HS, EC) with<br>; HS, EC)<br>RC) with PLL r                                              |                                                       | TPLL, HSPLL                         | ECPLL)          |        |  |  |  |  |
| bit 10-8<br>bit 7-6                                                                                                                      | RCDIV<2:0>:<br>111 = Reserv<br>110 = Reserv<br>101 = Low-Po<br>100 = Second<br>011 = Primary<br>010 = Primary<br>010 = Fast RC<br>000 = Fast RC<br>CPDIV<1:0>:                                                                                                                     | ed; do not use<br>ed<br>ower RC Oscillator<br>y Oscillator (XT<br>y Oscillator (XT<br>C Oscillator (Ff<br>C Oscillator (Ff<br>System Clock                                                                                                 | ator (LPRC)<br>(SOSC)<br>, HS, EC) with<br>, HS, EC)<br>RC) with PLL r<br>RC)                                       | PLL module (X                                         | TPLL, HSPLL<br>L)                   |                 | ch)    |  |  |  |  |
|                                                                                                                                          | RCDIV<2:0>:<br>111 = Reserv<br>110 = Reserv<br>101 = Low-Po<br>100 = Second<br>011 = Primary<br>010 = Primary<br>010 = Fast RC<br>000 = Fast RC<br>CPDIV<1:0>:<br>11 = 4 MHz (c                                                                                                    | ed; do not use<br>ed<br>ower RC Oscillator<br>y Oscillator (XT<br>y Oscillator (XT<br>C Oscillator (Ff<br>C Oscillator (Ff<br>System Clock<br>divide-by-8)                                                                                 | ator (LPRC)<br>(SOSC)<br>, HS, EC) with<br>, HS, EC)<br>RC) with PLL r<br>RC)                                       | PLL module (X<br>nodule (FRCPLI                       | TPLL, HSPLL<br>L)                   |                 | ch)    |  |  |  |  |
|                                                                                                                                          | RCDIV<2:0>:<br>111 = Reserv<br>110 = Reserv<br>101 = Low-Po<br>100 = Second<br>011 = Primary<br>010 = Primary<br>010 = Fast RC<br>000 = Fast RC<br>CPDIV<1:0>:<br>11 = 4 MHz (c<br>10 = 8 MHz (c)                                                                                  | ed; do not use<br>ed<br>ower RC Oscilla-<br>dary Oscillator (XT<br>y Oscillator (XT<br>C Oscillator (Ff<br>C Oscillator (Ff<br>System Clock<br>divide-by-8)<br>divide-by-4)                                                                | ator (LPRC)<br>(SOSC)<br>, HS, EC) with<br>, HS, EC)<br>RC) with PLL r<br>RC)                                       | PLL module (X<br>nodule (FRCPLI                       | TPLL, HSPLL<br>L)                   |                 | ch)    |  |  |  |  |
|                                                                                                                                          | RCDIV<2:0>:<br>111 = Reserv<br>110 = Reserv<br>101 = Low-Po<br>100 = Second<br>011 = Primary<br>010 = Primary<br>010 = Fast RC<br>000 = Fast RC<br>CPDIV<1:0>:<br>11 = 4 MHz (c<br>10 = 8 MHz (c<br>01 = 16 MHz                                                                    | ed; do not use<br>ed<br>ower RC Oscilla-<br>dary Oscillator (XT<br>y Oscillator (XT<br>C Oscillator (Ff<br>C Oscillator (Ff<br>System Clock<br>divide-by-8)<br>divide-by-4)<br>(divide-by-2)                                               | ator (LPRC)<br>(SOSC)<br>, HS, EC) with<br>, HS, EC)<br>RC) with PLL r<br>RC)                                       | PLL module (X<br>nodule (FRCPLI                       | TPLL, HSPLL<br>L)                   |                 | ch)    |  |  |  |  |
| bit 7-6                                                                                                                                  | RCDIV<2:0>:<br>111 = Reserv<br>110 = Reserv<br>101 = Low-Po<br>100 = Second<br>011 = Primary<br>010 = Primary<br>010 = Fast RC<br>000 = Fast RC<br>CPDIV<1:0>:<br>11 = 4 MHz (c<br>10 = 8 MHz (c<br>01 = 16 MHz<br>00 = 32 MHz                                                     | ed; do not use<br>ed<br>ower RC Oscillator<br>y Oscillator (XT<br>y Oscillator (XT<br>C Oscillator (Ff<br>C Oscillator (Ff<br>System Clock<br>divide-by-8)<br>divide-by-4)<br>(divide-by-2)<br>(divide-by-1)                               | ator (LPRC)<br>(SOSC)<br>, HS, EC) with<br>, HS, EC)<br>RC) with PLL r<br>RC)                                       | PLL module (X<br>nodule (FRCPLI                       | TPLL, HSPLL<br>L)                   |                 | ch)    |  |  |  |  |
|                                                                                                                                          | RCDIV<2:0>:<br>111 = Reserv<br>110 = Reserv<br>101 = Low-Po<br>100 = Second<br>011 = Primary<br>010 = Primary<br>010 = Fast RC<br>000 = Fast RC<br>CPDIV<1:0>:<br>11 = 4 MHz (c<br>10 = 8 MHz (c<br>01 = 16 MHz<br>00 = 32 MHz<br>PLLEN: PLL                                       | ed; do not use<br>ed<br>ower RC Oscillator<br>y Oscillator (XT<br>y Oscillator (XT<br>C Oscillator (FF<br>C Oscillator (FF<br>System Clock<br>divide-by-8)<br>divide-by-4)<br>(divide-by-2)<br>(divide-by-1)<br>Enable bit                 | ator (LPRC)<br>(SOSC)<br>, HS, EC) with<br>, HS, EC)<br>RC) with PLL r<br>RC)                                       | PLL module (X<br>nodule (FRCPLI                       | TPLL, HSPLL<br>L)                   |                 | ch)    |  |  |  |  |
| bit 7-6                                                                                                                                  | RCDIV<2:0>:<br>111 = Reserv<br>110 = Reserv<br>101 = Low-Po<br>100 = Second<br>011 = Primary<br>010 = Primary<br>010 = Fast RC<br>000 = Fast RC<br>CPDIV<1:0>:<br>11 = 4 MHz (c<br>10 = 8 MHz (c<br>01 = 16 MHz<br>00 = 32 MHz<br>PLLEN: PLL I<br>1 = PLL is alw                   | ed; do not use<br>ed<br>ower RC Oscilla-<br>dary Oscillator (XT<br>y Oscillator (XT<br>c Oscillator (FF<br>C Oscillator (FF<br>System Clock<br>divide-by-8)<br>divide-by-4)<br>(divide-by-2)<br>(divide-by-1)<br>Enable bit<br>vays active | ator (LPRC)<br>(SOSC)<br>, HS, EC) with<br>, HS, EC)<br>RC) with PLL r<br>RC)<br>Select bits (pc                    | PLL module (X<br>nodule (FRCPLI                       | TPLL, HSPLL<br>L)<br>from PLL, 32 N | IHz clock brand |        |  |  |  |  |
| bit 7-6                                                                                                                                  | RCDIV<2:0>:<br>111 = Reserv<br>110 = Reserv<br>101 = Low-Po<br>100 = Second<br>011 = Primary<br>010 = Primary<br>010 = Fast RC<br>000 = Fast RC<br>CPDIV<1:0>:<br>11 = 4 MHz (c<br>10 = 8 MHz (c<br>01 = 16 MHz<br>00 = 32 MHz<br>PLLEN: PLL I<br>1 = PLL is alw<br>0 = PLL is onl | ed; do not use<br>ed<br>ower RC Oscilla-<br>dary Oscillator (XT<br>y Oscillator (XT<br>c Oscillator (FF<br>C Oscillator (FF<br>System Clock<br>divide-by-8)<br>divide-by-4)<br>(divide-by-2)<br>(divide-by-1)<br>Enable bit<br>vays active | ator (LPRC)<br>(SOSC)<br>; HS, EC) with<br>; HS, EC)<br>RC) with PLL r<br>RC)<br>Select bits (po<br>Select bits (po | PLL module (X<br>nodule (FRCPLI<br>ostscaler select f | TPLL, HSPLL<br>L)<br>from PLL, 32 N | IHz clock brand |        |  |  |  |  |

# REGISTER 9-2: CLKDIV: CLOCK DIVIDER REGISTER

#### REGISTER 9-3: OSCTUN: FRC OSCILLATOR TUNE REGISTER

| U-0           | U-0               | U-0              | U-0          | U-0                                     | U-0   | U-0   | U-0   |  |  |
|---------------|-------------------|------------------|--------------|-----------------------------------------|-------|-------|-------|--|--|
|               | —                 | —                | —            | —                                       |       | —     | —     |  |  |
| bit 15        | -                 |                  |              |                                         |       |       | bit 8 |  |  |
|               |                   |                  |              |                                         |       |       |       |  |  |
| U-0           | U-0               | R/W-0            | R/W-0        | R/W-0                                   | R/W-0 | R/W-0 | R/W-0 |  |  |
| _             | —                 |                  | TUN<5:0>     |                                         |       |       |       |  |  |
| bit 7         |                   |                  |              |                                         |       |       | bit 0 |  |  |
|               |                   |                  |              |                                         |       |       |       |  |  |
| Legend:       |                   |                  |              |                                         |       |       |       |  |  |
| R = Readabl   | le bit            | W = Writable I   | oit          | U = Unimplemented bit, read as '0'      |       |       |       |  |  |
| -n = Value at | t POR             | '1' = Bit is set |              | '0' = Bit is cleared x = Bit is unknown |       |       | nown  |  |  |
|               |                   |                  |              |                                         |       |       |       |  |  |
| bit 15-6      | Unimpleme         | nted: Read as '0 | )'           |                                         |       |       |       |  |  |
| bit 5-0       | TUN<5:0>: F       | RC Oscillator T  | uning bits   |                                         |       |       |       |  |  |
|               | 011111 <b>= M</b> | aximum frequen   | cy deviation |                                         |       |       |       |  |  |
|               | 011110            |                  |              |                                         |       |       |       |  |  |

011110 = 000001 = 000000 = Center frequency, oscillator is running at factory calibrated frequency 11111 = 100001 = 100000 = Minimum frequency deviation

|                   | 54440                                                                | 544/0                    | 5444 6                       | <b>D</b> 444 0                         | <b>D</b> 444 0 | 5444               | 5444.0 |  |  |
|-------------------|----------------------------------------------------------------------|--------------------------|------------------------------|----------------------------------------|----------------|--------------------|--------|--|--|
| U-0               | R/W-0                                                                | R/W-0                    | R/W-0                        | R/W-0                                  | R/W-0          | R/W-0              | R/W-0  |  |  |
| —                 |                                                                      |                          |                              | DIV<14:8>                              |                |                    |        |  |  |
| bit 15            |                                                                      |                          |                              |                                        |                |                    | bit    |  |  |
|                   |                                                                      |                          |                              |                                        |                |                    |        |  |  |
| R/W-0             | R/W-0                                                                | R/W-0                    | R/W-0                        | R/W-0                                  | R/W-0          | R/W-0              | R/W-1  |  |  |
|                   |                                                                      |                          | DIV                          | <7:0>                                  |                |                    |        |  |  |
| bit 7             |                                                                      |                          |                              |                                        |                |                    | bit    |  |  |
|                   |                                                                      |                          |                              |                                        |                |                    |        |  |  |
| Legend:           |                                                                      |                          |                              |                                        |                |                    |        |  |  |
| R = Readable bit  |                                                                      | W = Writable bi          | t                            | U = Unimplemented bit, read            |                | d as '0'           |        |  |  |
| -n = Value at POR |                                                                      | '1' = Bit is set         |                              | '0' = Bit is cleared                   |                | x = Bit is unknown |        |  |  |
|                   |                                                                      |                          |                              |                                        |                |                    |        |  |  |
| bit 15            | Unimpleme                                                            | nted: Read as '0'        |                              |                                        |                |                    |        |  |  |
| bit 14-0          | DIV<14:0>: Reference Clock Divider bits                              |                          |                              |                                        |                |                    |        |  |  |
|                   | Specifies the 1/2 period of the reference clock in the source clocks |                          |                              |                                        |                |                    |        |  |  |
|                   | (ex: Period of ref_clk_output = [Reference Source * 2] * DIV<14:0>). |                          |                              |                                        |                |                    |        |  |  |
|                   | 11111111111111 = Oscillator frequency divided by 65,534 (32,767 * 2) |                          |                              |                                        |                |                    |        |  |  |
|                   | 11111111111111 = Oscillator frequency divided by 65,532 (32,766 * 2) |                          |                              |                                        |                |                    |        |  |  |
|                   |                                                                      |                          | or noquonoy                  |                                        | 002 (02,700 2  | -/                 |        |  |  |
|                   | •                                                                    |                          | or noquonoy                  | alvided by 03,                         | 552 (52,700 2  | -,                 |        |  |  |
|                   | · · ·                                                                |                          | or nequency                  | divided by 05,                         | 552 (52,700 2  | -,                 |        |  |  |
|                   |                                                                      |                          |                              |                                        | •              | - ,                |        |  |  |
|                   | •<br>•<br>•<br>0000000000                                            | 000011 = Oscillat        | or frequency                 | v divided by 6 (3                      | * 2)           | 7                  |        |  |  |
|                   | •<br>•<br>0000000000000000000000000000000000                         | 000011 <b>= Oscillat</b> | or frequency<br>or frequency | v divided by 6 (3<br>v divided by 4 (2 | * 2)<br>* 2)   | ,                  |        |  |  |

#### REGISTER 9-4: OSCDIV: OSCILLATOR DIVISOR REGISTER

# REGISTER 9-5: OSCFDIV: OSCILLATOR FRACTIONAL DIVISOR REGISTER<sup>(1)</sup>

| R/W-0                                                                                                                                                                                                                                                                                                                                     | R/W-0 | R/W-0            | R/W-0 | R/W-0                              | R/W-0 | R/W-0              | R/W-0 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------|-------|------------------------------------|-------|--------------------|-------|
|                                                                                                                                                                                                                                                                                                                                           |       |                  | TRIM  | 1<0:7>                             |       |                    |       |
| bit 15                                                                                                                                                                                                                                                                                                                                    |       |                  |       |                                    |       |                    | bit 8 |
|                                                                                                                                                                                                                                                                                                                                           |       |                  |       |                                    |       |                    | /     |
| R/W-0                                                                                                                                                                                                                                                                                                                                     | U-0   | U-0              | U-0   | U-0                                | U-0   | U-0                | U-0   |
| TRIM8                                                                                                                                                                                                                                                                                                                                     | —     | —                | _     | —                                  | —     | —                  | —     |
| bit 7                                                                                                                                                                                                                                                                                                                                     |       |                  |       |                                    |       | •                  | bit 0 |
|                                                                                                                                                                                                                                                                                                                                           |       |                  |       |                                    |       |                    |       |
| Legend:                                                                                                                                                                                                                                                                                                                                   |       |                  |       |                                    |       |                    |       |
| R = Readable                                                                                                                                                                                                                                                                                                                              | e bit | W = Writable b   | oit   | U = Unimplemented bit, read as '0' |       |                    |       |
| -n = Value at                                                                                                                                                                                                                                                                                                                             | POR   | '1' = Bit is set |       | '0' = Bit is cleared               |       | x = Bit is unknown |       |
| <pre>bit 15-7 TRIM&lt;0:8&gt; Trim bits Provides fractional additive to the DIV&lt;14:0&gt; bits value for the 1/2 period of the oscillator clock. 0000_0000_0 = 0/512 (0.0) divisor added to DIVx value 0000_0000_1 = 1/512 (0.001953125) divisor added to DIVx value 0000_0001_0 = 2/512 (0.00390625) divisor added to DIVx value</pre> |       |                  |       |                                    |       | or clock.          |       |
| bit 6-0                                                                                                                                                                                                                                                                                                                                   |       | ted: Read as '0  |       |                                    |       |                    |       |

**Note 1:** TRIMx values greater than zero are ONLY valid when DIVx values are greater than zero.

# 9.4 Clock Switching Operation

With few limitations, applications are free to switch between any of the four clock sources (POSC, SOSC, FRC and LPRC) under software control and at any time. To limit the possible side effects that could result from this flexibility, PIC24F devices have a safeguard lock built into the switching process.

Note: The Primary Oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMDx Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

#### 9.4.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in FOSC must be programmed to '0'. (Refer to **Section 29.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled; this is the default setting.

The NOSCx control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC<2:0> bits (OSCCON<14:12>) will reflect the clock source selected by the FNOSCx Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled; it is held at '0' at all times.

#### 9.4.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires this basic sequence:

- 1. If desired, read the COSCx bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- 3. Write the appropriate value to the NOSCx bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

- 1. The clock switching hardware compares the COSCx bits with the new value of the NOSCx bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.
- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and CF (OSCCON<3>) bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware will wait until the OST expires. If the new source is using the PLL, then the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSCx bits value is transferred to the COSCx bits.
- 6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM is enabled) or SOSC (if SOSCEN remains set).
  - Note 1: The processor will continue to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.
    - 2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.

A recommended code sequence for a clock switch includes the following:

- 1. Disable interrupts during the OSCCON register unlock and write sequence.
- Execute the unlock sequence for the OSCCON high byte by writing 78h and 9Ah to OSCCON<15:8> in two back-to-back instructions.
- 3. Write the new oscillator source to the NOSCx bits in the instruction immediately following the unlock sequence.
- 4. Execute the unlock sequence for the OSCCON low byte by writing 46h and 57h to OSCCON<7:0> in two back-to-back instructions.
- 5. Set the OSWEN bit in the instruction immediately following the unlock sequence.
- 6. Continue to execute code that is not clock-sensitive (optional).
- 7. Invoke an appropriate amount of software delay (cycle counting) to allow the selected oscillator and/or PLL to start and stabilize.
- 8. Check to see if OSWEN is '0'. If it is, the switch was successful. If OSWEN is still set, then check the LOCK bit to determine the cause of the failure.

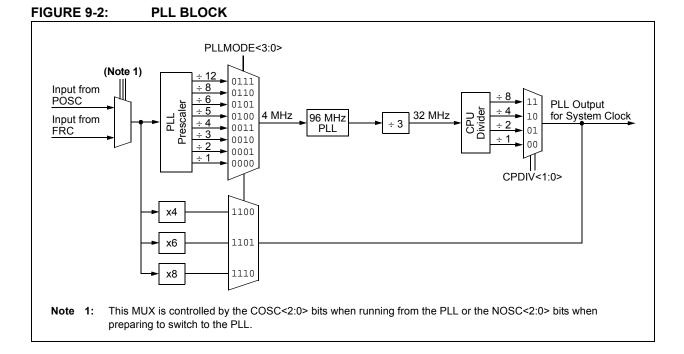
The core sequence for unlocking the OSCCON register and initiating a clock switch is shown in Example 9-1.

#### EXAMPLE 9-1: BASIC CODE SEQUENCE FOR CLOCK SWITCHING

| ;Place the new oscillator selection in WO |
|-------------------------------------------|
| ;OSCCONH (high byte) Unlock Sequence      |
| MOV #OSCCONH, w1                          |
| MOV #0x78, w2                             |
| MOV #0x9A, w3                             |
| MOV.b w2, [w1]                            |
| MOV.b w3, [w1]                            |
| ;Set new oscillator selection             |
| MOV.b WREG, OSCCONH                       |
| ;OSCCONL (low byte) unlock sequence       |
| MOV #OSCCONL, w1                          |
| MOV #0x46, w2                             |
| MOV #0x57, w3                             |
| MOV.b w2, [w1]                            |
| MOV.b w3, [w1]                            |
| ;Start oscillator switch operation        |
| BSET OSCCON, #0                           |
|                                           |

# 9.5 Oscillator Modes

The PLL block is shown in Figure 9-2. In this system, the input from the Primary Oscillator is divided down by a PLL prescaler to generate a 4 MHz output. This is used to drive an on-chip, 96 MHz PLL frequency multiplier to drive the fixed, divide-by-3 frequency divider and configurable PLL prescaler/divider to generate a range of system clock frequencies. The CPDIV<1:0> bits select the system clock speed. Available clock options are listed in Table 9-2.


The user must manually configure the PLL divider to generate the required 4 MHz output using the PLLMODE<3:0> Configuration bits. This limits the choices for Primary Oscillator frequency to a total of eight possibilities, as shown in Table 9-3.

| TABLE 9-2: SYSTEI | <b>M CLOCK OPTIONS</b> |
|-------------------|------------------------|
|-------------------|------------------------|

| MCU Clock Division<br>(CPDIV<1:0>) | Microcontroller<br>Clock Frequency |
|------------------------------------|------------------------------------|
| None (00)                          | 32 MHz                             |
| ÷2(01)                             | 16 MHz                             |
| ÷4 (10)                            | 8 MHz                              |
| ÷8 (11)                            | 4 MHz                              |

# TABLE 9-3:VALID PRIMARY OSCILLATOR<br/>CONFIGURATIONS

| Input Oscillator<br>Frequency | Clock Mode              | PLL Mode<br>(PLLMODE<3:0>)  |
|-------------------------------|-------------------------|-----------------------------|
| 48 MHz                        | ECPLL                   | ÷ <b>12 (</b> 0111 <b>)</b> |
| 32 MHz                        | HSPLL, ECPLL            | ÷8(0110)                    |
| 24 MHz                        | HSPLL, ECPLL            | ÷6(0101)                    |
| 20 MHz                        | HSPLL, ECPLL            | ÷5 (0100)                   |
| 16 MHz                        | HSPLL, ECPLL            | ÷4 (0011)                   |
| 12 MHz                        | HSPLL, ECPLL            | ÷3(0010)                    |
| 8 MHz                         | ECPLL, XTPLL,<br>FRCPLL | ÷2(0001)                    |
| 4 MHz                         | ECPLL, XTPLL,<br>FRCPLL | ÷1 (0000)                   |



# 9.6 Reference Clock Output

In addition to the CLKO output (Fosc/2) available in certain Oscillator modes, the device clock in the PIC24FJ256GA705 family devices can also be configured to provide a reference clock output signal to a port pin. This feature is available in all oscillator configurations and allows the user to select a greater range of clock submultiples to drive external devices in the application. CLKO is enabled by Configuration bit, OSCIOFCN, and is independent of the REFO reference clock. REFO is mappable to any I/O pin that has mapped output capability. Refer to Table 11-7 for more information.

This reference clock output is controlled by the REFOCONL, REFOCONH and REFOTRIML registers. Setting the ROEN bit (REFOCONL<15>) makes the clock signal available on the REFO pin. The RODIV<14:0> bits (REFOCONH<14:0>) enable the selection of different clock divider options. The ROTRIM<0:8> bits (REFOTRIML<7:15>) allow the user to provide a fractional addition to the RODIVx value. The ROSWEN bit (REFOCONL<9>) indicates that the clock divider or trim the REFO frequency, the user should wait until this bit has been cleared. Write the updated values to ROTRIMx and RODIVx, set the ROSWEN bit and then wait until it is cleared before assuming that the REFO clock is valid.

The ROSEL<3:0> bits (REFOCONL<3:0>) determine which clock source is used for the reference clock output. The ROSLP bit (REFOCONL<11>) determines if the reference source is available on REFO when the device is in Sleep mode.

To use the reference clock output in Sleep mode, both the ROSLP bit must be set and the clock selected by the ROSELx bits must be enabled for operation during Sleep mode, if possible. Clearing the ROSELx bits allows the reference output frequency to change as the system clock changes during any clock switches. The ROOUT bit enables/disables the reference clock output on the REFO pin.

The ROACTIVE bit (REFOCONL<8>) indicates that the module is active; it can be cleared by disabling the module (setting ROEN to '0'). The user must not change the reference clock source or adjust the trim or divider when the ROACTIVE bit indicates that the module is active. To avoid glitches, the user should not disable the module until the ROACTIVE bit is '1'.

The PLLSS Configuration bit (FOSC<4>), when cleared, can be used to generate a REFO clock with the PLL that is independent of the system clock. The PLL cannot be used in the primary clock chain. For example, if the system clock is using FRC at 8 MHz, the PLL can use the FRC as the input and generate 32 MHz (PLL4x mode) out of REFO.

# 9.7 Secondary Oscillator

#### 9.7.1 BASIC SOSC OPERATION

PIC24FJ256GA705 family devices do not have to set the SOSCEN bit to use the Secondary Oscillator. Any module requiring the SOSC (such as the RTCC or Timer1) will automatically turn on the SOSC when the clock signal is needed. The SOSC, however, has a long start-up time (as long as 1 second). To avoid delays for peripheral start-up, the SOSC can be manually started using the SOSCEN bit.

To use the Secondary Oscillator, the SOSCSEL bit (FOSC<3>) must be set to '1'. Programming the SOSCSEL bit to '0' configures the SOSC pins for Digital mode, enabling digital I/O functionality on the pins.

# 9.7.2 CRYSTAL SELECTION

The 32.768 kHz crystal used for the SOSC must have the following specifications in order to properly start up and run at the correct frequency when the SOSC is in High-Power mode (default):

- 12.5 pF loading capacitance
- 1.0 pF shunt capacitance
- A typical ESR of 35k-50k; 70k maximum

In addition, the two external crystal loading capacitors should be in the range of 18-22 pF, which will be based on the PC board layout. The capacitors should be COG, 5% tolerance and rated 25V or greater.

The accuracy and duty cycle of the SOSC can be measured on the REFO pin, and is recommended to be in the range of 40-60% and accurate to  $\pm 0.65$  Hz.

## 9.7.3 LOW-POWER SOSC OPERATION

The Secondary Oscillator can operate in two distinct levels of power consumption based on device configuration. In Low-Power mode, the oscillator operates in a low drive strength, low-power state. By default, the oscillator uses a higher drive strength, and therefore, requires more power. Low-Power mode is selected by Configuration bit, SOSCHP (FDEVOPT1<3>). The lower drive strength of this mode makes the SOSC more sensitive to noise and requires a longer start-up time. This mode can be used with lower load capacitance crystals (6 pF-9 pF) to reduce Sleep current in the RTCC. When Low-Power mode is used, care must be taken in the design and layout of the SOSC circuit to ensure that the oscillator starts up and oscillates properly. PC board layout issues, stray capacitance and other factors will need to be carefully controlled in order for the crystal to operate.

| R/W-0        | U-0                       | R/W-0                                | R/W-0            | R/W-0                         | U-0             | R/W-0           | R-0      |
|--------------|---------------------------|--------------------------------------|------------------|-------------------------------|-----------------|-----------------|----------|
| ROEN         |                           | ROSIDL                               | ROOUT            | ROSLP                         |                 | ROSWEN          | ROACTIVE |
| bit 15       |                           |                                      |                  |                               |                 |                 | bit      |
|              |                           |                                      |                  |                               |                 |                 |          |
| U-0          | U-0                       | U-0                                  | U-0              | R/W-0                         | R/W-0           | R/W-0           | R/W-0    |
|              |                           |                                      | _                | ROSEL3                        | ROSEL2          | ROSEL1          | ROSEL0   |
| bit 7        |                           |                                      |                  |                               |                 |                 | bit      |
|              |                           |                                      |                  |                               |                 |                 |          |
| Legend:      |                           |                                      |                  |                               |                 |                 |          |
| R = Readab   |                           | W = Writable                         |                  | -                             | ented bit, read |                 |          |
| -n = Value a | at POR                    | '1' = Bit is set                     |                  | '0' = Bit is clea             | ared            | x = Bit is unkr | nown     |
| bit 15       |                           | onoo Oooillatoi                      | Output Enchl     | a hit                         |                 |                 |          |
| DIL 15       |                           | ence Oscillator<br>e Oscillator mo   | •                |                               |                 |                 |          |
|              |                           | e Oscillator is o                    |                  | J                             |                 |                 |          |
| bit 14       | Unimplemen                | ted: Read as '                       | 0'               |                               |                 |                 |          |
| bit 13       | •                         | FO Stop in Idle                      |                  |                               |                 |                 |          |
|              |                           | •                                    |                  | levice enters Idl             | e mode          |                 |          |
|              | 0 = Continues             | s module opera                       | ition in Idle mo | de                            |                 |                 |          |
| bit 12       | ROOUT: Refe               | erence Clock C                       | utput Enable b   | bit                           |                 |                 |          |
|              |                           | e clock is drive<br>e clock is not d |                  |                               |                 |                 |          |
| bit 11       | ROSLP: Refe               | erence Oscillato                     | or Output Stop   | in Sleep bit                  |                 |                 |          |
|              |                           | e Oscillator cor                     |                  |                               |                 |                 |          |
|              | 0 = Reference             | e Oscillator is c                    | lisabled in Slee | ер                            |                 |                 |          |
| bit 10       | Unimplemen                | ted: Read as '                       | 0'               |                               |                 |                 |          |
| bit 9        | ROSWEN: Re                | eference Clock                       | RODIVx/ROT       | RIMx Switch Er                | able bit        |                 |          |
|              |                           | ock divider; clo<br>der switch has   |                  | ching is currently<br>ed      | / in progress   |                 |          |
| bit 8        | ROACTIVE: F               | Reference Cloo                       | k Request Sta    | tus bit                       |                 |                 |          |
|              |                           |                                      |                  | not change the pdate the REFC | •               | 5)              |          |
| bit 7-4      | Unimplemen                | ted: Read as '                       | 0'               |                               |                 |                 |          |
| bit 3-0      | ROSEL<3:0>                | : Reference Cl                       | ock Source Se    | elect bits                    |                 |                 |          |
|              | 1111-1001 =               | Reserved                             |                  |                               |                 |                 |          |
|              | 1000 = REFI               | •                                    |                  |                               |                 |                 |          |
|              | 0111 = Reser              | rved                                 |                  |                               |                 |                 |          |
|              | 0110 = PLL<br>0101 = SOSC | 2                                    |                  |                               |                 |                 |          |
|              | 0100 = LPRC               |                                      |                  |                               |                 |                 |          |
|              | 0011 <b>= FRC</b>         |                                      |                  |                               |                 |                 |          |
|              | 0010 = POSC               | 2                                    |                  |                               |                 |                 |          |
|              |                           | m clock (Fosc                        | (0)              |                               |                 |                 |          |

# REGISTER 9-6: REFOCONL: REFERENCE OSCILLATOR CONTROL REGISTER LOW

## REGISTER 9-7: REFOCONH: REFERENCE OSCILLATOR CONTROL REGISTER HIGH

| U-0                | R/W-0                                  | R/W-0                                                                                 | R/W-0                          | R/W-0                                | R/W-0           | R/W-0            | R/W-0   |
|--------------------|----------------------------------------|---------------------------------------------------------------------------------------|--------------------------------|--------------------------------------|-----------------|------------------|---------|
| —                  |                                        |                                                                                       |                                | RODIV<14:8>                          |                 |                  |         |
| bit 15             |                                        |                                                                                       |                                |                                      |                 |                  | bit 8   |
| R/W-0              | R/W-0                                  | R/W-0                                                                                 | R/W-0                          | R/W-0                                | R/W-0           | R/W-0            | R/W-0   |
|                    |                                        |                                                                                       | ROD                            | IV<7:0>                              |                 |                  |         |
| bit 7              |                                        |                                                                                       |                                |                                      |                 |                  | bit 0   |
|                    |                                        |                                                                                       |                                |                                      |                 |                  |         |
| Legend:            |                                        |                                                                                       |                                |                                      |                 |                  |         |
| R = Readab         | le bit                                 | W = Writable I                                                                        | oit                            | U = Unimplem                         | nented bit, rea | ad as '0'        |         |
| -n = Value a       | It POR                                 | '1' = Bit is set                                                                      |                                | '0' = Bit is clea                    | ared            | x = Bit is unkr  | nown    |
| bit 15<br>bit 14-0 | RODIV<14:                              | nted: Read as 'c<br>0>: Reference Cl                                                  | ock Divider b                  |                                      |                 |                  |         |
|                    | (ex: Period of RODIV<14:0<br>111111111 | 2 period of the re<br>of Output = [Refe<br>D> = 0).<br>111111 = REFC<br>111110 = REFC | rence Source<br>clock is the I | e * 2] * RODIV<1<br>base clock frequ | 4:0>; this equ  | by 65,534 (32,7) | 67 * 2) |

.

0000000000011 = REFO clock is the base clock frequency divided by 6 (3 \* 2) 00000000000010 = REFO clock is the base clock frequency divided by 4 (2 \* 2) 00000000000001 = REFO clock is the base clock frequency divided by 2 (1 \* 2) 000000000000000 = REFO clock is the same frequency as the base clock (no divider)

# REGISTER 9-8: REFOTRIML: REFERENCE OSCILLATOR TRIM REGISTER LOW

| R/W-0                             | R/W-0                                  | R/W-0                                                                                           | R/W-0                                              | R/W-0                            | R/W-0               | R/W-0           | R/W-0     |
|-----------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------|---------------------|-----------------|-----------|
|                                   |                                        |                                                                                                 | ROTE                                               | RIM<0:7>                         |                     |                 |           |
| bit 15                            |                                        |                                                                                                 |                                                    |                                  |                     |                 | bit 8     |
|                                   |                                        |                                                                                                 |                                                    |                                  |                     |                 |           |
| R/W-0                             | U-0                                    | U-0                                                                                             | U-0                                                | U-0                              | U-0                 | U-0             | U-0       |
| ROTRIM8                           | _                                      | —                                                                                               |                                                    | _                                | —                   | —               | _         |
| bit 7                             |                                        |                                                                                                 |                                                    |                                  |                     |                 | bit (     |
|                                   |                                        |                                                                                                 |                                                    |                                  |                     |                 |           |
| Legend:                           |                                        |                                                                                                 |                                                    |                                  |                     |                 |           |
| R = Readable bit W = Writable bit |                                        |                                                                                                 |                                                    | U = Unimplem                     | nented bit, read    | l as '0'        |           |
| -n = Value at                     | POR                                    | '1' = Bit is set                                                                                |                                                    | '0' = Bit is clea                | ared                | x = Bit is unkr | iown      |
| bit 15-7                          | These bits p<br>000000000<br>000000001 | 8>: REFO Trim I<br>rovide a fraction:<br>= 0/512 (0.0 div<br>= 1/512 (0.0019<br>= 2/512 (0.0039 | al additive to t<br>isor added to<br>53125 divisor | the RODIVx value added to the RO | ue)<br>ODIVx value) | eriod of the RE | FO clock. |

111111110 = 510/512 (0.99609375 divisor added to the RODIVx value) 111111111 = 511/512 (0.998046875 divisor added to the RODIVx value)

bit 6-0 Unimplemented: Read as '0'

# 10.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Power-Saving Features with Deep Sleep" (DS39727), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The PIC24FJ256GA705 family of devices provides the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. All PIC24F devices manage power consumption in four different ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- · Software Controlled Doze mode
- · Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption, while still maintaining critical application features, such as timing-sensitive communications.

## 10.1 Clock Frequency and Clock Switching

PIC24F devices allow for a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC<2:0> bits. The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in Section 9.0 "Oscillator Configuration".

#### 10.2 Instruction-Based Power-Saving Modes

PIC24F devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution; Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembly syntax of the PWRSAV instruction is shown in Example 10-1.

The MPLAB<sup>®</sup> XC16 C compiler offers "built-in" functions for the power-saving modes as follows:

Idle(); // places part in Idle
Sleep(); // places part in Sleep

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

**Note:** SLEEP\_MODE and IDLE\_MODE are constants defined in the assembler include file for the selected device.

#### 10.2.1 SLEEP MODE

Sleep mode has these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption will be reduced to a minimum provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock will continue to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items, such as the Input Change Notification (ICN) on the I/O ports or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation will be disabled in Sleep mode.

The device will wake-up from Sleep mode on any of the these events:

- On any interrupt source that is individually enabled
- On any form of device Reset
- · On a WDT time-out

On wake-up from Sleep, the processor will restart with the same clock source that was active when Sleep mode was entered.

#### EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

| PWRSAV | #SLEEP_MODE | ; | Put | the | device | into | SLEEP mode |
|--------|-------------|---|-----|-----|--------|------|------------|
| PWRSAV | #IDLE_MODE  | ; | Put | the | device | into | IDLE mode  |

# 10.2.2 IDLE MODE

Idle mode has these features:

- The CPU will stop executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- Any interrupt that is individually enabled.
- · Any device Reset.
- · A WDT time-out.

On wake-up from Idle, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

#### 10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

#### 10.2.4 LOW-VOLTAGE RETENTION REGULATOR

PIC24FJ256GA705 family devices incorporate a second on-chip voltage regulator, designed to provide power to select microcontroller features at 1.2V nominal. This regulator allows features, such as data RAM and the WDT, to be maintained in power-saving modes where they would otherwise be inactive, or maintain them at a lower power than would otherwise be the case.

Retention Sleep uses less power than standard Sleep mode, but takes more time to recover and begin execution. An additional 10-15  $\mu$ s (typical) is required to charge VCAP from 1.2V to 1.8V and start to execute instructions when exiting Retention Sleep.

The VREGS bit allows control of speed to exit from the Sleep modes (regular and Retention) at the cost of more power. The regulator band gaps are enabled, which increases the current but reduces time to recover from Sleep by ~10  $\mu$ s.

The low-voltage retention regulator is only available when Sleep mode is invoked. It is controlled by the LPCFG Configuration bit (FPOR<2>) and in firmware by the RETEN bit (RCON<12>). LPCFG must be programmed (= 0) and the RETEN bit must be set (= 1) for the regulator to be enabled.

# 10.2.5 EXITING FROM LOW-VOLTAGE RETENTION SLEEP

All of the methods for exiting from standard Sleep also apply to Retention Sleep (MCLR, INT0, etc.). However, in order to allow the regulator to switch from 1.8V (operating) to Retention mode (1.2V), there is a hardware 'lockout timer' from the execution of Retention Sleep until Retention Sleep can be exited.

During the 'lockout time', the only method to exit Retention Sleep is a POR or MCLR. Interrupts that are asserted (such as INT0) during the 'lockout time' are masked. The lockout timer then sets a minimum interval from when the part enters Retention Sleep until it can exit from Retention Sleep. Interrupts are not 'held pending' during lockout; they are masked and in order to exit after the lockout expires, the exiting source must assert after the lockout time.

The lockout timer is derived from the LPRC clock, which has a wide (untrimmed) frequency tolerance.

The lockout time will be one of the following two cases:

- If the LPRC was not running at the time of Retention Sleep, the lockout time is 2 LPRC periods + LPRC wake-up time
- If the LPRC was running at the time of Retention Sleep, the lockout time is 1 LPRC period

Refer to Table 32-20 and Table 32-21 in the AC Electrical Specifications for the LPRC timing.

#### 10.2.6 SUMMARY OF LOW-POWER SLEEP MODES

The RETEN bit and the VREGS bit (RCON<12,8>) allow for four different Sleep modes, which will vary by wake-up time and power consumption. Refer to Table 10-1 for a summary of these modes. Specific information about the current consumption and wake times can be found in Section 32.0 "Electrical Characteristics".

#### TABLE 10-1: LOW-POWER SLEEP MODES

| RETEN | VREGS | MODE            | Relative Power |
|-------|-------|-----------------|----------------|
| 0     | 1     | Sleep           | A Few µA Range |
| 0     | 0     | Fast Wake-up    | 100 µA Range   |
| 1     | 1     | Retention Sleep | Less than 1 µA |
| 1     | 0     | Fast Retention  | A Few µA Range |

# 10.3 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:256, with 1:1 being the default.

It is also possible to use Doze mode to selectively reduce power consumption in event driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

## 10.4 Selective Peripheral Module Control

Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume power. There may be cases where the application needs what these modes do not provide: the allocation of power resources to CPU processing with minimal power consumption from the peripherals.

PIC24F devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

- The Peripheral Enable bit, generically named, "XXXEN", located in the module's main control SFR.
- The Peripheral Module Disable (PMD) bit, generically named, "XXXMD", located in one of the PMD Control registers.

Both bits have similar functions in enabling or disabling their associated module. Setting the PMD bit for a module disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral will also be disabled, so writes to those registers will have no effect and read values will be invalid. Many peripheral modules have a corresponding PMD bit.

In contrast, disabling a module by clearing its XXXEN bit disables its functionality, but leaves its registers available to be read and written to. This reduces power consumption, but not by as much as setting the PMD bit does. Most peripheral modules have an enable bit; exceptions include input capture, output compare and RTCC.

To achieve more selective power savings, peripheral modules can also be selectively disabled when the device enters Idle mode. This is done through the control bit of the generic name format, "XXXIDL". By default, all modules that can operate during Idle mode will do so. Using the disable on Idle feature allows further reduction of power consumption during Idle mode, enhancing power savings for extremely critical power applications.

# TABLE 10-2: PERIPHERAL MODULE DISABLE REGISTER SUMMARY

| Register | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8 | Bit 7  | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | All<br>Resets |
|----------|--------|--------|--------|--------|--------|--------|--------|-------|--------|-------|--------|--------|--------|--------|--------|--------|---------------|
| PMD1     |        | _      | T3MD   | T2MD   | T1MD   |        | _      |       | I2C1MD | U2MD  | U1MD   | SPI2MD | SPI1MD | _      | _      | ADCMD  | 0000          |
| PMD2     |        | _      | _      |        | _      | IC3MD  | IC2MD  | IC1MD | _      | —     | _      | _      | _      | OC3MD  | OC2MD  | OC1MD  | 0000          |
| PMD3     |        | _      | _      |        | _      | CMPMD  | RTCCMD | PMPMD | CRCMD  | —     | —      | _      | _      |        | I2C2MD |        | 0000          |
| PMD4     |        | _      | _      |        | _      | _      | _      | _     | _      | —     | _      | _      | REFOMD | CTMUMD | LVDMD  |        | 0000          |
| PMD5     |        | _      | _      |        | _      | _      | _      | _     | _      | —     | _      | _      | CCP4MD | CCP3MD | CCP2MD | CCP1MD | 0000          |
| PMD6     |        | _      | _      |        | _      | _      | _      | _     | _      | —     | _      | _      | _      | -      | _      | SPI3MD | 0000          |
| PMD7     |        | _      | _      |        | _      | _      | _      |       | _      | —     | DMA1MD | DMA0MD | _      |        | _      |        | 0000          |
| PMD8     |        | _      | _      | _      | _      | _      | _      | _     | —      |       | —      | _      | CLC2MD | CLC1MD | _      |        | 0000          |

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

| U-0          | U-0          | R/W-0            | R/W-0         | R/W-0             | U-0            | U-0            | U-0    |
|--------------|--------------|------------------|---------------|-------------------|----------------|----------------|--------|
|              | _            | T3MD             | T2MD          | T1MD              | —              | _              | _      |
| bit 15       |              |                  | •             | -                 |                | 4              | bit 8  |
|              |              |                  |               |                   |                |                |        |
| R/W-0        | R/W-0        | R/W-0            | R/W-0         | R/W-0             | U-0            | U-0            | R/W-0  |
| I2C1MD       | U2MD         | U1MD             | SPI2MD        | SPI1MD            | —              |                | ADC1MD |
| bit 7        |              |                  |               |                   |                |                | bit (  |
| Legend:      |              |                  |               |                   |                |                |        |
| R = Readab   | le bit       | W = Writable     | bit           | U = Unimplem      | nented bit, re | ad as 'O'      |        |
| -n = Value a | It POR       | '1' = Bit is set |               | '0' = Bit is clea | ared           | x = Bit is unk | nown   |
| bit 15-14    | Unimplemer   | nted: Read as '  | ר'            |                   |                |                |        |
| bit 13       | -            | 3 Module Disat   |               |                   |                |                |        |
|              | 1 = Module   |                  |               |                   |                |                |        |
|              |              | power and clock  | sources are   | enabled           |                |                |        |
| bit 12       | T2MD: Time   | r2 Module Disat  | ole bit       |                   |                |                |        |
|              | 1 = Module   | is disabled      |               |                   |                |                |        |
|              | 0 = Module   | power and clock  | sources are   | enabled           |                |                |        |
| bit 11       | T1MD: Time   | r1 Module Disat  | ole bit       |                   |                |                |        |
|              | 1 = Module   |                  |               |                   |                |                |        |
|              |              | power and clock  |               | enabled           |                |                |        |
| bit 10-8     | -            | nted: Read as '  |               |                   |                |                |        |
| bit 7        | -            | 1 Module Disat   | ole bit       |                   |                |                |        |
|              | 1 = Module   |                  |               | nablad            |                |                |        |
| L:1 0        |              | power and clock  |               | enableu           |                |                |        |
| bit 6        |              | T2 Module Disa   | DIE DIT       |                   |                |                |        |
|              | 1 = Module i | power and clock  | sources are e | enabled           |                |                |        |
| bit 5        |              | T1 Module Disa   |               |                   |                |                |        |
|              | 1 = Module i |                  |               |                   |                |                |        |
|              |              | power and clock  | sources are   | enabled           |                |                |        |
| bit 4        |              | I2 Module Disal  |               |                   |                |                |        |
|              | 1 = Module   |                  |               |                   |                |                |        |
|              | 0 = Module   | power and clock  | sources are   | enabled           |                |                |        |
| bit 3        | SPI1MD: SP   | I1 Module Disal  | ole bit       |                   |                |                |        |
|              | 1 = Module   | is disabled      |               |                   |                |                |        |
|              | 0 = Module   | power and clock  | sources are   | enabled           |                |                |        |
| bit 2-1      | Unimplemer   | nted: Read as '  | כ'            |                   |                |                |        |
| bit 0        | ADC1MD: A    | /D Converter Me  | odule Disable | bit               |                |                |        |
|              | 1 = Module   | is disabled      |               |                   |                |                |        |
|              |              | power and clock  |               |                   |                |                |        |

| U-0          | U-0                           | U-0              | U-0            | U-0              | R/W-0            | R/W-0           | R/W-0 |
|--------------|-------------------------------|------------------|----------------|------------------|------------------|-----------------|-------|
| —            | _                             | _                | _              |                  | IC3MD            | IC2MD           | IC1MD |
| oit 15       |                               |                  |                |                  |                  |                 | bit   |
|              |                               |                  |                |                  |                  |                 |       |
| U-0          | U-0                           | U-0              | U-0            | U-0              | R/W-0            | R/W-0           | R/W-0 |
|              |                               | _                |                |                  | OC3MD            | OC2MD           | OC1MD |
| bit 7        |                               |                  |                |                  |                  |                 | bit   |
| Legend:      |                               |                  |                |                  |                  |                 |       |
| R = Readal   | ole bit                       | W = Writable     | bit            | U = Unimple      | mented bit, read | d as '0'        |       |
| -n = Value a | at POR                        | '1' = Bit is set |                | '0' = Bit is cle | eared            | x = Bit is unkr | nown  |
|              |                               |                  |                |                  |                  |                 |       |
| bit 15-11    | Unimplemen                    | ted: Read as '   | 0'             |                  |                  |                 |       |
| oit 10       | IC3MD: Input                  | Capture 3 Mo     | dule Disable b | oit              |                  |                 |       |
|              | 1 = Module is                 | s disabled       |                |                  |                  |                 |       |
|              | 0 = Module p                  | ower and cloc    | k sources are  | enabled          |                  |                 |       |
| bit 9        | IC2MD: Input                  | Capture 2 Mo     | dule Disable b | it               |                  |                 |       |
|              | 1 = Module is                 |                  |                |                  |                  |                 |       |
|              | •                             | ower and cloc    |                |                  |                  |                 |       |
| bit 8        | •                             | Capture 1 Mo     | dule Disable b | bit              |                  |                 |       |
|              | 1 = Module is                 |                  |                | a sa a la la al  |                  |                 |       |
| L:1 7 0      | •                             | ower and cloc    |                | enabled          |                  |                 |       |
| bit 7-3      | •                             | ted: Read as '   |                | . 1 . 1. 1       |                  |                 |       |
| bit 2        | •                             | out Compare 3    | Module Disat   | DIE DIT          |                  |                 |       |
|              | 1 = Module is<br>0 = Module p | s disabled       | k sources are  | enabled          |                  |                 |       |
| bit 1        | •                             | put Compare 2    |                |                  |                  |                 |       |
|              | 1 = Module is                 | •                | Noutle Disa    |                  |                  |                 |       |
|              |                               | ower and cloc    | k sources are  | enabled          |                  |                 |       |
| bit 0        | -                             | out Compare 1    |                |                  |                  |                 |       |
|              | 1 = Module is                 | •                |                |                  |                  |                 |       |
|              |                               |                  |                |                  |                  |                 |       |

#### REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE REGISTER 2

## REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE REGISTER 3

| U-0                    | U-0         | U-0              | U-0           | U-0              | R/W-0           | R/W-0           | R/W-0 |
|------------------------|-------------|------------------|---------------|------------------|-----------------|-----------------|-------|
|                        | —           | —                |               | —                | CMPMD           | RTCCMD          | PMPMD |
| bit 15                 |             |                  |               |                  |                 |                 | bit 8 |
|                        |             |                  |               |                  |                 |                 |       |
| R/W-0                  | U-0         | U-0              | U-0           | U-0              | U-0             | R/W-0           | U-0   |
| CRCMD                  |             |                  |               | —                |                 | I2C2MD          | _     |
| bit 7                  |             |                  |               |                  |                 |                 | bit C |
|                        |             |                  |               |                  |                 |                 |       |
| Legend:<br>R = Readabl | lo hit      | W = Writable b   | \i+           |                  | contod hit roo  | d aa '0'        |       |
|                        |             |                  | אנ            | 0 = Onimpien     | nented bit, rea |                 |       |
| -n = Value at          | IPOR        | '1' = Bit is set |               | 0 = Bit is clear | areo            | x = Bit is unkn | OWN   |
| bit 15-11              | Unimpleme   | nted: Read as '0 | ,             |                  |                 |                 |       |
| bit 10                 | -           | ple Comparator I |               | le hit           |                 |                 |       |
|                        | 1 = Module  | •                |               |                  |                 |                 |       |
|                        |             | power and clock  | sources are   | enabled          |                 |                 |       |
| bit 9                  | RTCCMD: R   | TCC Module Dis   | able bit      |                  |                 |                 |       |
|                        | 1 = Module  | is disabled      |               |                  |                 |                 |       |
|                        | 0 = Module  | power and clock  | sources are   | enabled          |                 |                 |       |
| bit 8                  | PMPMD: En   | hanced Parallel  | Master Port D | isable bit       |                 |                 |       |
|                        | 1 = Module  |                  |               |                  |                 |                 |       |
|                        |             | power and clock  |               | enabled          |                 |                 |       |
| bit 7                  |             | C Module Disab   | le bit        |                  |                 |                 |       |
|                        | 1 = Module  |                  |               |                  |                 |                 |       |
|                        |             | power and clock  |               | enabled          |                 |                 |       |
|                        | Unimpleme   | nted: Read as '0 |               |                  |                 |                 |       |
|                        | 1000MD. 100 | Madula Dia-L     |               |                  |                 |                 |       |
|                        |             | 2 Module Disab   | le bit        |                  |                 |                 |       |
| bit 6-2<br>bit 1       | 1 = Module  |                  |               | enabled          |                 |                 |       |

| U-0           | U-0           | U-0              | U-0             | U-0               | U-0              | U-0      | U-0   |
|---------------|---------------|------------------|-----------------|-------------------|------------------|----------|-------|
| _             | —             | —                | —               | —                 | _                | —        | —     |
| bit 15        |               |                  |                 |                   |                  |          | bit 8 |
|               |               |                  |                 |                   |                  |          |       |
| U-0           | U-0           | U-0              | U-0             | R/W-0             | R/W-0            | R/W-0    | U-0   |
|               |               | <u> </u>         | <u> </u>        | REFOMD            | CTMUMD           | LVDMD    |       |
| bit 7         |               |                  |                 |                   |                  |          | bit 0 |
|               |               |                  |                 |                   |                  |          |       |
| Legend:       |               |                  |                 |                   |                  |          |       |
| R = Readable  | e bit         | W = Writable     | bit             | U = Unimplem      | nented bit, read | d as '0' |       |
| -n = Value at | POR           | '1' = Bit is set |                 | '0' = Bit is clea | x = Bit is unkn  | iown     |       |
|               |               |                  |                 |                   |                  |          |       |
| bit 15-4      | Unimplemen    | ted: Read as '   | 0'              |                   |                  |          |       |
| bit 3         | REFOMD: Re    | eference Outpu   | t Clock Disable | e bit             |                  |          |       |
|               | 1 = Module is |                  |                 |                   |                  |          |       |
|               | 0 = Module p  | ower and clock   | k sources are e | nabled            |                  |          |       |
| bit 2         | CTMUMD: CT    | TMU Module D     | isable bit      |                   |                  |          |       |
|               | 1 = Module is |                  |                 |                   |                  |          |       |
|               | 0 = Module p  | ower and clock   | sources are e   | nabled            |                  |          |       |
| bit 1         | LVDMD: High   | /Low-Voltage     | Detect Module   | Disable bit       |                  |          |       |
|               | 1 = Module is |                  |                 |                   |                  |          |       |
|               |               |                  | sources are e   | enabled           |                  |          |       |
| bit 0         | Unimplemen    | ted: Read as '   | 0'              |                   |                  |          |       |

# REGISTER 10-4: PMD4: PERIPHERAL MODULE DISABLE REGISTER 4

#### REGISTER 10-5: PMD5: PERIPHERAL MODULE DISABLE REGISTER 5

| U-0    | U-0 | U-0 | U-0 | U-0    | U-0    | U-0    | U-0    |
|--------|-----|-----|-----|--------|--------|--------|--------|
| —      |     | —   | —   |        |        | —      | —      |
| bit 15 |     |     |     |        |        |        | bit 8  |
|        |     |     |     |        |        |        |        |
| U-0    | U-0 | U-0 | U-0 | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
| —      | —   | —   | —   | CCP4MD | CCP3MD | CCP2MD | CCP1MD |
| bit 7  |     |     |     |        |        |        | bit 0  |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

| bit 15-4 | Unimplemented: Read as '0'                     |
|----------|------------------------------------------------|
| bit 3    | CCP4MD: MCCP4 Module Disable bit               |
|          | 1 = Module is disabled                         |
|          | 0 = Module power and clock sources are enabled |
| bit 2    | CCP3MD: MCCP3 Module Disable bit               |
|          | 1 = Module is disabled                         |
|          | 0 = Module power and clock sources are enabled |
| bit 1    | CCP2MD: MCCP2 Module Disable bit               |
|          | 1 = Module is disabled                         |
|          | 0 = Module power and clock sources are enabled |
| bit 0    | CCP1MD: MCCP1 Module Disable bit               |
|          | 1 = Module is disabled                         |

0 = Module power and clock sources are enabled

#### REGISTER 10-6: PMD6: PERIPHERAL MODULE DISABLE REGISTER 6

| U-0    | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0    |
|--------|-----|-----|-----|-----|-----|-----|--------|
| —      | —   | —   | —   | —   | —   | —   | —      |
| bit 15 |     |     |     |     |     |     | bit 8  |
|        |     |     |     |     |     |     |        |
| U-0    | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0  |
|        | —   | —   | —   | —   | _   | —   | SPI3MD |

| JI3MD |
|-------|
| 1.1.0 |

| Legend:           |                  |                       |                    |
|-------------------|------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | , read as '0'      |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |

bit 15-1 Unimplemented: Read as '0'

bit 7

bit 0 SPI3MD: SPI3 Module Disable bit

1 = Module is disabled

0 = Module power and clock sources are enabled

#### REGISTER 10-7: PMD7: PERIPHERAL MODULE DISABLE REGISTER 7

| U-0    | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0   |
|--------|-----|-----|-----|-----|-----|-----|-------|
| —      | —   | —   | —   | —   | —   | —   | —     |
| bit 15 |     |     |     |     |     |     | bit 8 |

| U-0   | U-0 | R/W-0  | R/W-0  | U-0 | U-0 | U-0 | U-0   |
|-------|-----|--------|--------|-----|-----|-----|-------|
| —     | —   | DMA1MD | DMA0MD | —   | —   | —   | —     |
| bit 7 |     |        |        |     |     |     | bit 0 |

| Legend:           |                  |                       |                    |
|-------------------|------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | , read as '0'      |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |

| bit 15-6 | Unimplemented: Read as '0'                                 |
|----------|------------------------------------------------------------|
| bit 5    | DMA1MD: DMA1 Controller (Channels 4 through 7) Disable bit |
|          | 1 = Controller is disabled                                 |
|          | 0 = Controller power and clock sources are enabled         |
| bit 4    | DMA0MD: DMA0 Controller (Channels 0 through 3) Disable bit |
|          | 1 = Controller is disabled                                 |
|          | 0 = Controller power and clock sources are enabled         |
| h:+ 0 0  | University and and an (a)                                  |

bit 3-0 Unimplemented: Read as '0'

## REGISTER 10-8: PMD8: PERIPHERAL MODULE DISABLE REGISTER 8

| U-0           | U-0                                            | U-0              | U-0 | U-0                                     | U-0              | U-0      | U-0   |
|---------------|------------------------------------------------|------------------|-----|-----------------------------------------|------------------|----------|-------|
| —             | —                                              | —                | —   | —                                       | —                | _        | —     |
| bit 15        |                                                |                  |     |                                         |                  |          | bit 8 |
|               |                                                |                  |     |                                         |                  |          |       |
| U-0           | U-0                                            | U-0              | U-0 | R/W-0                                   | R/W-0            | U-0      | U-0   |
| _             | —                                              | —                | —   | CLC2MD                                  | CLC1MD           | —        | —     |
| bit 7         |                                                |                  |     |                                         |                  |          | bit 0 |
|               |                                                |                  |     |                                         |                  |          |       |
| Legend:       |                                                |                  |     |                                         |                  |          |       |
| R = Readable  | e bit                                          | W = Writable I   | oit | U = Unimplem                            | nented bit, read | 1 as '0' |       |
| -n = Value at | POR                                            | '1' = Bit is set |     | '0' = Bit is cleared x = Bit is unknown |                  |          | nown  |
|               |                                                |                  |     |                                         |                  |          |       |
| bit 15-4      | Unimplemen                                     | ted: Read as '0  | )'  |                                         |                  |          |       |
| bit 3         | CLC2MD: CLC2 Module Disable bit                |                  |     |                                         |                  |          |       |
|               | 1 = Module is disabled                         |                  |     |                                         |                  |          |       |
|               | 0 = Module power and clock sources are enabled |                  |     |                                         |                  |          |       |
| bit 2         | CLC1MD: CLC1 Module Disable bit                |                  |     |                                         |                  |          |       |
|               |                                                |                  |     |                                         |                  |          |       |

0 = Module power and clock sources are enabled

1 = Module is disabled

bit 1-0 Unimplemented: Read as '0'

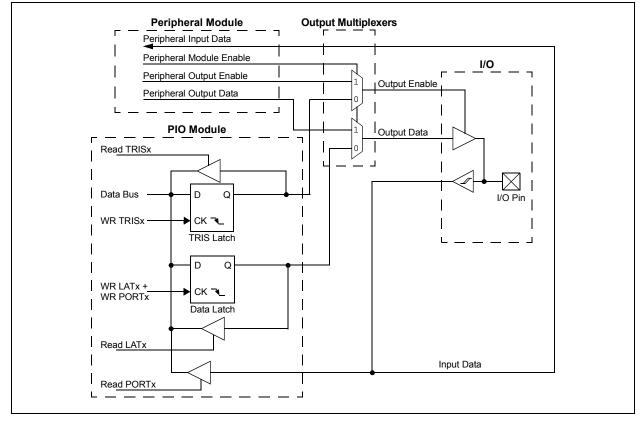
NOTES:

# 11.0 I/O PORTS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "I/O Ports with Peripheral Pin Select (PPS)" (DS39711), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

All of the device pins (except VDD, VSS, MCLR and OSCI/CLKI) are shared between the peripherals and the Parallel I/O (PIO) ports. All I/O input ports feature Schmitt Trigger (ST) inputs for improved noise immunity.

# 11.1 Parallel I/O (PIO) Ports


A Parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/Os and one register associated with their operation as analog inputs. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Output Latch register (LATx), read the latch; writes to the latch, write the latch. Reads from the PORTx register, read the port pins; writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers, and the port pin, will read as zeros. Table 11-3 through Table 11-5 show ANSELx bits and ports availability for device variants. When a pin is shared with another peripheral or function that is defined as an input only, it is regarded as a dedicated port because there is no other competing source of inputs.

## FIGURE 11-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE



© 2016-2018 Microchip Technology Inc.

## 11.1.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

#### 11.1.2 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, each port pin can also be individually configured for either a digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired digital only pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

# 11.2 Configuring Analog Port Pins (ANSx)

The ANSx and TRISx registers control the operation of the pins with analog function. Each port pin with analog function is associated with one of the ANSx bits, which decide if the pin function should be analog or digital. Refer to Table 11-1 for detailed behavior of the pin for different ANSx and TRISx bit settings.

When reading the PORTx register, all pins configured as analog input channels will read as cleared (a low level).

# 11.2.1 ANALOG INPUT PINS AND VOLTAGE CONSIDERATIONS

The voltage tolerance of pins used as device inputs is dependent on the pin's input function. Most input pins are able to handle DC voltages of up to 5.5V, a level typical for digital logic circuits. However, several pins can only tolerate voltages up to VDD. Voltage excursions beyond VDD on these pins should always be avoided.

Table 11-2 summarizes the different voltage tolerances. For more information, refer to **Section 32.0 "Electrical Characteristics"** for more details.

| TABLE 11-1: | CONFIGURING ANALOG/DIGITAL FUNCTION OF AN I/O PIN |
|-------------|---------------------------------------------------|
|             |                                                   |

| Pin Function   | Function ANSx Setting TRISx Setting |   | Comments                                                                                                                                   |
|----------------|-------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------|
| Analog Input   | 1                                   | 1 | It is recommended to keep ANSx = 1.                                                                                                        |
| Analog Output  | 1                                   | 1 | It is recommended to keep ANSx = 1.                                                                                                        |
| Digital Input  | 0                                   | 1 | Firmware must wait at least one instruction cycle<br>after configuring a pin as a digital input before a valid<br>input value can be read. |
| Digital Output | 0                                   | 0 | Make sure to disable the analog output function on the pin if any is present.                                                              |

#### TABLE 11-2: INPUT VOLTAGE LEVELS FOR PORT OR PIN TOLERATED DESCRIPTION INPUT

| Port or Pin        | Tolerated Input | Description                              |
|--------------------|-----------------|------------------------------------------|
| PORTB<11:10,8:5>   | 5.5V            | Tolerates input levels above VDD; useful |
| PORTC<9:6>         | - 5.5V          | for most standard logic.                 |
| PORTA<14:7,4:0>    |                 |                                          |
| PORTB<15:12,9,4:0> | VDD             | Only VDD input levels are tolerated.     |
| PORTC<5:0>         | 7               |                                          |

| Device             | PORTA I/O Pins |      |      |      |      |      |     |     |     |     |     |     |     |     |     |     |
|--------------------|----------------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Device             | RA15           | RA14 | RA13 | RA12 | RA11 | RA10 | RA9 | RA8 | RA7 | RA6 | RA5 | RA4 | RA3 | RA2 | RA1 | RA0 |
| PIC24FJXXXGA705    | _              | Х    | Х    | Х    | Х    | Х    | Х   | Х   | Х   | _   | _   | Х   | Х   | Х   | Х   | Х   |
| PIC24FJXXXGA704    | _              | _    | _    | _    | _    | Х    | Х   | Х   | Х   | _   | _   | Х   | Х   | Х   | Х   | Х   |
| PIC24FJXXXGA702    | _              | _    | _    | _    | _    | _    | _   | _   | _   | _   | _   | Х   | Х   | Х   | Х   | Х   |
| ANSELA bit present | —              | _    | _    | _    |      |      | _   |     | _   |     | _   |     | Х   | Х   | Х   | Х   |

# TABLE 11-3: PORTA PIN AND ANSELx AVAILABILITY

# TABLE 11-4: PORTB PIN AND ANSELx AVAILABILITY

| PORTB I/O Pins     |      |      |      |      |      | \$   |     |     | _   |     |     |     |     |     |     |     |
|--------------------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Device             | RB15 | RB14 | RB13 | RB12 | RB11 | RB10 | RB9 | RB8 | RB7 | RB6 | RB5 | RB4 | RB3 | RB2 | RB1 | RB0 |
| PIC24FJXXXGA705    | Х    | Х    | Х    | Х    | Х    | Х    | Х   | Х   | Х   | Х   | Х   | Х   | Х   | Х   | Х   | Х   |
| PIC24FJXXXGA704    | Х    | Х    | Х    | Х    | Х    | Х    | Х   | Х   | Х   | Х   | Х   | Х   | Х   | Х   | Х   | Х   |
| PIC24FJXXXGA702    | Х    | Х    | Х    | Х    | Х    | Х    | Х   | Х   | Х   | Х   | Х   | Х   | Х   | Х   | Х   | Х   |
| ANSELB bit present | Х    | Х    | Х    | Х    |      |      | Х   |     |     |     |     | _   | Х   | Х   | Х   | Х   |

| TABLE 11-5: | PORTC PIN AND ANSELX AVAILABILITY |
|-------------|-----------------------------------|
|             |                                   |

| Device             |      |      |      |      |      |      | PO  | RTC I/ | O Pins | 8   |     |     |     |     |     |     |
|--------------------|------|------|------|------|------|------|-----|--------|--------|-----|-----|-----|-----|-----|-----|-----|
| Device             | RC15 | RC14 | RC13 | RC12 | RC11 | RC10 | RC9 | RC8    | RC7    | RC6 | RC5 | RC4 | RC3 | RC2 | RC1 | RC0 |
| PIC24FJXXXGA705    | —    | _    | _    |      | —    |      | Х   | Х      | Х      | Х   | Х   | Х   | Х   | Х   | Х   | Х   |
| PIC24FJXXXGA704    | —    | _    | _    | _    |      | _    | Х   | Х      | Х      | Х   | Х   | Х   | Х   | Х   | Х   | Х   |
| PIC24FJXXXGA702    | _    | _    | _    | _    |      | _    | _   | _      | _      | _   | _   | _   | _   | _   | _   | —   |
| ANSELC bit present | _    | _    | _    |      |      | _    |     |        |        | _   |     | _   | Х   | Х   | Х   | Х   |

# 11.3 Interrupt-on-Change (IOC)

The Interrupt-on-Change function of the I/O ports allows the PIC24FJ256GA705 family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature is capable of detecting input Change-of-States, even in Sleep mode, when the clocks are disabled.

Interrupt-on-Change functionality is enabled on a pin by setting the IOCPx and/or IOCNx register bit for that pin. For example, PORTC has register names, IOCPC and IOCNC, for these functions. Setting a value of '1' in the IOCPx register enables interrupts for low-to-high transitions, while setting a value of '1' in the IOCNx register enables interrupts for high-to-low transitions. Setting a value of '1' in both register bits will enable interrupts for either case (e.g., a pulse on the pin will generate two interrupts). In order for any IOC to be detected, the global IOC Interrupt Enable bit (IEC1<3>) must be set, the PADCON<15> bit set (IOCON) and the associated ISFx flag cleared.

When an interrupt request is generated for a pin, the corresponding status flag (IOCFx register bit) will be set, indicating that a Change-of-State occurred on that pin. The IOCFx register bit will remain set until cleared by writing a zero to it. When any IOCFx flag bit in a given port is set, the corresponding IOCPxF bit in the IOCSTAT register will be set. This flag indicates that a change was detected on one of the bits on the given port. The IOCPxF flag will be cleared when all IOCFx<15:0> bits are cleared.

Multiple individual status flags can be cleared by writing a zero to one or more bits using a Read-Modify-Write operation. If another edge is detected on a pin whose status bit is being cleared during the Read-Modify-Write sequence, the associated change flag will still be set at the end of the Read-Modify-Write sequence. The user should use the instruction sequence (or equivalent) shown in Example 11-1 to clear the Interrupt-on-Change Status registers.

At the end of this sequence, the W0 register will contain a zero for each bit for which the port pin had a change detected. In this way, any indication of a pin changing will not be lost.

Due to the asynchronous and real-time nature of the Interrupt-on-Change, the value read on the port pins may not indicate the state of the port when the change was detected, as a second change can occur during the interval between clearing the flag and reading the port. It is up to the user code to handle this case if it is a possibility in their application. To keep this interval to a minimum, it is recommended that any code modifying the IOCFx registers be run either in the interrupt handler or with interrupts disabled.

Each Interrupt-on-Change (IOC) pin has both a weak pull-up and a weak pull-down connected to it. The pullups act as a current source connected to the pin, while the pull-downs act as a current sink connected to the pin. These eliminate the need for external resistors when push button or keypad devices are connected.

The pull-ups and pull-downs are separately enabled using the IOCPUx registers (for pull-ups) and the IOCPDx registers (for pull-downs). Each IOC pin has individual control bits for its pull-up and pull-down. Setting a control bit enables the weak pull-up or pull-down for the corresponding pin.

**Note:** Pull-ups and pull-downs on pins should always be disabled whenever the pin is configured as a digital output.

#### EXAMPLE 11-1: IOC STATUS READ/CLEAR IN ASSEMBLY

MOV0xFFFF, W0; Initial mask value 0xFFFF -> W0XORIOCFx, W0; W0 has 'l' for each bit set in IOCFxANDIOCFx; IOCFx & W0 ->IOCFx

#### EXAMPLE 11-2: PORT READ/WRITE IN ASSEMBLY

| MOV W0, TRISB ; and PORTB<7:0> as outputs<br>NOP ; Delay 1 cycle<br>BTSS PORTB, #13 ; Next Instruction | MOV | 0xFF00, W0    | ; Configure PORTB<15:8> as inputs |
|--------------------------------------------------------------------------------------------------------|-----|---------------|-----------------------------------|
|                                                                                                        | MOV | WO, TRISB     | ; and PORTB<7:0> as outputs       |
| BTSS PORTB, #13 ; Next Instruction                                                                     | NOF |               | ; Delay 1 cycle                   |
|                                                                                                        | BTS | SS PORTB, #13 | ; Next Instruction                |

#### EXAMPLE 11-3: PORT READ/WRITE IN 'C'

| TRISB = 0xFF00;                    | // Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs |
|------------------------------------|--------------------------------------------------------------|
| Nop();                             | // Delay 1 cycle                                             |
| <pre>If (PORTBbits.RB13){ };</pre> | // Next Instruction                                          |
|                                    |                                                              |

# 11.4 I/O Port Control Registers

| U-0    |
|-----|-----|-----|-----|-----|-----|--------|
| —   | _   | _   |     | _   |     | —      |
|     |     |     |     |     |     | bit 8  |
|     |     |     |     |     |     |        |
| U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0  |
| —   |     | —   | _   |     | —   | PMPTTL |
|     |     |     |     |     |     | bit 0  |
|     | _   |     |     |     |     |        |

#### REGISTER 11-1: PADCON: PORT CONFIGURATION REGISTER

# Legend:

| Logena.           |                  |                            |                    |
|-------------------|------------------|----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, rea | ad as '0'          |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared       | x = Bit is unknown |

| bit 15   | IOCON: Interrupt-on-Change Enable bit                                                                                           |
|----------|---------------------------------------------------------------------------------------------------------------------------------|
|          | <ul> <li>1 = Interrupt-on-Change functionality is enabled</li> <li>0 = Interrupt-on-Change functionality is disabled</li> </ul> |
| bit 14-1 | Unimplemented: Read as '0'                                                                                                      |
| bit 0    | PMPTTL: PMP Port Type bit                                                                                                       |
|          | 1 = TTL levels on PMP port pins                                                                                                 |
|          | 0 = Schmitt Triggers on PMP port pins                                                                                           |

# REGISTER 11-2: IOCSTAT: INTERRUPT-ON-CHANGE STATUS REGISTER

| U-0    | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0   |
|--------|-----|-----|-----|-----|-----|-----|-------|
| —      | —   | —   | —   | —   | —   | —   | —     |
| bit 15 |     |     |     |     |     |     | bit 8 |

| U-0   | U-0 | U-0 | U-0 | U-0 | R/HS/HC-0 | R/HS/HC-0 | R/HS/HC-0 |
|-------|-----|-----|-----|-----|-----------|-----------|-----------|
| —     | —   | —   | —   | —   | IOCPCF    | IOCPBF    | IOCPAF    |
| bit 7 |     |     |     |     |           |           | bit 0     |

| Legend:           | HS = Hardware Settable bit | Hardware Clearable bit     |                    |
|-------------------|----------------------------|----------------------------|--------------------|
| R = Readable bit  | W = Writable bit           | U = Unimplemented bit, rea | d as '0'           |
| -n = Value at POR | '1' = Bit is set           | '0' = Bit is cleared       | x = Bit is unknown |

| bit 15-3 | Unimplemented: Read as '0'                                                                                                                                    |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 2    | IOCPCF: Interrupt-on-Change PORTC Flag bit                                                                                                                    |
|          | <ul> <li>1 = A change was detected on an IOC-enabled pin on PORTC</li> <li>0 = No change was detected or the user has cleared all detected changes</li> </ul> |
| bit 1    | IOCPBF: Interrupt-on-Change PORTB Flag bit                                                                                                                    |
|          | <ul> <li>1 = A change was detected on an IOC-enabled pin on PORTB</li> <li>0 = No change was detected or the user has cleared all detected changes</li> </ul> |
| bit 0    | IOCPAF: Interrupt-on-Change PORTA Flag bit                                                                                                                    |
|          | <ul> <li>1 = A change was detected on an IOC-enabled pin on PORTA</li> <li>0 = No change was detected, or the user has cleared all detected change</li> </ul> |

# REGISTER 11-3: TRISX: OUTPUT ENABLE FOR PORTX REGISTER<sup>(1)</sup>

| R/W-1                             | R/W-1 | R/W-1            | R/W-1                              | R/W-1            | R/W-1 | R/W-1           | R/W-1 |
|-----------------------------------|-------|------------------|------------------------------------|------------------|-------|-----------------|-------|
|                                   |       |                  | TRIS                               | x<15:8>          |       |                 |       |
| bit 15                            |       |                  |                                    |                  |       |                 | bit 8 |
| R/W-1                             | R/W-1 | R/W-1            | R/W-1                              | R/W-1            | R/W-1 | R/W-1           | R/W-1 |
|                                   |       |                  | TRIS                               | Sx<7:0>          |       |                 |       |
| bit 7                             |       |                  |                                    |                  |       |                 | bit 0 |
|                                   |       |                  |                                    |                  |       |                 |       |
| Legend:                           |       |                  |                                    |                  |       |                 |       |
| R = Readable bit W = Writable bit |       | it               | U = Unimplemented bit, read as '0' |                  |       |                 |       |
| -n = Value at P                   | OR    | '1' = Bit is set |                                    | '0' = Bit is cle | ared  | x = Bit is unkr | nown  |

bit 15-0 **TRISx<15:0>:** Output Enable for PORTx bits 1 = LATx[n] is not driven on the PORTx[n] pin 0 = LATx[n] is driven on the PORTx[n] pin

Note 1: See Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.

# **REGISTER 11-4: PORTX: INPUT DATA FOR PORTX REGISTER<sup>(1)</sup>**

| R/W-1          | R/W-1 | R/W-1            | R/W-1 | R/W-1        | R/W-1            | R/W-1    | R/W-1 |
|----------------|-------|------------------|-------|--------------|------------------|----------|-------|
|                |       |                  | PORTx | <15:8>       |                  |          |       |
| bit 15         |       |                  |       |              |                  |          | bit 8 |
|                |       |                  |       |              |                  |          |       |
| R/W-1          | R/W-1 | R/W-1            | R/W-1 | R/W-1        | R/W-1            | R/W-1    | R/W-1 |
|                |       |                  | PORT  | x<7:0>       |                  |          |       |
| bit 7          |       |                  |       |              |                  |          | bit 0 |
|                |       |                  |       |              |                  |          |       |
| Legend:        |       |                  |       |              |                  |          |       |
| R = Readable I | bit   | W = Writable bit |       | U = Unimplen | nented bit, read | d as '0' |       |

'0' = Bit is cleared

bit 15-0 **PORTx<15:0>:** PORTx Data Input Value bits

'1' = Bit is set

Note 1: See Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.

-n = Value at POR

x = Bit is unknown

# REGISTER 11-5: LATX: OUTPUT DATA FOR PORTX REGISTER<sup>(1)</sup>

| R/W-x                             | R/W-x | R/W-x            | R/W-x                              | R/W-x                | R/W-x | R/W-x              | R/W-x |
|-----------------------------------|-------|------------------|------------------------------------|----------------------|-------|--------------------|-------|
|                                   |       |                  | LATX                               | <15:8>               |       |                    |       |
| bit 15                            |       |                  |                                    |                      |       |                    | bit 8 |
| R/W-x                             | R/W-x | R/W-x            | R/W-x                              | R/W-x                | R/W-x | R/W-x              | R/W-x |
|                                   |       |                  | LAT                                | x<7:0>               |       |                    |       |
| bit 7                             | bit 7 |                  |                                    |                      |       |                    | bit 0 |
| Legend:                           |       |                  |                                    |                      |       |                    |       |
| R = Readable bit W = Writable bit |       | bit              | U = Unimplemented bit, read as '0' |                      |       |                    |       |
| -n = Value at P                   | OR    | '1' = Bit is set |                                    | '0' = Bit is cleared |       | x = Bit is unknown |       |

bit 15-0 LATx<15:0>: PORTx Data Output Value bits

Note 1: See Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.

#### REGISTER 11-6: ODCx: OPEN-DRAIN ENABLE FOR PORTx REGISTER<sup>(1)</sup>

| R/W-0  | R/W-0 | R/W-0 | R/W-0 | R/W-0  | R/W-0 | R/W-0 | R/W-0 |
|--------|-------|-------|-------|--------|-------|-------|-------|
|        |       |       | ODCx  | <15:8> |       |       |       |
| bit 15 |       |       |       |        |       |       | bit 8 |
|        |       |       |       |        |       |       |       |

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
|       |       |       | ODCx  | <7:0> |       |       |       |
| bit 7 |       |       |       |       |       |       | bit 0 |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | l as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-0 ODCx<15:0>: PORTx Open-Drain Enable bits

1 = Open-drain is enabled on the PORTx pin

0 = Open-drain is disabled on the PORTx pin

Note 1: See Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.

# REGISTER 11-7: ANSELX: ANALOG SELECT FOR PORTX REGISTER<sup>(1)</sup>

| R/W-1                             | R/W-1 | R/W-1            | R/W-1                              | R/W-1            | R/W-1 | R/W-1           | R/W-1 |
|-----------------------------------|-------|------------------|------------------------------------|------------------|-------|-----------------|-------|
|                                   |       |                  | ANSE                               | Lx<15:8>         |       |                 |       |
| bit 15                            |       |                  |                                    |                  |       |                 | bit 8 |
| R/W-1                             | R/W-1 | R/W-1            | R/W-1                              | R/W-1            | R/W-1 | R/W-1           | R/W-1 |
|                                   |       |                  | ANSE                               | Lx<7:0>          |       |                 |       |
| bit 7                             |       |                  |                                    |                  |       |                 | bit 0 |
| Legend:                           |       |                  |                                    |                  |       |                 |       |
| R = Readable bit W = Writable bit |       | bit              | U = Unimplemented bit, read as '0' |                  |       |                 |       |
| -n = Value at P                   | POR   | '1' = Bit is set |                                    | '0' = Bit is cle | ared  | x = Bit is unki | nown  |

bit 15-0 ANSELx<15:0>: Analog Select for PORTx bits

1 = Analog input is enabled and digital input is disabled on the PORTx[n] pin

0 = Analog input is disabled and digital input is enabled on the PORTx[n] pin

**Note 1:** See Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.

x = Bit is unknown

# **REGISTER 11-8:** IOCPx: INTERRUPT-ON-CHANGE POSITIVE EDGE x REGISTER<sup>(1,2,3)</sup>

| Legend: |       |       |       |         | nented bit, read |       |       |
|---------|-------|-------|-------|---------|------------------|-------|-------|
|         |       |       |       |         |                  |       |       |
|         |       |       |       |         |                  |       |       |
| bit 7   |       |       |       |         |                  |       | bit 0 |
|         |       |       | IOCP  | °x<7:0> |                  |       |       |
| R/W-0   | R/W-0 | R/W-0 | R/W-0 | R/W-0   | R/W-0            | R/W-0 | R/W-0 |
|         |       |       |       |         |                  |       |       |
| bit 15  |       |       |       |         |                  |       | bit 8 |
|         |       |       | IOCP: | x<15:8> |                  |       |       |
| R/W-0   | R/W-0 | R/W-0 | R/W-0 | R/W-0   | R/W-0            | R/W-0 | U-0   |

bit 15-0 **IOCPx<15:0>:** Interrupt-on-Change Positive Edge x Enable bits

'1' = Bit is set

-n = Value at POR

1 = Interrupt-on-Change is enabled on the IOCx pin for a positive going edge; the associated status bit and interrupt flag will be set upon detecting an edge

'0' = Bit is cleared

- 0 = Interrupt-on-Change is disabled on the IOCx pin for a positive going edge
- **Note 1:** Setting both IOCPx and IOCNx will enable the IOCx pin for both edges, while clearing both registers will disable the functionality.
  - 2: Changing the value of this register while the module is enabled (IOCON = 1) may cause a spurious IOC event. The corresponding interrupt must be ignored, cleared (using IOCFx) or masked (within the interrupt controller), or this module must be enabled (IOCON = 0) when changing this register.
  - 3: See Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.

# REGISTER 11-9: IOCNX: INTERRUPT-ON-CHANGE NEGATIVE EDGE x REGISTER<sup>(1,2,3)</sup>

| R/W-0 | R/W-0 | R/W-0 | R/W-0                      | R/W-0       | R/W-0                                  | U-0                                          |
|-------|-------|-------|----------------------------|-------------|----------------------------------------|----------------------------------------------|
|       |       | IOCNx | <15:8>                     |             |                                        |                                              |
|       |       |       |                            |             |                                        | bit 8                                        |
| R/W-0 | R/W-0 | R/W-0 | R/W-0                      | R/W-0       | R/W-0                                  | R/W-0                                        |
|       |       | IOCN  | x<7:0>                     |             |                                        |                                              |
|       |       |       |                            |             |                                        | bit 0                                        |
|       |       |       | IOCN×<br>R/W-0 R/W-0 R/W-0 | IOCNx<15:8> | IOCNx<15:8><br>R/W-0 R/W-0 R/W-0 R/W-0 | IOCNx<15:8><br>R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 |

| Legend:           |                  |                       |                    |
|-------------------|------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | , read as '0'      |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |

bit 15-0 **IOCNx<15:0>:** Interrupt-on-Change Negative Edge x Enable bits

- 1 = Interrupt-on-Change is enabled on the IOCx pin for a negative going edge; the associated status bit and interrupt flag will be set upon detecting an edge
- 0 = Interrupt-on-Change is disabled on the IOCx pin for a negative going edge
- **Note 1:** Setting both IOCPx and IOCNx will enable the IOCx pin for both edges, while clearing both registers will disable the functionality.
  - 2: Changing the value of this register while the module is enabled (IOCON = 1) may cause a spurious IOC event. The corresponding interrupt must be ignored, cleared (using IOCFx) or masked (within the interrupt controller), or this module must be enabled (IOCON = 0) when changing this register.
  - 3: See Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.

# REGISTER 11-10: IOCFx: INTERRUPT-ON-CHANGE FLAG x REGISTER<sup>(1,2)</sup>

| R/W-0         | R/W-0 | R/W-0            | R/W-0 | R/W-0                | R/W-0          | R/W-0           | U-0   |
|---------------|-------|------------------|-------|----------------------|----------------|-----------------|-------|
|               |       |                  | IOCE  | <sup>-</sup> x<15:8> |                |                 |       |
| bit 15        |       |                  |       |                      |                |                 | bit 8 |
|               |       |                  |       |                      |                |                 |       |
| R/W-0         | R/W-0 | R/W-0            | R/W-0 | R/W-0                | R/W-0          | R/W-0           | R/W-0 |
|               |       |                  | IOC   | Fx<7:0>              |                |                 |       |
| bit 7         |       |                  |       |                      |                |                 | bit 0 |
|               |       |                  |       |                      |                |                 |       |
| Legend:       |       |                  |       |                      |                |                 |       |
| R = Readable  | e bit | W = Writable bit |       | U = Unimplem         | ented bit, rea | ad as '0'       |       |
| -n = Value at | POR   | '1' = Bit is set |       | '0' = Bit is clea    | ired           | x = Bit is unkr | nown  |

bit 15-0 **IOCFx<15:0>:** Interrupt-on-Change Flag x bits

- 1 = An enabled change was detected on the associated pin; set when IOCPx = 1 and a positive edge was detected on the IOCx pin, or when IOCNx = 1 and a negative edge was detected on the IOCx pin
   0 = No change was detected or the user cleared the detected change
- **Note 1:** It is not possible to set the IOCFx register bits with software writes (as this would require the addition of significant logic). To test IOC interrupts, it is recommended to enable the IOC functionality on one or more GPIO pins and then use the corresponding LATx register bit(s) to trigger an IOC interrupt.
  - 2: See Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.

#### REGISTER 11-11: IOCPUx: INTERRUPT-ON-CHANGE PULL-UP ENABLE x REGISTER<sup>(1)</sup>

| R/W-0  | R/W-0 | R/W-0 | R/W-0 | R/W-0   | R/W-0 | R/W-0 | U-0   |
|--------|-------|-------|-------|---------|-------|-------|-------|
|        |       |       | IOCPU | x<15:8> |       |       |       |
| bit 15 |       |       |       |         |       |       | bit 8 |
| R/W-0  | R/W-0 | R/W-0 | R/W-0 | R/W-0   | R/W-0 | R/W-0 | R/W-0 |
|        |       |       | IOCPL | Jx<7:0> |       |       |       |
| bit 7  |       |       |       |         |       |       | bit 0 |

| Legend:           |                  |                       |                    |
|-------------------|------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | , read as '0'      |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |

bit 15-0 IOCPUx<15:0>: Interrupt-on-Change Pull-up Enable x bits

1 = Pull-up is enabled

0 = Pull-up is disabled

Note 1: See Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.

# REGISTER 11-12: IOCPDx: INTERRUPT-ON-CHANGE PULL-DOWN ENABLE x REGISTER<sup>(1)</sup>

| R/W-0         | R/W-0 | R/W-0            | R/W-0 | R/W-0             | R/W-0           | R/W-0           | U-0   |
|---------------|-------|------------------|-------|-------------------|-----------------|-----------------|-------|
|               |       |                  | IOCP  | Dx<15:8>          |                 |                 |       |
| bit 15        |       |                  |       |                   |                 |                 | bit 8 |
| R/W-0         | R/W-0 | R/W-0            | R/W-0 | R/W-0             | R/W-0           | R/W-0           | R/W-0 |
|               |       |                  | IOCF  | PDx<7:0>          |                 |                 |       |
| bit 7         |       |                  |       |                   |                 |                 | bit 0 |
| Legend:       |       |                  |       |                   |                 |                 |       |
| R = Readable  | e bit | W = Writable bit |       | U = Unimplem      | nented bit, rea | ad as 'O'       |       |
| -n = Value at | POR   | '1' = Bit is set |       | '0' = Bit is clea | ared            | x = Bit is unkr | nown  |

bit 15-0 IOCPDx<15:0>: Interrupt-on-Change Pull-Down Enable x bits

1 = Pull-down is enabled

0 = Pull-down is disabled

**Note 1:** See Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.

# 11.5 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. In an application that needs to use more than one peripheral multiplexed on a single pin, inconvenient work arounds in application code, or a complete redesign, may be the only option.

The Peripheral Pin Select (PPS) feature provides an alternative to these choices by enabling the user's peripheral set selection and its placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of any one of many digital peripherals to any one of these I/O pins. PPS is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

#### 11.5.1 AVAILABLE PINS

The PPS feature is used with a range of up to 44 pins, depending on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation, "RPn" or "RPIn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

PIC24FJ256GA705 family devices support a larger number of remappable input/output pins than remappable input only pins. In this device family, there are up to 33 remappable input/output pins, depending on the pin count of the particular device selected. These pins are numbered, RP0 through RP28 and RPI29 through RPI32.

See Table 1-1 for a summary of pinout options in each package offering.

## 11.5.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer related peripherals (input capture and output compare) and external interrupt inputs. Also included are the outputs of the comparator module, since these are discrete digital signals. PPS is not available for these peripherals:

- I<sup>2</sup>C (input and output)
- Input Change Notifications
- EPMP Signals (input and output)
- · Analog (inputs and outputs)
- INT0

A key difference between pin select and non-pin select peripherals is that pin select peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-pin select peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

#### 11.5.2.1 Peripheral Pin Select Function Priority

Pin-selectable peripheral outputs (e.g., output compare, UART transmit) will take priority over general purpose digital functions on a pin, such as EPMP and port I/O. Specialized digital outputs will take priority over PPS outputs on the same pin. The pin diagrams list peripheral outputs in the order of priority. Refer to them for priority concerns on a particular pin.

Unlike PIC24F devices with fixed peripherals, pinselectable peripheral inputs will never take ownership of a pin. The pin's output buffer will be controlled by the TRISx setting or by a fixed peripheral on the pin. If the pin is configured in Digital mode, then the PPS input will operate correctly. If an analog function is enabled on the pin, the PPS input will be disabled.

#### 11.5.3 CONTROLLING PERIPHERAL PIN SELECT

PPS features are controlled through two sets of Special Function Registers (SFRs): one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on if an input or an output is being mapped.

#### 11.5.3.1 Input Mapping

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral; that is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-13 through Register 11-31).

Each register contains one or two sets of 6-bit fields, with each set associated with one of the pin-selectable peripherals. Programming a given peripheral's bit field with an appropriate 6-bit value maps the RPn/RPIn pin with that value to that peripheral. For any given device, the valid range of values for any of the bit fields corresponds to the maximum number of Peripheral Pin Selections supported by the device.

| TARI E 11-6. | SELECTABLE INPUT SOURCES | (MAPS INPUT TO FUNCTION) <sup>(1)</sup> |
|--------------|--------------------------|-----------------------------------------|
| IADLL II-0.  | SELECTABLE INFOT SOURCES |                                         |

| Input Name                   | Function Name | Register      | Function Mapping<br>Bits |
|------------------------------|---------------|---------------|--------------------------|
| Output Compare Trigger 1     | OCTRIG1       | RPINR0<5:0>   | OCTRIG1R<5:0>            |
| External Interrupt 1         | INT1          | RPINR0<13:8>  | INT1R<5:0>               |
| External Interrupt 2         | INT2          | RPINR1<5:0>   | INT2R<5:0>               |
| External Interrupt 3         | INT3          | RPINR1<13:8>  | INT3R<5:0>               |
| External Interrupt 4         | INT4          | RPINR2<5:0>   | INT4R<5:0>               |
| Output Compare Trigger 2     | OCTRIG2       | RPINR2<13:8>  | OCTRIG2R<5:0>            |
| Timer2 External Clock        | T2CK          | RPINR3<5:0>   | T2CKR<5:0>               |
| Timer3 External Clock        | T3CK          | RPINR3<13:8>  | T3CKR<5:0>               |
| Input Capture 1              | ICM1          | RPINR5<5:0>   | ICM1R<5:0>               |
| Input Capture 2              | ICM2          | RPINR5<13:8>  | ICM2R<5:0>               |
| Input Capture 3              | ICM3          | RPINR6<5:0>   | ICM3R<5:0>               |
| Input Capture 4              | ICM4          | RPINR6<13:8>  | ICM4R<5:0>               |
| Input Capture 1              | IC1           | RPINR7<5:0>   | IC1R<5:0>                |
| Input Capture 2              | IC2           | RPINR7<13:8>  | IC2R<5:0>                |
| Input Capture 3              | IC3           | RPINR8<5:0>   | IC3R<5:0>                |
| Output Compare Fault A       | OCFA          | RPINR11<5:0>  | OCFAR<5:0>               |
| Output Compare Fault B       | OCFB          | RPINR11<13:8> | OCFBR<5:0>               |
| CCP Clock Input A            | TCKIA         | RPINR12<5:0>  | TCKIAR<5:0>              |
| CCP Clock Input B            | TCKIB         | RPINR12<13:8> | TCKIBR<5:0>              |
| UART1 Receive                | U1RX          | RPINR18<5:0>  | U1RXR<5:0>               |
| UART1 Clear-to-Send          | U1CTS         | RPINR18<13:8> | U1CTSR<5:0>              |
| UART2 Receive                | U2RX          | RPINR19<5:0>  | U2RXR<5:0>               |
| UART2 Clear-to-Send          | U2CTS         | RPINR19<13:8> | U2CTSR<5:0>              |
| SPI1 Data Input              | SDI1          | RPINR20<5:0>  | SDI1R<5:0>               |
| SPI1 Clock Input             | SCK1IN        | RPINR20<13:8> | SCK1R<5:0>               |
| SPI1 Slave Select Input      | SS1IN         | RPINR21<5:0>  | SS1R<5:0>                |
| SPI2 Data Input              | SDI2          | RPINR22<5:0>  | SDI2R<5:0>               |
| SPI2 Clock Input             | SCK2IN        | RPINR22<13:8> | SCK2R<5:0>               |
| SPI2 Slave Select Input      | SS2IN         | RPINR23<5:0>  | SS2R<5:0>                |
| Generic Timer External Clock | TxCK          | RPINR23<13:8> | TXCKR<5:0>               |
| CLC Input A                  | CLCINA        | RPINR25<5:0>  | CLCINAR<5:0>             |
| CLC Input B                  | CLCINB        | RPINR25<13:8> | CLCINBR<5:0>             |
| SPI3 Data Input              | SDI3          | RPINR28<5:0>  | SDI3R<5:0>               |
| SPI3 Clock Input             | SCK3IN        | RPINR28<13:8> | SCK3R<5:0>               |
| SPI3 Slave Select Input      | SS3IN         | RPINR29<5:0>  | SS3R<5:0>                |

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger (ST) input buffers.

# 11.5.3.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Each register contains two 6-bit fields, with each field being associated with one RPn pin (see Register 11-32 through Register 11-46). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 11-7).

Because of the mapping technique, the list of peripherals for output mapping also includes a null value of '000000'. This permits any given pin to remain disconnected from the output of any of the pin-selectable peripherals.

| <b>TABLE 11-7</b> : | SELECTABLE OUTPUT SOURCES | (MAPS FUNCTION TO OUTPUT) |
|---------------------|---------------------------|---------------------------|
|                     |                           |                           |

| Output Function Number | Function            | Output Name              |
|------------------------|---------------------|--------------------------|
| 0                      | None (Pin Disabled) | _                        |
| 1                      | C1OUT               | Comparator 1 Output      |
| 2                      | C2OUT               | Comparator 2 Output      |
| 3                      | U1TX                | UART1 Transmit           |
| 4                      | U1RTS               | UART1 Request-to-Send    |
| 5                      | U2TX                | UART2 Transmit           |
| 6                      | U2RTS               | UART2 Request-to-Send    |
| 7                      | SDO1                | SPI1 Data Output         |
| 8                      | SCK1OUT             | SPI1 Clock Output        |
| 9                      | SS10UT              | SPI1 Slave Select Output |
| 10                     | SDO2                | SPI2 Data Output         |
| 11                     | SCK2OUT             | SPI2 Clock Output        |
| 12                     | SS2OUT              | SPI2 Slave Select Output |
| 13                     | OC1                 | Output Compare 1         |
| 14                     | OC2                 | Output Compare 2         |
| 15                     | OC3                 | Output Compare 3         |
| 16                     | OCM2A               | CCP2A Output Compare     |
| 17                     | OCM2B               | CCP2B Output Compare     |
| 18                     | OCM3A               | CCP3A Output Compare     |
| 19                     | OCM3B               | CCP3B Output Compare     |
| 20                     | OCM4A               | CCP4A Output Compare     |
| 21                     | OCM4B               | CCP4B Output Compare     |
| 22                     | Reserved            | _                        |
| 23                     | SDO3                | SPI3 Data Output         |
| 24                     | SCK3OUT             | SPI3 Clock Output        |
| 25                     | SS3OUT              | SPI3 Slave Select Output |
| 26                     | C3OUT               | Comparator 3 Output      |
| 27                     | PWRGT               | RTCC Power Control       |
| 28                     | REFO                | Reference Clock Output   |
| 29                     | CLC10UT             | CLC1 Output              |
| 30                     | CLC2OUT             | CLC2 Output              |
| 31                     | RTCC                | RTCC Clock Output        |

## 11.5.3.3 Mapping Limitations

The control schema of the Peripheral Pin Select is extremely flexible. Other than systematic blocks that prevent signal contention, caused by two physical pins being configured as the same functional input or two functional outputs configured as the same pin, there are no hardware enforced lockouts. The flexibility extends to the point of allowing a single input to drive multiple peripherals or a single functional output to drive multiple output pins.

# 11.5.3.4 Mapping Exceptions for Family Devices

The differences in available remappable pins are summarized in Table 11-8.

When developing applications that use remappable pins, users should also keep these things in mind:

- For the RPINRx registers, bit combinations corresponding to an unimplemented pin for a particular device are treated as invalid; the corresponding module will not have an input mapped to it.
- For RPORx registers, the bit fields corresponding to an unimplemented pin will also be unimplemented; writing to these fields will have no effect.

# 11.5.4 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC24F devices include three features to prevent alterations to the peripheral map:

- · Control register lock sequence
- · Continuous state monitoring
- Configuration bit remapping lock

#### 11.5.4.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes will appear to execute normally, but the contents of the

registers will remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 46h to OSCCON<7:0>.
- 2. Write 57h to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence, followed by an update to all control registers, then locked with a second lock sequence.

#### 11.5.4.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

## 11.5.4.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (FOSC<5>) Configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows users unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

| Device          |       | RPn Pins (I/O) | RPIn Pins |               |  |
|-----------------|-------|----------------|-----------|---------------|--|
| Device          | Total | Unimplemented  | Total     | Unimplemented |  |
| PIC24FJXXXGA705 | 29    | _              | 4         | _             |  |
| PIC24FJXXXGA704 | 29    | —              | 0         | RPI29-32      |  |
| PIC24FJXXXGA702 | 18    | RP16-25        | 0         | RPI29-32      |  |

#### TABLE 11-8: REMAPPABLE PIN EXCEPTIONS FOR PIC24FJ256GA705 FAMILY DEVICES

## 11.5.5 CONSIDERATIONS FOR PERIPHERAL PIN SELECTION

The ability to control Peripheral Pin Selection introduces several considerations into application design that could be overlooked. This is particularly true for several common peripherals that are available only as remappable peripherals.

The main consideration is that the Peripheral Pin Selects are not available on default pins in the device's default (Reset) state. Since all RPINRx registers reset to '111111' and all RPORx registers reset to '000000', all Peripheral Pin Select inputs are tied to Vss, and all Peripheral Pin Select outputs are disconnected.

This situation requires the user to initialize the device with the proper peripheral configuration before any other application code is executed. Since the IOLOCK bit resets in the unlocked state, it is not necessary to execute the unlock sequence after the device has come out of Reset. For application safety, however, it is best to set IOLOCK and lock the configuration after writing to the control registers.

Because the unlock sequence is timing-critical, it must be executed as an assembly language routine in the same manner as changes to the oscillator configuration. If the bulk of the application is written in 'C', or another high-level language, the unlock sequence should be performed by writing in-line assembly.

Choosing the configuration requires the review of all Peripheral Pin Selects and their pin assignments, especially those that will not be used in the application. In all cases, unused pin-selectable peripherals should be disabled completely. Unused peripherals should have their inputs assigned to an unused RPn/RPIn pin function. I/O pins with unused RPn functions should be configured with the null peripheral output.

The assignment of a peripheral to a particular pin does not automatically perform any other configuration of the pin's I/O circuitry. In theory, this means adding a pinselectable output to a pin may mean inadvertently driving an existing peripheral input when the output is driven. Users must be familiar with the behavior of other fixed peripherals that share a remappable pin and know when to enable or disable them. To be safe, fixed digital peripherals that share the same pin should be disabled when not in use. Along these lines, configuring a remappable pin for a specific peripheral does not automatically turn that feature on. The peripheral must be specifically configured for operation and enabled as if it were tied to a fixed pin. Where this happens in the application code (immediately following a device Reset and peripheral configuration or inside the main application routine) depends on the peripheral and its use in the application.

A final consideration is that Peripheral Pin Select functions neither override analog inputs nor reconfigure pins with analog functions for digital I/Os. If a pin is configured as an analog input on a device Reset, it must be explicitly reconfigured as a digital I/O when used with a Peripheral Pin Select.

Example 11-4 shows a configuration for bidirectional communication with flow control using UART1. The following input and output functions are used:

- Input Functions: U1RX, U1CTS
- Output Functions: U1TX, U1RTS

| EXAMPLE 11-4: | CONFIGURING UART1 |
|---------------|-------------------|
|               | INPUT AND OUTPUT  |
|               | FUNCTIONS         |

|     |              | 1 01       |                 |               |
|-----|--------------|------------|-----------------|---------------|
|     | Unlock Regi  |            |                 |               |
| asm | volatile     | ("MOV      | #OSCCON, w1     | \n"           |
|     |              | "MOV       | #0x46, w2       | \n"           |
|     |              | "MOV       | #0x57, w3       | \n"           |
|     |              | "MOV.b     | w2, [w1]        | \n"           |
|     |              | "MOV.b     | w3, [w1]        | \n"           |
|     |              | "BCLR      | OSCCON, #6")    | ;             |
| //  | or use XC16  | 5 built-   | in macro:       |               |
| //  | builtin_v    | vrite_OS   | CCONL(OSCCON &  | 0xbf)         |
| //  | Configure 1  | Input Fu   | nctions (Table  | 11-6)         |
|     | // Assign U  | J1RX To    | Pin RPO         |               |
|     | RPINR18bits  | s.UlRXR    | = 0;            |               |
|     | // Assign U  | J1CTS To   | Pin RP1         |               |
|     | RPINR18bits  |            |                 |               |
| , , | Configura    | Network II | unctions (Table | 11 <b>7</b> ) |
|     | // Assign U  | -          |                 | ; 11-7)       |
|     | RPOR1bits.   |            |                 |               |
|     | RI ORIDICS.I | (1 21( - ) | ,               |               |
|     | // Assign (  | IIRTS TO   | Pin RP3         |               |
|     | RPOR1bits.H  |            |                 |               |
|     |              |            |                 |               |
| 11  | Lock Regist  | ers        |                 |               |
| asm | volatile     | ("MOV      | #OSCCON, w1     | \n"           |
|     |              | "MOV       | #0x46, w2       | \n"           |
|     |              | "MOV       | #0x57, w3       | \n"           |
|     |              | "MOV.b     | w2, [w1]        | \n"           |
|     |              |            |                 | \n"           |
|     |              | "BSET      | OSCCON, #6")    | ;             |
|     |              |            |                 |               |
| //  | or use XC16  | 5 built-   | in macro:       |               |
| 11  | builtin v    | mita ng    | CCONT. (OSCCON  | 0 - 40        |

```
// __builtin_write_OSCCONL(OSCCON | 0x40);
```

#### 11.5.6 PERIPHERAL PIN SELECT REGISTERS

The PIC24FJ256GA705 family of devices implements a total of 34 registers for remappable peripheral configuration:

- Input Remappable Peripheral Registers (19)
- Output Remappable Peripheral Registers (15)

Note: Input and Output register values can only be changed if IOLOCK (OSCCON<6>) = 0. See Section 11.5.4.1 "Control Register Lock" for a specific command sequence.

#### REGISTER 11-13: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

| U-0    | U-0 | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  |
|--------|-----|--------|--------|--------|--------|--------|--------|
| —      | —   | INT1R5 | INT1R4 | INT1R3 | INT1R2 | INT1R1 | INT1R0 |
| bit 15 |     |        |        |        |        |        | bit 8  |

| U-0   | U-0 | R/W-1     | R/W-1     | R/W-1     | R/W-1     | R/W-1     | R/W-1     |
|-------|-----|-----------|-----------|-----------|-----------|-----------|-----------|
| —     | —   | OCTRIG1R5 | OCTRIG1R4 | OCTRIG1R3 | OCTRIG1R2 | OCTRIG1R1 | OCTRIG1R0 |
| bit 7 |     |           |           |           |           |           | bit 0     |

| Legend:                           |                  |                                    |                    |  |
|-----------------------------------|------------------|------------------------------------|--------------------|--|
| R = Readable bit W = Writable bit |                  | U = Unimplemented bit, read as '0' |                    |  |
| -n = Value at POR                 | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |

| bit 15-14 | Unimplemented: Read as '0'                                                                        |
|-----------|---------------------------------------------------------------------------------------------------|
| bit 13-8  | INT1R<5:0>: Assign External Interrupt 1 (INT1) to Corresponding RPn or RPIn Pin bits              |
| bit 7-6   | Unimplemented: Read as '0'                                                                        |
| bit 5-0   | <b>OCTRIG1R&lt;5:0&gt;:</b> Assign Output Compare Trigger 1 to Corresponding RPn or RPIn Pin bits |

# REGISTER 11-14: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

| Legend:<br>R = Readable bit W = Writable bit |     | U = Unimpler |        | ( <b>a</b> ) |        |        |        |
|----------------------------------------------|-----|--------------|--------|--------------|--------|--------|--------|
| bit 7                                        |     |              |        |              |        |        | bit 0  |
| —                                            | _   | INT2R5       | INT2R4 | INT2R3       | INT2R2 | INT2R1 | INT2R0 |
| U-0                                          | U-0 | R/W-1        | R/W-1  | R/W-1        | R/W-1  | R/W-1  | R/W-1  |
|                                              |     |              |        |              |        |        |        |
| bit 15                                       |     |              |        |              |        |        | bit 8  |
| —                                            | _   | INT3R5       | INT3R4 | INT3R3       | INT3R2 | INT3R1 | INT3R0 |
| U-0                                          | U-0 | R/W-1        | R/W-1  | R/W-1        | R/W-1  | R/W-1  | R/W-1  |

| R = Readable bit W = Writable bit |                  | U = Unimplemented bit, read as '0' |                    |  |  |
|-----------------------------------|------------------|------------------------------------|--------------------|--|--|
| -n = Value at POR                 | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |  |

| bit 15-14 | Unimplemented: Read as '0'                                                           |
|-----------|--------------------------------------------------------------------------------------|
| bit 13-8  | INT3R<5:0>: Assign External Interrupt 3 (INT3) to Corresponding RPn or RPIn Pin bits |
| bit 7-6   | Unimplemented: Read as '0'                                                           |
| bit 5-0   | INT2R<5:0>: Assign External Interrupt 2 (INT2) to Corresponding RPn or RPIn Pin bits |

## REGISTER 11-15: RPINR2: PERIPHERAL PIN SELECT INPUT REGISTER 2

| U-0    | U-0 | R/W-1     | R/W-1     | R/W-1     | R/W-1     | R/W-1     | R/W-1     |
|--------|-----|-----------|-----------|-----------|-----------|-----------|-----------|
| —      | —   | OCTRIG2R5 | OCTRIG2R4 | OCTRIG2R3 | OCTRIG2R2 | OCTRIG2R1 | OCTRIG2R0 |
| bit 15 |     |           |           |           |           |           | bit 8     |
|        |     |           |           |           |           |           |           |
| U-0    | U-0 | R/W-1     | R/W-1     | R/W-1     | R/W-1     | R/W-1     | R/W-1     |
| —      | —   | INT4R5    | INT4R4    | INT4R3    | INT4R2    | INT4R1    | INT4R0    |
| bit 7  |     |           |           |           |           |           | bit 0     |
|        |     |           |           |           |           |           |           |
| Logond |     |           |           |           |           |           |           |

| Legend:                           |                  |                       |                    |
|-----------------------------------|------------------|-----------------------|--------------------|
| R = Readable bit W = Writable bit |                  | U = Unimplemented bit | , read as '0'      |
| -n = Value at POR                 | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |

| bit 15-14 | Unimplemented: Read as '0'                                                           |
|-----------|--------------------------------------------------------------------------------------|
| bit 13-8  | OCTRIG2R<5:0>: Assign Output Compare Trigger 2 to Corresponding RPn or RPIn Pin bits |
| bit 7-6   | Unimplemented: Read as '0'                                                           |
| bit 5-0   | INT4R<5:0>: Assign External Interrupt 4 (INT4) to Corresponding RPn or RPIn Pin bits |

#### REGISTER 11-16: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

| U-0    | U-0 | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  |
|--------|-----|--------|--------|--------|--------|--------|--------|
| —      | —   | T3CKR5 | T3CKR4 | T3CKR3 | T3CKR2 | T3CKR1 | T3CKR0 |
| bit 15 |     |        |        |        |        |        | bit 8  |

| U-0   | U-0 | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  |
|-------|-----|--------|--------|--------|--------|--------|--------|
| —     | —   | T2CKR5 | T2CKR4 | T2CKR3 | T2CKR2 | T2CKR1 | T2CKR0 |
| bit 7 |     |        |        |        |        |        | bit 0  |

| Legend:           |                  |                                    |                    |
|-------------------|------------------|------------------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |

bit 15-14 Unimplemented: Read as '0'

bit 13-8 T3CKR<5:0>: Assign Timer3 Clock to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 T2CKR<5:0>: Assign Timer2 Clock to Corresponding RPn or RPIn Pin bits

| Legend:<br>R = Readable bit W = Writable bit |     |        |        |        |        |        |        |
|----------------------------------------------|-----|--------|--------|--------|--------|--------|--------|
| bit 7                                        |     |        |        |        |        |        | bit 0  |
| —                                            | —   | ICM1R5 | ICM1R4 | ICM1R3 | ICM1R2 | ICM1R1 | ICM1R0 |
| U-0                                          | U-0 | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  |
|                                              |     |        |        |        |        |        |        |
| bit 15                                       |     |        |        |        |        |        | bit 8  |
| _                                            | —   | ICM2R5 | ICM2R4 | ICM2R3 | ICM2R2 | ICM2R1 | ICM2R0 |
| U-0                                          | U-0 | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  |

## REGISTER 11-17: RPINR5: PERIPHERAL PIN SELECT INPUT REGISTER 5

| Legend:           |                  |                        |                                    |  |  |
|-------------------|------------------|------------------------|------------------------------------|--|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, | U = Unimplemented bit, read as '0' |  |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared   | x = Bit is unknown                 |  |  |

| bit 15-14 | Unimplemented: Read as '0'            |
|-----------|---------------------------------------|
| bit 13-8  | ICM2R<5:0>: Input Capture Mode 2 bits |
| bit 7-6   | Unimplemented: Read as '0'            |

bit 5-0 ICM1R<5:0>: Input Capture Mode 1 bits

#### **REGISTER 11-18: RPINR6: PERIPHERAL PIN SELECT INPUT REGISTER 6**

| U-0    | U-0 | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  |
|--------|-----|--------|--------|--------|--------|--------|--------|
| —      | —   | ICM4R5 | ICM4R4 | ICM4R3 | ICM4R2 | ICM4R1 | ICM4R0 |
| bit 15 |     |        |        |        |        |        | bit 8  |

| U-0   | U-0 | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  |
|-------|-----|--------|--------|--------|--------|--------|--------|
| —     | —   | ICM3R5 | ICM3R4 | ICM3R3 | ICM3R2 | ICM3R1 | ICM3R0 |
| bit 7 |     |        |        |        |        |        | bit 0  |

| Legend:           |                  |                                    |                    |
|-------------------|------------------|------------------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |

bit 15-14 Unimplemented: Read as '0'

bit 13-8 ICM4R<5:0>: Input Capture Mode 4 bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 ICM3R<5:0>: Input Capture Mode 3 bits

| U-0                                                   | U-0   | R/W-1                                                | R/W-1    | R/W-1           | R/W-1 | R/W-1 | R/W-1 |
|-------------------------------------------------------|-------|------------------------------------------------------|----------|-----------------|-------|-------|-------|
|                                                       | _     | IC2R5                                                | IC2R4    | IC2R3           | IC2R2 | IC2R1 | IC2R0 |
| bit 15                                                |       |                                                      |          |                 |       |       | bit 8 |
|                                                       |       |                                                      |          |                 |       |       |       |
| U-0                                                   | U-0   | R/W-1                                                | R/W-1    | R/W-1           | R/W-1 | R/W-1 | R/W-1 |
| —                                                     | —     | IC1R5                                                | IC1R4    | IC1R3           | IC1R2 | IC1R1 | IC1R0 |
| bit 7                                                 | bit 7 |                                                      |          |                 |       |       | bit 0 |
|                                                       |       |                                                      |          |                 |       |       |       |
| Legend:                                               |       |                                                      |          |                 |       |       |       |
| R = Readable bit W = Writable bit U = Unimplemented b |       | ented bit, read                                      | l as '0' |                 |       |       |       |
| -n = Value at                                         | POR   | '1' = Bit is set '0' = Bit is cleared x = Bit is unl |          | x = Bit is unkr | nown  |       |       |

#### REGISTER 11-19: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

| bit 15-14 | Unimplemented: Read as '0'                                                    |
|-----------|-------------------------------------------------------------------------------|
| bit 13-8  | IC2R<5:0>: Assign Input Capture 2 (IC2) to Corresponding RPn or RPIn Pin bits |
| bit 7-6   | Unimplemented: Read as '0'                                                    |
| bit 5-0   | IC1R<5:0>: Assign Input Capture 1 (IC1) to Corresponding RPn or RPIn Pin bits |

#### REGISTER 11-20: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

| U-0    | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0   |
|--------|-----|-----|-----|-----|-----|-----|-------|
| —      | —   | —   | —   | —   | —   | —   | —     |
| bit 15 |     |     |     |     |     |     | bit 8 |

| U-0         | U-0 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 |
|-------------|-----|-------|-------|-------|-------|-------|-------|
| —           | —   | IC3R5 | IC3R4 | IC3R3 | IC3R2 | IC3R1 | IC3R0 |
| bit 7 bit 0 |     |       |       |       |       |       |       |

| Legend:           |                  |                                    |                    |
|-------------------|------------------|------------------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |

bit 15-6 Unimplemented: Read as '0'

bit 5-0 IC3R<5:0>: Assign Input Capture 3 (IC3) to Corresponding RPn or RPIn Pin bits

| U-0    | U-0 | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  |
|--------|-----|--------|--------|--------|--------|--------|--------|
| —      | —   | OCFBR5 | OCFBR4 | OCFBR3 | OCFBR2 | OCFBR1 | OCFBR0 |
| bit 15 |     |        |        |        |        |        | bit 8  |
|        |     |        |        |        |        |        |        |

| U-0   | U-0 | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  |
|-------|-----|--------|--------|--------|--------|--------|--------|
|       | —   | OCFAR5 | OCFAR4 | OCFAR3 | OCFAR2 | OCFAR1 | OCFAR0 |
| bit 7 |     |        |        |        |        |        | bit 0  |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

| bit 15-14 | Unimplemented: Read as '0'                                                             |
|-----------|----------------------------------------------------------------------------------------|
| bit 13-8  | OCFBR<5:0>: Assign Output Compare Fault B (OCFB) to Corresponding RPn or RPIn Pin bits |
| bit 7-6   | Unimplemented: Read as '0'                                                             |
| bit 5-0   | OCFAR<5:0>: Assign Output Compare Fault A (OCFA) to Corresponding RPn or RPIn Pin bits |

# REGISTER 11-22: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12

| U-0    | U-0 | R/W-1   | R/W-1   | R/W-1   | R/W-1   | R/W-1   | R/W-1   |
|--------|-----|---------|---------|---------|---------|---------|---------|
| —      | —   | TCKIBR5 | TCKIBR4 | TCKIBR3 | TCKIBR2 | TCKIBR1 | TCKIBR0 |
| bit 15 |     |         |         |         |         |         | bit 8   |

| U-0   | U-0 | R/W-1   | R/W-1   | R/W-1   | R/W-1   | R/W-1   | R/W-1   |
|-------|-----|---------|---------|---------|---------|---------|---------|
| —     | —   | TCKIAR5 | TCKIAR4 | TCKIAR3 | TCKIAR2 | TCKIAR1 | TCKIAR0 |
| bit 7 |     |         |         |         |         |         | bit 0   |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-14 Unimplemented: Read as '0'

bit 13-8 TCKIBR<5:0>: Assign MCCP/SCCP Clock Input B to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 TCKIAR<5:0>: Assign MCCP/SCCP Clock Input A to Corresponding RPn or RPIn Pin bits

| U-0    | U-0 | R/W-1   | R/W-1   | R/W-1   | R/W-1   | R/W-1   | R/W-1   |
|--------|-----|---------|---------|---------|---------|---------|---------|
| —      | —   | U1CTSR5 | U1CTSR4 | U1CTSR3 | U1CTSR2 | U1CTSR1 | U1CTSR0 |
| bit 15 |     |         |         |         |         |         | bit 8   |
|        |     |         |         |         |         |         |         |
| U-0    | U-0 | R/W-1   | R/W-1   | R/W-1   | R/W-1   | R/W-1   | R/W-1   |

## REGISTER 11-23: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

| U-0   | U-0 | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  |
|-------|-----|--------|--------|--------|--------|--------|--------|
| —     | —   | U1RXR5 | U1RXR4 | U1RXR3 | U1RXR2 | U1RXR1 | U1RXR0 |
| bit 7 |     | -      |        |        |        |        | bit 0  |
|       |     |        |        |        |        |        |        |

| Legend:           |                  |                             |                    |  |
|-------------------|------------------|-----------------------------|--------------------|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |  |

| bit 15-14 | Unimplemented: Read as '0'                                                            |
|-----------|---------------------------------------------------------------------------------------|
| bit 13-8  | U1CTSR<5:0>: Assign UART1 Clear-to-Send (U1CTS) to Corresponding RPn or RPIn Pin bits |
| bit 7-6   | Unimplemented: Read as '0'                                                            |
| bit 5-0   | U1RXR<5:0>: Assign UART1 Receive (U1RX) to Corresponding RPn or RPIn Pin bits         |

# REGISTER 11-24: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

| U-0    | U-0 | R/W-1   | R/W-1   | R/W-1   | R/W-1   | R/W-1   | R/W-1   |
|--------|-----|---------|---------|---------|---------|---------|---------|
| —      | —   | U2CTSR5 | U2CTSR4 | U2CTSR3 | U2CTSR2 | U2CTSR1 | U2CTSR0 |
| bit 15 |     |         |         |         |         |         | bit 8   |

| U-0   | U-0 | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  |
|-------|-----|--------|--------|--------|--------|--------|--------|
| —     | —   | U2RXR5 | U2RXR4 | U2RXR3 | U2RXR2 | U2RXR1 | U2RXR0 |
| bit 7 |     |        |        |        |        |        | bit 0  |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-14 Unimplemented: Read as '0'

bit 13-8 U2CTSR<5:0>: Assign UART2 Clear-to-Send (U2CTS) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 U2RXR<5:0>: Assign UART2 Receive (U2RX) to Corresponding RPn or RPIn Pin bits

| U-0                       | U-0 | R/W-1            | R/W-1  | R/W-1                | R/W-1            | R/W-1              | R/W-1  |
|---------------------------|-----|------------------|--------|----------------------|------------------|--------------------|--------|
| —                         | —   | SCK1R5           | SCK1R4 | SCK1R3               | SCK1R2           | SCK1R1             | SCK1R0 |
| bit 15                    |     | -                |        |                      |                  |                    | bit 8  |
|                           |     |                  |        |                      |                  |                    |        |
| U-0                       | U-0 | R/W-1            | R/W-1  | R/W-1                | R/W-1            | R/W-1              | R/W-1  |
| —                         | —   | SDI1R5           | SDI1R4 | SDI1R3               | SDI1R2           | SDI1R1             | SDI1R0 |
| bit 7                     |     |                  |        |                      |                  |                    | bit 0  |
|                           |     |                  |        |                      |                  |                    |        |
| Legend:                   |     |                  |        |                      |                  |                    |        |
| R = Readable bit W = Writ |     | W = Writable     | bit    | U = Unimplen         | nented bit, read | 1 as '0'           |        |
| -n = Value at POR         |     | '1' = Bit is set |        | '0' = Bit is cleared |                  | x = Bit is unknown |        |

| bit 15-14 | Unimplemented: Read as '0'                                                         |
|-----------|------------------------------------------------------------------------------------|
| bit 13-8  | SCK1R<5:0>: Assign SPI1 Clock Input (SCK1IN) to Corresponding RPn or RPIn Pin bits |
| bit 7-6   | Unimplemented: Read as '0'                                                         |
| bit 5-0   | SDI1R<5:0>: Assign SPI1 Data Input (SDI1) to Corresponding RPn or RPIn Pin bits    |

## REGISTER 11-26: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

| U-0    | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0   |
|--------|-----|-----|-----|-----|-----|-----|-------|
| —      | —   | —   | —   | —   | —   | —   | —     |
| bit 15 |     |     |     |     |     |     | bit 8 |

| U-0   | U-0 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 |
|-------|-----|-------|-------|-------|-------|-------|-------|
| —     | —   | SS1R5 | SS1R4 | SS1R3 | SS1R2 | SS1R1 | SS1R0 |
| bit 7 |     |       |       |       |       |       | bit 0 |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-6 Unimplemented: Read as '0'

bit 5-0 SS1R<5:0>: Assign SPI1 Slave Select Input (SS1IN) to Corresponding RPn or RPIn Pin bits

| U-0     | U-0 | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  |
|---------|-----|--------|--------|--------|--------|--------|--------|
| —       | _   | SCK2R5 | SCK2R4 | SCK2R3 | SCK2R2 | SCK2R1 | SCK2R0 |
| bit 15  |     |        |        |        |        |        | bit 8  |
|         |     |        |        |        |        |        |        |
| U-0     | U-0 | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  |
| —       | —   | SDI2R5 | SDI2R4 | SDI2R3 | SDI2R2 | SDI2R1 | SDI2R0 |
| bit 7   |     |        |        |        |        |        | bit 0  |
|         |     |        |        |        |        |        |        |
| Legend: |     |        |        |        |        |        |        |

# REGISTER 11-27: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

| Legend:           |                  |                        |                    |
|-------------------|------------------|------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, | read as '0'        |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared   | x = Bit is unknown |

| bit 15-14 | Unimplemented: Read as '0'                                                         |
|-----------|------------------------------------------------------------------------------------|
| bit 13-8  | SCK2R<5:0>: Assign SPI2 Clock Input (SCK2IN) to Corresponding RPn or RPIn Pin bits |
| bit 7-6   | Unimplemented: Read as '0'                                                         |
| bit 5-0   | SDI2R<5:0>: Assign SPI2 Data Input (SDI2) to Corresponding RPn or RPIn Pin bits    |

# REGISTER 11-28: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

| U-0    | U-0 | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  |
|--------|-----|--------|--------|--------|--------|--------|--------|
| —      | —   | TXCKR5 | TXCKR4 | TXCKR3 | TXCKR2 | TXCKR1 | TXCKR0 |
| bit 15 |     |        |        |        |        |        | bit 8  |

| U-0   | U-0 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 |
|-------|-----|-------|-------|-------|-------|-------|-------|
| —     | —   | SS2R5 | SS2R4 | SS2R3 | SS2R2 | SS2R1 | SS2R0 |
| bit 7 |     |       |       |       |       |       | bit 0 |

| Legend:           |                  |                                                 |                    |  |  |
|-------------------|------------------|-------------------------------------------------|--------------------|--|--|
| R = Readable bit  | W = Writable bit | Writable bit U = Unimplemented bit, read as '0' |                    |  |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared                            | x = Bit is unknown |  |  |

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **TXCKR<5:0>:** Assign General Timer External Input (TxCK) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 SS2R<5:0>: Assign SPI2 Slave Select Input (SS2IN) to Corresponding RPn or RPIn Pin bits

| U-0    | U-0 | R/W-1    | R/W-1    | R/W-1    | R/W-1    | R/W-1    | R/W-1    |
|--------|-----|----------|----------|----------|----------|----------|----------|
| —      | —   | CLCINBR5 | CLCINBR4 | CLCINBR3 | CLCINBR2 | CLCINBR1 | CLCINBR0 |
| bit 15 |     |          |          |          |          |          | bit 8    |

| U-0   | U-0 | R/W-1    | R/W-1    | R/W-1    | R/W-1    | R/W-1    | R/W-1    |
|-------|-----|----------|----------|----------|----------|----------|----------|
| —     | —   | CLCINAR5 | CLCINAR4 | CLCINAR3 | CLCINAR2 | CLCINAR1 | CLCINAR0 |
| bit 7 |     |          |          |          |          |          | bit 0    |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

| bit 15-14 | Unimplemented: Read as '0'                                             |
|-----------|------------------------------------------------------------------------|
| bit 13-8  | CLCINBR<5:0>: Assign CLC Input B to Corresponding RPn or RPIn Pin bits |
| bit 7-6   | Unimplemented: Read as '0'                                             |
| bit 5-0   | CLCINAR<5:0>: Assign CLC Input A to Corresponding RPn or RPIn Pin bits |

# REGISTER 11-30: RPINR28: PERIPHERAL PIN SELECT INPUT REGISTER 28

| U-0    | U-0 | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  |
|--------|-----|--------|--------|--------|--------|--------|--------|
| _      | —   | SCK3R5 | SCK3R4 | SCK3R3 | SCK3R2 | SCK3R1 | SCK3R0 |
| bit 15 |     |        |        |        |        |        | bit 8  |

| U-0   | U-0 | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  | R/W-1  |
|-------|-----|--------|--------|--------|--------|--------|--------|
| —     | —   | SDI3R5 | SDI3R4 | SDI3R3 | SDI3R2 | SDI3R1 | SDI3R0 |
| bit 7 |     |        |        |        |        |        | bit 0  |

| Legend:           |                  |                            |                    |
|-------------------|------------------|----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, rea | d as 'O'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared       | x = Bit is unknown |

bit 15-14 Unimplemented: Read as '0'

bit 13-8 SCK3R<5:0>: Assign SPI3 Clock Input (SCK3IN) to Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 SDI3R<5:0>: Assign SPI3 Data Input (SDI3) to Corresponding RPn or RPIn Pin bits

# REGISTER 11-31: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29

| U-0                                | U-0   | U-0            | U-0                                   | U-0                                | U-0   | U-0   | U-0   |
|------------------------------------|-------|----------------|---------------------------------------|------------------------------------|-------|-------|-------|
| —                                  | _     | —              | —                                     | _                                  | —     | _     |       |
| bit 15                             |       |                |                                       |                                    |       |       | bit 8 |
|                                    |       |                |                                       |                                    |       |       |       |
| U-0                                | U-0   | R/W-1          | R/W-1                                 | R/W-1                              | R/W-1 | R/W-1 | R/W-1 |
| _                                  | —     | SS3R5          | SS3R4                                 | SS3R3                              | SS3R2 | SS3R1 | SS3R0 |
| bit 7                              |       |                |                                       |                                    |       |       | bit 0 |
|                                    |       |                |                                       |                                    |       |       |       |
| Legend:                            |       |                |                                       |                                    |       |       |       |
| R = Readable                       | e bit | W = Writable I | bit                                   | U = Unimplemented bit, read as '0' |       |       |       |
| -n = Value at POR '1' = Bit is set |       |                | '0' = Bit is cleared x = Bit is unkno |                                    | nown  |       |       |

bit 15-6 Unimplemented: Read as '0'

bit 5-0 SS3R<5:0>: Assign SPI3 Slave Select Input (SS3IN) to Corresponding RPn or RPIn Pin bits

| U-0                           | U-0                        | R/W-0            | R/W-0          | R/W-0                              | R/W-0          | R/W-0              | R/W-0          |  |
|-------------------------------|----------------------------|------------------|----------------|------------------------------------|----------------|--------------------|----------------|--|
| _                             | —                          | RP1R5            | RP1R4          | RP1R3                              | RP1R2          | RP1R1              | RP1R0          |  |
| bit 15                        |                            |                  |                | -                                  |                |                    | bit 8          |  |
|                               |                            |                  |                |                                    |                |                    |                |  |
| U-0                           | U-0                        | R/W-0            | R/W-0          | R/W-0                              | R/W-0          | R/W-0              | R/W-0          |  |
| —                             | —                          | RP0R5            | RP0R4          | RP0R3                              | RP0R2          | RP0R1              | RP0R0          |  |
| bit 7                         |                            |                  |                |                                    |                |                    | bit 0          |  |
|                               |                            |                  |                |                                    |                |                    |                |  |
| Legend:                       |                            |                  |                |                                    |                |                    |                |  |
| R = Readable bit W = Writable |                            | W = Writable     | bit            | U = Unimplemented bit, read as '0' |                |                    |                |  |
| -n = Value at POR             |                            | '1' = Bit is set |                | '0' = Bit is cleared               |                | x = Bit is unknown |                |  |
|                               |                            |                  |                |                                    |                |                    |                |  |
| bit 15-14                     | Unimplemen                 | ted: Read as '   | כי             |                                    |                |                    |                |  |
| bit 13-8                      | RP1R<5:0>:                 | RP1 Output Pir   | n Mapping bits | ;                                  |                |                    |                |  |
|                               | Peripheral Ou              | utput Number n   | is assigned to | pin, RP1 (see                      | Table 11-7 for | peripheral func    | tion numbers). |  |
| bit 7-6                       | Unimplemented: Read as '0' |                  |                |                                    |                |                    |                |  |
|                               |                            |                  |                |                                    |                |                    |                |  |

bit 5-0 **RP0R<5:0>:** RP0 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP0 (see Table 11-7 for peripheral function numbers).

## REGISTER 11-33: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

| U-0                               | U-0 | R/W-0 | R/W-0 | R/W-0                              | R/W-0 | R/W-0 | R/W-0 |  |
|-----------------------------------|-----|-------|-------|------------------------------------|-------|-------|-------|--|
| —                                 | _   | RP3R5 | RP3R4 | RP3R3                              | RP3R2 | RP3R1 | RP3R0 |  |
| bit 15                            |     |       |       |                                    |       |       | bit 8 |  |
|                                   |     |       |       |                                    |       |       |       |  |
| U-0                               | U-0 | R/W-0 | R/W-0 | R/W-0                              | R/W-0 | R/W-0 | R/W-0 |  |
| _                                 | _   | RP2R5 | RP2R4 | RP2R3                              | RP2R2 | RP2R1 | RP2R0 |  |
| bit 7                             |     |       |       |                                    |       |       | bit 0 |  |
|                                   |     |       |       |                                    |       |       |       |  |
| Legend:                           |     |       |       |                                    |       |       |       |  |
| R = Readable bit W = Writable bit |     |       | bit   | U = Unimplemented bit, read as '0' |       |       |       |  |

| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |
|-------------------|------------------|----------------------|--------------------|
|                   |                  |                      |                    |

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP3R<5:0>:** RP3 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP3 (see Table 11-7 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP2R<5:0>:** RP2 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP2 (see Table 11-7 for peripheral function numbers).

| U-0                                | U-0 | R/W-0 | R/W-0                                   | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
|------------------------------------|-----|-------|-----------------------------------------|-------|-------|-------|-------|
| —                                  | —   | RP5R5 | RP5R4                                   | RP5R3 | RP5R2 | RP5R1 | RP5R0 |
| bit 15                             |     |       |                                         |       |       |       | bit 8 |
|                                    |     |       |                                         |       |       |       |       |
| U-0                                | U-0 | R/W-0 | R/W-0                                   | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| —                                  | —   | RP4R5 | RP4R4                                   | RP4R3 | RP4R2 | RP4R1 | RP4R0 |
| bit 7 bit                          |     |       |                                         |       |       |       | bit 0 |
|                                    |     |       |                                         |       |       |       |       |
| Legend:                            |     |       |                                         |       |       |       |       |
| R = Readable bit W = Writable bit  |     | oit   | U = Unimplemented bit, read as '0'      |       |       |       |       |
| -n = Value at POR (1' = Bit is set |     |       | '0' = Bit is cleared x = Bit is unknown |       |       |       |       |

# REGISTER 11-34: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

| bit 15-14 | Unimplemented: Read as '0' |
|-----------|----------------------------|
|-----------|----------------------------|

- bit 13-8**RP5R<5:0>:** RP5 Output Pin Mapping bits<br/>Peripheral Output Number n is assigned to pin, RP5 (see Table 11-7 for peripheral function numbers).bit 7-6**Unimplemented:** Read as '0'
- bit 5-0 **RP4R<5:0>:** RP4 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP4 (see Table 11-7 for peripheral function numbers).

| REGISTER 11-35: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTE | EGISTER 11-35: | RIPHERAL PIN SELECT OUTPUT REGISTER 3 |
|-------------------------------------------------------------|----------------|---------------------------------------|
|-------------------------------------------------------------|----------------|---------------------------------------|

| U-0                                | U-0 | R/W-0 | R/W-0                                   | R/W-0                              | R/W-0 | R/W-0 | R/W-0 |
|------------------------------------|-----|-------|-----------------------------------------|------------------------------------|-------|-------|-------|
| _                                  | _   | RP7R5 | RP7R4                                   | RP7R3                              | RP7R2 | RP7R1 | RP7R0 |
| bit 15                             |     | -     |                                         |                                    |       |       | bit 8 |
|                                    |     |       |                                         |                                    |       |       |       |
| U-0                                | U-0 | R/W-0 | R/W-0                                   | R/W-0                              | R/W-0 | R/W-0 | R/W-0 |
| —                                  | —   | RP6R5 | RP6R4                                   | RP6R3                              | RP6R2 | RP6R1 | RP6R0 |
| bit 7                              |     |       |                                         |                                    |       |       | bit 0 |
|                                    |     |       |                                         |                                    |       |       |       |
| Legend:                            |     |       |                                         |                                    |       |       |       |
| R = Readable bit W = Writable bit  |     |       | oit                                     | U = Unimplemented bit, read as '0' |       |       |       |
| -n = Value at POR '1' = Bit is set |     |       | '0' = Bit is cleared x = Bit is unknown |                                    |       | nown  |       |

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP7R<5:0>:** RP7 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP7 (see Table 11-7 for peripheral function numbers).

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP6R<5:0>:** RP6 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP6 (see Table 11-7 for peripheral function numbers).

| U-0    | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
|--------|-----|-------|-------|-------|-------|-------|-------|
| —      | —   | RP9R5 | RP9R4 | RP9R3 | RP9R2 | RP9R1 | RP9R0 |
| bit 15 |     |       |       |       |       |       | bit 8 |
|        |     |       |       |       |       |       |       |
| U-0    | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| —      | —   | RP8R5 | RP8R4 | RP8R3 | RP8R2 | RP8R1 | RP8R0 |
| bit 7  |     |       |       |       |       |       | bit 0 |
|        |     |       |       |       |       |       |       |
|        |     |       |       |       |       |       |       |

# REGISTER 11-36: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

| Legend:                           |                  |                                    |                    |  |
|-----------------------------------|------------------|------------------------------------|--------------------|--|
| R = Readable bit W = Writable bit |                  | U = Unimplemented bit, read as '0' |                    |  |
| -n = Value at POR                 | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |

| bit 15-14 | Unimplemented: Read as '0'                                                                           |
|-----------|------------------------------------------------------------------------------------------------------|
| bit 13-8  | RP9R<5:0>: RP9 Output Pin Mapping bits                                                               |
|           | Peripheral Output Number n is assigned to pin, RP9 (see Table 11-7 for peripheral function numbers). |
| bit 7-6   | Unimplemented: Read as '0'                                                                           |
| bit 5-0   | RP8R<5:0>: RP8 Output Pin Mapping bits                                                               |
|           | Peripheral Output Number n is assigned to pin, RP8 (see Table 11-7 for peripheral function numbers). |

# REGISTER 11-37: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

| U-0    | U-0 | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
|--------|-----|--------|--------|--------|--------|--------|--------|
| —      | —   | RP11R5 | RP11R4 | RP11R3 | RP11R2 | RP11R1 | RP11R0 |
| bit 15 |     |        |        |        |        |        | bit 8  |
|        |     |        |        |        |        |        |        |
| U-0    | U-0 | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
| —      | —   | RP10R5 | RP10R4 | RP10R3 | RP10R2 | RP10R1 | RP10R0 |
| bit 7  |     |        |        | •      |        |        | bit 0  |

| Legend:           |                  |                                                     |                    |  |  |
|-------------------|------------------|-----------------------------------------------------|--------------------|--|--|
| R = Readable bit  | W = Writable bit | W = Writable bit U = Unimplemented bit, read as '0' |                    |  |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared                                | x = Bit is unknown |  |  |

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP11R<5:0>:** RP11 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP11 (see Table 11-7 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP10R<5:0>:** RP10 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP10 (see Table 11-7 for peripheral function numbers).

| U-0               | U-0          | R/W-0            | R/W-0  | R/W-0                | R/W-0            | R/W-0              | R/W-0  |  |  |  |
|-------------------|--------------|------------------|--------|----------------------|------------------|--------------------|--------|--|--|--|
|                   | —            | RP13R5           | RP13R4 | RP13R3               | RP13R2           | RP13R1             | RP13R0 |  |  |  |
| bit 15            | bit 15 bit 8 |                  |        |                      |                  |                    |        |  |  |  |
|                   |              |                  |        |                      |                  |                    |        |  |  |  |
| U-0               | U-0          | R/W-0            | R/W-0  | R/W-0                | R/W-0            | R/W-0              | R/W-0  |  |  |  |
| —                 | —            | RP12R5           | RP12R4 | RP12R3               | RP12R2           | RP12R1             | RP12R0 |  |  |  |
| bit 7             |              |                  |        |                      |                  |                    | bit 0  |  |  |  |
|                   |              |                  |        |                      |                  |                    |        |  |  |  |
| Legend:           |              |                  |        |                      |                  |                    |        |  |  |  |
| R = Readable bit  |              | W = Writable     | bit    | U = Unimplem         | nented bit, read | l as '0'           |        |  |  |  |
| -n = Value at POR |              | '1' = Bit is set |        | '0' = Bit is cleared |                  | x = Bit is unknown |        |  |  |  |

# REGISTER 11-38: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

| bit 15-14 | Unimplemented: Read as '0' |
|-----------|----------------------------|
|-----------|----------------------------|

- bit 13-8**RP13R<5:0>:** RP13 Output Pin Mapping bits<br/>Peripheral Output Number n is assigned to pin, RP13 (see Table 11-7 for peripheral function numbers).bit 7-6**Unimplemented:** Read as '0'
- bit 5-0 **RP12R<5:0>:** RP12 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP12 (see Table 11-7 for peripheral function numbers).

| U-0     | U-0 | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
|---------|-----|--------|--------|--------|--------|--------|--------|
| _       | —   | RP15R5 | RP15R4 | RP15R3 | RP15R2 | RP15R1 | RP15R0 |
| bit 15  |     |        |        |        |        |        | bit 8  |
|         |     |        |        |        |        |        |        |
| U-0     | U-0 | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
| —       | —   | RP14R5 | RP14R4 | RP14R3 | RP14R2 | RP14R1 | RP14R0 |
| bit 7   |     |        | •      | •      |        |        | bit 0  |
|         |     |        |        |        |        |        |        |
| Legend: |     |        |        |        |        |        |        |
|         |     |        |        |        |        |        |        |

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |
|-------------------|------------------|------------------------------------|--------------------|--|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP15R<5:0>:** RP15 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP15 (see Table 11-7 for peripheral function numbers).

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP14R<5:0>:** RP14 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP14 (see Table 11-7 for peripheral function numbers).

| U-0     | U-0 | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
|---------|-----|--------|--------|--------|--------|--------|--------|
| —       | —   | RP17R5 | RP17R4 | RP17R3 | RP17R2 | RP17R1 | RP17R0 |
| bit 15  |     |        |        |        |        |        | bit 8  |
|         |     |        |        |        |        |        |        |
| U-0     | U-0 | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
| —       | —   | RP16R5 | RP16R4 | RP16R3 | RP16R2 | RP16R1 | RP16R0 |
| bit 7   |     |        |        |        |        |        | bit 0  |
|         |     |        |        |        |        |        |        |
| Legend: |     |        |        |        |        |        |        |

# REGISTER 11-40: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

| - <b>J</b>        |                  |                       |                    |
|-------------------|------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | , read as '0'      |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |
|                   |                  |                       |                    |

| bit 15-14 | Unimplemented: Read as '0'                                                                            |
|-----------|-------------------------------------------------------------------------------------------------------|
| bit 13-8  | RP17R<5:0>: RP17 Output Pin Mapping bits                                                              |
|           | Peripheral Output Number n is assigned to pin, RP17 (see Table 11-7 for peripheral function numbers). |
| bit 7-6   | Unimplemented: Read as '0'                                                                            |
| bit 5-0   | RP16R<5:0>: RP16 Output Pin Mapping bits                                                              |
|           | Peripheral Output Number n is assigned to pin, RP16 (see Table 11-7 for peripheral function numbers). |

# REGISTER 11-41: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

| U-0       | U-0 | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
|-----------|-----|--------|--------|--------|--------|--------|--------|
| —         | —   | RP19R5 | RP19R4 | RP19R3 | RP19R2 | RP19R1 | RP19R0 |
| bit 15 bi |     |        |        |        |        |        | bit 8  |
| <b>F</b>  |     |        |        |        |        |        |        |
| U-0       | U-0 | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
| _         | _   | RP18R5 | RP18R4 | RP18R3 | RP18R2 | RP18R1 | RP18R0 |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | l as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

bit 15-14 Unimplemented: Read as '0'

bit 7

bit 13-8 **RP19R<5:0>:** RP19 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP19 (see Table 11-7 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP18R<5:0>:** RP18 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP18 (see Table 11-7 for peripheral function numbers).

bit 0

| U-0                               | U-0 | R/W-0  | R/W-0  | R/W-0        | R/W-0            | R/W-0  | R/W-0  |
|-----------------------------------|-----|--------|--------|--------------|------------------|--------|--------|
| —                                 | —   | RP21R5 | RP21R4 | RP21R3       | RP21R2           | RP21R1 | RP21R0 |
| bit 15                            |     |        |        |              |                  |        | bit 8  |
|                                   |     |        |        |              |                  |        |        |
| U-0                               | U-0 | R/W-0  | R/W-0  | R/W-0        | R/W-0            | R/W-0  | R/W-0  |
| —                                 | —   | RP20R5 | RP20R4 | RP20R3       | RP20R2           | RP20R1 | RP20R0 |
| bit 7                             |     |        |        |              |                  |        | bit 0  |
|                                   |     |        |        |              |                  |        |        |
| Legend:                           |     |        |        |              |                  |        |        |
| R = Readable bit W = Writable bit |     |        | bit    | U = Unimplem | nented bit, read | as '0' |        |

# REGISTER 11-42: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10

| bit 15-14 | Unimplemented: Read as '0' |
|-----------|----------------------------|
|           |                            |

'1' = Bit is set

-n = Value at POR

bit 13-8**RP21R<5:0>:** RP21 Output Pin Mapping bits<br/>Peripheral Output Number n is assigned to pin, RP21 (see Table 11-7 for peripheral function numbers).bit 7-6**Unimplemented:** Read as '0'

'0' = Bit is cleared

bit 5-0 **RP20R<5:0>:** RP20 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP20 (see Table 11-7 for peripheral function numbers).

| U-0                               | U-0 | R/W-0  | R/W-0                              | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
|-----------------------------------|-----|--------|------------------------------------|--------|--------|--------|--------|
| _                                 | _   | RP23R5 | RP23R4                             | RP23R3 | RP23R2 | RP23R1 | RP23R0 |
| bit 15                            |     |        |                                    |        |        |        | bit 8  |
|                                   |     |        |                                    |        |        |        |        |
| U-0                               | U-0 | R/W-0  | R/W-0                              | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
| —                                 | -   | RP22R5 | RP22R4                             | RP22R3 | RP22R2 | RP22R1 | RP22R0 |
| bit 7                             |     |        |                                    |        |        |        | bit 0  |
|                                   |     |        |                                    |        |        |        |        |
| Legend:                           |     |        |                                    |        |        |        |        |
| R = Readable bit W = Writable bit |     |        | U = Unimplemented bit, read as '0' |        |        |        |        |

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP23R<5:0>:** RP23 Output Pin Mapping bits

'1' = Bit is set

Peripheral Output Number n is assigned to pin, RP23 (see Table 11-7 for peripheral function numbers).

'0' = Bit is cleared

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP22R<5:0>:** RP22 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP22 (see Table 11-7 for peripheral function numbers).

-n = Value at POR

x = Bit is unknown

x = Bit is unknown

| U-0     | U-0 | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
|---------|-----|--------|--------|--------|--------|--------|--------|
|         | —   | RP25R5 | RP25R4 | RP25R3 | RP25R2 | RP25R1 | RP25R0 |
| bit 15  |     |        |        |        |        |        | bit 8  |
|         |     |        |        |        |        |        |        |
| U-0     | U-0 | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
| —       | —   | RP24R5 | RP24R4 | RP24R3 | RP24R2 | RP24R1 | RP24R0 |
| bit 7   |     |        |        |        |        |        | bit 0  |
|         |     |        |        |        |        |        |        |
| Legend: |     |        |        |        |        |        |        |

# REGISTER 11-44: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

| Logonal           |                  |                       |                    |
|-------------------|------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | , read as '0'      |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |
|                   |                  |                       |                    |

| bit 15-14 | Unimplemented: Read as '0'                                                                            |
|-----------|-------------------------------------------------------------------------------------------------------|
| bit 13-8  | RP25R<5:0>: RP25 Output Pin Mapping bits                                                              |
|           | Peripheral Output Number n is assigned to pin, RP25 (see Table 11-7 for peripheral function numbers). |
| bit 7-6   | Unimplemented: Read as '0'                                                                            |
| bit 5-0   | RP24R<5:0>: RP24 Output Pin Mapping bits                                                              |
|           | Peripheral Output Number n is assigned to pin, RP24 (see Table 11-7 for peripheral function numbers). |

# REGISTER 11-45: RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13

| U-0    | U-0 | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
|--------|-----|--------|--------|--------|--------|--------|--------|
| —      | —   | RP27R5 | RP27R4 | RP27R3 | RP27R2 | RP27R1 | RP27R0 |
| bit 15 |     | •      |        |        |        |        | bit 8  |
|        |     |        |        |        |        |        |        |
| U-0    | U-0 | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
|        | —   | RP26R5 | RP26R4 | RP26R3 | RP26R2 | RP26R1 | RP26R0 |

| Legend:           |                  |                       |                    |
|-------------------|------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | t, read as '0'     |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |

bit 15-14 Unimplemented: Read as '0'

bit 7

bit 13-8 **RP27R<5:0>:** RP27 Output Pin Mapping bits

Peripheral Output Number n is assigned to pin, RP27 (see Table 11-7 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP26R<5:0>:** RP26 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP26 (see Table 11-7 for peripheral function numbers).

bit 0

| U-0     | U-0 | U-0    | U-0    | U-0    | U-0    | U-0    | U-0    |
|---------|-----|--------|--------|--------|--------|--------|--------|
| —       | —   | —      | —      | —      |        |        | —      |
| bit 15  |     |        |        |        |        |        | bit 8  |
|         |     |        |        |        |        |        |        |
| U-0     | U-0 | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-0  |
| —       | —   | RP28R5 | RP28R4 | RP28R3 | RP28R2 | RP28R1 | RP28R0 |
| bit 7   |     |        |        |        |        |        | bit 0  |
|         |     |        |        |        |        |        |        |
| Legend: |     |        |        |        |        |        |        |

# REGISTER 11-46: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14

| Legend:           |                  |                       |                    |
|-------------------|------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | , read as '0'      |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |

bit 15-6 Unimplemented: Read as '0'

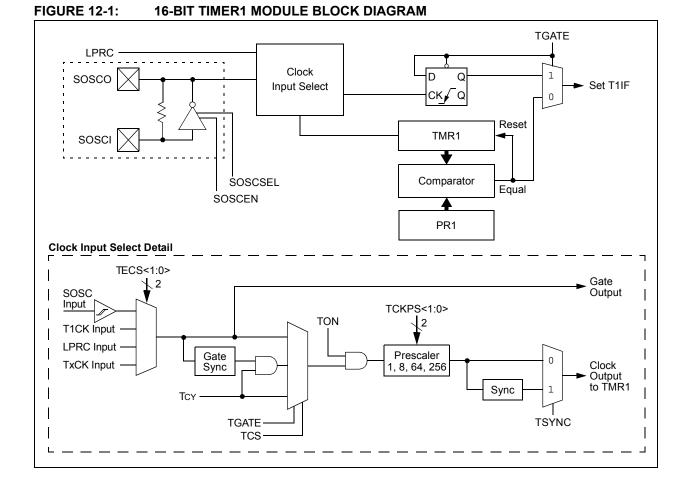
bit 5-0 **RP28R<5:0>:** RP28 Output Pin Mapping bits Peripheral Output Number n is assigned to pin, RP28 (see Table 11-7 for peripheral function numbers).

# 12.0 TIMER1

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Timers" (DS39704), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Timer1 module is a 16-bit timer, which can serve as the time counter for the Real-Time Clock (RTC) or operate as a free-running, interval timer/counter. Timer1 can operate in three modes:

- 16-Bit Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter


Timer1 also supports these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during CPU Idle and Sleep modes
- Interrupt on 16-Bit Period Register Match or Falling Edge of External Gate Signal

Figure 12-1 presents a block diagram of the 16-bit timer module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS, TECS<1:0> and TGATE bits.
- 4. Set or clear the TSYNC bit to configure synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the interrupt enable bit, T1IE. Use the priority bits, T1IP<2:0>, to set the interrupt priority.



© 2016-2018 Microchip Technology Inc.

| U-0       R/W-0       R/W-0       R/W-0       U-0       R/W-0       R/W-0       U-0         —       TGATE       TCKPS1       TCKPS0       —       TSYNC       TCS       —         bit       7       TCKPS1       TCKPS0       —       TSYNC       TCS       —         egend:       R       Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'       n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15       TON: Timer1 On bit       1       = Starts 16-bit Timer1       0 = Stops 16-bit Timer1 (TxCK) external input 10 = LPRC Oscillator       0 = TICK external clock input 00 = Stops 10 = Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R/W-0        | U-0                                      | R/W-0            | U-0               | U-0              | U-0              | R/W-0           | R/W-0         |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------|------------------|-------------------|------------------|------------------|-----------------|---------------|--|--|--|
| U-0       R/W-0       R/W-0       R/W-0       U-0       R/W-0       R/W-0       U-0         =       TGATE       TCKPS1       TCKPS0       —       TSYNC       TCS       —         egend:       R       Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'       n         n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15       TON: Timer1 On bit       1       Starts 16-bit Timer1         0 = Stops 16-bit Timer1       0 = Stops 16-bit Timer1       0 = Stops 16-bit Timer1         0 = Stops 16-bit Timer1       0 = Stops 16-bit Timer1       0 = Stops 16-bit Timer1         0 = Stops 16-bit Timer1       0 = Stops 16-bit Timer1       0 = Stops 16-bit Timer1         1 = Discontinues module operation in ldle mode       0 = Continues module operation in ldle mode       0 = Continues module operation in ldle mode         0 = Continues module operation in ldle mode       0 = Continues module operation in ldle mode       0 = Continues module operation is lable to         1 = Discontinues module operation in ldle mode       0 = Continues module operation in ldle mode       0 = Continues module operation is disable         0 = IPRC OScillator       0 = ITimer1 Extended Clock Source Select bits (selected when TCS = 1)       1 = Gated Time accumulation is disable         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TON          | _                                        | TSIDL            | _                 |                  | _                | TECS1           | TECS0         |  |  |  |
| -         TGATE         TCKPS1         TCKPS0         -         TSYNC         TCS         -           egend:         R         R         Readable bit         W = Writable bit         U = Unimplemented bit, read as '0'         bit           n = Value at POR         '1' = Bit is set         '0' = Bit is cleared         x = Bit is unknown           sit 15         TON: Timer1 On bit         1         = Stops 16-bit Timer1           0 = Stops 16-bit Timer1         0         Stops 16-bit Timer1           0 = Stops 16-bit Timer1         Unimplemented: Read as '0'           sit 13         TSIDL: Timer1 Stop in Idle Mode bit           1 = Discontinues module operation when device enters Idle mode         0           0 = Continues module operation when device enters Idle mode         0           0 = Continues module operation in Idle mode         0           0 = DRC Oscillator         0           0 = DRC Oscillator         0           0 = TCK external took input         00           0 = Stops Timer1 Input Clock Prescale Select bits           1 = Gated time accumulation is enabled           0 = Gated time accumulation is disabled           0 = Gated time accumulation is disabled           0 = CKPS           0 = 1:4           0 = 1:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bit 15       |                                          |                  |                   |                  |                  | I               | bit 8         |  |  |  |
| -         TGATE         TCKPS1         TCKPS0         -         TSYNC         TCS         -           egend:         R         R         Readable bit         W = Writable bit         U = Unimplemented bit, read as '0'         bit           n = Value at POR         '1' = Bit is set         '0' = Bit is cleared         x = Bit is unknown           sit 15         TON: Timer1 On bit         1         = Stops 16-bit Timer1           0 = Stops 16-bit Timer1         0         Stops 16-bit Timer1           0 = Stops 16-bit Timer1         Unimplemented: Read as '0'           sit 13         TSIDL: Timer1 Stop in Idle Mode bit           1 = Discontinues module operation when device enters Idle mode         0           0 = Continues module operation when device enters Idle mode         0           0 = Continues module operation in Idle mode         0           0 = DRC Oscillator         0           0 = DRC Oscillator         0           0 = TCK external took input         00           0 = Stops Timer1 Input Clock Prescale Select bits           1 = Gated time accumulation is enabled           0 = Gated time accumulation is disabled           0 = Gated time accumulation is disabled           0 = CKPS           0 = 1:4           0 = 1:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U-0          | R/W-0                                    | R/W-0            | R/W-0             | U-0              | R/W-0            | R/W-0           | LI-0          |  |  |  |
| append:       Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'         n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15       TON: Timer1 On bit       1       Starts 16-bit Timer1         0 = Stops 16-bit Timer1       0 = Stops 16-bit Timer1       0 = Stops 16-bit Timer1         0 = Stops 16-bit Timer1       0 = Discontinues module operation in Idle mode       0 = Continues module operation in Idle mode         0 = Continues module operation in Idle mode       0 = Continues module operation in Idle mode       0 = Continues module operation in Idle mode         0 = Continues module operation in Idle mode       0 = Continues module operation in Idle mode       0 = Continues module operation in Idle mode         0 = Continues module operation in Idle mode       0 = Continues module operation in Idle mode       0 = Continues module operation in Idle mode         0 = Continues module operation in Idle mode       0 = Continues module operation in Idle mode       0 = Continues module operation in Idle mode         0 = LPRC Oscillator       0 = IFCS-1:D: Timer1 Extended Clock Source Select bits (selected when TCS = 1)       11 = Gostillator         0 = SOSC       TGATE: Timer1 Gated Time Accumulation Enabled       0 = Gated time accumulation is disabled         0 = 1:1       This bit is ignored.       TGATE: Timer1 Extendel Clock Input Synchronization Select bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | -                                        | -                | -                 |                  |                  | _               |               |  |  |  |
| R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'         n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15       TON: Timer1 On bit       1       = Starts 16-bit Timer1         0 = Stops 16-bit Timer1       0 = Stops 16-bit Timer1       0         0 = Stops 16-bit Timer1       0 = Stops 16-bit Timer1       0         0 = Continues module operation when device enters Idle mode       0 = Continues module operation in Idle mode         0 = Continues module operation in Idle mode       0 = Continues module operation in Idle mode         0 = Continues module operation when device enters Idle mode       0 = Continues module operation in Idle mode         0 = Continues module operation in Idle mode       0 = Continues module operation in Idle mode         0 = Continues module operation in Idle mode       0 = Continues module operation in Idle mode         0 = UPRC Oscillator       11 = Generic timer (TxCK) external input         10 = LPRC Oscillator       0 = TICK external clock input         0 = SOSC       0 = TICK external clock input         0 = SOSC       0 = TiCK         bit 1       = Gated time accumulation is disabled         0 = Gated time accumulation is disabled       0 = Gated time accumulation is disabled         0 = 1:1       1 = 1:256       1 = 1:3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | bit 7        | TOALE                                    |                  |                   |                  | Torrito          | 100             | bit           |  |  |  |
| R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'         n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15       TON: Timer1 On bit       1       = Starts 16-bit Timer1         0 = Stops 16-bit Timer1       0 = Stops 16-bit Timer1       0         0 = Stops 16-bit Timer1       0 = Stops 16-bit Timer1       0         0 = Continues module operation when device enters Idle mode       0 = Continues module operation in Idle mode         0 = Continues module operation in Idle mode       0 = Continues module operation in Idle mode         0 = Continues module operation when device enters Idle mode       0 = Continues module operation in Idle mode         0 = Continues module operation in Idle mode       0 = Continues module operation in Idle mode         0 = Continues module operation in Idle mode       0 = Continues module operation in Idle mode         0 = UPRC Oscillator       11 = Generic timer (TxCK) external input         10 = LPRC Oscillator       0 = TICK external clock input         0 = SOSC       0 = TICK external clock input         0 = SOSC       0 = TiCK         bit 1       = Gated time accumulation is disabled         0 = Gated time accumulation is disabled       0 = Gated time accumulation is disabled         0 = 1:1       1 = 1:256       1 = 1:3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Levendu      |                                          |                  |                   |                  |                  |                 |               |  |  |  |
| n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown<br>bit 15 TON: Timer1 On bit<br>1 = Starts 16-bit Timer1<br>0 = Stops 16-bit Timer1<br>1 = Discontinues module operation when device enters Idle mode<br>0 = Continues module operation when device enters Idle mode<br>0 = Continues module operation when device enters Idle mode<br>0 = Continues module operation when device enters Idle mode<br>0 = Continues module operation when device enters Idle mode<br>0 = Continues module operation under mode<br>0 = Stope C<br>0 = TICK external clock input<br>0 = SOSC<br>0 = TOK external clock input<br>0 = Gated time accumulation is enabled<br>0 = Gated time accumulation is disabled<br>0 = Gated time accumulation is disabled<br>0 = Gated time accumulation is disabled<br>0 = 1:1<br>1 = 1:256<br>1 0 = 1:64<br>0 = 1:1<br>1 = Sinchronizes the external clock input<br>When TCS = 0:<br>This bit is ignored.<br>0 = Does not synchronize the external clock input<br>When TCS = 0:<br>This bit is ignored.<br>0 = Internal clock (Fosc/2)<br>bit 0 Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -            | la hit                                   |                  | L:4               |                  | nented bit were  |                 |               |  |  |  |
| bit 15 TON: Timer1 On bit<br>1 = Starts 16-bit Timer1<br>0 = Stops 16-bit Timer1<br>0 = Stops 16-bit Timer1<br>1 = Discontinues module operation when device enters Idle mode<br>0 = Continues module operation in Idle mode<br>1 = Discontinues module operation in Idle mode<br>0 = Continues module operation in Idle mode<br>1 = Continues module operation in Idle mode<br>1 = Continues module operation in Idle mode<br>1 = Continues module operation in Idle mode<br>0 = Continues module operation in Idle mode<br>1 = Continues module operation in Idle mode<br>1 = Continues module operation in Idle mode<br>0 = Continues module operation in Idle mode<br>1 = UPRC Oscillator<br>1 = UPRC Oscillator<br>1 = ICK external clock input<br>0 = SOSC<br>1 = TICK external clock input<br>0 = SOSC<br>1 = Gated time accumulation Enable bit<br>When TCS = 1:<br>This bit is ignored.<br>When TCS = 0:<br>1 = Gated time accumulation is enabled<br>0 = Gated time accumulation is disabled<br>5 = Gated time accumulation is disabled<br>1 = 1:256<br>1 = 1:26<br>1 = 1:26<br>1 = 1:3<br>0 = 1:1<br>1 = Synchronizes the external clock Input<br>0 = Does not synchronize the external clock input<br>1 = Extended clock is selected by the timer<br>0 = Internal clock (Fosc/2)<br>bit 0 Unimplemented: Read as '0'<br>Dift 0 Unimp |              |                                          |                  |                   | •                |                  |                 |               |  |  |  |
| 1 = Stars 16-bit Timer1         0 = Stops 16-bit Timer1         0 = Discontinues module operation when device enters Idle mode         0 = Continues module operation in Idle mode         0 = Contentime (TacK) external input         10 = LFRC Oscillator         0 = TICK external clock input         0 = SOSC         bit 7         Unimplemented: Read as '0'         vhen TCS = 0:         1 = Gated time accumulation is enabled         0 = Gated time accumulation is disabled         0 = Gated time accumulation is disabled         0 = 1:1         0 = 1:2         0 = 1:1         0 = 1:1         0 = 1:1         0 = Tick         1 = Synchronizes the external clock input         0 = Does not s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -n = Value a | t POR                                    | 1' = Bit is set  |                   | 0' = Bit is cle  | ared             | x = Bit is unkr | IOWN          |  |  |  |
| 0 = Stops 16-bit Timer1         0it 13       TSIDL: Timer1 Stop in Idle Mode bit         1 = Discontinues module operation in Idle mode       0         0 = Continues module operation in Idle mode       0         0 = Continues module operation in Idle mode       0         0 = Continues module operation in Idle mode       0         0 = Continues module operation in Idle mode       0         0 = Continues module operation in Idle mode       0         0 = Continues module operation in Idle mode       0         0 = Continues module operation in Idle mode       0         0 = Continues module operation in Idle mode       0         0 = Continues module operation in Idle mode       0         0 = Continues module operation in Idle mode       0         0 = LCRC Oscillator       0         0 = LPRC Oscillator       0         0 = TICK external clock input       0         0 = SOSC       0         vit 7       Unimplemented: Read as '0'         This bit is ignored.       When TCS = 0:         1 = Gated time accumulation is enabled       0         0 = Gated time accumulation is disabled       1 = 1:266         10 = 1:64       0 = 1:1         0 = 1:1       1 = Synchronize the external clock Input Synchronization Select bit <t< td=""><td>bit 15</td><td>TON: Timer1</td><td>On bit</td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | bit 15       | TON: Timer1                              | On bit           |                   |                  |                  |                 |               |  |  |  |
| bit 14       Unimplemented: Read as '0'         bit 13       TSIDL: Timer1 Stop in Idle Mode bit         1 = Discontinues module operation when device enters Idle mode         0 = Continues module operation in Idle mode         0 = TiCK external clock input         0 = SOSC         0 = TICK external clock input         0 = SOSC         0 = TICK external clock input         0 = SOSC         1 = Gated time accumulation is enabled         0 = Gated time accumulation is disabled         0 = Gated time accumulation is disabled         0 = Gated time accumulation is disabled         1 = 1:266         0 = 1:1         0 = 1:1         0 = 1:1         0 = 1:1         0 = 1:1         1 = Synchroniz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                          |                  |                   |                  |                  |                 |               |  |  |  |
| iii 13       TSIDL: Timer1 Stop in Idle Mode bit         1 = Discontinues module operation when device enters Idle mode         0 = Continues module operation in Idle mode         0 = totinues timer1 Extended Clock Source Select bits (selected when TCS = 1)         11 = Generic timer (TxCK) external input         0 = totinues timer1 Extended Clock Source Select bits (selected when TCS = 1)         0 = totinues timer1 External clock input         0 = totinues timer1 External clock input         0 = totinues accumulation is enabled         0 = totinue accumulation is enabled         0 = totinue accumulation is disabled         0 = totinues timer1 Input Clock Prescale Select bits         11 = 1:256         10 = 1:64         0 = 1:1         11 = Synchronizes the external clock input         0 = totin         11 = Synchronizes the external clock input         0 = totin         11 = Synchronizes the external clock input         0 = totin         1 = Synchronizes the external clock input </td <td></td> <td></td> <td></td> <td>o.'</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                                          |                  | o.'               |                  |                  |                 |               |  |  |  |
| 1 = Discontinues module operation when device enters Idle mode<br>0 = Continues module operation in Idle mode0 = Continues module operation when device enters Idle mode<br>0 = Continues module operation in Idle mode0 = Continues module operation when device enters Idle mode<br>0 = Continues module operation in Idle mode0 = Continues module operation when device enters Idle mode<br>0 = Continues module operation when device enters Idle mode0 = Continues module operation when device enters Idle mode<br>0 = Continues module operation when device enters Idle mode0 = Continues module operation when device enters Idle mode0 = Content time (TxCK) external input<br>1 = Calcel time (TxCK) external input<br>0 = SOSC0 = TICK external clock input<br>0 = SOSC0 = SOSC0 = TICK external clock input<br>0 = SOSC0 = SOSC0 = TICK external clock input<br>0 = Gated time accumulation is enabled<br>0 = Gated time accumulation is disabled0 = Gated time accumulation is disabled0 = CKPS<1:0>: Timer1 Input Clock Prescale Select bits11 = 1:256<br>10 = 1:111 = Signohronizes the external clock input Synchronization Select bitWhen TCS = 1:<br>1 = Synchronizes the external clock input<br>0 = Does not synchronize the external clock input<br>When TCS = 0:<br>This bit is ignored.0 = Internal clock (Fosc/2)0 = Internal clock (Fosc/2)0 = Internal clock (Fosc/2)0 = Internal clock (Fosc/2)0 = Internal clock (Fosc/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | -                                        |                  |                   |                  |                  |                 |               |  |  |  |
| $0 = Continues module operation in Idle mode$ $0 = Continues module operation in Idle mode$ Unimplemented: Read as '0' if 9-8 $TECS<1:0: Timer1 Extended Clock Source Select bits (selected when TCS = 1) 11 = Generic timer (TxCK) external input 10 = LPRC Oscillator 01 = T1CK external clock input 00 = SOSC of T Unimplemented: Read as '0' of TGATE: Timer1 Gated Time Accumulation Enable bit \frac{When TCS = 1:}{This bit is ignored.} \frac{When TCS = 0:}{1 = Gated time accumulation is disabled} of t 1 1 = 1:256 10 = 1:64 10 = 1:64 10 = 1:64 10 = 1:64 10 = 1:64 10 = 1:18 10 = 1:18 10 = 1:11 11 11 12 13 14 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | bit 13       |                                          | •                |                   |                  |                  |                 |               |  |  |  |
| bit 9-8       TECS-(1:0): Timer1 Extended Clock Source Select bits (selected when TCS = 1)         11 = Generic timer (TxCK) external input       10 = LPRC Oscillator         01 = T1CK external clock input       00 = SOSC         bit 7       Unimplemented: Read as '0'         bit 6       TGATE: Timer1 Gated Time Accumulation Enable bit         When TCS = 1:       This bit is ignored.         When TCS = 0:       1 = Gated time accumulation is enabled         0 = Gated time accumulation is disabled       0 = Gated time accumulation is disabled         bit 5-4       TCKPS         11 = 1:256       1 = 1:256         10 = 1:64       1 = 1:26         11 = 1:256       0 = 1:1         12 if X = XPNC: Timer1 External Clock Input Synchronization Select bits         13 Unimplemented: Read as '0'       Xhen TCS = 1:         1 = Synchronizes the external clock input       0 = Does not synchronize the external clock input         0 = Does not synchronize the external clock input       When TCS = 0:         This bit is ignored.       This bit is ignored.         bit 1       TCS: Timer1 Clock Source Select bit         1 = Extended clock is selected by the timer       0 = Internal clock (Fosc/2)         bit 0       Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                                          |                  |                   |                  | ale mode         |                 |               |  |  |  |
| 11 = Generic timer (TxCK) external input         10 = LPRC Oscillator         01 = T1CK external clock input         00 = SOSC         bit 7         Unimplemented: Read as '0'         bit 6         TGATE: Timer1 Gated Time Accumulation Enable bit         When TCS = 1:         This bit is ignored.         When TCS = 0:         1 = Gated time accumulation is enabled         0 = Gated time accumulation is disabled         bit 5-4         TCKPS         11 = 1:256         10 = 1:8         00 = 1:1         bit 3         Unimplemented: Read as '0'         bit 4         TSYNC: Timer1 External Clock Input Synchronization Select bit         When TCS = 1:         1 = Synchronizes the external clock input         0 = Does not synchronize the external clock input         0 = Does not synchronize the external clock input         0 = Does not synchronize the external clock input         0 = Does not synchronize the external clock input         0 = Does not synchronize the external clock input         0 = Does not synchronize the external clock input         0 = Does not synchronize the external clock input         0 = Internal clock (Fosc/2)         Dit 1       TCS: Tim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | bit 12-10    | Unimplemen                               | ted: Read as '   | 0'                |                  |                  |                 |               |  |  |  |
| 10 = LPRC Oscillator 01 = T1CK external clock input 00 = SOSC Dif 7 Unimplemented: Read as '0' TGATE: Timer1 Gated Time Accumulation Enable bit When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled Dif 5-4 TCKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1 Dif 3 Unimplemented: Read as '0' Dif 2 TSYNC: Timer1 External Clock Input Synchronization Select bit When TCS = 1: 1 = Synchronizes the external clock input 0 = Does not synchronize the external clock input When TCS = 0: This bit is ignored. Dif 1 TCS: Timer1 Clock Source Select bit 1 = Extended clock is selected by the timer 0 = Internal clock (FOSC/2) Dif 0 Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bit 9-8      | TECS<1:0>:                               | Timer1 Extend    | ed Clock Sourc    | e Select bits (s | selected when    | TCS = 1)        |               |  |  |  |
| $01 = T1CK$ external clock input<br>$00 = SOSC$ oit 7Unimplemented: Read as '0'oit 6TGATE: Timer1 Gated Time Accumulation Enable bit<br>$\frac{When TCS = 1:}{This bit is ignored.}$ $\frac{When TCS = 0:}{1 = Gated time accumulation is enabled0 = Gated time accumulation is disabledoit 5-4TCKPS<1:0>: Timer1 Input Clock Prescale Select bits11 = 1:25610 = 1:6401 = 1:800 = 1:1oit 3Unimplemented: Read as '0'oit 4TSYNC: Timer1 External Clock Input Synchronization Select bit\frac{When TCS = 0:}{This bit is ignored.}oit 1TCS: Timer1 Clock Source Select bit1 = Extended clock is selected by the timer0 = Internal clock (FOSC/2)oit 0Unimplemented: Read as '0'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 11 = Generic timer (TxCK) external input |                  |                   |                  |                  |                 |               |  |  |  |
| 00 = SOSCbit 7Unimplemented: Read as '0'bit 6TGATE: Timer1 Gated Time Accumulation Enable bit<br>When TCS = 1:<br>This bit is ignored.<br>When TCS = 0:<br>1 = Gated time accumulation is enabled<br>0 = Gated time accumulation is disabledbit 5-4TCKPS<1:0>: Timer1 Input Clock Prescale Select bits<br>11 = 1:256<br>10 = 1:64<br>01 = 1:8<br>00 = 1:11bit 3Unimplemented: Read as '0'<br>0 = 1:11bit 3Unimplemented: Read as '0'<br>TSYNC: Timer1 External Clock Input Synchronization Select bit<br>When TCS = 1:<br>1 = Synchronizes the external clock input<br>0 = Does not synchronize the external clock input<br>When TCS = 0:<br>This bit is ignored.bit 1TCS: Timer1 Clock Source Select bit<br>1 = Extended clock is selected by the timer<br>0 = Internal clock (Fosc/2)<br>bit 0bit 0Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | 10 = LPRC Oscillator                     |                  |                   |                  |                  |                 |               |  |  |  |
| bit 7Unimplemented: Read as '0'bit 6TGATE: Timer1 Gated Time Accumulation Enable bit $\frac{When TCS = 1:}{This bit is ignored.}$ $\frac{When TCS = 0:}{1 = Gated time accumulation is enabled}$ 0 = Gated time accumulation is enabled0 = Gated time accumulation is disabledbit 5-4TCKPS<1:0>: Timer1 Input Clock Prescale Select bits11 = 1:25610 = 1:6401 = 1:800 = 1:1bit 3Unimplemented: Read as '0'TSYNC: Timer1 External Clock Input Synchronization Select bit $\frac{When TCS = 1:}{1 = Synchronizes the external clock input0 = Does not synchronize the external clock input0 = Internal clock is selected by the timer0 = Internal clock (Fosc/2)bit 0Unimplemented: Read as '0'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                                          | xternal clock in | put               |                  |                  |                 |               |  |  |  |
| bit 6TGATE: Timer1 Gated Time Accumulation Enable bitWhen TCS = 1:<br>This bit is ignored.<br>When TCS = 0:<br>1 = Gated time accumulation is enabled<br>0 = Gated time accumulation is disabledbit 5-4TCKPS<1:0>: Timer1 Input Clock Prescale Select bits<br>10 = 1:256<br>10 = 1:64<br>01 = 1:3<br>00 = 1:1bit 3Unimplemented: Read as '0'<br>Dit 2bit 4TSYNC: Timer1 External Clock Input Synchronization Select bit<br>$\frac{When TCS = 1:}{1 = Synchronizes the external clock input0 = Does not synchronize the external clock input\frac{When TCS = 0:}{This bit is ignored.}bit 1TCS: Timer1 Clock Source Select bit1 = Extended clock is selected by the timer0 = Internal clock (FOSC/2)bit 0Unimplemented: Read as '0'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | bit 7        |                                          | ted: Read as '   | 0'                |                  |                  |                 |               |  |  |  |
| When TCS = 1:<br>This bit is ignored.When TCS = 0:<br>1 = Gated time accumulation is enabled<br>0 = Gated time accumulation is disabledbit 5-4TCKPS<1:0>: Timer1 Input Clock Prescale Select bits11 = 1:256<br>10 = 1:64<br>01 = 1:8<br>00 = 1:1bit 3Unimplemented: Read as '0'bit 4When TCS = 1:<br>1 = Synchronizes the external clock input<br>0 = Does not synchronize the external clock input<br>When TCS = 0:<br>This bit is ignored.bit 1TCS: Timer1 Clock Source Select bit<br>1 = Extended clock is selected by the timer<br>0 = Internal clock (FOSC/2)bit 0Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | bit 6        | -                                        |                  |                   | Enable bit       |                  |                 |               |  |  |  |
| When $TCS = 0$ :<br>$1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabledDit 5-4TCKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1Dit 3Unimplemented: Read as '0'Dit 3Unimplemented: Read as '0'Sit 3Unimplemented: Read as '0'Dit 4TCS = 1:1 = Synchronizes the external Clock Input Synchronization Select bit\frac{When TCS = 1:}{1 = Synchronizes the external clock input} 0 = Does not synchronize the external clock input\frac{When TCS = 0:}{This bit is ignored.}Dit 1TCS: Timer1 Clock Source Select bit1 = Extended clock is selected by the timer0 = Internal clock (Fosc/2)Dit 0Unimplemented: Read as '0'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | -                                        |                  |                   |                  |                  |                 |               |  |  |  |
| $1 = Gated time accumulation is enabled0 = Gated time accumulation is disabledbit 5-4TCKPS<1:0>: Timer1 Input Clock Prescale Select bits11 = 1:25610 = 1:6401 = 1:800 = 1:1bit 3Unimplemented: Read as '0'bit 3Unimplemented: Read as '0'bit 4\frac{When TCS = 1:}{1 = Synchronizes the external clock input}0 = Does not synchronize the external clock input0 = Does not synchronize the external clock input\frac{When TCS = 0:}{This bit is ignored.}bit 1TCS: Timer1 Clock Source Select bit1 = Extended clock is selected by the timer0 = Internal clock (Fosc/2)bit 0Unimplemented: Read as '0'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | This bit is ign                          | ored.            |                   |                  |                  |                 |               |  |  |  |
| 0 = Gated time accumulation is disabled $0it 5-4$ <b>TCKPS&lt;1:0&gt;:</b> Timer1 Input Clock Prescale Select bits $11 = 1:256$ $10 = 1:64$ $01 = 1:8$ $00 = 1:1$ $0it 3$ Unimplemented: Read as '0'TSYNC: Timer1 External Clock Input Synchronization Select bitWhen TCS = 1: $1 =$ Synchronizes the external clock input $0 =$ Does not synchronize the external clock input $0 =$ Does not synchronize the external clock input $0 =$ Does not synchronize the external clock input $0 =$ Does not synchronize the external clock input $0 =$ Does not synchronize the external clock input $0 =$ Does not synchronize the external clock input $0 =$ Does not synchronize the external clock input $0 =$ Does not synchronize the external clock input $0 =$ Does not synchronize the external clock input $0 =$ Does not synchronize the external clock input $0 =$ Internal clock (Source Select bit $1 =$ Extended clock is selected by the timer $0 =$ Internal clock (Fosc/2) $0 =$ Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                          |                  |                   |                  |                  |                 |               |  |  |  |
| bit 5-4TCKPS<1:0>: Timer1 Input Clock Prescale Select bits $11 = 1:256$ $10 = 1:64$ $01 = 1:8$ $00 = 1:1$ bit 3Unimplemented: Read as '0'TSYNC: Timer1 External Clock Input Synchronization Select bitWhen TCS = 1: $1 =$ Synchronizes the external clock input $0 =$ Does not synchronize the external clock input $0 =$ Does not synchronize the external clock input $When TCS = 0:$ This bit is ignored.Dit 1TCS: Timer1 Clock Source Select bit $1 =$ Extended clock is selected by the timer $0 =$ Internal clock (Fosc/2)bit 0Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                          |                  |                   |                  |                  |                 |               |  |  |  |
| $11 = 1:256$ $10 = 1:64$ $01 = 1:8$ $00 = 1:1$ bit 3Unimplemented: Read as '0'TSYNC: Timer1 External Clock Input Synchronization Select bit $\frac{When TCS = 1:}{1 = Synchronizes the external clock input0 = Does not synchronize the external clock input\frac{When TCS = 0:}{This bit is ignored.}bit 1Dit 1TCS: Timer1 Clock Source Select bit1 = Extended clock is selected by the timer0 = Internal clock (Fosc/2)bit 0Unimplemented: Read as '0'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L:1 C 4      |                                          |                  |                   | Calaat hita      |                  |                 |               |  |  |  |
| $10 = 1:64$ $01 = 1:8$ $00 = 1:1$ Dif 3 Unimplemented: Read as '0' TSYNC: Timer1 External Clock Input Synchronization Select bit $\frac{When TCS = 1:}{1 = \text{ Synchronizes the external clock input}}$ $0 = \text{ Does not synchronize the external clock input}$ $\frac{When TCS = 0:}{\text{This bit is ignored.}}$ Dif 1 TCS: Timer1 Clock Source Select bit $1 = \text{Extended clock is selected by the timer}$ $0 = \text{ Internal clock (FOSC/2)}$ Dif 0 Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DIL 5-4      |                                          | : Imeri input    | CIOCK Prescale    | Select bits      |                  |                 |               |  |  |  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                                          |                  |                   |                  |                  |                 |               |  |  |  |
| bit 3       Unimplemented: Read as '0'         bit 2       TSYNC: Timer1 External Clock Input Synchronization Select bit         When TCS = 1:       1 = Synchronizes the external clock input         0 = Does not synchronize the external clock input       0 = Does not synchronize the external clock input         When TCS = 0:       This bit is ignored.         This bit is ignored.       TCS: Timer1 Clock Source Select bit         1 = Extended clock is selected by the timer       0 = Internal clock (Fosc/2)         bit 0       Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                                          |                  |                   |                  |                  |                 |               |  |  |  |
| bit 2 <b>TSYNC:</b> Timer1 External Clock Input Synchronization Select bit         When TCS = 1:       1 = Synchronizes the external clock input         0 = Does not synchronize the external clock input       0 = Does not synchronize the external clock input         When TCS = 0:       This bit is ignored.         Dit 1 <b>TCS:</b> Timer1 Clock Source Select bit         1 = Extended clock is selected by the timer       0 = Internal clock (Fosc/2)         Dit 0 <b>Unimplemented:</b> Read as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 00 = 1:1                                 |                  |                   |                  |                  |                 |               |  |  |  |
| When $TCS = 1$ :1 = Synchronizes the external clock input0 = Does not synchronize the external clock inputWhen $TCS = 0$ :This bit is ignored.Dit 1TCS: Timer1 Clock Source Select bit1 = Extended clock is selected by the timer0 = Internal clock (Fosc/2)Dit 0Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | bit 3        | •                                        |                  |                   |                  |                  |                 |               |  |  |  |
| 1 = Synchronizes the external clock input         0 = Does not synchronize the external clock input         When TCS = 0:         This bit is ignored.         bit 1         TCS: Timer1 Clock Source Select bit         1 = Extended clock is selected by the timer         0 = Internal clock (Fosc/2)         Dit 0         Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bit 2        |                                          |                  | ock Input Synch   | ronization Sel   | ect bit          |                 |               |  |  |  |
| <ul> <li>0 = Does not synchronize the external clock input<br/>When TCS = 0:<br/>This bit is ignored.     </li> <li>Dit 1 TCS: Timer1 Clock Source Select bit<br/>1 = Extended clock is selected by the timer<br/>0 = Internal clock (Fosc/2)     </li> <li>Dit 0 Unimplemented: Read as '0'</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                          |                  |                   |                  |                  |                 |               |  |  |  |
| When TCS = 0:         This bit is ignored.         Dit 1         TCS: Timer1 Clock Source Select bit         1 = Extended clock is selected by the timer         0 = Internal clock (Fosc/2)         Dit 0         Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                                          |                  |                   | k input          |                  |                 |               |  |  |  |
| This bit is ignored.         bit 1         TCS: Timer1 Clock Source Select bit         1 = Extended clock is selected by the timer         0 = Internal clock (Fosc/2)         bit 0         Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                                          | -                |                   | k input          |                  |                 |               |  |  |  |
| 1 = Extended clock is selected by the timer<br>0 = Internal clock (Fosc/2)Dit 0Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                                          |                  |                   |                  |                  |                 |               |  |  |  |
| 0 = Internal clock (Fosc/2)bit 0Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bit 1        | TCS: Timer1                              | Clock Source     | Select bit        |                  |                  |                 |               |  |  |  |
| Dit 0 Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                          |                  | ed by the timer   |                  |                  |                 |               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                          | · /              |                   |                  |                  |                 |               |  |  |  |
| <b>Note 1:</b> Changing the value of T1CON while the timer is running (TON = 1) causes the timer prescale counter to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | bit 0        | Unimplemen                               | ted: Read as '   | 0'                |                  |                  |                 |               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Note 1: C    | hanging the val                          | ue of T1CON v    | hile the timer is | s running (TON   | √ = 1) causes th | ne timer presca | le counter to |  |  |  |

# REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER<sup>(1)</sup>

# 13.0 TIMER2/3

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Timers"** (DS39704), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Timer2/3 module is a 32-bit timer, which can also be configured as independent, 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3 can operate in three modes:

- Two Independent 16-Bit Timers with All 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

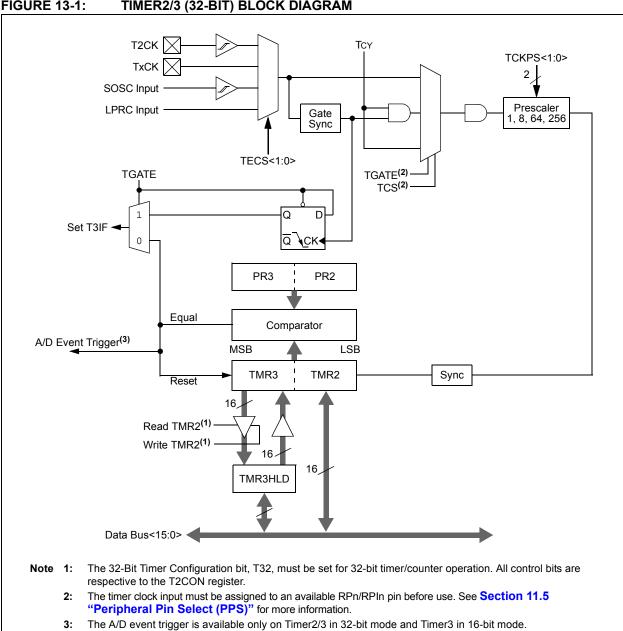
They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-Bit Period Register Match
- A/D Event Trigger (on Timer2/3 in 32-bit mode and Timer3 in 16-bit mode)

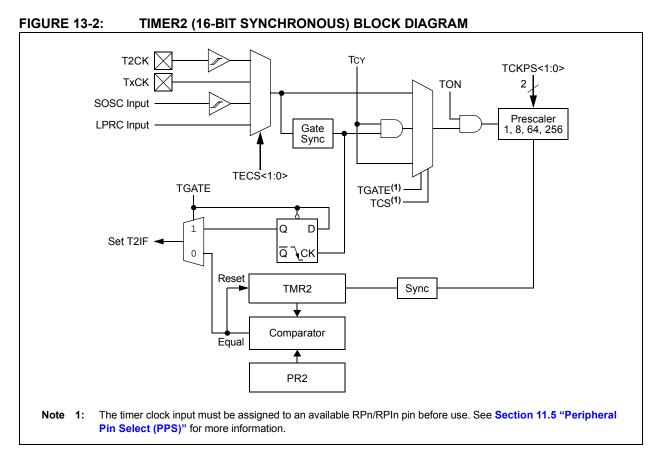
Individually, all of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the A/D event trigger. This trigger is implemented only on Timer2/3 in 32-bit mode and Timer3 in 16-bit mode. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON and T3CON registers. T2CON is shown in generic form in Register 13-1; T3CON is shown in Register 13-2.

For 32-bit timer/counter operation, Timer2 is the least significant word; Timer3 is the most significant word of the 32-bit timer.

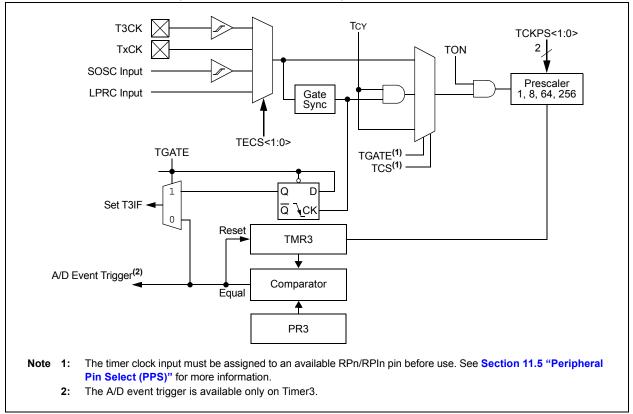
Note: For 32-bit operation, T3CON control bits are ignored. Only T2CON control bits are used for setup and control. Timer2 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 interrupt flags. To configure Timer2/3 for 32-bit operation:


- 1. Set the T32 bit (T2CON<3> = 1).
- 2. Select the prescaler ratio for Timer2 using the TCKPS<1:0> bits.
- Set the Clock and Gating modes using the TCS and TGATE bits. If TCS is set to an external clock, RPINRx (TyCK) must be configured to an available RPn/RPIn pin. For more information, see Section 11.5 "Peripheral Pin Select (PPS)".
- Load the timer period value. PR3 will contain the most significant word (msw) of the value, while PR2 contains the least significant word (lsw).
- 5. If interrupts are required, set the interrupt enable bit, T3IE. Use the priority bits, T3IP<2:0>, to set the interrupt priority. Note that while Timer2 controls the timer, the interrupt appears as a Timer3 interrupt.
- 6. Set the TON bit (= 1).

The timer value, at any point, is stored in the register pair, TMR<3:2>. TMR3 always contains the most significant word of the count, while TMR2 contains the least significant word.


To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit (T2CON<3>).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits. See **Section 11.5 "Peripheral Pin Select (PPS)"** for more information.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON (TxCON<15> = 1) bit.


# PIC24FJ256GA705 FAMILY



#### FIGURE 13-1: TIMER2/3 (32-BIT) BLOCK DIAGRAM







| R/W-0        | U-0                                                                                                     | R/W-0                              | U-0               | U-0                | U-0            | R/W-0                | R/W-0                |  |  |  |  |
|--------------|---------------------------------------------------------------------------------------------------------|------------------------------------|-------------------|--------------------|----------------|----------------------|----------------------|--|--|--|--|
| TON          |                                                                                                         | TSIDL                              |                   |                    | —              | TECS1 <sup>(2)</sup> | TECS0 <sup>(2)</sup> |  |  |  |  |
| bit 15       |                                                                                                         |                                    |                   |                    |                |                      | bit                  |  |  |  |  |
| U-0          | R/W-0                                                                                                   | R/W-0                              | R/W-0             | R/W-0              | U-0            | R/W-0                | U-0                  |  |  |  |  |
|              | TGATE                                                                                                   | TCKPS1                             | TCKPS0            | T32 <sup>(3)</sup> | _              | TCS <sup>(2)</sup>   | _                    |  |  |  |  |
| bit 7        | TOALE                                                                                                   |                                    |                   | 102                |                | 100                  | bit                  |  |  |  |  |
| Legend:      |                                                                                                         |                                    |                   |                    |                |                      |                      |  |  |  |  |
| R = Readal   | ole bit                                                                                                 | W = Writable                       | bit               | U = Unimplem       | nented bit rea | ad as '0'            |                      |  |  |  |  |
| -n = Value a |                                                                                                         | '1' = Bit is set                   |                   | '0' = Bit is clea  | •              | x = Bit is unkn      | own                  |  |  |  |  |
|              |                                                                                                         |                                    |                   |                    | areu           |                      | IOWIT                |  |  |  |  |
| bit 15       | TON: Timerx                                                                                             | On bit                             |                   |                    |                |                      |                      |  |  |  |  |
|              | When TxCO                                                                                               |                                    |                   |                    |                |                      |                      |  |  |  |  |
|              | 1 = Starts 32                                                                                           | •                                  |                   |                    |                |                      |                      |  |  |  |  |
|              | 0 = Stops 32                                                                                            | -                                  |                   |                    |                |                      |                      |  |  |  |  |
|              | When TxCO                                                                                               |                                    |                   |                    |                |                      |                      |  |  |  |  |
|              | 1 = Starts 16<br>0 = Stops 16                                                                           |                                    |                   |                    |                |                      |                      |  |  |  |  |
| bit 14       | -                                                                                                       | nted: Read as '                    | 0'                |                    |                |                      |                      |  |  |  |  |
| bit 13       | -                                                                                                       | rx Stop in Idle N                  |                   |                    |                |                      |                      |  |  |  |  |
|              |                                                                                                         | ues module op                      |                   | evice enters Idl   | e mode         |                      |                      |  |  |  |  |
|              |                                                                                                         | s module opera                     |                   |                    |                |                      |                      |  |  |  |  |
| bit 12-10    | Unimplemer                                                                                              | nted: Read as '                    | 0'                |                    |                |                      |                      |  |  |  |  |
| bit 9-8      | <b>TECS&lt;1:0&gt;:</b> Timerx Extended Clock Source Select bits (selected when TCS = 1) <sup>(2)</sup> |                                    |                   |                    |                |                      |                      |  |  |  |  |
|              | When TCS =                                                                                              |                                    |                   |                    |                |                      |                      |  |  |  |  |
|              |                                                                                                         | timer (TxCK) e                     | external input    |                    |                |                      |                      |  |  |  |  |
|              | 10 = LPRCC                                                                                              |                                    | Suit              |                    |                |                      |                      |  |  |  |  |
|              | 01 = TyCK external clock input<br>00 = SOSC                                                             |                                    |                   |                    |                |                      |                      |  |  |  |  |
|              | When TCS = 0:                                                                                           |                                    |                   |                    |                |                      |                      |  |  |  |  |
|              |                                                                                                         | e ignored; the t                   | imer is clocked   | from the intern    | al system clo  | ck (Fosc/2).         |                      |  |  |  |  |
| bit 7        | Unimplemer                                                                                              | nted: Read as '                    | 0'                |                    |                |                      |                      |  |  |  |  |
| bit 6        | TGATE: Time                                                                                             | erx Gated Time                     | Accumulation      | Enable bit         |                |                      |                      |  |  |  |  |
|              |                                                                                                         | When TCS = 1:                      |                   |                    |                |                      |                      |  |  |  |  |
|              | This bit is ign                                                                                         | ored.                              |                   |                    |                |                      |                      |  |  |  |  |
|              | When TCS =                                                                                              |                                    |                   |                    |                |                      |                      |  |  |  |  |
|              |                                                                                                         | ne accumulation<br>ne accumulation |                   |                    |                |                      |                      |  |  |  |  |
| L:+ C 4      |                                                                                                         |                                    |                   | Colocthite         |                |                      |                      |  |  |  |  |
| bit 5-4      |                                                                                                         | : Timerx Input                     | CIOCK Prescale    | Select bits        |                |                      |                      |  |  |  |  |
|              | 11 = 1:256<br>10 = 1:64                                                                                 |                                    |                   |                    |                |                      |                      |  |  |  |  |
|              | 01 = 1:8                                                                                                |                                    |                   |                    |                |                      |                      |  |  |  |  |
|              | 00 = 1:1                                                                                                |                                    |                   |                    |                |                      |                      |  |  |  |  |
|              | Changing the val                                                                                        |                                    | hile the timer is | s running (TON     | = 1) causes    | the timer presca     | le counter to        |  |  |  |  |
|              | reset and is not r                                                                                      |                                    |                   |                    | , . <u> </u>   |                      | -                    |  |  |  |  |
|              | If TCS = 1 and T<br>an available RPn                                                                    |                                    |                   |                    |                |                      |                      |  |  |  |  |
|              | n 22 hit mada ti                                                                                        |                                    |                   |                    | -              |                      | 1 ( A )              |  |  |  |  |

# REGISTER 13-1: TxCON: TIMER2 CONTROL REGISTER<sup>(1)</sup>

**3:** In 32-bit mode, the T3CON control bits do not affect 32-bit timer operation.

# **REGISTER 13-1:** TxCON: TIMER2 CONTROL REGISTER<sup>(1)</sup> (CONTINUED)

- bit 3 **T32:** 32-Bit Timer Mode Select bit<sup>(3)</sup>
  - 1 = Timerx and Timery form a single 32-bit timer
     0 = Timerx and Timery act as two 16-bit timers
    - In 32-bit mode, T3CON control bits do not affect 32-bit timer operation.
- bit 2 Unimplemented: Read as '0'
- bit 1 **TCS:** Timerx Clock Source Select bit<sup>(2)</sup>
  - 1 = Timer source is selected by TECS<1:0>0 = Internal clock (Fosc/2)
- bit 0 Unimplemented: Read as '0'
- **Note 1:** Changing the value of TxCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.
  - 2: If TCS = 1 and TECS<1:0> = x1, the selected external timer input (TxCK or TyCK) must be configured to an available RPn/RPIn pin. For more information, see Section 11.5 "Peripheral Pin Select (PPS)".
  - 3: In 32-bit mode, the T3CON control bits do not affect 32-bit timer operation.

| R/W-0                | U-0                                   | R/W-0                                         | U-0                   | U-0                        | U-0            | R/W-0                     | R/W-0                  |
|----------------------|---------------------------------------|-----------------------------------------------|-----------------------|----------------------------|----------------|---------------------------|------------------------|
| TON <sup>(2)</sup>   |                                       | TSIDL <sup>(2)</sup>                          | —                     | _                          |                | TECS1 <sup>(2,3)</sup>    | TECS0 <sup>(2,3)</sup> |
| oit 15               | ·                                     |                                               |                       |                            |                |                           | bit 8                  |
| U-0                  | R/W-0                                 | R/W-0                                         | R/W-0                 | U-0                        | U-0            | R/W-0                     | U-0                    |
|                      | TGATE <sup>(2)</sup>                  | TCKPS1 <sup>(2)</sup>                         | TCKPS0 <sup>(2)</sup> |                            |                | TCS <sup>(2,3)</sup>      |                        |
| bit 7                | TOME                                  |                                               | 1010 00               |                            |                | 100                       | bit (                  |
|                      |                                       |                                               |                       |                            |                |                           |                        |
| Legend:<br>R = Reada | able bit                              | W = Writable                                  | hit                   | U = Unimplen               | nented hit rea | ad as '0'                 |                        |
| -n = Value           |                                       | '1' = Bit is set                              | JIL                   | '0' = Bit is clea          |                | x = Bit is unkn           | own                    |
|                      |                                       | 1 - Dit 13 36t                                |                       |                            | areu           |                           |                        |
| bit 15               | TON: Timery                           | On bit <sup>(2)</sup>                         |                       |                            |                |                           |                        |
|                      | 1 = Starts 16-                        |                                               |                       |                            |                |                           |                        |
|                      | 0 = Stops 16-                         | -                                             |                       |                            |                |                           |                        |
| bit 14               | -                                     | ted: Read as '                                |                       |                            |                |                           |                        |
| bit 13               |                                       | y Stop in Idle M<br>ues module ope            |                       | ovice entern Id            | lo modo        |                           |                        |
|                      |                                       | s module opera                                |                       |                            |                |                           |                        |
| bit 12-10            | Unimplemen                            | ted: Read as 'd                               | )'                    |                            |                |                           |                        |
| bit 9-8              | TECS<1:0>:                            | Timery Extende                                | ed Clock Sourc        | e Select bits (s           | elected when   | TCS = 1) <sup>(2,3)</sup> |                        |
|                      |                                       | timer (TxCK) e                                | xternal input         |                            |                |                           |                        |
|                      | 10 = LPRC O<br>01 = TvCK ex           | scillator                                     | out                   |                            |                |                           |                        |
|                      | 00 = SOSC                             |                                               |                       |                            |                |                           |                        |
| bit 7                | Unimplemen                            | ted: Read as 'o                               | )'                    |                            |                |                           |                        |
| bit 6                | TGATE: Time                           | ery Gated Time                                | Accumulation          | Enable bit <sup>(2)</sup>  |                |                           |                        |
|                      | When TCS =<br>This bit is igno        |                                               |                       |                            |                |                           |                        |
|                      | When TCS =                            |                                               |                       |                            |                |                           |                        |
|                      |                                       | ne accumulatio                                | n is enabled          |                            |                |                           |                        |
|                      |                                       | ne accumulatio                                |                       |                            |                |                           |                        |
| bit 5-4              |                                       | : Timery Input                                | Clock Prescale        | Select bits <sup>(2)</sup> |                |                           |                        |
|                      | 11 = 1:256<br>10 = 1:64               |                                               |                       |                            |                |                           |                        |
|                      | 01 = 1:8                              |                                               |                       |                            |                |                           |                        |
|                      | 00 = 1:1                              |                                               |                       |                            |                |                           |                        |
| bit 3-2              | -                                     | ted: Read as 'o                               |                       |                            |                |                           |                        |
| bit 1                |                                       | Clock Source S                                |                       |                            |                |                           |                        |
|                      | 1 = External c<br>0 = Internal cl     | clock from pin, <sup>-</sup><br>lock (Fosc/2) | IYCK (on the r        | ising edge)                |                |                           |                        |
| bit 0                |                                       | ted: Read as '                                | )'                    |                            |                |                           |                        |
| Note 1:              | Changing the valu                     |                                               | ile the timer is      | running (TON =             | = 1) causes th | e timer prescale          | counter to             |
| 2:                   | When 32-bit oper<br>functions are set | through T2CON                                 | ۱.                    |                            |                |                           |                        |
| 3:                   | If TCS = 1 and TE available RPn/RP    |                                               |                       |                            |                |                           |                        |

# REGISTER 13-2: TyCON: TIMER3 CONTROL REGISTER<sup>(1)</sup>

# 14.0 INPUT CAPTURE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Input Capture with Dedicated Timer" (DS70000352), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

Devices in the PIC24FJ256GA705 family contain three independent input capture modules. Each of the modules offers a wide range of configuration and operating options for capturing external pulse events and generating interrupts.

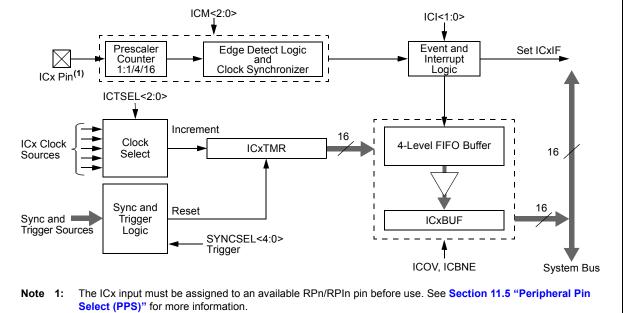
Key features of the input capture module include:

- Hardware-Configurable for 32-Bit Operation in All modes by Cascading Two Adjacent modules
- Synchronous and Trigger modes of Output Compare Operation with up to 31 User-Selectable Sync/Trigger Sources Available
- A 4-Level FIFO Buffer for Capturing and Holding Timer Values for Several Events
- Configurable Interrupt Generation
- Up to 6 Clock Sources Available for Each module, Driving a Separate Internal 16-Bit Counter

The module is controlled through two registers: ICxCON1 (Register 14-1) and ICxCON2 (Register 14-2). A general block diagram of the module is shown in Figure 14-1.

# 14.1 General Operating Modes

#### 14.1.1 SYNCHRONOUS AND TRIGGER MODES


When the input capture module operates in a Free-Running mode, the internal 16-bit counter, ICxTMR, counts up continuously, wrapping around from FFFFh to 0000h on each overflow. Its period is synchronized to the selected external clock source. When a capture event occurs, the current 16-bit value of the internal counter is written to the FIFO buffer.

In Synchronous mode, the module begins capturing events on the ICx pin as soon as its selected clock source is enabled. Whenever an event occurs on the selected Sync source, the internal counter is reset. In Trigger mode, the module waits for a Sync event from another internal module to occur before allowing the internal counter to run.

Standard, free-running operation is selected by setting the SYNCSEL<4:0> bits (ICxCON2<4:0>) to '00000' and clearing the ICTRIG bit (ICxCON2<7>). Synchronous and Trigger modes are selected any time the SYNCSELx bits are set to any value except '00000'. The ICTRIG bit selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSELx bits determine the Sync/ Trigger source.

When the SYNCSELx bits are set to '00000' and ICTRIG is set, the module operates in Software Trigger mode. In this case, capture operations are started by manually setting the TRIGSTAT bit (ICxCON2<6>).





# 14.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own 16-bit timer. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module (ICx) provides the Least Significant 16 bits of the 32-bit register pairs and the even numbered module (ICy) provides the Most Significant 16 bits. Wrap-arounds of the ICx registers cause an increment of their corresponding ICy registers.

Cascaded operation is configured in hardware by setting the IC32 bits (ICxCON2<8>) for both modules.

# 14.2 Capture Operations

The input capture module can be configured to capture timer values and generate interrupts on rising edges on ICx or all transitions on ICx. Captures can be configured to occur on all rising edges or just some (every 4<sup>th</sup> or 16<sup>th</sup>). Interrupts can be independently configured to generate on each event or a subset of events.

To set up the module for capture operations:

- 1. Configure the ICx input for one of the available Peripheral Pin Select pins.
- 2. If Synchronous mode is to be used, disable the Sync source before proceeding.
- 3. Make sure that any previous data has been removed from the FIFO by reading ICxBUF until the ICBNE bit (ICxCON1<3>) is cleared.
- 4. Set the SYNCSELx bits (ICxCON2<4:0>) to the desired Sync/Trigger source.
- 5. Set the ICTSELx bits (ICxCON1<12:10>) for the desired clock source.
- 6. Set the ICIx bits (ICxCON1<6:5>) to the desired interrupt frequency.
- 7. Select Synchronous or Trigger mode operation:
  - a) Check that the SYNCSELx bits are not set to '00000'.
  - b) For Synchronous mode, clear the ICTRIG bit (ICxCON2<7>).
  - c) For Trigger mode, set ICTRIG and clear the TRIGSTAT bit (ICxCON2<6>).
- 8. Set the ICMx bits (ICxCON1<2:0>) to the desired operational mode.
- 9. Enable the selected Sync/Trigger source.

For 32-bit cascaded operations, the setup procedure is slightly different:

- 1. Set the IC32 bits for both modules (ICyCON2<8> and ICxCON2<8>), enabling the even numbered module first. This ensures the modules will start functioning in unison.
- 2. Set the ICTSELx and SYNCSELx bits for both modules to select the same Sync/Trigger and time base source. Set the even module first, then the odd module. Both modules must use the same ICTSELx and SYNCSELx bits settings.
- Clear the ICTRIG bit of the even module (ICyCON2<7>). This forces the module to run in Synchronous mode with the odd module, regardless of its Trigger mode setting.
- 4. Use the odd module's ICIx bits (ICxCON1<6:5>) to set the desired interrupt frequency.
- Use the ICTRIG bit of the odd module (ICxCON2<7>) to configure Trigger or Synchronous mode operation.
- Note: For Synchronous mode operation, enable the Sync source as the last step. Both input capture modules are held in Reset until the Sync source is enabled.
- Use the ICMx bits of the odd module (ICxCON1<2:0>) to set the desired Capture mode.

The module is ready to capture events when the time base and the Sync/Trigger source are enabled. When the ICBNE bit (ICxCON1<3>) becomes set, at least one capture value is available in the FIFO. Read input capture values from the FIFO until the ICBNE clears to '0'.

For 32-bit operation, read both the ICxBUF and ICyBUF for the full 32-bit timer value (ICxBUF for the Isw, ICyBUF for the msw). At least one capture value is available in the FIFO buffer when the odd module's ICBNE bit (ICxCON1<3>) becomes set. Continue to read the buffer registers until ICBNE is cleared (performed automatically by hardware).

| REGISTER 14-1: ICXCON1: INPUT CAPTURE X CONTROL REGISTER 1 | REGISTER 14-1: | ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1 |
|------------------------------------------------------------|----------------|---------------------------------------------|
|------------------------------------------------------------|----------------|---------------------------------------------|

| U-0          | U-0                         | R/W-0             | R/W-0                             | R/W-0            | R/W-0                                  | U-0                 | U-0                 |
|--------------|-----------------------------|-------------------|-----------------------------------|------------------|----------------------------------------|---------------------|---------------------|
| _            |                             | ICSIDL            | ICTSEL2                           | ICTSEL1          | ICTSEL0                                |                     |                     |
| oit 15       |                             |                   |                                   |                  |                                        |                     | bit 8               |
| U-0          | R/W-0                       | R/W-0             | R-0, HSC                          | R-0, HSC         | R/W-0                                  | R/W-0               | R/W-0               |
| _            | ICI1                        | ICIO              | ICOV                              | ICBNE            | ICM2 <sup>(1)</sup>                    | ICM1 <sup>(1)</sup> | ICM0 <sup>(1)</sup> |
| oit 7        |                             | 1010              | 1001                              | IODITE           | 101112                                 | 101111              | bit (               |
| Legend:      |                             | HSC = Hardy       | vare Settable/C                   | learable hit     |                                        |                     |                     |
| R = Readat   | alo hit                     | W = Writable      |                                   |                  | montod bit road                        |                     |                     |
|              |                             |                   |                                   | -                | mented bit, read                       |                     |                     |
| -n = Value a | at POR                      | '1' = Bit is set  | [                                 | '0' = Bit is cle | ared                                   | x = Bit is unkr     | nown                |
| bit 15-14    | Unimplemer                  | nted: Read as '   | 0'                                |                  |                                        |                     |                     |
| bit 13       | ICSIDL: Inpu                | it Capture x Sto  | p in Idle Contro                  | ol bit           |                                        |                     |                     |
|              |                             |                   | CPU Idle mode<br>es to operate in |                  | le                                     |                     |                     |
| bit 12-10    |                             |                   | e x Timer Selec                   |                  | -                                      |                     |                     |
| 511 12 10    |                             | m clock (Fosc/2   |                                   |                  |                                        |                     |                     |
|              | 110 <b>= Reser</b>          |                   | -)                                |                  |                                        |                     |                     |
|              | 101 <b>= Rese</b> r         | ved               |                                   |                  |                                        |                     |                     |
|              | 100 <b>= Timer</b>          | -                 |                                   |                  |                                        |                     |                     |
|              | 011 = Reser                 |                   |                                   |                  |                                        |                     |                     |
|              | 010 = Reser<br>001 = Timer2 |                   |                                   |                  |                                        |                     |                     |
|              | 001 - Timer                 |                   |                                   |                  |                                        |                     |                     |
| bit 9-7      | Unimplemer                  | nted: Read as '   | 0'                                |                  |                                        |                     |                     |
| bit 6-5      | ICI<1:0>: Inp               | out Capture x S   | elect Number o                    | f Captures per   | Interrupt bits                         |                     |                     |
|              | 11 = Interrup               | t on every four   | th capture even                   | t                |                                        |                     |                     |
|              |                             | t on every third  |                                   |                  |                                        |                     |                     |
|              |                             |                   | ond capture eve                   | ent              |                                        |                     |                     |
|              | •                           | ot on every capt  |                                   |                  |                                        |                     |                     |
| bit 4        | -                           | -                 | flow Status Flag                  | g bit (read-only | ')                                     |                     |                     |
|              |                             |                   | w has occurred<br>rflow has occur | red              |                                        |                     |                     |
| bit 3        | ICBNE: Inpu                 | t Capture x Buf   | fer Not Empty S                   | Status bit (read | -only)                                 |                     |                     |
|              |                             |                   |                                   | least one more   | e capture value                        | can be read         |                     |
|              | -                           | pture x buffer is |                                   |                  |                                        |                     |                     |
| bit 2-0      | ICM<2:0>: Ir                | nput Capture x    | Mode Select bit                   | s <sup>(1)</sup> |                                        |                     |                     |
|              |                             |                   |                                   |                  | errupt pin only v<br>I bits are not ap |                     | e is in Sleep o     |
|              |                             | ed (module is d   |                                   | 41-              |                                        |                     |                     |
|              |                             |                   | ode: Capture o                    |                  |                                        |                     |                     |
|              |                             |                   | ode: Capture o<br>e: Capture on e |                  |                                        |                     |                     |
|              |                             |                   | e: Capture on e                   |                  |                                        |                     |                     |
|              |                             |                   |                                   |                  | dge (rising and                        | falling): ICI<1:    | 0> bits do no       |
|              |                             |                   | eration for this r                |                  |                                        |                     | 2 2.13 GO IN        |
|              |                             |                   | ule is turned off                 |                  |                                        |                     |                     |
| Note 1.      | The ICx input mu            | ist also he conf  | iqured to an av                   | ailahle RDn/DE   | Pln nin For mo                         | re information      | 500                 |
|              |                             |                   |                                   |                  |                                        |                     |                     |

Note 1: The ICx input must also be configured to an available RPn/RPIn pin. For more information, see Section 11.5 "Peripheral Pin Select (PPS)".

# REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

| U-0    | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0 |
|--------|-----|-----|-----|-----|-----|-----|-------|
| —      | —   | —   | —   | —   | —   | _   | IC32  |
| bit 15 |     |     |     |     |     |     | bit 8 |

| R/W-0  | R/W-0, HS | U-0 | R/W-0    | R/W-1    | R/W-1    | R/W-0    | R/W-1    |
|--------|-----------|-----|----------|----------|----------|----------|----------|
| ICTRIG | TRIGSTAT  | —   | SYNCSEL4 | SYNCSEL3 | SYNCSEL2 | SYNCSEL1 | SYNCSEL0 |
| bit 7  |           |     |          |          |          |          | bit 0    |

| Legend:           | HS = Hardware Settable bit |                             |                    |
|-------------------|----------------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit           | U = Unimplemented bit, read | 1 as '0'           |
| -n = Value at POR | '1' = Bit is set           | '0' = Bit is cleared        | x = Bit is unknown |

| bit 15-9 | Unimplemented: Read as '0'                                                                                                                                                                |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 8    | IC32: Cascade Two Input Capture Modules Enable bit (32-bit operation)                                                                                                                     |
|          | <ul> <li>1 = ICx and ICy operate in cascade as a 32-bit module (this bit must be set in both modules)</li> <li>0 = ICx functions independently as a 16-bit module</li> </ul>              |
| bit 7    | ICTRIG: Input Capture x Sync/Trigger Select bit                                                                                                                                           |
|          | <ul> <li>1 = Triggers ICx from the source designated by the SYNCSELx bits</li> <li>0 = Synchronizes ICx with the source designated by the SYNCSELx bits</li> </ul>                        |
| bit 6    | TRIGSTAT: Timer Trigger Status bit                                                                                                                                                        |
|          | <ul> <li>1 = Timer source has been triggered and is running (set in hardware, can be set in software)</li> <li>0 = Timer source has not been triggered and is being held clear</li> </ul> |
| bit 5    | Unimplemented: Read as '0'                                                                                                                                                                |

- **Note 1:** Use these inputs as Trigger sources only and never as Sync sources.
  - 2: Never use an Input Capture x module as its own Trigger source by selecting this mode.

#### REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Synchronization/Trigger Source Selection bits
  - 11111 = Not used 11110 = Not used 11101 = Not used 11100 = CTMU trigger<sup>(1)</sup> 11011 = A/D interrupt<sup>(1)</sup> 11010 = CMP3 trigger<sup>(1)</sup> 11001 = CMP2 trigger<sup>(1)</sup>  $11000 = CMP1 trigger^{(1)}$ 10111 = Not used 10110 = MCCP4 IC/OC interrupt 10101 = MCCP3 IC/OC interrupt 10100 = MCCP2 IC/OC interrupt 10011 = MCCP1 IC/OC interrupt  $10010 = IC3 interrupt^{(2)}$ 10001 = IC2 interrupt<sup>(2)</sup> 10000 = IC1 interrupt<sup>(2)</sup> 01111 = Not used 01110 = Not used 01101 = Timer3 match event 01100 = Timer2 match event 01011 = Timer1 match event 01010 = Not used 01001 = Not used 01000 = Not used 00111 = MCCP4 Sync/Trigger out 00110 = MCCP3 Sync/Trigger out 00101 = MCCP2 Sync/Trigger out
  - 00100 = MCCP1 Sync/Trigger out
  - 00011 = OC3 Sync/Trigger out
  - 00010 = OC2 Sync/Trigger out
  - 00001 = OC1 Sync/Trigger out
  - 00000 = Off
- Note 1: Use these inputs as Trigger sources only and never as Sync sources.
  - 2: Never use an Input Capture x module as its own Trigger source by selecting this mode.

NOTES:

# 15.0 OUTPUT COMPARE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Output Compare with Dedicated Timer" (DS70005159), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

All devices in the PIC24FJ256GA705 family feature three independent output compare modules. Each of these modules offers a wide range of configuration and operating options for generating pulse trains on internal device events, and can produce Pulse-Width Modulated (PWM) waveforms for driving power applications.

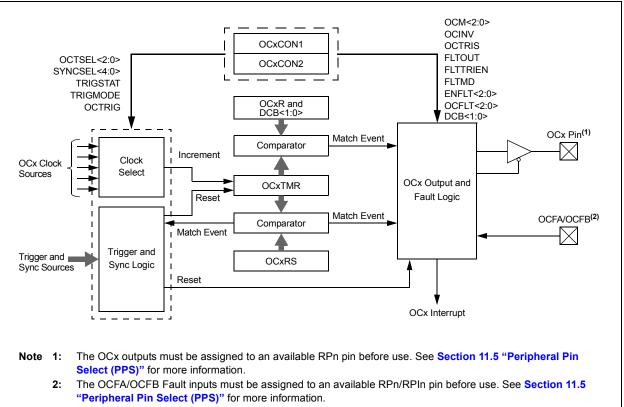
Key features of the output compare module include:

- Hardware-Configurable for 32-Bit Operation in All modes by Cascading Two Adjacent modules
- Synchronous and Trigger modes of Output Compare Operation with up to 31 User-Selectable Sync/Trigger Sources Available
- Two Separate Period registers (a main register, OCxR, and a secondary register, OCxRS) for Greater Flexibility in Generating Pulses of Varying Widths
- Configurable for Single Pulse or Continuous Pulse Generation on an Output Event, or Continuous PWM Waveform Generation
- Up to 6 Clock Sources Available for Each module, Driving a Separate Internal 16-Bit Counter

# 15.1 General Operating Modes

### 15.1.1 SYNCHRONOUS AND TRIGGER MODES

When the output compare module operates in a Free-Running mode, the internal 16-bit counter, OCxTMR, runs counts up continuously, wrapping around from 0xFFFF to 0x0000 on each overflow. Its period is synchronized to the selected external clock source. Compare or PWM events are generated each time a match between the internal counter and one of the Period registers occurs.


In Synchronous mode, the module begins performing its compare or PWM operation as soon as its selected clock source is enabled. Whenever an event occurs on the selected Sync source, the module's internal counter is reset. In Trigger mode, the module waits for a Sync event from another internal module to occur before allowing the counter to run.

Free-Running mode is selected by default or any time that the SYNCSEL<4:0> bits (OCxCON2<4:0>) are set to '00000'. Synchronous or Trigger modes are selected any time the SYNCSELx bits are set to any value except '00000'. The OCTRIG bit (OCxCON2<7>) selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSELx bits determine the Sync/Trigger source.

# 15.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own set of 16-Bit Timer and Duty Cycle registers. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module (OCx) provides the Least Significant 16 bits of the 32-bit register pairs and the even numbered module (OCy) provides the Most Significant 16 bits. Wrap-arounds of the OCx registers cause an increment of their corresponding OCy registers.

Cascaded operation is configured in hardware by setting the OC32 bit (OCxCON2<8>) for both modules. For more details on cascading, refer to the "*dsPIC33*/ *PIC24 Family Reference Manual*", "**Output Compare with Dedicated Timer**" (DS70005159).



## FIGURE 15-1: OUTPUT COMPARE x BLOCK DIAGRAM (16-BIT MODE)

# 15.2 Compare Operations

In Compare mode (Figure 15-1), the output compare module can be configured for Single-Shot or Continuous mode pulse generation. It can also repeatedly toggle an output pin on each timer event.

To set up the module for compare operations:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins if available on the OCx module you are using. Otherwise, configure the dedicated OCx output pins.
- Calculate the required values for the OCxR and (for Double Compare modes) OCxRS Duty Cycle registers:
  - a) Determine the instruction clock cycle time. Take into account the frequency of the external clock to the timer source (if one is used) and the timer prescaler settings.
  - b) Calculate the time to the rising edge of the output pulse relative to the timer start value (0000h).
  - c) Calculate the time to the falling edge of the pulse based on the desired pulse width and the time to the rising edge of the pulse.

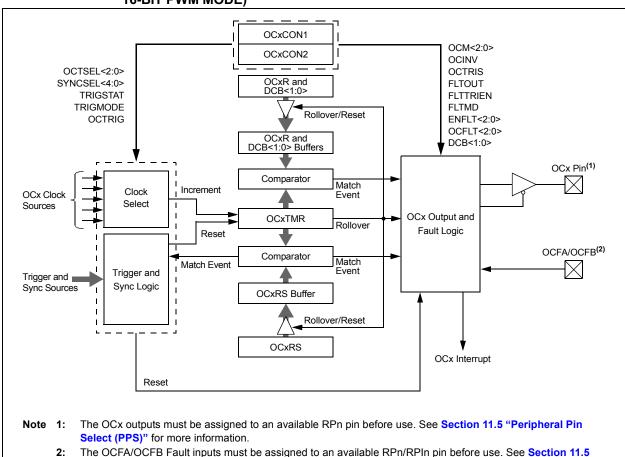
- 3. Write the rising edge value to OCxR and the falling edge value to OCxRS.
- 4. Set the Timer Period register, PRy, to a value equal to or greater than the value in OCxRS.
- 5. Set the OCM<2:0> bits for the appropriate compare operation (= 0xx).
- For Trigger mode operations, set OCTRIG to enable Trigger mode. Set or clear TRIGMODE to configure Trigger mode operation and TRIGSTAT to select a hardware or software trigger. For Synchronous mode, clear OCTRIG.
- Set the SYNCSEL<4:0> bits to configure the Trigger or Sync source. If free-running timer operation is required, set the SYNCSELx bits to '00000' (no Sync/Trigger source).
- Select the time base source with the OCTSEL<2:0> bits. If necessary, set the TON bit for the selected timer, which enables the compare time base to count. Synchronous mode operation starts as soon as the time base is enabled; Trigger mode operation starts after a Trigger source event occurs.

For 32-bit cascaded operation, these steps are also necessary:

- Set the OC32 bits for both registers (OCyCON2<8> and OCxCON2<8>). Enable the even numbered module first to ensure the modules will start functioning in unison.
- Clear the OCTRIG bit of the even module (OCyCON2<7>), so the module will run in Synchronous mode.
- 3. Configure the desired output and Fault settings for OCy.
- 4. Force the output pin for OCx to the output state by clearing the OCTRIS bit.
- If Trigger mode operation is required, configure the Trigger options in OCx by using the OCTRIG (OCxCON2<7>), TRIGMODE (OCxCON1<3>) and SYNCSEL<4:0> (OCxCON2<4:0>) bits.
- Configure the desired Compare or PWM mode of operation (OCM<2:0>) for OCy first, then for OCx.

Depending on the output mode selected, the module holds the OCx pin in its default state and forces a transition to the opposite state when OCxR matches the timer. In Double Compare modes, OCx is forced back to its default state when a match with OCxRS occurs. The OCxIF interrupt flag is set after an OCxR match in Single Compare modes and after each OCxRS match in Double Compare modes.

Single-Shot pulse events only occur once, but may be repeated by simply rewriting the value of the OCxCON1 register. Continuous pulse events continue indefinitely until terminated.


# 15.3 Pulse-Width Modulation (PWM) Mode

In PWM mode, the output compare module can be configured for edge-aligned or center-aligned pulse waveform generation. All PWM operations are doublebuffered (buffer registers are internal to the module and are not mapped into SFR space).

To configure the output compare module for PWM operation:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins if available on the OC module you are using. Otherwise, configure the dedicated OCx output pins.
- 2. Calculate the desired duty cycles and load them into the OCxR register.
- 3. Calculate the desired period and load it into the OCxRS register.
- Select the current OCx as the synchronization source by writing '0x1F' to the SYNCSEL<4:0> bits (OCxCON2<4:0>) and '0' to the OCTRIG bit (OCxCON2<7>).
- 5. Select a clock source by writing to the OCTSEL<2:0> bits (OCxCON1<12:10>).
- 6. Enable interrupts, if required, for the timer and output compare modules. The output compare interrupt is required for PWM Fault pin utilization.
- Select the desired PWM mode in the OCM<2:0> bits (OCxCON1<2:0>).
- Appropriate Fault inputs may be enabled by using the ENFLT<2:0> bits as described in Register 15-1.
- 9. If a timer is selected as a clock source, set the selected timer prescale value. The selected timer's prescaler output is used as the clock input for the OCx timer and not the selected timer output.

Note: This peripheral contains input and output functions that may need to be configured by the Peripheral Pin Select. See Section 11.5 "Peripheral Pin Select (PPS)" for more information.



#### **FIGURE 15-2:** OUTPUT COMPARE x BLOCK DIAGRAM (DOUBLE-BUFFERED, 16-BIT PWM MODE)

The OCFA/OCFB Fault inputs must be assigned to an available RPn/RPIn pin before use. See Section 11.5 "Peripheral Pin Select (PPS)" for more information.

#### **PWM PERIOD** 15.3.1

The PWM period is specified by writing to PRy, the Timer Period register. The PWM period can be calculated using Equation 15-1.

#### EQUATION 15-1: CALCULATING THE PWM PERIOD<sup>(1)</sup>

PWM Period =  $[(PRy) + 1 \bullet TCY \bullet (Timer Prescale Value)$ 

Where: PWM Frequency = 1/[PWM Period]

Note 1: Based on TCY = TOSC \* 2; Doze mode and PLL are disabled.

Note: A PRy value of N will produce a PWM period of N + 1 time base count cycles. For example, a value of 7, written into the PRy register, will yield a period consisting of 8 time base cycles.

# 15.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the OCxRS and OCxR registers. The OCxRS and OCxR registers can be written to at any time, but the duty cycle value is not latched until a match between PRy and TMRy occurs (i.e., the period is complete). This provides a double buffer for the PWM duty cycle and is essential for glitchless PWM operation.

Some important boundary parameters of the PWM duty cycle include:

- If OCxR, OCxRS and PRy are all loaded with 0000h, the OCx pin will remain low (0% duty cycle).
- If OCxRS is greater than PRy, the pin will remain high (100% duty cycle).

See Example 15-1 for PWM mode timing details. Table 15-1 and Table 15-2 show example PWM frequencies and resolutions for a device operating at 4 MIPS and 10 MIPS, respectively.

# EQUATION 15-2: CALCULATION FOR MAXIMUM PWM RESOLUTION<sup>(1)</sup>

Maximum PWM Resolution (bits) =  $\frac{\log_{10} \left( \frac{F_{CY}}{F_{PWM} \bullet (T_{imer} Prescale Value)} \right)}{\log_{10} (2)}$  bits

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

# EXAMPLE 15-1: PWM PERIOD AND DUTY CYCLE CALCULATIONS<sup>(1)</sup>

- Find the Timer Period register value for a desired PWM frequency of 52.08 kHz, where Fosc = 32 MHz with PLL (32 MHz device clock rate) and a Timer2 prescaler setting of 1:1.
   TCY = 2 Tosc = 62.5 ns
   PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2 μS
   PWM Period = (PR2 + 1) TCY (Timer2 Prescale Value)
   19.2 μS = (PR2 + 1) 62.5 ns 1
   PR2 = 306

   Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate:
   PWM Resolution = log<sub>10</sub>(FCY/FPWM)/log<sub>10</sub>2) bits
   = (log<sub>10</sub>(16 MHz/52.08 kHz)/log<sub>10</sub>2) bits
   = 8.3 bits
- **Note 1:** Based on TCY = 2 \* TOSC; Doze mode and PLL are disabled.

| TABLE 15-1: | EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (Fcy = 4 MHz) <sup>(1)</sup> |
|-------------|--------------------------------------------------------------------------------|
|             |                                                                                |

| PWM Frequency         | 7.6 Hz | 61 Hz | 122 Hz | 977 Hz | 3.9 kHz | 31.3 kHz | 125 kHz |
|-----------------------|--------|-------|--------|--------|---------|----------|---------|
| Timer Prescaler Ratio | 8      | 1     | 1      | 1      | 1       | 1        | 1       |
| Period Register Value | FFFFh  | FFFFh | 7FFFh  | 0FFFh  | 03FFh   | 007Fh    | 001Fh   |
| Resolution (bits)     | 16     | 16    | 15     | 12     | 10      | 7        | 5       |

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

#### TABLE 15-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (Fcy = 16 MHz)<sup>(1)</sup>

| PWM Frequency         | 30.5 Hz | 244 Hz | 488 Hz | 3.9 kHz | 15.6 kHz | 125 kHz | 500 kHz |
|-----------------------|---------|--------|--------|---------|----------|---------|---------|
| Timer Prescaler Ratio | 8       | 1      | 1      | 1       | 1        | 1       | 1       |
| Period Register Value | FFFFh   | FFFFh  | 7FFFh  | 0FFFh   | 03FFh    | 007Fh   | 001Fh   |
| Resolution (bits)     | 16      | 16     | 15     | 12      | 10       | 7       | 5       |

**Note 1:** Based on FCY = FOSC/2; Doze mode and PLL are disabled.

<sup>© 2016-2018</sup> Microchip Technology Inc.

| U-0                   | U-0                                    | R/W-0                             | R/W-0                   | R/W-0                         | R/W-0               | R/W-0                       | R/W-0                 |
|-----------------------|----------------------------------------|-----------------------------------|-------------------------|-------------------------------|---------------------|-----------------------------|-----------------------|
|                       | —                                      | OCSIDL                            | OCTSEL2                 | OCTSEL1                       | OCTSEL0             | ENFLT2 <sup>(2)</sup>       | ENFLT1 <sup>(2)</sup> |
| bit 15                |                                        |                                   |                         |                               |                     |                             | bit 8                 |
|                       |                                        |                                   |                         |                               |                     |                             |                       |
| R/W-0                 | R/W-0, HSC                             | R/W-0, HSC                        | R/W-0, HSC              | R/W-0                         | R/W-0               | R/W-0                       | R/W-0                 |
| ENFLT0 <sup>(2)</sup> | OCFLT2 <sup>(2,3)</sup>                | OCFLT1 <sup>(2,4)</sup>           | OCFLT0 <sup>(2,4)</sup> | TRIGMODE                      | OCM2 <sup>(1)</sup> | OCM1 <sup>(1)</sup>         | OCM0 <sup>(1)</sup>   |
| bit 7                 |                                        |                                   |                         |                               |                     |                             | bit C                 |
|                       |                                        |                                   |                         |                               |                     |                             |                       |
| Legend:               |                                        |                                   | are Settable/C          |                               |                     |                             |                       |
| R = Readabl           |                                        | W = Writable                      |                         | -                             | ented bit, read     |                             |                       |
| -n = Value at         | POR                                    | '1' = Bit is set                  |                         | '0' = Bit is clea             | ared                | x = Bit is unkr             | nown                  |
| bit 15-14             | Unimplomon                             | tod: Dood on "                    | <b>`</b>                |                               |                     |                             |                       |
|                       | -                                      | ted: Read as '                    |                         | ada Cantral hit               |                     |                             |                       |
| bit 13                |                                        | • •                               | Stop in Idle Mo         |                               |                     |                             |                       |
|                       |                                        |                                   |                         | e in CPU Idle m               | node                |                             |                       |
| bit 12-10             | OCTSEL<2:0                             | >: Output Com                     | ipare x Timer S         | elect bits                    |                     |                             |                       |
|                       | 111 = Periphe                          | eral clock (Fcy                   | )                       |                               |                     |                             |                       |
|                       | 110 <b>= Reserv</b>                    |                                   |                         |                               |                     |                             |                       |
|                       | 101 = Reserv                           |                                   | ochronous clos          | k is supported)               |                     |                             |                       |
|                       | 011 = Unimpl                           |                                   | ICHIONOUS CIOC          | k is supported)               |                     |                             |                       |
|                       | 010 = Unimpl                           |                                   |                         |                               |                     |                             |                       |
|                       | 001 = Timer3                           |                                   |                         |                               |                     |                             |                       |
|                       | 000 = Timer2                           |                                   | · · · · · (2)           |                               |                     |                             |                       |
| bit 9                 |                                        | It Input 2 Enab                   |                         | a al (3)                      |                     |                             |                       |
|                       | $\perp$ = Fault 2 (C<br>0 = Fault 2 is |                                   | /3 out) is enabl        | ea                            |                     |                             |                       |
| bit 8                 |                                        | It Input 1 Enab                   | le bit <sup>(2)</sup>   |                               |                     |                             |                       |
|                       |                                        | CFB pin) is er                    |                         |                               |                     |                             |                       |
|                       | 0 = Fault 1 is                         |                                   |                         |                               |                     |                             |                       |
| bit 7                 | ENFLT0: Fau                            | lt Input 0 Enab                   | le bit <sup>(2)</sup>   |                               |                     |                             |                       |
|                       |                                        | DCFA pin) is er                   | nabled <sup>(4)</sup>   |                               |                     |                             |                       |
|                       | 0 = Fault 0 is                         |                                   |                         |                               |                     | or (23)                     |                       |
| bit 6                 |                                        |                                   |                         | (Comparator 1/                | 2/3) Condition S    | Status bit <sup>(2,3)</sup> |                       |
|                       | -                                      | ult 2 has occur<br>Fault 2 has oc |                         |                               |                     |                             |                       |
| bit 5                 |                                        |                                   |                         | (OCFB pin) Co                 | ndition Status b    | oit <sup>(2,4)</sup>        |                       |
|                       |                                        | ult 1 has occur                   |                         | (e e: _ p) ee.                |                     |                             |                       |
|                       | 0 = No PWM                             | Fault 1 has oc                    | curred                  |                               |                     |                             |                       |
| bit 4                 | OCFLT0: PW                             | M Fault 0 (OCI                    | A pin) Conditio         | on Status bit <sup>(2,4</sup> | )                   |                             |                       |
|                       | -                                      | ult 0 has occur                   |                         |                               |                     |                             |                       |
|                       | 0 = No PWM                             | Fault 0 has oc                    | curred                  |                               |                     |                             |                       |
|                       | he OCx output n<br>Peripheral Pin \$   |                                   | nfigured to an a        | available RPn p               | oin. For more in    | formation, see              | Section 11.5          |
| <b>2</b> : T          | he Fault input er                      | nable and Faul                    | t status bits are       | valid when OC                 | CM<2:0> = 111       | or 110.                     |                       |
| <b>3:</b> T           | he Comparator                          |                                   | Is the OC1-OC           | 3 channels.                   |                     |                             |                       |
| 4. T                  |                                        | The solution of the second        | at all a la a sauf      |                               |                     |                             |                       |

# REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

4: The OCFA/OCFB Fault input must also be configured to an available RPn/RPIn pin. For more information, see Section 11.5 "Peripheral Pin Select (PPS)".

## **REGISTER 15-1:** OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 3 TRIGMODE: Trigger Status Mode Select bit
  - 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
  - 0 = TRIGSTAT is only cleared by software

bit 2-0 OCM<2:0>: Output Compare x Mode Select bits<sup>(1)</sup>

- 111 = Center-Aligned PWM mode on  $OCx^{(2)}$
- 110 = Edge-Aligned PWM mode on  $OCx^{(2)}$
- 101 = Double Compare Continuous Pulse mode: Initializes the OCx pin low; toggles the OCx state continuously on alternate matches of OCxR and OCxRS
- 100 = Double Compare Single-Shot mode: Initializes the OCx pin low; toggles the OCx state on matches of OCxR and OCxRS for one cycle
- 011 = Single Compare Continuous Pulse mode: Compare events continuously toggle the OCx pin
- 010 = Single Compare Single-Shot mode: Initializes OCx pin high; compare event forces the OCx pin low
- 001 = Single Compare Single-Shot mode: Initializes OCx pin low; compare event forces the OCx pin high
- 000 = Output compare channel is disabled
- Note 1: The OCx output must also be configured to an available RPn pin. For more information, see Section 11.5 "Peripheral Pin Select (PPS)".
  - 2: The Fault input enable and Fault status bits are valid when OCM<2:0> = 111 or 110.
  - 3: The Comparator 1 output controls the OC1-OC3 channels.
  - 4: The OCFA/OCFB Fault input must also be configured to an available RPn/RPIn pin. For more information, see Section 11.5 "Peripheral Pin Select (PPS)".

| R/W-0         | R/W-0                               | R/W-0             | R/W-0                              | U-0                                 | R/W-0               | R/W-0               | R/W-0      |
|---------------|-------------------------------------|-------------------|------------------------------------|-------------------------------------|---------------------|---------------------|------------|
| FLTMD         | FLTOUT                              | FLTTRIEN          | OCINV                              |                                     | DCB1 <sup>(3)</sup> | DCB0 <sup>(3)</sup> | OC32       |
| bit 15        |                                     |                   |                                    |                                     |                     |                     | bit        |
|               |                                     |                   |                                    |                                     |                     |                     |            |
| R/W-0         | R/W-0, HS                           | R/W-0             | R/W-0                              | R/W-1                               | R/W-1               | R/W-0               | R/W-0      |
| OCTRIG        | TRIGSTAT                            | OCTRIS            | SYNCSEL4                           | SYNCSEL3                            | SYNCSEL2            | SYNCSEL1            | SYNCSEL    |
| bit 7         |                                     |                   |                                    |                                     |                     |                     | bit        |
| Legend:       |                                     | HS = Hardwa       | re Settable bit                    |                                     |                     |                     |            |
| R = Readabl   | le hit                              | W = Writable      |                                    | U = Unimplen                        | nented bit, read    | 1 as '0'            |            |
| -n = Value at |                                     | '1' = Bit is set  |                                    | '0' = Bit is clea                   |                     | x = Bit is unkr     |            |
|               |                                     | 1 - Dit 13 3et    |                                    |                                     | areu                |                     |            |
| bit 15        | FLTMD: Fault                        | Mode Select       | pit                                |                                     |                     |                     |            |
|               | 1 = Fault mo                        | de is maintaine   | d until the Fau                    | It source is ren                    | noved and the       | corresponding       | OCFLT0 bit |
|               |                                     | n software        |                                    |                                     |                     |                     |            |
|               |                                     |                   | d until the Faul                   | It source is rem                    | noved and a ne      | w PWM period        | starts     |
| bit 14        | FLTOUT: Fau                         |                   |                                    |                                     |                     |                     |            |
|               |                                     | put is driven hi  | •                                  |                                     |                     |                     |            |
| bit 13        |                                     | put is driven lo  |                                    |                                     |                     |                     |            |
| DIC 13        |                                     | ault Output Sta   | ite Select bit<br>it on a Fault co | adition                             |                     |                     |            |
|               |                                     |                   | fected by a Fault co               |                                     |                     |                     |            |
| bit 12        | OCINV: OCM                          |                   |                                    |                                     |                     |                     |            |
|               | 1 = OCx outp                        | out is inverted   |                                    |                                     |                     |                     |            |
|               | 0 = OCx outp                        | out is not invert | ed                                 |                                     |                     |                     |            |
| bit 11        | Unimplemen                          | ted: Read as '    | כ'                                 |                                     |                     |                     |            |
| bit 10-9      | DCB<1:0>: P                         | WM Duty Cycl      | e Least Signific                   | ant bits <sup>(3)</sup>             |                     |                     |            |
|               |                                     |                   |                                    | nstruction cycle                    |                     |                     |            |
|               |                                     |                   |                                    | nstruction cycle                    |                     |                     |            |
|               |                                     |                   |                                    | nstruction cycle<br>the instruction |                     |                     |            |
| bit 8         |                                     |                   |                                    | pit (32-bit opera                   | -                   |                     |            |
|               |                                     | module operat     |                                    |                                     |                     |                     |            |
|               |                                     |                   | ion is disabled                    |                                     |                     |                     |            |
| bit 7         | OCTRIG: OC                          | x Trigger/Sync    | Select bit                         |                                     |                     |                     |            |
|               |                                     |                   |                                    | ted by the SYN                      |                     | ts                  |            |
| bit 6         | TRIGSTAT: T                         | imer Trigger St   | atus bit                           |                                     |                     |                     |            |
|               |                                     |                   | triggered and is                   | s running                           |                     |                     |            |
|               | 0 = Timer sou                       | urce has not be   | en triggered a                     | nd is being hele                    | d clear             |                     |            |
| bit 5         |                                     | -                 | irection Select                    | bit                                 |                     |                     |            |
|               | 1 = OCx pin is<br>0 = Output Co     |                   | eral x is connec                   | cted to an OCx                      | pin                 |                     |            |
|               | ever use an Out<br>nother equivaler |                   |                                    | own Trigger sc                      | ource, either by    | selecting this r    | node or    |
|               | se these inputs                     |                   | -                                  | ever as Svnc s                      | sources             |                     |            |
| 2. 0          |                                     | as mgger sou      |                                    | over us cyric s                     |                     |                     |            |

# REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

3: The DCB<1:0> bits are double-buffered in the PWM modes only (OCM<2:0> (OCxCON1<2:0>) = 111, 110).

#### REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
  - 11111 = OCx Sync out<sup>(1)</sup> 11110 = OCTRIG1 pin 11101 = OCTRIG2 pin 11100 = CTMU trigger<sup>(2)</sup> 11011 = A/D interrupt<sup>(2)</sup> 11010 = CMP3 Trigger<sup>(2)</sup> 11001 = CMP2 Trigger<sup>(2)</sup> 11000 = CMP1 Trigger<sup>(2)</sup> 10111 = Not used 10110 = MCCP4 IC/OC interrupt 10101 = MCCP3 IC/OC interrupt 10100 = MCCP2 IC/OC interrupt 10011 = MCCP1 IC/OC interrupt  $10010 = IC3 interrupt^{(2)}$ 10001 = IC2 interrupt<sup>(2)</sup> 10000 = IC1 interrupt<sup>(2)</sup> 01111 = Not used 01110 = Not used 01101 = Timer3 match event 01100 = Timer2 match event (default) 01011 = Timer1 match event 01010 = Not used 01001 = Not used 01000 = Not used 00111 = MCCP4 Sync/Trigger out
  - 00110 = MCCP3 Sync/Trigger out
  - 00101 = MCCP2 Sync/Trigger out
  - 00100 = MCCP1 Sync/Trigger out
  - 00011 = Not used
  - 00010 = OC3 Sync/Trigger out<sup>(1)</sup>
  - 00001 = OC1 Sync/Trigger out<sup>(1)</sup>
  - 00000 = Off, Free-Running mode with no synchronization and rollover at FFFFh
- **Note 1:** Never use an Output Compare x module as its own Trigger source, either by selecting this mode or another equivalent SYNCSELx setting.
  - 2: Use these inputs as Trigger sources only and never as Sync sources.
  - 3: The DCB<1:0> bits are double-buffered in the PWM modes only (OCM<2:0> (OCxCON1<2:0>) = 111, 110).

NOTES:

# 16.0 CAPTURE/COMPARE/PWM/ TIMER MODULES (MCCP)

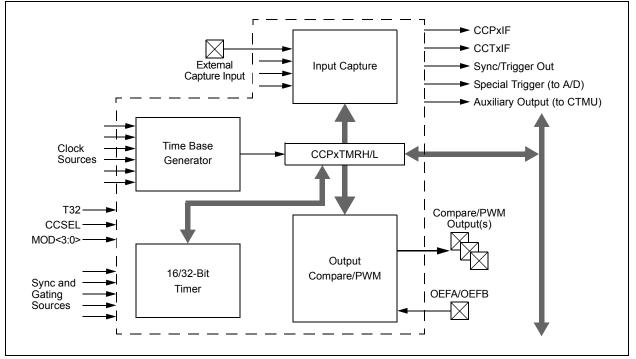
Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Capture/Compare/ PWM/Timer (MCCP and SCCP)" (DS33035), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

PIC24FJ256GA705 family devices include several Capture/Compare/PWM/Timer base modules, which provide the functionality of three different peripherals of earlier PIC24F devices. The module can operate in one of three major modes:

- · General Purpose Timer
- Input Capture
- Output Compare/PWM

This family of devices features 4 instances of the MCCP module. MCCP1 provides up to six outputs and an extended range of power control features, whereas MCCP2-MCCP4 support two outputs.

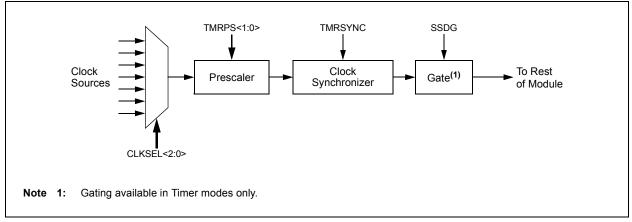
The MCCPx modules can be operated only in one of the three major modes at any time. The other modes are not available unless the module is reconfigured for the new mode. A conceptual block diagram for the module is shown in Figure 16-1. All three modules share a time base generator and a common Timer register pair (CCPxTMRH/L); other shared hardware components are added as a particular mode requires.


Each module has a total of 8 control and status registers:

- CCPxCON1L (Register 16-1)
- CCPxCON1H (Register 16-2)
- CCPxCON2L (Register 16-3)
- CCPxCON2H (Register 16-4)
- CCPxCON3L (Register 16-5)
- CCPxCON3H (Register 16-6)
- CCPxSTATL (Register 16-7)
- CCPxSTATH (Register 16-8)

Each module also includes 8 buffer/counter registers that serve as Timer Value registers or data holding buffers:

- CCPxTMRH/CCPxTMRL (Timer High/Low Counters)
- CCPxPRH/CCPxPRL (Timer Period High/Low)
- CCPxRAH/CCPxRAL (Primary Output Compare Data Buffer)
- CCPxRBH/CCPxRBL (Secondary Output Compare Data Buffer)
- CCPxBUFH/CCPxBUFL (Input Capture High/Low Buffers)


#### FIGURE 16-1: MCCPx CONCEPTUAL BLOCK DIAGRAM



© 2016-2018 Microchip Technology Inc.

### 16.1 Time Base Generator

The Timer Clock Generator (TCG) generates a clock for the module's internal time base using one of the clock signals already available on the microcontroller. This is used as the time reference for the module in its three major modes. The internal time base is shown in Figure 16-2. There are eight inputs available to the clock generator, which are selected using the CLKSEL<2:0> bits (CCPxCON1L<10:8>). Available sources include the FRC and LPRC, the Secondary Oscillator and the TCLKI external clock inputs. The system clock is the default source (CLKSEL<2:0> = 000). On PIC24FJ256GA705 family devices, clock sources to the MCCPx module must be synchronized with the system clock. As a result, when clock sources are selected, clock input timing restrictions or module operating restrictions may exist.



### FIGURE 16-2: TIMER CLOCK GENERATOR

### 16.2 General Purpose Timer

Timer mode is selected when CCSEL = 0 and MOD<3:0> = 0000. The timer can function as a 32-bit timer or a dual 16-bit timer, depending on the setting of the T32 bit (Table 16-1).

| T32<br>(CCPxCON1L<5>) | Operating Mode           |
|-----------------------|--------------------------|
| 0                     | Dual Timer Mode (16-bit) |
| 1                     | Timer Mode (32-bit)      |

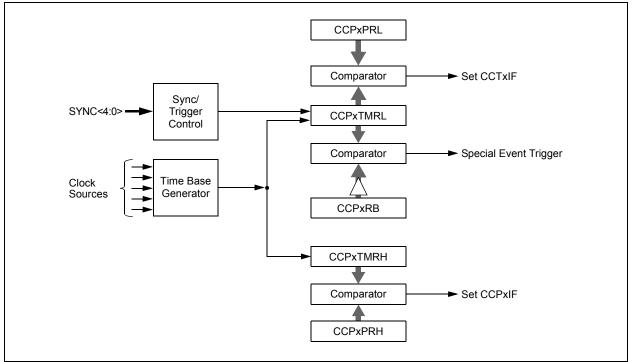
TABLE 16-1: TIMER OPERATION MODE

Dual 16-Bit Timer mode provides a simple timer function with two independent 16-bit timer/counters. The primary timer uses the CCPxTMRL and CCPxPRL registers. Only the primary timer can interact with other modules on the device. It generates the MCCPx Sync out signals for use by other MCCPx modules. It can also use the SYNC<4:0> bits signal generated by other modules.

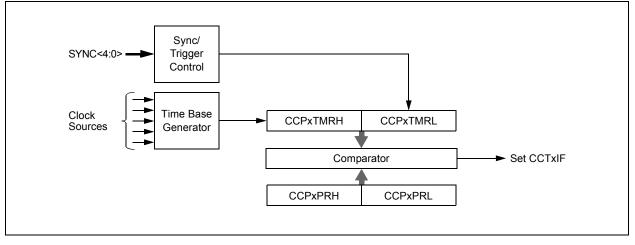
The secondary timer uses the CCPxTMRH and CCPxPRH registers. It is intended to be used only as a periodic interrupt source for scheduling CPU events. It does not generate an output Sync/Trigger signal like the primary time base. In Dual Timer mode, the Timer Period High register, CCPxPRH, generates the MCCPx compare event (CCPxIF) used by many other modules on the device.

The 32-Bit Timer mode uses the CCPxTMRL and CCPxTMRH registers, together, as a single 32-bit timer. When CCPxTMRL overflows, CCPxTMRH increments

FIGURE 16-3: DUAL 16-BIT TIMER MODE


by one. This mode provides a simple timer function when it is important to track long time periods. Note that the T32 bit (CCPxCON1L<5>) should be set before the CCPxTMRL or CCPxPRH registers are written to initialize the 32-bit timer.

#### 16.2.1 SYNC AND TRIGGER OPERATION


In both 16-bit and 32-bit modes, the timer can also function in either Synchronization ("Sync") or Trigger mode operation. Both use the SYNC<4:0> bits (CCPxCON1H<4:0>) to determine the input signal source. The difference is how that signal affects the timer.

In Sync operation, the Timer Reset or clear occurs when the input selected by SYNC<4:0> is asserted. The timer immediately begins to count again from zero unless it is held for some other reason. Sync operation is used whenever the TRIGEN bit (CCPxCON1H<7>) is cleared. The SYNC<4:0> bits can have any value except '11111'.

In Trigger mode operation, the timer is held in Reset until the input selected by SYNC<4:0> is asserted; when it occurs, the timer starts counting. Trigger operation is used whenever the TRIGEN bit is set. In Trigger mode, the timer will continue running after a trigger event as long as the CCPTRIG bit (CCPxSTATL< 7>) is set. To clear CCPTRIG bit (CCPxSTATL< 7>) is set. To clear CCPTRIG, the TRCLR bit (CCPxSTATL<5>) must be set to clear the trigger event, reset the timer and hold it at zero until another trigger event occurs. On PIC24FJ256GA705 family devices, Trigger mode operation can only be used when the system clock is the time base source (CLKSEL<2:0> = 000).



## FIGURE 16-4: 32-BIT TIMER MODE



### 16.3 Output Compare Mode

Output Compare mode compares the Timer register value with the value of one or two Compare registers, depending on its mode of operation. The Output Compare x module, on compare match events, has the ability to generate a single output transition or a train of

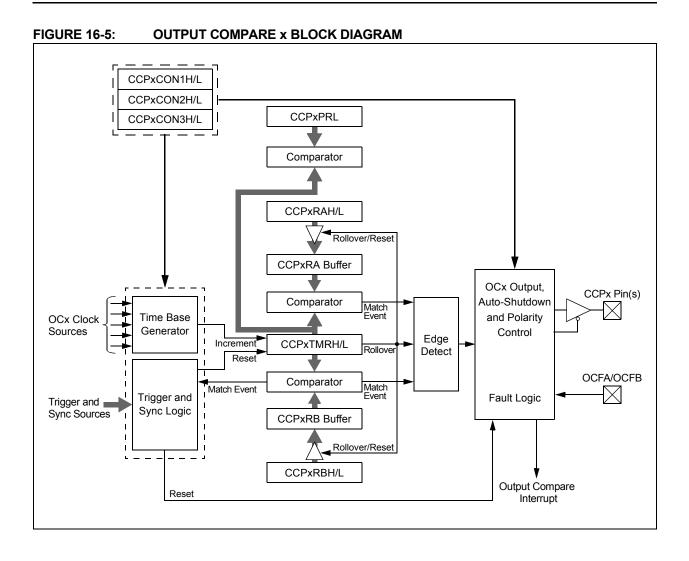

output pulses. Like most PIC<sup>®</sup> MCU peripherals, the Output Compare x module can also generate interrupts on a compare match event.

Table 16-2shows the various modes available inOutput Compare modes.

| MOD<3:0><br>(CCPxCON1L<3:0>) | T32<br>(CCPxCON1L<5>) | Operating Mode                                        |                  |  |  |
|------------------------------|-----------------------|-------------------------------------------------------|------------------|--|--|
| 0001                         | 0                     | Output High on Compare (16-bit)                       |                  |  |  |
| 0001                         | 1                     | Output High on Compare (32-bit)                       |                  |  |  |
| 0010 0                       |                       | Output Low on Compare (16-bit)                        | Single Edge Mede |  |  |
| 0010 1                       |                       | Output Low on Compare (32-bit)                        | Single Edge Mode |  |  |
| 0011                         | 0                     | Output Toggle on Compare (16-bit)                     | -                |  |  |
| 0011                         | 1                     | Output Toggle on Compare (32-bit)                     |                  |  |  |
| 0100                         | 0                     | Dual Edge Compare (16-bit)                            | Dual Edge Mode   |  |  |
| 0101                         | 0                     | Dual Edge Compare (16-bit buffered)                   | PWM Mode         |  |  |
| 0110                         | 0                     | Center-Aligned Pulse (16-bit buffered) <sup>(1)</sup> | Center PWM Mode  |  |  |
| 0111                         | 0                     | Variable Frequency Pulse (16-bit)                     |                  |  |  |
| 1111                         | 0                     | External Input Source Mode (16-bit)                   |                  |  |  |

### TABLE 16-2: OUTPUT COMPARE/PWM MODES

Note 1: Center-Aligned PWM mode is only available on MCCP modules. This feature is disabled on SCCP modules.



## 16.4 Input Capture Mode


Input Capture mode is used to capture a timer value from an independent timer base upon an event on an input pin or other internal Trigger source. The input capture features are useful in applications requiring frequency (time period) and pulse measurement. Figure 16-6 depicts a simplified block diagram of the Input Capture mode. Input Capture mode uses a dedicated 16/32-bit, synchronous, up counting timer for the capture function. The timer value is written to the FIFO when a capture event occurs. The internal value may be read (with a synchronization delay) using the CCPxTMRH/L registers.

To use Input Capture mode, the CCSEL bit (CCPxCON1L<4>) must be set. The T32 and MOD<3:0> bits are used to select the proper Capture mode, as shown in Table 16-3.

| MOD<3:0><br>(CCPxCON1L<3:0>) | T32<br>(CCPxCON1L<5>) | Operating Mode                     |  |  |  |  |  |
|------------------------------|-----------------------|------------------------------------|--|--|--|--|--|
| 0000                         | 0                     | Edge Detect (16-bit capture)       |  |  |  |  |  |
| 0000                         | 1                     | Edge Detect (32-bit capture)       |  |  |  |  |  |
| 0001                         | 0                     | Every Rising (16-bit capture)      |  |  |  |  |  |
| 0001                         | 1                     | Every Rising (32-bit capture)      |  |  |  |  |  |
| 0010                         | 0                     | Every Falling (16-bit capture)     |  |  |  |  |  |
| 0010                         | 1                     | Every Falling (32-bit capture)     |  |  |  |  |  |
| 0011                         | 0                     | Every Rise/Fall (16-bit capture)   |  |  |  |  |  |
| 0011                         | 1                     | Every Rise/Fall (32-bit capture)   |  |  |  |  |  |
| 0100                         | 0                     | Every 4th Rising (16-bit capture)  |  |  |  |  |  |
| 0100                         | 1                     | Every 4th Rising (32-bit capture)  |  |  |  |  |  |
| 0101                         | 0                     | Every 16th Rising (16-bit capture) |  |  |  |  |  |
| 0101                         | 1                     | Every 16th Rising (32-bit capture) |  |  |  |  |  |

#### TABLE 16-3: INPUT CAPTURE MODES





# 16.5 Auxiliary Output

The MCCPx modules have an auxiliary (secondary) output that provides other peripherals access to internal module signals. The auxiliary output is intended to connect to other MCCPx modules, or other digital peripherals, to provide these types of functions:

- Time Base Synchronization
- Peripheral Trigger and Clock Inputs
- Signal Gating

The type of output signal is selected using the AUXOUT<1:0> control bits (CCPxCON2H<4:3>). The type of output signal is also dependent on the module operating mode.

On the PIC24FJ256GA705 family of devices, only the CTMU discharge trigger has access to the auxiliary output signal.

| AUXOUT<1:0> | CCSEL | MOD<3:0> | Comments                  | Signal Description                  |
|-------------|-------|----------|---------------------------|-------------------------------------|
| 00          | х     | xxxx     | Auxiliary Output Disabled | No Output                           |
| 01          | 0     | 0000     | Time Base Modes           | Time Base Period Reset or Rollover  |
| 10          |       |          |                           | Special Event Trigger Output        |
| 11          |       |          |                           | No Output                           |
| 01          | 0     | 0001     | Output Compare Modes      | Time Base Period Reset or Rollover  |
| 10          |       | through  |                           | Output Compare Event Signal         |
| 11          |       | 1111     |                           | Output Compare Signal               |
| 01          | 1     | xxxx     | Input Capture Modes       | Time Base Period Reset or Rollover  |
| 10          |       |          |                           | Reflects the Value of the ICDIS bit |
| 11          |       |          |                           | Input Capture Event Signal          |

## TABLE 16-4: AUXILIARY OUTPUT

| R/W-0           | U-0                                                                                                 | R/W-0            | R/W-0           | R/W-0                            | R/W-0            | R/W-0           | R/W-0   |  |  |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------|------------------|-----------------|----------------------------------|------------------|-----------------|---------|--|--|--|--|
| CCPON           |                                                                                                     | CCPSIDL          | CCPSLP          | TMRSYNC                          | CLKSEL2          | CLKSEL1         | CLKSEL0 |  |  |  |  |
| bit 15          |                                                                                                     |                  |                 |                                  |                  |                 | bit     |  |  |  |  |
|                 |                                                                                                     | DAMA             |                 | DAALO                            | DAMO             | DAMA            | DAMO    |  |  |  |  |
| R/W-0           | R/W-0                                                                                               | R/W-0            | R/W-0           | R/W-0                            | R/W-0            | R/W-0           | R/W-0   |  |  |  |  |
| TMRPS1<br>bit 7 | TMRPS0                                                                                              | T32              | CCSEL           | MOD3                             | MOD2             | MOD1            | MOD0    |  |  |  |  |
|                 |                                                                                                     |                  |                 |                                  |                  |                 | bit     |  |  |  |  |
| Legend:         |                                                                                                     |                  |                 |                                  |                  |                 |         |  |  |  |  |
| R = Readable    | e bit                                                                                               | W = Writable     | bit             | U = Unimplem                     | nented bit, read | d as '0'        |         |  |  |  |  |
| -n = Value at   | POR                                                                                                 | '1' = Bit is set |                 | '0' = Bit is clea                | ared             | x = Bit is unkr | nown    |  |  |  |  |
|                 |                                                                                                     |                  |                 |                                  |                  |                 |         |  |  |  |  |
| bit 15          |                                                                                                     | Px Module Ena    |                 |                                  |                  |                 |         |  |  |  |  |
|                 | 1 = Module is<br>0 = Module is                                                                      |                  | an operating m  | node specified b                 | by the MOD<3:    | 0> control bits |         |  |  |  |  |
| bit 14          |                                                                                                     | ted: Read as '   | כ'              |                                  |                  |                 |         |  |  |  |  |
| bit 13          | CCPSIDL: CO                                                                                         | CPx Stop in Idle | e Mode Bit      |                                  |                  |                 |         |  |  |  |  |
|                 |                                                                                                     |                  |                 | device enters Id                 | lle mode         |                 |         |  |  |  |  |
| bit 12          | 0 = Continues module operation in Idle mode                                                         |                  |                 |                                  |                  |                 |         |  |  |  |  |
| DIL 12          | CCPSLP: CCPx Sleep Mode Enable bit<br>1 = Module continues to operate in Sleep modes                |                  |                 |                                  |                  |                 |         |  |  |  |  |
|                 |                                                                                                     | loes not operat  |                 |                                  |                  |                 |         |  |  |  |  |
| bit 11          | TMRSYNC: Time Base Clock Synchronization bit                                                        |                  |                 |                                  |                  |                 |         |  |  |  |  |
|                 | 1 = Module time base clock is synchronized to the internal system clocks; timing restrictions apply |                  |                 |                                  |                  |                 |         |  |  |  |  |
|                 | 0 = Module time base clock is not synchronized to the internal system clocks                        |                  |                 |                                  |                  |                 |         |  |  |  |  |
| bit 10-8        | CLKSEL<2:0>: CCPx Time Base Clock Select bits                                                       |                  |                 |                                  |                  |                 |         |  |  |  |  |
|                 | 111 = TCKIA pin<br>110 = TCKIB pin                                                                  |                  |                 |                                  |                  |                 |         |  |  |  |  |
|                 | 101 = PLL clo                                                                                       |                  |                 |                                  |                  |                 |         |  |  |  |  |
|                 | 100 = 2x peripheral clock                                                                           |                  |                 |                                  |                  |                 |         |  |  |  |  |
|                 | 010 = SOSC                                                                                          |                  |                 |                                  |                  |                 |         |  |  |  |  |
|                 |                                                                                                     | nce clock outpu  | ut              |                                  |                  |                 |         |  |  |  |  |
|                 | 000 = System clock                                                                                  |                  |                 |                                  |                  |                 |         |  |  |  |  |
|                 | For MCCP1:<br>011 = CLC1 output                                                                     |                  |                 |                                  |                  |                 |         |  |  |  |  |
|                 | For MCCP2:                                                                                          |                  |                 |                                  |                  |                 |         |  |  |  |  |
|                 | 011 = CLC2 o                                                                                        | •                |                 |                                  |                  |                 |         |  |  |  |  |
| bit 7-6         | TMRPS<1:0>: Time Base Prescale Select bits                                                          |                  |                 |                                  |                  |                 |         |  |  |  |  |
|                 | 11 = 1:64 Pre<br>10 = 1:16 Pre                                                                      |                  |                 |                                  |                  |                 |         |  |  |  |  |
|                 | 01 = 1:4 Pres                                                                                       |                  |                 |                                  |                  |                 |         |  |  |  |  |
|                 | 00 = 1:1 Pres                                                                                       |                  |                 |                                  |                  |                 |         |  |  |  |  |
| bit 5           | T32: 32-Bit Ti                                                                                      | ime Base Seleo   | ct bit          |                                  |                  |                 |         |  |  |  |  |
|                 |                                                                                                     |                  |                 | edge output co<br>edge output co |                  |                 |         |  |  |  |  |
| bit 4           |                                                                                                     | ture/Compare I   | -               |                                  |                  |                 |         |  |  |  |  |
| -               | -                                                                                                   | ture peripheral  |                 |                                  |                  |                 |         |  |  |  |  |
|                 |                                                                                                     |                  |                 | I (exact functior                | n is selected by | y the MOD<3:0   | > bits) |  |  |  |  |
| Note 1. Cr      | enter-Alianed P\                                                                                    | MM mode is on    | ly available on |                                  | . This feature i | e diezhled on 9 |         |  |  |  |  |
|                 |                                                                                                     |                  |                 |                                  |                  |                 |         |  |  |  |  |

### REGISTER 16-1: CCPxCON1L: CCPx CONTROL 1 LOW REGISTERS

Note 1: Center-Aligned PWM mode is only available on MCCP modules. This feature is disabled on SCCP modules.

#### REGISTER 16-1: CCPxCON1L: CCPx CONTROL 1 LOW REGISTERS (CONTINUED)

- bit 3-0 MOD<3:0>: CCPx Mode Select bits
  - For CCSEL = 1 (Input Capture modes):
  - 1 xxx = Reserved
  - 011x = Reserved
  - 0101 = Capture every 16th rising edge
  - 0100 = Capture every 4th rising edge
  - 0011 = Capture every rising and falling edge
  - 0010 = Capture every falling edge
  - 0001 = Capture every rising edge
  - 0000 = Capture every rising and falling edge (Edge Detect mode)

#### For CCSEL = 0 (Output Compare/Timer modes):

- 1111 = External Input mode: Pulse generator is disabled, source is selected by ICS<2:0>
- 1110 = Reserved
- 110x = Reserved
- 10xx = Reserved
- 0111 = Variable Frequency Pulse mode
- 0110 = Center-Aligned Pulse Compare mode, buffered<sup>(1)</sup>
- 0101 = Dual Edge Compare mode, buffered
- 0100 = Dual Edge Compare mode
- 0011 = 16-Bit/32-Bit Single Edge mode, toggles output on compare match
- 0010 = 16-Bit/32-Bit Single Edge mode, drives output low on compare match
- 0001 = 16-Bit/32-Bit Single Edge mode, drives output high on compare match
- 0000 = 16-Bit/32-Bit Timer mode, output functions are disabled
- **Note 1:** Center-Aligned PWM mode is only available on MCCP modules. This feature is disabled on SCCP modules.

| R/W-0                 | R/W-0                                                                                                                                      | U-0                | U-0           | R/W-0                                | R/W-0               | R/W-0               | R/W-0               |  |  |  |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|--------------------------------------|---------------------|---------------------|---------------------|--|--|--|--|--|
| OPSSRC <sup>(1)</sup> | RTRGEN <sup>(2)</sup>                                                                                                                      | —                  | _             | OPS3 <sup>(3)</sup>                  | OPS2 <sup>(3)</sup> | OPS1 <sup>(3)</sup> | OPS0 <sup>(3)</sup> |  |  |  |  |  |
| bit 15                |                                                                                                                                            |                    |               |                                      |                     |                     | bit                 |  |  |  |  |  |
|                       |                                                                                                                                            |                    |               |                                      |                     |                     |                     |  |  |  |  |  |
| R/W-0                 | R/W-0                                                                                                                                      | R/W-0              | R/W-0         | R/W-0                                | R/W-0               | R/W-0               | R/W-0               |  |  |  |  |  |
| TRIGEN                | ONESHOT                                                                                                                                    | ALTSYNC            | SYNC4         | SYNC3                                | SYNC2               | SYNC1               | SYNC0               |  |  |  |  |  |
| bit 7                 |                                                                                                                                            |                    |               |                                      |                     |                     | bit                 |  |  |  |  |  |
| Legend:               |                                                                                                                                            |                    |               |                                      |                     |                     |                     |  |  |  |  |  |
| R = Readable          | e bit                                                                                                                                      | W = Writable I     | oit           | U = Unimplem                         | nented bit, read    | d as '0'            |                     |  |  |  |  |  |
| -n = Value at         | POR                                                                                                                                        | '1' = Bit is set   |               | '0' = Bit is clea                    | ared                | x = Bit is unkn     | iown                |  |  |  |  |  |
|                       |                                                                                                                                            |                    |               |                                      |                     |                     |                     |  |  |  |  |  |
| bit 15                | OPSSRC: Ou                                                                                                                                 | utput Postscaler   | Source Sele   | ct bit <sup>(1)</sup>                |                     |                     |                     |  |  |  |  |  |
|                       |                                                                                                                                            |                    |               | er output events                     | 5                   |                     |                     |  |  |  |  |  |
|                       |                                                                                                                                            | ostscaler scales   |               | terrupt events                       |                     |                     |                     |  |  |  |  |  |
| bit 14                | RTRGEN: Retrigger Enable bit <sup>(2)</sup>                                                                                                |                    |               |                                      |                     |                     |                     |  |  |  |  |  |
|                       | <ol> <li>Time base can be retriggered when the TRIGEN bit = 1</li> <li>Time base may not be retriggered when the TRIGEN bit = 1</li> </ol> |                    |               |                                      |                     |                     |                     |  |  |  |  |  |
| bit 13-12             |                                                                                                                                            | ted: Read as '0    |               |                                      |                     |                     |                     |  |  |  |  |  |
| bit 11-8              | <b>OPS3&lt;3:0&gt;:</b> CCPx Interrupt Output Postscale Select bits <sup>(3)</sup>                                                         |                    |               |                                      |                     |                     |                     |  |  |  |  |  |
|                       | 1111 = Interrupt every 16th time base period match                                                                                         |                    |               |                                      |                     |                     |                     |  |  |  |  |  |
|                       | 1110 = Interrupt every 15th time base period match                                                                                         |                    |               |                                      |                     |                     |                     |  |  |  |  |  |
|                       | 0100 = Interrupt every 5th time base period match                                                                                          |                    |               |                                      |                     |                     |                     |  |  |  |  |  |
|                       |                                                                                                                                            | •                  | •             | d match or 4th i                     | input capture e     | vent                |                     |  |  |  |  |  |
|                       | 0010 = Interrupt every 3rd time base period match or 3rd input capture event                                                               |                    |               |                                      |                     |                     |                     |  |  |  |  |  |
|                       | 0001 = Interrupt every 2nd time base period match or 2nd input capture event                                                               |                    |               |                                      |                     |                     |                     |  |  |  |  |  |
| bit 7                 | 0000 = Interrupt after each time base period match or input capture event<br>TRIGEN: CCPx Trigger Enable bit                               |                    |               |                                      |                     |                     |                     |  |  |  |  |  |
|                       | 1 = Trigger operation of time base is enabled                                                                                              |                    |               |                                      |                     |                     |                     |  |  |  |  |  |
|                       | 0 = Trigger operation of time base is disabled                                                                                             |                    |               |                                      |                     |                     |                     |  |  |  |  |  |
| bit 6                 | ONESHOT: One-Shot Mode Enable bit                                                                                                          |                    |               |                                      |                     |                     |                     |  |  |  |  |  |
|                       |                                                                                                                                            |                    |               | rigger mode dur                      | ation is set by     | OSCNT<2:0>          |                     |  |  |  |  |  |
|                       |                                                                                                                                            | t Trigger mode     |               |                                      |                     |                     |                     |  |  |  |  |  |
| bit 5                 |                                                                                                                                            | CPx Clock Sele     |               |                                      |                     |                     |                     |  |  |  |  |  |
|                       |                                                                                                                                            |                    |               | dule synchroniza<br>gnal is the Time |                     |                     |                     |  |  |  |  |  |
| bit 4-0               |                                                                                                                                            | CCPx Synchroi      | -             | -                                    |                     |                     |                     |  |  |  |  |  |
|                       |                                                                                                                                            | -5 for the definit |               |                                      |                     |                     |                     |  |  |  |  |  |
| Note 1: Th            | is control bit ha                                                                                                                          | as no function ir  | n Input Captu | e modes.                             |                     |                     |                     |  |  |  |  |  |
|                       |                                                                                                                                            | as no function w   |               |                                      |                     |                     |                     |  |  |  |  |  |
|                       | utput postscale                                                                                                                            |                    |               |                                      | sult in a FIFO I    | ouffer overflow f   | or                  |  |  |  |  |  |

## REGISTER 16-2: CCPxCON1H: CCPx CONTROL 1 HIGH REGISTERS

3: Output postscale settings, from 1:5 to 1:16 (0100-1111), will result in a FIFO buffer overflow for Input Capture modes.

| SYNC<4:0> | Synchronization Source                             |
|-----------|----------------------------------------------------|
| 11111     | None; Timer with Rollover on CCPxPR Match or FFFFh |
| 11110     | Reserved                                           |
| 11101     | Reserved                                           |
| 11100     | CTMU Trigger                                       |
| 11011     | A/D Start Conversion                               |
| 11010     | CMP3 Trigger                                       |
| 11001     | CMP2 Trigger                                       |
| 11000     | CMP1 Trigger                                       |
| 10111     | Reserved                                           |
| 10110     | Reserved                                           |
| 10101     | Reserved                                           |
| 10100     | Reserved                                           |
| 10011     | Reserved                                           |
| 10010     | Reserved                                           |
| 10001     | CLC2 Out                                           |
| 10000     | CLC1 Out                                           |
| 01111     | Reserved                                           |
| 01110     | Reserved                                           |
| 01101     | Reserved                                           |
| 01100     | Reserved                                           |
| 01011     | INT2 Pad                                           |
| 01010     | INT1 Pad                                           |
| 01001     | INTO Pad                                           |
| 01000     | Reserved                                           |
| 00111     | Reserved                                           |
| 00110     | Reserved                                           |
| 00101     | MCCP4 Sync Out                                     |
| 00100     | MCCP3 Sync Out                                     |
| 00011     | MCCP2 Sync Out                                     |
| 00010     | MCCP1 Sync Out                                     |
| 00001     | MCCPx Sync Out <sup>(1)</sup>                      |
| 00000     | MCCPx Timer Sync Out <sup>(1)</sup>                |

# TABLE 16-5: SYNCHRONIZATION SOURCES

**Note 1:** CCP1 when connected to CCP1, CCP2 when connected to CCP2, etc.

| R/W-0           | R/W-0                                                                                                                                               | U-0              | R/W-0        | U-0                            | U-0             | U-0                | U-0   |  |  |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|--------------------------------|-----------------|--------------------|-------|--|--|--|--|
| PWMRSEN         | ASDGM                                                                                                                                               |                  | SSDG         | _                              | _               | —                  | —     |  |  |  |  |
| bit 15          |                                                                                                                                                     |                  |              |                                |                 |                    | bit 8 |  |  |  |  |
|                 |                                                                                                                                                     |                  |              |                                |                 |                    |       |  |  |  |  |
| R/W-0           | R/W-0                                                                                                                                               | R/W-0            | R/W-0        | R/W-0                          | R/W-0           | R/W-0              | R/W-0 |  |  |  |  |
| ASDG7           | ASDG6                                                                                                                                               | ASDG5            | ASDG4        | ASDG3                          | ASDG2           | ASDG1              | ASDG0 |  |  |  |  |
| bit 7           |                                                                                                                                                     |                  |              |                                |                 |                    | bit C |  |  |  |  |
| Legend:         |                                                                                                                                                     |                  |              |                                |                 |                    |       |  |  |  |  |
| R = Readable    | bit                                                                                                                                                 | W = Writable     | bit          | U = Unimplem                   | ented bit, read | d as '0'           |       |  |  |  |  |
| -n = Value at I | POR                                                                                                                                                 | '1' = Bit is set |              | '0' = Bit is clea              | ared            | x = Bit is unknown |       |  |  |  |  |
| bit 14          |                                                                                                                                                     | it must be clea  |              | e to resume PW<br>e Enable bit | M activity on c | output pins        |       |  |  |  |  |
| bit 14          | ASDGM: CCPx Auto-Shutdown Gate Mode Enable bit<br>1 = Waits until the next Time Base Reset or rollover for shutdown to occur                        |                  |              |                                |                 |                    |       |  |  |  |  |
|                 | 0 = Shutdown event occurs immediately                                                                                                               |                  |              |                                |                 |                    |       |  |  |  |  |
| bit 13          | Unimplemen                                                                                                                                          | ted: Read as '   | כי           |                                |                 |                    |       |  |  |  |  |
| bit 12          | SSDG: CCPx                                                                                                                                          | Software Shut    | down/Gate Co | ontrol bit                     |                 |                    |       |  |  |  |  |
|                 | <ul> <li>1 = Manually forces auto-shutdown, timer clock gate or input capture signal gate event (setting of<br/>ASDGM bit still applies)</li> </ul> |                  |              |                                |                 |                    |       |  |  |  |  |
|                 | 0 = Normal n                                                                                                                                        | nodule operatio  | 'n           |                                |                 |                    |       |  |  |  |  |
| bit 11-8        | Unimplemen                                                                                                                                          | ted: Read as '   | כי           |                                |                 |                    |       |  |  |  |  |
| bit 7-0         | ASDG<7:0>: CCPx Auto-Shutdown/Gating Source Enable bits                                                                                             |                  |              |                                |                 |                    |       |  |  |  |  |
|                 | <ul> <li>1 = ASDGx Source n is enabled (see Table 16-6 for auto-shutdown/gating sources)</li> <li>0 = ASDGx Source n is disabled</li> </ul>         |                  |              |                                |                 |                    |       |  |  |  |  |

## REGISTER 16-3: CCPxCON2L: CCPx CONTROL 2 LOW REGISTERS

#### TABLE 16-6: AUTO-SHUTDOWN SOURCES

| ASDC (7:0) | Auto-Shutdown Source |       |        |       |  |  |  |  |
|------------|----------------------|-------|--------|-------|--|--|--|--|
| ASDG<7:0>  | MCCP1                | MCCP2 | MCCP3  | MCCP4 |  |  |  |  |
| 1xxx xxxx  |                      | 00    | CFB    |       |  |  |  |  |
| x1xx xxxx  |                      | 00    | CFA    |       |  |  |  |  |
| xx1x xxxx  | CLC1                 | CLC2  | Not U  | Jsed  |  |  |  |  |
| xxx1 xxxx  |                      | Not   | Used   |       |  |  |  |  |
| xxxx 1xxx  |                      | Not   | Used   |       |  |  |  |  |
| xxxx x1xx  |                      | CMF   | '3 Out |       |  |  |  |  |
| xxxx xx1x  |                      | CMF   | 2 Out  |       |  |  |  |  |
| xxxx xxx1  |                      | CMF   | '1 Out |       |  |  |  |  |

| R/W-0         | U-0                                                       | R/W-0                                                 | R/W-0                                                   | R/W-0                                                 | R/W-0           | R/W-0            | R/W-1   |  |  |  |  |
|---------------|-----------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-----------------|------------------|---------|--|--|--|--|
| OENSYNC       |                                                           | OCFEN                                                 | OCEEN                                                   | OCDEN                                                 | OCCEN           | OCBEN            | OCAEN   |  |  |  |  |
| bit 15        |                                                           |                                                       |                                                         |                                                       |                 |                  | bit 8   |  |  |  |  |
| R/W-0         | R/W-0                                                     | U-0                                                   | R/W-0                                                   | R/W-0                                                 | R/W-0           | R/W-0            | R/W-0   |  |  |  |  |
| ICGSM1        | ICGSM0                                                    | _                                                     | AUXOUT1                                                 | AUXOUTO                                               | ICS2            | ICS1             | ICS0    |  |  |  |  |
| bit 7         |                                                           |                                                       |                                                         |                                                       |                 |                  | bit (   |  |  |  |  |
| Legend:       |                                                           |                                                       |                                                         |                                                       |                 |                  |         |  |  |  |  |
| R = Readable  | e bit                                                     | W = Writable                                          | bit                                                     | U = Unimplem                                          | ented bit, read | d as '0'         |         |  |  |  |  |
| -n = Value at | POR                                                       | '1' = Bit is set                                      |                                                         | '0' = Bit is clea                                     |                 | x = Bit is unkr  | nown    |  |  |  |  |
|               |                                                           |                                                       |                                                         |                                                       |                 |                  |         |  |  |  |  |
| bit 15        | 1 = Update b                                              | y output enable                                       | Synchronization<br>e bits occurs or<br>e bits occurs in | n the next Time                                       | Base Reset o    | r rollover       |         |  |  |  |  |
| bit 14        | Unimplement                                               | ted: Read as '                                        | D'                                                      |                                                       |                 |                  |         |  |  |  |  |
| bit 13-8      | OCxEN: Output Enable/Steering Control bits                |                                                       |                                                         |                                                       |                 |                  |         |  |  |  |  |
|               | 0 = OCMx pi                                               |                                                       | led by the CC                                           | odule and prode<br>Px module; the                     |                 |                  |         |  |  |  |  |
| bit 7-6       | ICGSM<1:0>: Input Capture Gating Source Mode Control bits |                                                       |                                                         |                                                       |                 |                  |         |  |  |  |  |
|               | 01 = One-Sho<br>00 = Level-Se                             | ot mode: Falling<br>ot mode: Rising<br>ensitive mode: | g edge from ga                                          | ting source disa<br>ting source ena<br>om gating sour | bles future cap | oture events (IC | DIS = 0 |  |  |  |  |
| bit 5         | Unimplement                                               | ted: Read as '                                        | D'                                                      |                                                       |                 |                  |         |  |  |  |  |
| bit 4-3       | AUXOUT<1:0                                                | <b>)&gt;:</b> Auxiliary Ou                            | utput Signal on                                         | Event Selection                                       | n bits          |                  |         |  |  |  |  |
|               | 10 = Signal o                                             | utput is defined<br>se rollover eve                   | by module op                                            | t; no signal in T<br>erating mode (s                  |                 | )                |         |  |  |  |  |
| bit 2-0       | ICS<2:0>: Input Capture Source Select bits                |                                                       |                                                         |                                                       |                 |                  |         |  |  |  |  |
|               | 010 = Compa<br>001 = Compa                                | ved<br>output                                         | k) I/O pin                                              |                                                       |                 |                  |         |  |  |  |  |

## REGISTER 16-4: CCPxCON2H: CCPx CONTROL 2 HIGH REGISTERS

## **REGISTER 16-5:** CCPxCON3L: CCPx CONTROL 3 LOW REGISTERS<sup>(1)</sup>

| U-0                         | U-0 | U-0              | U-0                                                 | U-0   | U-0   | U-0             | U-0   |
|-----------------------------|-----|------------------|-----------------------------------------------------|-------|-------|-----------------|-------|
| —                           | —   | —                | —                                                   | —     | —     | —               | —     |
| bit 15                      |     |                  |                                                     |       |       |                 | bit 8 |
|                             |     |                  |                                                     |       |       |                 |       |
| U-0                         | U-0 | R/W-0            | R/W-0                                               | R/W-0 | R/W-0 | R/W-0           | R/W-0 |
| —                           | —   |                  |                                                     | DT<   | 5:0>  |                 |       |
| bit 7                       |     |                  |                                                     |       |       |                 | bit 0 |
|                             |     |                  |                                                     |       |       |                 |       |
| Legend:                     |     |                  |                                                     |       |       |                 |       |
| R = Readable bit W = Writal |     |                  | ritable bit U = Unimplemented bit, read as '0'      |       |       |                 |       |
| -n = Value at I             | POR | '1' = Bit is set | '1' = Bit is set '0' = Bit is cleared x = Bit is un |       |       | x = Bit is unkr | nown  |
|                             |     |                  |                                                     |       |       |                 |       |

#### bit 15-6 Unimplemented: Read as '0'

bit 5-0 DT<5:0>: CCPx Dead-Time Select bits<sup>(1)</sup> 111111 = Inserts 63 dead-time delay periods between complementary output signals 11110 = Inserts 62 dead-time delay periods between complementary output signals ... 000010 = Inserts 2 dead-time delay periods between complementary output signals 000001 = Inserts 1 dead-time delay period between complementary output signals 000000 = Dead-time logic is disabled

Note 1: This register is implemented in the MCCP1 module only.

| R/W-0         | R/W-0                                                                                                                                 | R/W-0                                                                                                    | R/W-0                                                                                            | U-0                                                                                                                                                          | R/W-0                                                                             | R/W-0                                                         | R/W-0                      |  |  |  |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------|--|--|--|--|
| OETRIG        | OSCNT2                                                                                                                                | OSCNT1                                                                                                   | OSCNT0                                                                                           | —                                                                                                                                                            | OUTM2 <sup>(1)</sup>                                                              | OUTM1 <sup>(1)</sup>                                          | OUTM0 <sup>(1)</sup>       |  |  |  |  |
| bit 15        |                                                                                                                                       |                                                                                                          |                                                                                                  |                                                                                                                                                              |                                                                                   |                                                               | bit 8                      |  |  |  |  |
| U-0           | U-0                                                                                                                                   | R/W-0                                                                                                    | R/W-0                                                                                            | R/W-0                                                                                                                                                        | R/W-0                                                                             | R/W-0                                                         | R/W-0                      |  |  |  |  |
|               |                                                                                                                                       | POLACE                                                                                                   | POLBDF <sup>(1)</sup>                                                                            | PSSACE1                                                                                                                                                      | PSSACE0                                                                           | PSSBDF1 <sup>(1)</sup>                                        | PSSBDF0 <sup>(1)</sup>     |  |  |  |  |
| bit 7         |                                                                                                                                       | 1 0 2 10 2                                                                                               | 1 01001                                                                                          | 100/1021                                                                                                                                                     | 100,1020                                                                          |                                                               | bit (                      |  |  |  |  |
| Legend:       |                                                                                                                                       |                                                                                                          |                                                                                                  |                                                                                                                                                              |                                                                                   |                                                               |                            |  |  |  |  |
| R = Readable  | e bit                                                                                                                                 | W = Writable                                                                                             | bit                                                                                              | U = Unimplem                                                                                                                                                 | nented bit, read                                                                  | d as '0'                                                      |                            |  |  |  |  |
| -n = Value at |                                                                                                                                       | '1' = Bit is set                                                                                         |                                                                                                  | '0' = Bit is clea                                                                                                                                            |                                                                                   | x = Bit is unkn                                               | iown                       |  |  |  |  |
|               |                                                                                                                                       |                                                                                                          |                                                                                                  |                                                                                                                                                              |                                                                                   |                                                               |                            |  |  |  |  |
| bit 15        | 1 = For Trigg                                                                                                                         | Px Dead-Time<br>ered mode (TF<br>utput pin opera                                                         | RIGEN = 1): Mo                                                                                   | odule does not                                                                                                                                               | drive enabled o                                                                   | output pins until                                             | triggered                  |  |  |  |  |
| bit 14-12     | OSCNT<2:0>                                                                                                                            | : One-Shot Ev                                                                                            | ent Count bits                                                                                   |                                                                                                                                                              |                                                                                   |                                                               |                            |  |  |  |  |
|               | 110 = Extend<br>101 = Extend<br>100 = Extend<br>011 = Extend<br>010 = Extend<br>001 = Extend                                          | s one-shot eve<br>s one-shot eve<br>s one-shot eve<br>s one-shot eve<br>s one-shot eve<br>s one-shot eve | ent by 6 time ba<br>ent by 5 time ba<br>ent by 4 time ba<br>ent by 3 time ba<br>ent by 2 time ba | use periods (8 ti<br>lise periods (7 ti<br>lise periods (6 ti<br>lise periods (5 ti<br>lise periods (4 ti<br>lise periods (3 ti<br>lise period (2 tin<br>ent | me base perio<br>me base perio<br>me base perio<br>me base perio<br>me base perio | ds total)<br>ds total)<br>ds total)<br>ds total)<br>ds total) |                            |  |  |  |  |
| bit 11        | Unimplemen                                                                                                                            | ted: Read as '                                                                                           | כ'                                                                                               |                                                                                                                                                              |                                                                                   |                                                               |                            |  |  |  |  |
| bit 10-8      | OUTM<2:0>: PWMx Output Mode Control bits <sup>(1)</sup>                                                                               |                                                                                                          |                                                                                                  |                                                                                                                                                              |                                                                                   |                                                               |                            |  |  |  |  |
|               | 100 = Brush I<br>011 = Reserv<br>010 = Half-Br<br>001 = Push-P                                                                        | Scan mode<br>DC Output mod<br>DC Output mod                                                              | de, reverse<br>ode<br>le                                                                         |                                                                                                                                                              |                                                                                   |                                                               |                            |  |  |  |  |
| bit 7-6       | Unimplemen                                                                                                                            | ted: Read as '                                                                                           | כ'                                                                                               |                                                                                                                                                              |                                                                                   |                                                               |                            |  |  |  |  |
| bit 5         | <b>POLACE:</b> CCPx Output Pins, OCMxA, OCMxC and OCMxE, Polarity Control bit<br>1 = Output pin polarity is active-low                |                                                                                                          |                                                                                                  |                                                                                                                                                              |                                                                                   |                                                               |                            |  |  |  |  |
|               |                                                                                                                                       | n polarity is ac                                                                                         |                                                                                                  |                                                                                                                                                              |                                                                                   |                                                               |                            |  |  |  |  |
| bit 4         | <b>POLBDF:</b> CCPx Output Pins, OCMxB, OCMxD and OCMxF, Polarity Control bit <sup>(1)</sup><br>1 = Output pin polarity is active-low |                                                                                                          |                                                                                                  |                                                                                                                                                              |                                                                                   |                                                               |                            |  |  |  |  |
|               |                                                                                                                                       | n polarity is ac                                                                                         |                                                                                                  |                                                                                                                                                              |                                                                                   |                                                               |                            |  |  |  |  |
| bit 3-2       | PSSACE<1:0                                                                                                                            | >: PWMx Outp                                                                                             | out Pins, OCMx                                                                                   | A, OCMxC and                                                                                                                                                 | l OCMxE, Shu                                                                      | tdown State Co                                                | ntrol bits                 |  |  |  |  |
|               | 10 = Pins are                                                                                                                         | driven inactive                                                                                          |                                                                                                  | vn event occurs<br>own event occu<br>vent occurs                                                                                                             |                                                                                   |                                                               |                            |  |  |  |  |
| bit 1-0       | PSSBDF<1:0                                                                                                                            | >: PWMx Outp                                                                                             | out Pins, OCMx                                                                                   | B, OCMxD, an                                                                                                                                                 | d OCMxF, Shu                                                                      | tdown State Co                                                | ontrol bits <sup>(1)</sup> |  |  |  |  |
|               |                                                                                                                                       |                                                                                                          |                                                                                                  | vn event occurs                                                                                                                                              |                                                                                   |                                                               |                            |  |  |  |  |

## REGISTER 16-6: CCPxCON3H: CCPx CONTROL 3 HIGH REGISTERS

**Note 1:** These bits are implemented in the MCCP1 module only.

| U-0           | U-0                                                                                                                    | U-0                                | U-0            | U-0              | W-0               | U-0             | U-0            |  |  |  |  |
|---------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------|------------------|-------------------|-----------------|----------------|--|--|--|--|
| —             | —                                                                                                                      | —                                  | —              | —                | ICGARM            | _               | —              |  |  |  |  |
| bit 15        |                                                                                                                        |                                    |                |                  |                   |                 | bit 8          |  |  |  |  |
| <b>I</b>      |                                                                                                                        |                                    |                |                  |                   |                 |                |  |  |  |  |
| R-0           | W1-0                                                                                                                   | W1-0                               | R/C-0          | R/C-0            | R/C-0             | R/C-0           | R/C-0          |  |  |  |  |
| CCPTRIG       | TRSET                                                                                                                  | TRCLR                              | ASEVT          | SCEVT            | ICDIS             | ICOV            | ICBNE          |  |  |  |  |
| bit 7         |                                                                                                                        |                                    |                |                  |                   |                 | bit 0          |  |  |  |  |
| Legend:       |                                                                                                                        | C = Clearable                      | hit            | W = Writable     | hit               |                 |                |  |  |  |  |
| R = Readable  | e bit                                                                                                                  | W1 = Write '1                      |                |                  | nented bit, read  | ae 'O'          |                |  |  |  |  |
| -n = Value at |                                                                                                                        | '1' = Bit is set                   | Only bit       | '0' = Bit is cle |                   | x = Bit is unkr | own            |  |  |  |  |
|               |                                                                                                                        |                                    |                |                  | arca              |                 | lowin          |  |  |  |  |
| bit 15-11     | Unimplemen                                                                                                             | ted: Read as '                     | )'             |                  |                   |                 |                |  |  |  |  |
| bit 10        | -                                                                                                                      | out Capture Gat                    |                |                  |                   |                 |                |  |  |  |  |
|               |                                                                                                                        |                                    |                | Input Capture :  | x module for a    | one-shot gatin  | ig event when  |  |  |  |  |
|               |                                                                                                                        | = 01 or 10; rea                    |                |                  |                   |                 |                |  |  |  |  |
| bit 9-8       | -                                                                                                                      | ted: Read as '                     |                |                  |                   |                 |                |  |  |  |  |
| bit 7         |                                                                                                                        | CPTRIG: CCPx Trigger Status bit    |                |                  |                   |                 |                |  |  |  |  |
|               | <ol> <li>Timer has been triggered and is running</li> <li>Timer has not been triggered and is held in Reset</li> </ol> |                                    |                |                  |                   |                 |                |  |  |  |  |
| bit 6         |                                                                                                                        | x Trigger Set R                    |                |                  |                   |                 |                |  |  |  |  |
|               |                                                                                                                        |                                    | -              | r when TRIGE     | N = 1 (location a | lways reads a   | <b>s</b> '0'). |  |  |  |  |
| bit 5         | TRCLR: CCP                                                                                                             | x Trigger Clear                    | Request bit    |                  |                   |                 |                |  |  |  |  |
|               | Writes '1' to the                                                                                                      | his location to c                  | ancel the time | r trigger when   | TRIGEN = 1 (loo   | cation always i | reads as '0'). |  |  |  |  |
| bit 4         |                                                                                                                        | x Auto-Shutdov                     |                |                  |                   |                 |                |  |  |  |  |
|               | 1 = A shutdown event is in progress; CCPx outputs are in the shutdown state                                            |                                    |                |                  |                   |                 |                |  |  |  |  |
| bit 3         | <ul> <li>0 = CCPx outputs operate normally</li> <li>SCEVT: Single Edge Compare Event Status bit</li> </ul>             |                                    |                |                  |                   |                 |                |  |  |  |  |
| bit 5         | 1 = A single edge compare event has occurred                                                                           |                                    |                |                  |                   |                 |                |  |  |  |  |
|               | 0 = A single edge compare event has occurred                                                                           |                                    |                |                  |                   |                 |                |  |  |  |  |
| bit 2         | ICDIS: Input (                                                                                                         | Capture x Disal                    | ole bit        |                  |                   |                 |                |  |  |  |  |
|               | 1 = Event on Input Capture x pin (ICMx) does not generate a capture event                                              |                                    |                |                  |                   |                 |                |  |  |  |  |
|               |                                                                                                                        | Input Capture                      |                |                  | event             |                 |                |  |  |  |  |
| bit 1         | ICOV: Input Capture x Buffer Overflow Status bit<br>1 = The Input Capture x FIFO buffer has overflowed                 |                                    |                |                  |                   |                 |                |  |  |  |  |
|               |                                                                                                                        | t Capture x FIF<br>t Capture x FIF |                |                  |                   |                 |                |  |  |  |  |
| bit 0         | -                                                                                                                      | Capture x Buff                     |                | -                |                   |                 |                |  |  |  |  |
|               | =                                                                                                                      | apture x buffer                    |                | able             |                   |                 |                |  |  |  |  |
|               | 0 = Input Ca                                                                                                           | apture x buffer                    | is empty       |                  |                   |                 |                |  |  |  |  |

## REGISTER 16-7: CCPxSTATL: CCPx STATUS REGISTER LOW

| U-0          | U-0                                                                                                                                                                 | U-0              | U-0              | U-0               | U-0               | U-0             | U-0   |  |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|-------------------|-------------------|-----------------|-------|--|--|--|
| —            | —                                                                                                                                                                   | —                | —                | —                 | —                 | —               | —     |  |  |  |
| bit 15       |                                                                                                                                                                     |                  |                  |                   |                   |                 | bit 8 |  |  |  |
|              |                                                                                                                                                                     |                  |                  |                   |                   |                 |       |  |  |  |
| U-0          | U-0                                                                                                                                                                 | U-0              | R-0              | R-0               | R-0               | R-0             | R-0   |  |  |  |
| —            |                                                                                                                                                                     | <u> </u>         | PRLWIP           | TMRHWIP           | TMRLWIP           | RBWIP           | RAWIP |  |  |  |
| bit 7        |                                                                                                                                                                     |                  |                  |                   |                   |                 | bit 0 |  |  |  |
|              |                                                                                                                                                                     |                  |                  |                   |                   |                 |       |  |  |  |
| Legend:      |                                                                                                                                                                     |                  |                  |                   |                   |                 |       |  |  |  |
| R = Readal   | ole bit                                                                                                                                                             | W = Writable     | bit              | U = Unimplem      | nented bit, read  | l as '0'        |       |  |  |  |
| -n = Value a | at POR                                                                                                                                                              | '1' = Bit is set |                  | '0' = Bit is clea | ared              | x = Bit is unkr | nown  |  |  |  |
|              |                                                                                                                                                                     |                  |                  |                   |                   |                 |       |  |  |  |
| bit 15-5     | Unimplement                                                                                                                                                         | ted: Read as '   | )'               |                   |                   |                 |       |  |  |  |
| bit 4        | PRLWIP: CCI                                                                                                                                                         | PxPRL Write in   | Progress Stat    | us bit            |                   |                 |       |  |  |  |
|              |                                                                                                                                                                     |                  |                  | h the buffered o  | contents is in p  | rogress         |       |  |  |  |
|              |                                                                                                                                                                     |                  | •                | not in progress   |                   |                 |       |  |  |  |
| bit 3        |                                                                                                                                                                     | CPxTMRH Wri      | •                |                   |                   |                 |       |  |  |  |
|              | <ol> <li>An update to the CCPxTMRH register with the buffered contents is in progress</li> <li>An update to the CCPxTMRH register is not in progress.</li> </ol>    |                  |                  |                   |                   |                 |       |  |  |  |
| bit 2        |                                                                                                                                                                     | CPxTMRL Writ     | •                |                   | 55.               |                 |       |  |  |  |
|              |                                                                                                                                                                     |                  | •                | with the buffered | l contents is in  | progress        |       |  |  |  |
|              |                                                                                                                                                                     |                  |                  | s not in progres  |                   | progreeo        |       |  |  |  |
| bit 1        | RBWIP: CCP                                                                                                                                                          | xRB Write in P   | rogress Status   | bit               |                   |                 |       |  |  |  |
|              | 1 = An update                                                                                                                                                       | e to the CCPxR   | B register with  | the buffered co   | ontents is in pro | ogress          |       |  |  |  |
|              | 0 = An update                                                                                                                                                       | e to the CCPxR   | B register is no | ot in progress    |                   |                 |       |  |  |  |
| bit 0        | RAWIP: CCP:                                                                                                                                                         | xRA Write in P   | rogress Status   | bit               |                   |                 |       |  |  |  |
|              | <ul> <li>1 = An update to the CCPxRA register with the buffered contents is in progress</li> <li>0 = An update to the CCPxRA register is not in progress</li> </ul> |                  |                  |                   |                   |                 |       |  |  |  |
|              | 0 = An update                                                                                                                                                       | e to the CCPxR   | A register is no | ot in progress    |                   |                 |       |  |  |  |
|              |                                                                                                                                                                     |                  |                  |                   |                   |                 |       |  |  |  |

## REGISTER 16-8: CCPxSTATH: CCPx STATUS REGISTER HIGH

NOTES:

# 17.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of the PIC24FJ256GA705 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33/PIC24 Family Reference Manual", "Serial Peripheral Interface (SPI) with Audio Codec Support" (DS70005136), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The SPI module is compatible with the Motorola<sup>®</sup> SPI and SIOP interfaces. All devices in the PIC24FJ256GA705 family include three SPI modules.

The module supports operation in two buffer modes. In Standard Buffer mode, data is shifted through a single serial buffer. In Enhanced Buffer mode, data is shifted through a FIFO buffer. The FIFO level depends on the configured mode.

Variable length data can be transmitted and received from 2 to 32 bits.

| Note: | Do not perform Read-Modify-Write opera-      |
|-------|----------------------------------------------|
|       | tions (such as bit-oriented instructions) on |
|       | the SPIxBUF register in either Standard or   |
|       | Enhanced Buffer mode.                        |

The module also supports a basic framed SPI protocol while operating in either Master or Slave mode. A total of four framed SPI configurations are supported.

The module also supports Audio modes. Four different Audio modes are available.

- I<sup>2</sup>S mode
- Left Justified mode
- · Right Justified mode
- PCM/DSP mode

In each of these modes, the serial clock is free-running and audio data is always transferred.

If an audio protocol data transfer takes place between two devices, then usually one device is the master and the other is the slave. However, audio data can be transferred between two slaves. Because the audio protocols require free-running clocks, the master can be a third party controller. In either case, the master generates two free-running clocks: SCKx and LRC (Left, Right Channel Clock/SSx/FSYNC). The SPI serial interface consists of four pins:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPI module can be configured to operate using 2, 3 or 4 pins. In the 3-pin mode,  $\overline{SSx}$  is not used. In the 2-pin mode, both SDOx and  $\overline{SSx}$  are not used.

The SPI module has the ability to generate three interrupts reflecting the events that occur during the data communication. The following types of interrupts can be generated:

- 1. Receive interrupts are signalled by SPIxRXIF. This event occurs when:
  - RX watermark interrupt
  - SPIROV = 1
  - SPIRBF = 1
  - SPIRBE = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

- 2. Transmit interrupts are signalled by SPIxTXIF. This event occurs when:
  - TX watermark interrupt
  - SPITUR = 1
  - SPITBF = 1
  - SPITBE = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

- 3. General interrupts are signalled by SPIxIF. This event occurs when
  - FRMERR = 1
  - SPIBUSY = 1
  - SRMT = 1

provided the respective mask bits are enabled in SPIxIMSKL/H.

A block diagram of the module in Enhanced Buffer mode is shown in Figure 17-1.

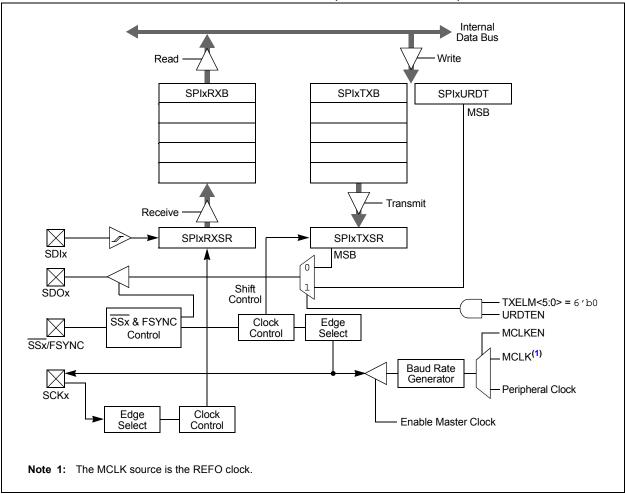
Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1, SPI2 or SPI3. Special Function Registers will follow a similar notation. For example, SPIxCON1 and SPIxCON2 refer to the control registers for any of the three SPI modules.

## 17.1 Master Mode Operation

Perform the following steps to set up the SPIx module for Master mode operation:

- 1. Disable the SPIx interrupts in the respective IECx register.
- 2. Stop and reset the SPIx module by clearing the SPIEN bit.
- 3. Clear the receive buffer.
- Clear the ENHBUF bit (SPIxCON1L<0>) if using Standard Buffer mode or set the bit if using Enhanced Buffer mode.
- 5. If SPIx interrupts are not going to be used, skip this step. Otherwise, the following additional steps are performed:
  - a) Clear the SPIx interrupt flags/events in the respective IFSx register.
  - b) Write the SPIx interrupt priority and sub-priority bits in the respective IPCx register.
  - c) Set the SPIx interrupt enable bits in the respective IECx register.
- 6. Write the Baud Rate register, SPIxBRGL.
- 7. Clear the SPIROV bit (SPIxSTATL<6>).
- 8. Write the desired settings to the SPIxCON1L register with MSTEN (SPIxCON1L<5>) = 1.
- Enable SPI operation by setting the SPIEN bit (SPIxCON1L<15>).
- 10. Write the data to be transmitted to the SPIxBUFL and SPIxBUFH registers. Transmission (and reception) will start as soon as data is written to the SPIxBUFL/H registers.

## 17.2 Slave Mode Operation


The following steps are used to set up the SPIx module for the Slave mode of operation:

- 1. If using interrupts, disable the SPIx interrupts in the respective IECx register.
- 2. Stop and reset the SPIx module by clearing the SPIEN bit.
- 3. Clear the receive buffer.
- Clear the ENHBUF bit (SPIxCON1L<0>) if using Standard Buffer mode or set the bit if using Enhanced Buffer mode.
- 5. If using interrupts, the following additional steps are performed:
  - a) Clear the SPIx interrupt flags/events in the respective IFSx register.
  - b) Write the SPIx interrupt priority and sub-priority bits in the respective IPCx register.
  - c) Set the SPIx interrupt enable bits in the respective IECx register.

- 6. Clear the SPIROV bit (SPIxSTATL<6>).
- 7. Write the desired settings to the SPIxCON1L register with MSTEN (SPIxCON1L<5>) = 0.
- Enable SPI operation by setting the SPIEN bit (SPIxCON1L<15>).
- 9. Transmission (and reception) will start as soon as the master provides the serial clock.

The following additional features are provided in Slave mode:

- Slave Select Synchronization:
- The SSx pin allows a Synchronous Slave mode. If the SSEN bit (SPIxCON1L<7>) is set, transmission and reception are enabled in Slave mode only if the SSx pin is driven to a low state. The port output or other peripheral outputs must not be driven in order to allow the SSx pin to function as an input. If the SSEN bit is set and the SSx pin is driven high, the SDOx pin is no longer driven and will tri-state, even if the module is in the middle of a transmission. An aborted transmission will be tried again the next time the SSx pin is driven low using the data held in the SPIxTXB register. If the SSEN bit is not set, the SSx pin does not affect the module operation in Slave mode.
- SPITBE Status Flag Operation: The SPITBE bit (SPIxSTATL<3>) has a different function in the Slave mode of operation. The following describes the function of SPITBE for various settings of the Slave mode of operation:
  - If SSEN (SPIxCON1L<7>) is cleared, the SPITBE bit is cleared when SPIxBUF is loaded by the user code. It is set when the module transfers SPIxTXB to SPIxTXSR. This is similar to the SPITBE bit function in Master mode.
  - If SSEN is set, SPITBE is cleared when SPIxBUF is loaded by the user code. However, it is set only when the SPIx module completes data transmission. A transmission will be aborted when the SSx pin goes high and may be retried at a later time. So, each data word is held in SPIxTXB until all bits are transmitted to the receiver.



### FIGURE 17-1: SPIX MODULE BLOCK DIAGRAM (ENHANCED MODE)

### 17.3 Audio Mode Operation

To initialize the SPIx module for Audio mode, follow the steps to initialize it for Master/Slave mode, but also set the AUDEN bit (SPIxCON1H<15>). In Master+Audio mode:

- This mode enables the device to generate SCKx and LRC pulses as long as the SPIEN bit (SPIxCON1L<15>) = 1.
- The SPIx module generates LRC and SCKx continuously in all cases, regardless of the transmit data, while in Master mode.
- The SPIx module drives the leading edge of LRC and SCKx within 1 SCKx period, and the serial data shifts in and out continuously, even when the TX FIFO is empty.

In Slave+Audio mode:

- This mode enables the device to receive SCKx and LRC pulses as long as the SPIEN bit (SPIxCON1L<15>) = 1.
- The SPIx module drives zeros out of SDOx, but does not shift data out or in (SDIx) until the module receives the LRC (i.e., the edge that precedes the left channel).
- Once the module receives the leading edge of LRC, it starts receiving data if DISSDI (SPIxCON1L<4>) = 0 and the serial data shifts out continuously, even when the TX FIFO is empty.

## 17.4 SPI Control Registers

## REGISTER 17-1: SPIxCON1L: SPIx CONTROL REGISTER 1 LOW

| REGISTER            | 17-1: SPIXC                              | UNIL: SPIX       | CONTROL        | REGISTER               |                                       |                |                    |
|---------------------|------------------------------------------|------------------|----------------|------------------------|---------------------------------------|----------------|--------------------|
| R/W-0               | U-0                                      | R/W-0            | R/W-0          | R/W-0                  | R/W-0                                 | R/W-0          | R/W-0              |
| SPIEN               | —                                        | SPISIDL          | DISSDO         | MODE32 <sup>(1,4</sup> | <sup>4)</sup> MODE16 <sup>(1,4)</sup> | SMP            | CKE <sup>(1)</sup> |
| bit 15              |                                          |                  |                |                        |                                       |                | bit 8              |
|                     | <b>D</b> # 44 A                          |                  | 5444           | 5444.0                 | <b>D</b> # 44 A                       | 5.444          |                    |
| R/W-0               | R/W-0                                    | R/W-0            | R/W-0          | R/W-0                  | R/W-0                                 | R/W-0          | R/W-0              |
| SSEN <sup>(2)</sup> | CKP                                      | MSTEN            | DISSDI         | DISSCK                 | MCLKEN <sup>(3)</sup>                 | SPIFE          | ENHBUF             |
| bit 7               |                                          |                  |                |                        |                                       |                | bit C              |
| Legend:             |                                          |                  |                |                        |                                       |                |                    |
| R = Readab          | le bit                                   | W = Writable I   | oit            | U = Unimple            | mented bit, read                      | as '0'         |                    |
| -n = Value a        | t POR                                    | '1' = Bit is set |                | ʻ0' = Bit is cl        |                                       | x = Bit is unk | nown               |
| bit 15              | SPIEN: SPIX (                            | )n hit           |                |                        |                                       |                |                    |
| DIL 15              | 1 = Enables m                            |                  |                |                        |                                       |                |                    |
|                     |                                          |                  | odule disable  | s clocks disa          | ables interrupt ev                    | ent generatio  | n allows SEF       |
|                     | modificatio                              |                  |                |                        |                                       | ent generatie  | ,                  |
| bit 14              | Unimplement                              | ed: Read as 'd   | )'             |                        |                                       |                |                    |
| bit 13              | SPISIDL: SPIX                            | Stop in Idle M   | lode bit       |                        |                                       |                |                    |
|                     | 1 = Halts in CF                          |                  |                |                        |                                       |                |                    |
|                     | 0 = Continues                            | to operate in (  | CPU Idle mod   | е                      |                                       |                |                    |
| bit 12              | DISSDO: Disa                             | ble SDOx Out     | put Port bit   |                        |                                       |                |                    |
|                     | 1 = SDOx pin i<br>0 = SDOx pin i         |                  |                | in is controlle        | d by the port funct                   | ion            |                    |
| bit 11-10           | MODE<32,16>                              | •                |                | 4)                     |                                       |                |                    |
|                     | AUDEN = 0:                               |                  |                |                        |                                       |                |                    |
|                     | MODE32                                   | MODE16           | COMMUNI        |                        | FO DEPTH                              |                |                    |
|                     | 1                                        | x                | 32-Bit         | 8                      |                                       |                |                    |
|                     | 0                                        | 1                | 16-Bit         | 16                     |                                       |                |                    |
|                     | 0                                        | 0                | 8-Bit          | 32                     |                                       |                |                    |
|                     | $\frac{\text{AUDEN} = 1}{\text{MODE22}}$ |                  |                |                        |                                       |                |                    |
|                     | MODE32                                   |                  | COMMUNI        |                        | 32-Bit Channel/6                      | 1 Bit Eramo    |                    |
|                     | 1                                        | 1<br>0           |                |                        | 32-Bit Channel/6                      |                |                    |
|                     | 0                                        | 1                |                |                        | 32-Bit Channel/6                      |                |                    |
|                     | 0                                        | 0                |                |                        | 16-Bit Channel/3                      |                |                    |
| bit 9               | SMP: SPIx Da                             | ta Input Samp    | le Phase bit   |                        |                                       |                |                    |
|                     | Master Mode:                             |                  |                |                        |                                       |                |                    |
|                     | 1 = Input data                           | is sampled at    | the end of dat | a output time          |                                       |                |                    |
|                     | 0 = Input data                           | is sampled at    | the middle of  | data output tin        | ne                                    |                |                    |
|                     | Slave Mode:                              |                  |                |                        |                                       |                |                    |
|                     | Input data is al                         | ways sampled     | at the middle  | e of data outpu        | t time, regardless                    | of the SMP s   | setting.           |
| Note 1: V           | Vhen AUDEN = 1                           | . this module f  | unctions as if | CKE = 0. rega          | ardless of its actua                  | al value.      |                    |
|                     | When FRMEN = $1$                         |                  |                | 0,10gt                 |                                       |                |                    |
|                     | ICLKEN can only                          |                  |                | bit = ∩                |                                       |                |                    |
|                     | -                                        |                  |                |                        | follows the FRMS                      | YPW hit        |                    |
|                     |                                          |                  |                |                        |                                       |                |                    |

5: The MCLK source is the REFO clock.

### REGISTER 17-1: SPIx CONTROL REGISTER 1 LOW (CONTINUED)

| bit 8 |    | CKE: SPIx Clock Edge Select bit <sup>(1)</sup>                                                                                                                                                                                   |
|-------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |    | 1 = Transmit happens on transition from active clock state to Idle clock state                                                                                                                                                   |
|       |    | 0 = Transmit happens on transition from Idle clock state to active clock state                                                                                                                                                   |
| bit 7 |    | SSEN: Slave Select Enable bit (Slave mode) <sup>(2)</sup>                                                                                                                                                                        |
|       |    | 1 = $\overline{SSx}$ pin is used by the macro in Slave mode; $\overline{SSx}$ pin is used as the slave select input 0 = $\overline{SSx}$ pin is not used by the macro ( $\overline{SSx}$ pin will be controlled by the port I/O) |
| bit 6 |    | CKP: SPIx Clock Polarity Select bit                                                                                                                                                                                              |
|       |    | <ul> <li>1 = Idle state for clock is a high level; active state is a low level</li> <li>0 = Idle state for clock is a low level; active state is a high level</li> </ul>                                                         |
| bit 5 |    | MSTEN: Master Mode Enable bit                                                                                                                                                                                                    |
|       |    | 1 = Master mode                                                                                                                                                                                                                  |
|       |    | 0 = Slave mode                                                                                                                                                                                                                   |
| bit 4 |    | DISSDI: Disable SDIx Input Port bit                                                                                                                                                                                              |
|       |    | <ul> <li>1 = SDIx pin is not used by the module; pin is controlled by the port function</li> <li>0 = SDIx pin is controlled by the module</li> </ul>                                                                             |
| bit 3 |    | DISSCK: Disable SCKx Output Port bit                                                                                                                                                                                             |
|       |    | <ul> <li>1 = SCKx pin is not used by the module; pin is controlled by the port function</li> <li>0 = SCKx pin is controlled by the module</li> </ul>                                                                             |
| bit 2 |    | MCLKEN: Master Clock Enable bit <sup>(3)</sup>                                                                                                                                                                                   |
|       |    | 1 = MCLK is used by the BRG <sup>(5)</sup>                                                                                                                                                                                       |
|       |    | 0 = Peripheral Clock is used by the BRG                                                                                                                                                                                          |
| bit 1 |    | SPIFE: Frame Sync Pulse Edge Select bit                                                                                                                                                                                          |
|       |    | <ul> <li>1 = Frame Sync pulse (Idle-to-active edge) coincides with the first bit clock</li> <li>0 = Frame Sync pulse (Idle-to-active edge) precedes the first bit clock</li> </ul>                                               |
| bit 0 |    | ENHBUF: Enhanced Buffer Mode Enable bit                                                                                                                                                                                          |
|       |    | <ol> <li>1 = Enhanced Buffer mode is enabled</li> <li>0 = Enhanced Buffer mode is disabled</li> </ol>                                                                                                                            |
| Note  | 1: | When AUDEN = 1, this module functions as if CKE = 0, regardless of its actual value.                                                                                                                                             |
|       | 2: | When FRMEN = 1. SSEN is not used.                                                                                                                                                                                                |

- 3: MCLKEN can only be written when the SPIEN bit = 0.
- 4: This channel is not meaningful for DSP/PCM mode as LRC follows the FRMSYPW bit.
- **5:** The MCLK source is the REFO clock.

| R/W-0                | R/W-0                                             | R/W-0                                                                                | R/W-0                                         | R/W-0                                                         | R/W-0                 | R/W-0                  | R/W-0           |  |  |  |  |
|----------------------|---------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------|-----------------------|------------------------|-----------------|--|--|--|--|
| AUDEN <sup>(1)</sup> | SPISGNEXT                                         | IGNROV                                                                               | IGNTUR                                        | AUDMONO <sup>(2)</sup>                                        | URDTEN <sup>(3)</sup> | AUDMOD1 <sup>(4)</sup> | AUDMOD0(4       |  |  |  |  |
| bit 15               | •                                                 |                                                                                      |                                               | · · · · ·                                                     |                       |                        | bit 8           |  |  |  |  |
|                      |                                                   |                                                                                      |                                               |                                                               |                       |                        |                 |  |  |  |  |
| R/W-0                | R/W-0                                             | R/W-0                                                                                | R/W-0                                         | R/W-0                                                         | R/W-0                 | R/W-0                  | R/W-0           |  |  |  |  |
| FRMEN                | FRMSYNC                                           | FRMPOL                                                                               | MSSEN                                         | FRMSYPW                                                       | FRMCNT2               | FRMCNT1                | FRMCNT0         |  |  |  |  |
| bit 7                |                                                   |                                                                                      |                                               | -                                                             |                       |                        | bit C           |  |  |  |  |
|                      |                                                   |                                                                                      |                                               |                                                               |                       |                        |                 |  |  |  |  |
| Legend:              |                                                   |                                                                                      |                                               |                                                               |                       |                        |                 |  |  |  |  |
| R = Readal           | ble bit                                           | W = Writable                                                                         | oit                                           | U = Unimpleme                                                 | ented bit, read       | as '0'                 |                 |  |  |  |  |
| -n = Value a         | at POR                                            | '1' = Bit is set                                                                     |                                               | '0' = Bit is clear                                            | red                   | x = Bit is unkr        | iown            |  |  |  |  |
| bit 15               | 1 = Audio pro<br>and this r<br>SMP = 0,           | module functio<br>regardless of t                                                    | d; MSTEN co<br>ns as if FRM<br>heir actual va | ntrols the directio<br>EN = 1, FRMSY                          |                       |                        |                 |  |  |  |  |
|                      | •                                                 | tocol is disable                                                                     |                                               |                                                               |                       |                        |                 |  |  |  |  |
| bit 14               |                                                   | SPISGNEXT: SPIx Sign-Extend RX FIFO Read Data Enable bit                             |                                               |                                                               |                       |                        |                 |  |  |  |  |
|                      |                                                   | 1 = Data from RX FIFO is sign-extended<br>0 = Data from RX FIFO is not sign-extended |                                               |                                                               |                       |                        |                 |  |  |  |  |
| bit 13               |                                                   | ore Receive Ov                                                                       | 0                                             | 50                                                            |                       |                        |                 |  |  |  |  |
|                      | 1 = A Receive<br>by the rec                       | e Overflow (RC                                                                       | 0V) is NOT a                                  | critical error; duri                                          | ng ROV, data          | in the FIFO is r       | not overwritter |  |  |  |  |
| bit 12               |                                                   | ore Transmit Ur                                                                      |                                               | ·                                                             |                       |                        |                 |  |  |  |  |
|                      | 1 = A Transm<br>until the S                       |                                                                                      | UR) is NOT a<br>empty                         | r critical error and                                          | d data indicate       | ed by URDTEN           | is transmitted  |  |  |  |  |
| bit 11               |                                                   | Audio Data For                                                                       |                                               |                                                               |                       |                        |                 |  |  |  |  |
|                      | 1 = Audio data<br>0 = Audio data                  |                                                                                      | each data wo                                  | rd is transmitted                                             | on both left ar       | nd right channel       | s)              |  |  |  |  |
| bit 10               | URDTEN: Tra                                       | nsmit Underru                                                                        | n Data Enable                                 | e bit <sup>(3)</sup>                                          |                       |                        |                 |  |  |  |  |
|                      |                                                   |                                                                                      |                                               | egister during Tra<br>g Transmit Under                        |                       |                        |                 |  |  |  |  |
| bit 9-8              | AUDMOD<1:0                                        | 0>: Audio Proto                                                                      | col Mode Sel                                  | ection bits <sup>(4)</sup>                                    |                       |                        |                 |  |  |  |  |
|                      | 01 = Left Just                                    | stified mode: T<br>ified mode: Thi                                                   | s module fund                                 | nctions as if SPIF<br>ctions as if SPIFE<br>f SPIFE = 0, rega | = 1, regardle         | ss of its actual       |                 |  |  |  |  |
| bit 7                |                                                   | ned SPIx Supp                                                                        |                                               | ·                                                             |                       |                        |                 |  |  |  |  |
|                      |                                                   | PIx support is e<br>PIx support is e                                                 |                                               | pin is used as the                                            | e FSYNC inpu          | t/output)              |                 |  |  |  |  |
| 2:                   | AUDEN can only<br>AUDMONO can o<br>URDTEN is only | only be written                                                                      | when the SPI                                  |                                                               | only valid for        | AUDEN = 1.             |                 |  |  |  |  |
| 4:                   | AUDMOD<1:0> b                                     | oits can only be                                                                     | written when                                  | the SPIEN bit =                                               | 0 and are only        | valid when AL          | JDEN = 1.       |  |  |  |  |

#### REGISTER 17-2: SPIxCON1H: SPIx CONTROL REGISTER 1 HIGH

### REGISTER 17-2: SPIxCON1H: SPIx CONTROL REGISTER 1 HIGH (CONTINUED)

| bit 6   | FRMSYNC: Frame Sync Pulse Direction Control bit                                                                                                                                    |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | 1 = Frame Sync pulse input (slave)                                                                                                                                                 |
|         | 0 = Frame Sync pulse output (master)                                                                                                                                               |
| bit 5   | FRMPOL: Frame Sync/Slave Select Polarity bit                                                                                                                                       |
|         | 1 = Frame Sync pulse/slave select is active-high                                                                                                                                   |
|         | 0 = Frame Sync pulse/slave select is active-low                                                                                                                                    |
| bit 4   | MSSEN: Master Mode Slave Select Enable bit                                                                                                                                         |
|         | <ul> <li>SPIx slave select support is enabled with polarity determined by FRMPOL (SSx pin is automatically<br/>driven during transmission in Master mode)</li> </ul>               |
|         | 0 = SPIx slave select support is disabled (SSx pin will be controlled by port IO)                                                                                                  |
| bit 3   | FRMSYPW: Frame Sync Pulse-Width bit                                                                                                                                                |
|         | <ul> <li>1 = Frame Sync pulse is one serial word length wide (as defined by MODE&lt;32,16&gt;/WLENGTH&lt;4:0&gt;)</li> <li>0 = Frame Sync pulse is one clock (SCK) wide</li> </ul> |
| bit 2-0 | FRMCNT<2:0>: Frame Sync Pulse Counter bits                                                                                                                                         |
|         | Controls the number of serial words transmitted per Sync pulse.                                                                                                                    |
|         | 111 = Reserved                                                                                                                                                                     |
|         | 110 = Reserved                                                                                                                                                                     |
|         | 101 = Generates a Frame Sync pulse on every 32 serial words                                                                                                                        |
|         | 100 = Generates a Frame Sync pulse on every 16 serial words                                                                                                                        |
|         | 011 = Generates a Frame Sync pulse on every 8 serial words                                                                                                                         |
|         | 010 = Generates a Frame Sync pulse on every 4 serial words                                                                                                                         |
|         | 001 = Generates a Frame Sync pulse on every 2 serial words (value used by audio protocols)                                                                                         |
|         | 000 = Generates a Frame Sync pulse on each serial word                                                                                                                             |

- **Note 1:** AUDEN can only be written when the SPIEN bit = 0.
  - **2:** AUDMONO can only be written when the SPIEN bit = 0 and is only valid for AUDEN = 1.
  - **3:** URDTEN is only valid when IGNTUR = 1.
  - **4:** AUDMOD<1:0> bits can only be written when the SPIEN bit = 0 and are only valid when AUDEN = 1. When NOT in PCM/DSP mode, this module functions as if FRMSYPW = 1, regardless of its actual value.

### REGISTER 17-3: SPIxCON2L: SPIx CONTROL REGISTER 2 LOW

| U-0          | U-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U-0              | U-0           | U-0                   | U-0                      | U-0             | U-0   |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|-----------------------|--------------------------|-----------------|-------|
|              | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                | _             | —                     | _                        | —               | —     |
| bit 15       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |               |                       |                          |                 | bit 8 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |               |                       |                          |                 |       |
| U-0          | U-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U-0              | R/W-0         | R/W-0                 | R/W-0                    | R/W-0           | R/W-0 |
| _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                |               | W                     | _ENGTH<4:0> <sup>(</sup> | (1,2)           |       |
| bit 7        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |               |                       |                          |                 | bit 0 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |               |                       |                          |                 |       |
| Legend:      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |               |                       |                          |                 |       |
| R = Readab   | ole bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W = Writable     | bit           | U = Unimplen          | nented bit, reac         | l as '0'        |       |
| -n = Value a | at POR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | '1' = Bit is set |               | '0' = Bit is cle      | ared                     | x = Bit is unkr | nown  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |               |                       |                          |                 |       |
| bit 15-5     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ited: Read as '  |               | (1.0)                 |                          |                 |       |
| bit 4-0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4:0>: Variable V | Vord Length b | bits <sup>(1,2)</sup> |                          |                 |       |
|              | 11111 = 32-k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |               |                       |                          |                 |       |
|              | 11110 = 31-k<br>11101 = 30-k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |               |                       |                          |                 |       |
|              | 11100 <b>= 29-</b> k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |               |                       |                          |                 |       |
|              | 11011 <b>= 28-</b> k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |               |                       |                          |                 |       |
|              | 11010 <b>= 27-</b> k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |               |                       |                          |                 |       |
|              | 11001 <b>= 26-</b> k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oit data         |               |                       |                          |                 |       |
|              | 11000 <b>= 25-</b> k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |               |                       |                          |                 |       |
|              | 10111 <b>= 24</b> -k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |               |                       |                          |                 |       |
|              | 10110 = 23-k<br>10101 = 22-k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |               |                       |                          |                 |       |
|              | 10101 - 22 - 10101 - 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 10100 = 21 - 1000 = 21 - 10000 = 21 - 10000 = 21 - 10000 = 21 - 100000 = 21 - 1000000000000000000000000000000000 |                  |               |                       |                          |                 |       |
|              | 10011 = 20-k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |               |                       |                          |                 |       |
|              | 10010 <b>= 19-</b> k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |               |                       |                          |                 |       |
|              | 10001 <b>= 18-</b> k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |               |                       |                          |                 |       |
|              | 10000 = <b>17</b> -k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |               |                       |                          |                 |       |
|              | 01111 = <b>16</b> -k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |               |                       |                          |                 |       |
|              | 01110 = 15-k<br>01101 = 14-k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |               |                       |                          |                 |       |
|              | 01100 = <b>13</b> -k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |               |                       |                          |                 |       |
|              | 01011 = <b>12-</b> k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |               |                       |                          |                 |       |
|              | 01010 <b>= 11-</b> b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oit data         |               |                       |                          |                 |       |
|              | 01001 = 10-k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |               |                       |                          |                 |       |
|              | 01000 <b>= 9-b</b> i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |               |                       |                          |                 |       |
|              | 00111 = 8-bi<br>00110 = 7-bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |               |                       |                          |                 |       |
|              | 00110 = 7-bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |               |                       |                          |                 |       |
|              | 00101 <b>– 0-b</b> i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |               |                       |                          |                 |       |
|              | 00011 = <b>4</b> -bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |               |                       |                          |                 |       |
|              | 00010 <b>= 3-b</b> i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |               |                       |                          |                 |       |
|              | 00001 <b>= 2-b</b> i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |               |                       |                          |                 |       |
|              | 00000 <b>= See</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MODE<32,16>      | bits in SPIxC | CON1L<11:10>          |                          |                 |       |

- **Note 1:** These bits are effective when AUDEN = 0 only.
  - 2: Varying the length by changing these bits does not affect the depth of the TX/RX FIFO.

#### REGISTER 17-4: SPIx STATL: SPIx STATUS REGISTER LOW

| U-0    | U-0 | U-0 | R/C-0, HS | R-0, HSC | U-0 | U-0 | R-0, HSC              |
|--------|-----|-----|-----------|----------|-----|-----|-----------------------|
| —      | —   | _   | FRMERR    | SPIBUSY  | —   | —   | SPITUR <sup>(1)</sup> |
| bit 15 |     |     |           |          |     |     | bit 8                 |

| R-0, HSC | R/C-0, HS | R-1, HSC | U-0 | R-1, HSC | U-0 | R-0, HSC | R-0, HSC |
|----------|-----------|----------|-----|----------|-----|----------|----------|
| SRMT     | SPIROV    | SPIRBE   |     | SPITBE   | —   | SPITBF   | SPIRBF   |
| bit 7    |           |          |     |          |     |          | bit 0    |

| Legend:           | C = Clearable bit | HS = Hardware Settable bit         | x = Bit is unknown                    |  |  |
|-------------------|-------------------|------------------------------------|---------------------------------------|--|--|
| R = Readable bit  | W = Writable bit  | '0' = Bit is cleared               | HSC = Hardware Settable/Clearable bit |  |  |
| -n = Value at POR | '1' = Bit is set  | U = Unimplemented bit, read as '0' |                                       |  |  |

| bit 15-13 | Unimplemented: Read as '0'                                                                                                                                                                                          |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 12    | FRMERR: SPIx Frame Error Status bit                                                                                                                                                                                 |
|           | <ul><li>1 = Frame error is detected</li><li>0 = No frame error is detected</li></ul>                                                                                                                                |
| bit 11    | SPIBUSY: SPIx Activity Status bit                                                                                                                                                                                   |
|           | <ul><li>1 = Module is currently busy with some transactions</li><li>0 = No ongoing transactions (at time of read)</li></ul>                                                                                         |
| bit 10-9  | Unimplemented: Read as '0'                                                                                                                                                                                          |
| bit 8     | SPITUR: SPIx Transmit Underrun Status bit <sup>(1)</sup>                                                                                                                                                            |
|           | <ul> <li>1 = Transmit buffer has encountered a Transmit Underrun condition</li> <li>0 = Transmit buffer does not have a Transmit Underrun condition</li> </ul>                                                      |
| bit 7     | SRMT: Shift Register Empty Status bit                                                                                                                                                                               |
|           | <ul> <li>1 = No current or pending transactions (i.e., neither SPIxTXB or SPIxTXSR contains data to transmit)</li> <li>0 = Current or pending transactions</li> </ul>                                               |
| bit 6     | SPIROV: SPIx Receive Overflow Status bit                                                                                                                                                                            |
|           | <ul> <li>1 = A new byte/half-word/word has been completely received when the SPIxRXB is full</li> <li>0 = No overflow</li> </ul>                                                                                    |
| bit 5     | SPIRBE: SPIx RX Buffer Empty Status bit                                                                                                                                                                             |
|           | 1 = RX buffer is empty<br>0 = RX buffer is not empty                                                                                                                                                                |
|           | Standard Buffer Mode:<br>Automatically set in hardware when SPIxBUF is read from, reading SPIxRXB. Automatically cleared in<br>hardware when SPIx transfers data from SPIxRXSR to SPIxRXB.<br>Enhanced Buffer Mode: |
|           | Indicates RXELM<5:0> = $6'$ b000000.                                                                                                                                                                                |
| bit 4     | Unimplemented: Read as '0'                                                                                                                                                                                          |
| bit 3     | SPITBE: SPIx Transmit Buffer Empty Status bit                                                                                                                                                                       |
|           | 1 = SPIxTXB is empty<br>0 = SPIxTXB is not empty                                                                                                                                                                    |
|           | <u>Standard Buffer Mode:</u><br>Automatically set in hardware when SPIx transfers data from SPIxTXB to SPIxTXSR. Automatically cleared in hardware when SPIxBUF is written, loading SPIxTXB.                        |
|           | Enhanced Buffer Mode:<br>Indicates TXELM<5:0> = 6'b000000.                                                                                                                                                          |
|           |                                                                                                                                                                                                                     |

**Note 1:** SPITUR is cleared when SPIEN = 0. When IGNTUR = 1, SPITUR provides dynamic status of the Transmit Underrun condition, but does not stop RX/TX operation and does not need to be cleared by software.

### REGISTER 17-4: SPIxSTATL: SPIx STATUS REGISTER LOW (CONTINUED)

- bit 2 Unimplemented: Read as '0' bit 1 SPITBF: SPIx Transmit Buffer Full Status bit 1 = SPIxTXB is full 0 = SPIxTXB not full Standard Buffer Mode: Automatically set in hardware when SPIxBUF is written, loading SPIxTXB. Automatically cleared in hardware when SPIx transfers data from SPIxTXB to SPIxTXSR. Enhanced Buffer Mode: Indicates TXELM<5:0> = 6 'b111111. bit 0 SPIRBF: SPIx Receive Buffer Full Status bit 1 = SPIxRXB is full 0 = SPIxRXB is not full Standard Buffer Mode: Automatically set in hardware when SPIx transfers data from SPIxRXSR to SPIxRXB. Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB. Enhanced Buffer Mode: Indicates RXELM<5:0> = 6 'b111111.
- **Note 1:** SPITUR is cleared when SPIEN = 0. When IGNTUR = 1, SPITUR provides dynamic status of the Transmit Underrun condition, but does not stop RX/TX operation and does not need to be cleared by software.

| U-0    | U-0 | R-0, HSC              | R-0, HSC              | R-0, HSC              | R-0, HSC | R-0, HSC | R-0, HSC |
|--------|-----|-----------------------|-----------------------|-----------------------|----------|----------|----------|
|        | _   | RXELM5 <sup>(3)</sup> | RXELM4 <sup>(2)</sup> | RXELM3 <sup>(1)</sup> | RXELM2   | RXELM1   | RXELM0   |
| bit 15 |     |                       |                       |                       |          |          | bit 8    |
|        |     |                       |                       |                       |          |          |          |
| U-0    | U-0 | R-0, HSC              | R-0, HSC              | R-0, HSC              | R-0, HSC | R-0, HSC | R-0, HSC |
|        | _   | TXELM5 <sup>(3)</sup> | TXELM4 <sup>(2)</sup> | TXELM3 <sup>(1)</sup> | TXELM2   | TXELM1   | TXELM0   |
| bit 7  |     |                       |                       |                       |          |          | bit 0    |

|  | REGISTER 17-5: | SPIxSTATH: SPIx STATUS REGISTER HIGH <sup>(4)</sup> |
|--|----------------|-----------------------------------------------------|
|--|----------------|-----------------------------------------------------|

| Legend:           | HSC = Hardware Settable/Clear | HSC = Hardware Settable/Clearable bit |                    |  |  |  |  |
|-------------------|-------------------------------|---------------------------------------|--------------------|--|--|--|--|
| R = Readable bit  | W = Writable bit              | U = Unimplemented bit, read as '0'    |                    |  |  |  |  |
| -n = Value at POR | '1' = Bit is set              | '0' = Bit is cleared                  | x = Bit is unknown |  |  |  |  |

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RXELM<5:0>:** Receive Buffer Element Count bits (valid in Enhanced Buffer mode)<sup>(1,2,3)</sup>

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **TXELM<5:0>:** Transmit Buffer Element Count bits (valid in Enhanced Buffer mode)<sup>(1,2,3)</sup>

**Note 1:** RXELM3 and TXELM3 bits are only present when FIFODEPTH = 8 or higher.

2: RXELM4 and TXELM4 bits are only present when FIFODEPTH = 16 or higher.

3: RXELM5 and TXELM5 bits are only present when FIFODEPTH = 32.

4: See the MODE32/16 bits in the SPIxCON1L register.

#### REGISTER 17-6: SPIxBUFL: SPIx BUFFER REGISTER LOW

| R/W-0                                                                 | R/W-0  | R/W-0            | R/W-0           | R/W-0         | R/W-0           | R/W-0    | R/W-0 |
|-----------------------------------------------------------------------|--------|------------------|-----------------|---------------|-----------------|----------|-------|
|                                                                       |        |                  | DAT             | A<15:8>       |                 |          |       |
| bit 15                                                                |        |                  |                 |               |                 |          | bit 8 |
|                                                                       |        |                  |                 |               |                 |          |       |
| R/W-0                                                                 | R/W-0  | R/W-0            | R/W-0           | R/W-0         | R/W-0           | R/W-0    | R/W-0 |
|                                                                       |        |                  | DAT             | Ā<7:0>        |                 |          |       |
| bit 7                                                                 |        |                  |                 |               |                 |          | bit 0 |
|                                                                       |        |                  |                 |               |                 |          |       |
| Legend:                                                               |        |                  |                 |               |                 |          |       |
| R = Readab                                                            | le bit | W = Writable bit |                 | U = Unimpleme | ented bit, read | l as '0' |       |
| -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is un |        |                  | x = Bit is unkr | nown          |                 |          |       |

#### bit 15-0 DATA<15:0>: SPIx FIFO Data bits

When the MODE<32,16> or WLENGTH<4:0> bits select 16 to 9-bit data, the SPIx only uses DATA<15:0>. When the MODE<32,16> or WLENGTH<4:0> bits select 8 to 2-bit data, the SPIx only uses DATA<7:0>.

#### REGISTER 17-7: SPIxBUFH: SPIx BUFFER REGISTER HIGH

| R/W-0      | R/W-0  | R/W-0            | R/W-0                                 | R/W-0    | R/W-0 | R/W-0 | R/W-0 |  |
|------------|--------|------------------|---------------------------------------|----------|-------|-------|-------|--|
|            |        |                  | DATA                                  | \<31:24> |       |       |       |  |
| bit 15     |        |                  |                                       |          |       |       | bit 8 |  |
|            |        |                  |                                       |          |       |       |       |  |
| R/W-0      | R/W-0  | R/W-0            | R/W-0                                 | R/W-0    | R/W-0 | R/W-0 | R/W-0 |  |
|            |        |                  | DATA                                  | \<23:16> |       |       |       |  |
| bit 7      |        |                  |                                       |          |       |       | bit 0 |  |
|            |        |                  |                                       |          |       |       |       |  |
| Legend:    |        |                  |                                       |          |       |       |       |  |
| R = Readab | le bit | W = Writable bit | ut U = Unimplemented bit, read as '0' |          |       |       |       |  |

### bit 15-0 DATA<31:16>: SPIx FIFO Data bits

'1' = Bit is set

When the MODE<32,16> or WLENGTH<4:0> bits select 32 to 25-bit data, the SPIx uses DATA<31:16>. When the MODE<32,16> or WLENGTH<4:0> bits select 24 to 17-bit data, the SPIx only uses DATA<23:16>.

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

| U-0                                                                    | U-0    | U-0              | R/W-0                    | R/W-0                 | R/W-0          | R/W-0  | R/W-0 |  |  |
|------------------------------------------------------------------------|--------|------------------|--------------------------|-----------------------|----------------|--------|-------|--|--|
|                                                                        |        | —                | BRG<12:8> <sup>(1)</sup> |                       |                |        |       |  |  |
| bit 15                                                                 |        |                  | b                        |                       |                |        |       |  |  |
|                                                                        |        |                  |                          |                       |                |        |       |  |  |
| R/W-0                                                                  | R/W-0  | R/W-0            | R/W-0                    | R/W-0                 | R/W-0          | R/W-0  | R/W-0 |  |  |
|                                                                        |        |                  | BRG                      | i<7:0> <sup>(1)</sup> |                |        |       |  |  |
| bit 7                                                                  |        |                  |                          |                       |                |        | bit 0 |  |  |
|                                                                        |        |                  |                          |                       |                |        |       |  |  |
| Legend:                                                                |        |                  |                          |                       |                |        |       |  |  |
| R = Readab                                                             | le bit | W = Writable bit |                          | U = Unimpleme         | nted bit, read | as '0' |       |  |  |
| -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unk |        |                  | iown                     |                       |                |        |       |  |  |

bit 15-13 Unimplemented: Read as '0'

bit 12-0 BRG<12:0>: SPIx Baud Rate Generator Divisor bits<sup>(1)</sup>

**Note 1:** Changing the BRG value when SPIEN = 1 causes undefined behavior.

| U-0          | U-0         | U-0              | R/W-0                                   | R/W-0              | U-0            | U-0             | R/W-0    |
|--------------|-------------|------------------|-----------------------------------------|--------------------|----------------|-----------------|----------|
| —            | —           | _                | FRMERREN                                | BUSYEN             | —              | —               | SPITUREN |
| bit 15       |             |                  |                                         |                    |                |                 | bit 8    |
|              |             |                  |                                         |                    |                |                 |          |
| R/W-0        | R/W-0       | R/W-0            | U-0                                     | R/W-0              | U-0            | R/W-0           | R/W-0    |
| SRMTEN       | SPIROVEN    | SPIRBEN          |                                         | SPITBEN            | _              | SPITBFEN        | SPIRBFEN |
| bit 7        |             |                  |                                         |                    |                |                 | bit C    |
| Legend:      |             |                  |                                         |                    |                |                 |          |
| R = Readab   | le hit      | W = Writable     | hit                                     | U = Unimpleme      | anted hit read | ae 'O'          |          |
| -n = Value a |             | '1' = Bit is set | Dit                                     | '0' = Bit is clear |                | x = Bit is unkr | NOW/D    |
|              |             | 1 – Dit 13 301   |                                         |                    | cu             |                 |          |
| bit 15-13    | Unimplemen  | ted: Read as '   | 0'                                      |                    |                |                 |          |
| bit 12       | -           |                  | ipt Events via FF                       | RMERR bit          |                |                 |          |
|              |             |                  | n interrupt even                        |                    |                |                 |          |
|              |             | 0                | enerate an interru                      | •                  |                |                 |          |
| bit 11       |             | •                | Events via SPIB                         | JSY bit            |                |                 |          |
|              |             |                  | interrupt event<br>erate an interrup    | t event            |                |                 |          |
| bit 10-9     |             | ted: Read as '   |                                         | tevent             |                |                 |          |
| bit 8        | •           |                  | o<br>t Events via SPI                   | TUR hit            |                |                 |          |
| bit 0        |             |                  | R) generates an i                       |                    |                |                 |          |
|              |             |                  | not generate ar                         |                    |                |                 |          |
| bit 7        | SRMTEN: En  | able Interrupt   | Events via SRM <sup>-</sup>             | Г bit              |                |                 |          |
|              |             |                  | RMT) generates<br>es not generate       |                    |                |                 |          |
| bit 6        | SPIROVEN: E | Enable Interrup  | ot Events via SPI                       | ROV bit            |                |                 |          |
|              |             |                  | generates an inte<br>does not genera    |                    | vent           |                 |          |
| bit 5        |             |                  | Events via SPIR                         | •                  |                |                 |          |
|              |             |                  | pty generates ar<br>pty does not ger    |                    |                |                 |          |
| bit 4        | Unimplemen  | ted: Read as '   | 0'                                      |                    |                |                 |          |
| bit 3        | SPITBEN: En | able Interrupt   | Events via SPIT                         | BE bit             |                |                 |          |
|              |             |                  | npty generates a<br>npty does not ge    |                    |                |                 |          |
| bit 2        | Unimplemen  | ted: Read as '   | 0'                                      |                    |                |                 |          |
| bit 1        | SPITBFEN: E | Enable Interrup  | t Events via SPI                        | TBF bit            |                |                 |          |
|              |             |                  | II generates an ii<br>II does not genei |                    | event          |                 |          |
| bit 0        | SPIRBFEN: E | Enable Interrup  | t Events via SPI                        | RBF bit            |                |                 |          |
|              |             |                  | l generates an ir                       |                    |                |                 |          |
|              |             |                  | I does not gener                        |                    |                |                 |          |

# REGISTER 17-9: SPIxIMSKL: SPIx INTERRUPT MASK REGISTER LOW

| R/W-0              | U-0                                                                    | R/W-0                 | R/W-0                              | R/W-0                   | R/W-0                   | R/W-0                 | R/W-0                 |  |  |  |
|--------------------|------------------------------------------------------------------------|-----------------------|------------------------------------|-------------------------|-------------------------|-----------------------|-----------------------|--|--|--|
| RXWIEN             | ı —                                                                    | RXMSK5 <sup>(1)</sup> | RXMSK4 <sup>(1,4)</sup>            | RXMSK3 <sup>(1,3)</sup> | RXMSK2 <sup>(1,2)</sup> | RXMSK1 <sup>(1)</sup> | RXMSK0 <sup>(1)</sup> |  |  |  |
| bit 15             |                                                                        |                       |                                    |                         |                         |                       | bit 8                 |  |  |  |
|                    |                                                                        |                       |                                    |                         |                         |                       |                       |  |  |  |
| R/W-0              | U-0                                                                    | R/W-0                 | R/W-0                              | R/W-0                   | R/W-0                   | R/W-0                 | R/W-0                 |  |  |  |
| TXWIEN             | <u> </u>                                                               | TXMSK5 <sup>(1)</sup> | TXMSK4 <sup>(1,4)</sup>            | TXMSK3 <sup>(1,3)</sup> | TXMSK2 <sup>(1,2)</sup> | TXMSK1 <sup>(1)</sup> | TXMSK0 <sup>(1)</sup> |  |  |  |
| bit 7              |                                                                        |                       |                                    |                         |                         |                       | bit (                 |  |  |  |
| Legend:            |                                                                        |                       |                                    |                         |                         |                       |                       |  |  |  |
| R = Reada          | able bit                                                               | W = Writable          | bit                                | U = Unimpleme           | ented bit, read as      | ʻ0'                   |                       |  |  |  |
| -n = Value         | at POR                                                                 | '1' = Bit is set      | :                                  | '0' = Bit is clear      | ed                      | x = Bit is unkr       | iown                  |  |  |  |
| bit 14<br>bit 13-8 | RXMSK<5:                                                               |                       | /lask bits <sup>(1,2,3,4)</sup>    |                         |                         |                       |                       |  |  |  |
|                    | RX mask bit                                                            | ts; used in conj      | unction with the                   | RXWIEN bit.             |                         |                       |                       |  |  |  |
| bit 7              |                                                                        |                       | nark Interrupt Ei                  |                         |                         |                       |                       |  |  |  |
|                    |                                                                        |                       | r element water<br>r element water |                         | hen TXMSK<5:0           | > = TXELM<5:          | 0>                    |  |  |  |
| bit 6              | Unimpleme                                                              | ented: Read as        | '0'                                |                         |                         |                       |                       |  |  |  |
| bit 5-0            | TXMSK<5:0                                                              | D>: TX Buffer N       | lask bits <sup>(1,2,3,4)</sup>     |                         |                         |                       |                       |  |  |  |
|                    | TX mask bit                                                            | s; used in conju      | unction with the                   | TXWIEN bit.             |                         |                       |                       |  |  |  |
| Note 1:            | Mask values I<br>this case.                                            | higher than FIF       | ODEPTH are r                       | not valid. The mo       | odule will not trig     | ger a match fo        | r any value in        |  |  |  |
| 2:                 | RXMSK2 and                                                             | TXMSK2 bits a         | are only present                   | t when FIFODEF          | PTH = 8 or highe        | r.                    |                       |  |  |  |
| 3:                 | RXMSK3 and                                                             | TXMSK3 bits a         | are only present                   | t when FIFODEF          | PTH = 16 or high        | er.                   |                       |  |  |  |
|                    | RXMSK3 and TXMSK3 bits are only present when FIFODEPTH = 16 or higher. |                       |                                    |                         |                         |                       |                       |  |  |  |

# REGISTER 17-10: SPIxIMSKH: SPIx INTERRUPT MASK REGISTER HIGH

4: RXMSK4 and TXMSK4 bits are only present when FIFODEPTH = 32.

'1' = Bit is set

uses URDATA<7:0>.

## REGISTER 17-11: SPIxURDTL: SPIx UNDERRUN DATA REGISTER LOW

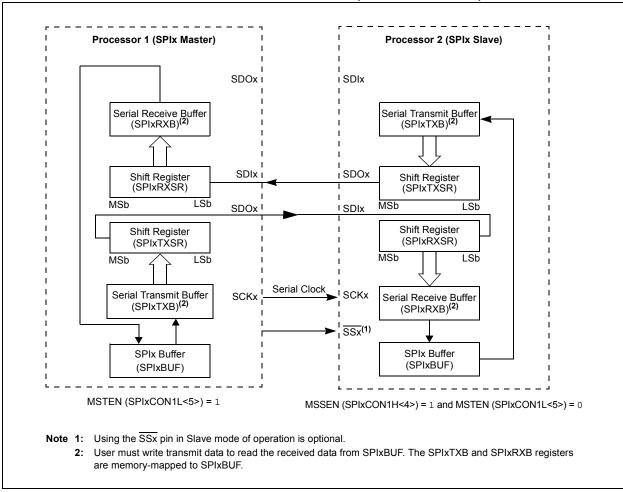
| R/W-0                                                                | R/W-0 | R/W-0 | R/W-0 | R/W-0    | R/W-0  | R/W-0 | R/W-0 |  |  |  |  |
|----------------------------------------------------------------------|-------|-------|-------|----------|--------|-------|-------|--|--|--|--|
|                                                                      |       |       | URDA  | TA<15:8> |        |       |       |  |  |  |  |
| bit 15                                                               |       |       |       |          |        |       | bit 8 |  |  |  |  |
|                                                                      |       |       |       |          |        |       |       |  |  |  |  |
| R/W-0                                                                | R/W-0 | R/W-0 | R/W-0 | R/W-0    | R/W-0  | R/W-0 | R/W-0 |  |  |  |  |
| URDATA<7:0>                                                          |       |       |       |          |        |       |       |  |  |  |  |
| bit 7                                                                |       |       |       |          |        |       | bit 0 |  |  |  |  |
|                                                                      |       |       |       |          |        |       |       |  |  |  |  |
| Legend:                                                              |       |       |       |          |        |       |       |  |  |  |  |
| R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' |       |       |       |          | as '0' |       |       |  |  |  |  |
|                                                                      |       |       |       |          |        |       |       |  |  |  |  |

'0' = Bit is cleared

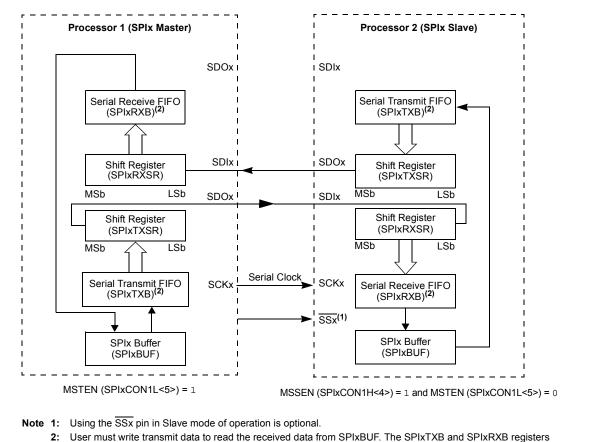
bit 15-0 URDATA<15:0>: SPIx Underrun Data bits These bits are only used when URDTEN = 1. This register holds the data to transmit when a Transmit Underrun condition occurs. When the MODE<32,16> or WLENGTH<4:0> bits select 16 to 9-bit data, the SPIx only uses URDATA<15:0>. When the MODE<32,16> or WLENGTH<4:0> bits select 8 to 2-bit data, the SPIx only

#### REGISTER 17-12: SPIxURDTH: SPIx UNDERRUN DATA REGISTER HIGH

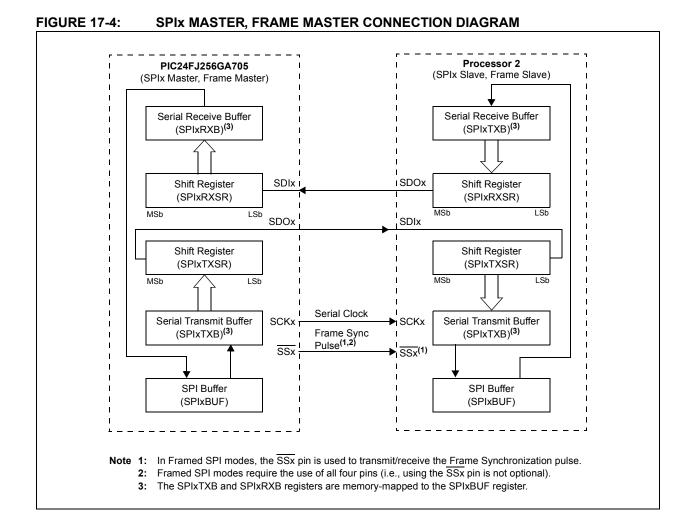
| R/W-0                              | R/W-0 | R/W-0            | R/W-0                                   | R/W-0         | R/W-0           | R/W-0    | R/W-0 |
|------------------------------------|-------|------------------|-----------------------------------------|---------------|-----------------|----------|-------|
|                                    |       |                  | URDA                                    | TA<31:24>     |                 |          |       |
| bit 15                             |       |                  |                                         |               |                 |          | bit 8 |
|                                    |       |                  |                                         |               |                 |          |       |
| R/W-0                              | R/W-0 | R/W-0            | R/W-0                                   | R/W-0         | R/W-0           | R/W-0    | R/W-0 |
|                                    |       |                  | URDA                                    | TA<23:16>     |                 |          |       |
| bit 7                              |       |                  |                                         |               |                 |          | bit 0 |
|                                    |       |                  |                                         |               |                 |          |       |
| Legend:                            |       |                  |                                         |               |                 |          |       |
| R = Readable                       | e bit | W = Writable bit |                                         | U = Unimpleme | ented bit, read | d as '0' |       |
| -n = Value at POR '1' = Bit is set |       |                  | '0' = Bit is cleared x = Bit is unknown |               |                 | own      |       |

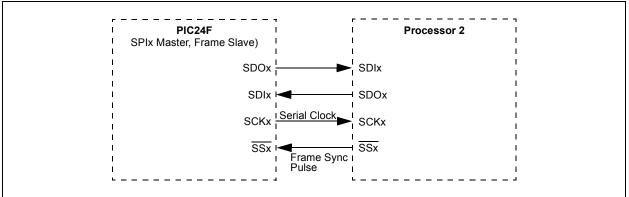

bit 15-0 URDATA<31:16>: SPIx Underrun Data bits

These bits are only used when URDTEN = 1. This register holds the data to transmit when a Transmit Underrun condition occurs.


When the MODE<32,16> or WLENGTH<4:0> bits select 32 to 25-bit data, the SPIx only uses URDATA<31:16>. When the MODE<32,16> or WLENGTH<4:0> bits select 24 to 17-bit data, the SPIx only uses URDATA<23:16>.

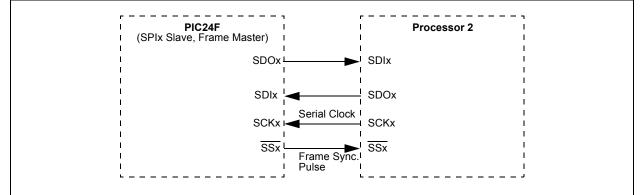
-n = Value at POR


x = Bit is unknown

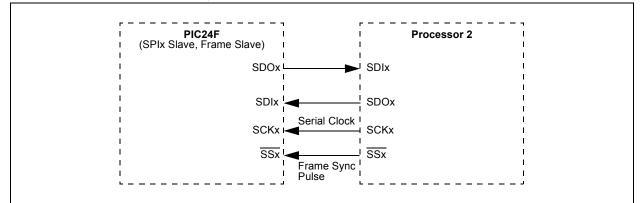








are memory-mapped to SPIxBUF.






#### FIGURE 17-5: SPIx MASTER, FRAME SLAVE CONNECTION DIAGRAM





#### FIGURE 17-7: SPIx SLAVE, FRAME SLAVE CONNECTION DIAGRAM



#### EQUATION 17-1: RELATIONSHIP BETWEEN DEVICE AND SPIX CLOCK SPEED

 $Baud Rate = \frac{FPB}{(2 * (SPIxBRG + 1))}$ Where: FPB is the Peripheral Bus Clock Frequency.

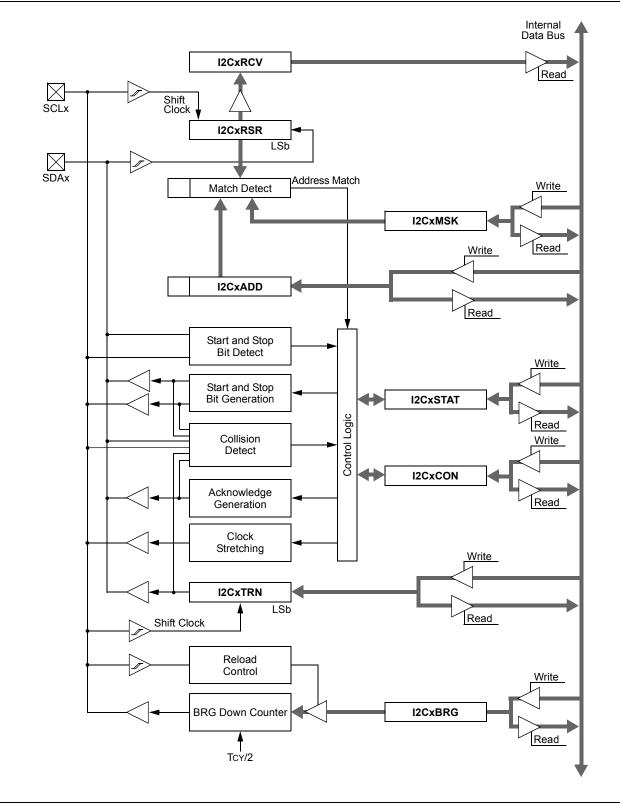
# 18.0 INTER-INTEGRATED CIRCUIT (I<sup>2</sup>C)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"dsPIC33/PIC24 Family Reference Manual"*, **"Inter-Integrated Circuit (I<sup>2</sup>C)"** (DS70000195), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Inter-Integrated Circuit (I<sup>2</sup>C) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, display drivers, A/D Converters, etc.

The I<sup>2</sup>C module supports these features:

- Independent Master and Slave Logic
- 7-Bit and 10-Bit Device Addresses
- General Call Address as Defined in the I<sup>2</sup>C Protocol
- Clock Stretching to Provide Delays for the Processor to Respond to a Slave Data Request
- Both 100 kHz and 400 kHz Bus Specifications
- Configurable Address Masking
- Multi-Master modes to Prevent Loss of Messages in Arbitration
- Bus Repeater mode, Allowing the Acceptance of All Messages as a Slave, regardless of the Address
- · Automatic SCL


A block diagram of the module is shown in Figure 18-1.

#### 18.1 Communicating as a Master in a Single Master Environment

The details of sending a message in Master mode depends on the communications protocol for the device being communicated with. Typically, the sequence of events is as follows:

- 1. Assert a Start condition on SDAx and SCLx.
- 2. Send the I<sup>2</sup>C device address byte to the slave with a write indication.
- 3. Wait for and verify an Acknowledge from the slave.
- 4. Send the first data byte (sometimes known as the command) to the slave.
- 5. Wait for and verify an Acknowledge from the slave.
- 6. Send the serial memory address low byte to the slave.
- 7. Repeat Steps 4 and 5 until all data bytes are sent.
- 8. Assert a Repeated Start condition on SDAx and SCLx.
- 9. Send the device address byte to the slave with a read indication.
- 10. Wait for and verify an Acknowledge from the slave.
- 11. Enable master reception to receive serial memory data.
- 12. Generate an ACK or NACK condition at the end of a received byte of data.
- 13. Generate a Stop condition on SDAx and SCLx.

## FIGURE 18-1: I2Cx BLOCK DIAGRAM



#### 18.2 Setting Baud Rate When Operating as a Bus Master

To compute the Baud Rate Generator reload value, use Equation 18-1.

# EQUATION 18-1: COMPUTING BAUD RATE RELOAD VALUE<sup>(1,2,3)</sup>

 $FSCL = \frac{FCY}{(I2CxBRG + 2) * 2}$ 

or:

$$I2CxBRG = \left[\frac{FCY}{(FSCL * 2)} - 2\right]$$

**Note 1:** Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

2: These clock rate values are for guidance only. The actual clock rate can be affected by various systemlevel parameters. The actual clock rate should be measured in its intended application.

**3:** BRG values of 0 and 1 are forbidden.

## 18.3 Slave Address Masking

The I2CxMSK register (Register 18-4) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2CxMSK register causes the slave module to respond, whether the corresponding address bit value is a '0' or a '1'. For example, when I2CxMSK is set to '0010000000', the slave module will detect both addresses, '000000000' and '001000000'.

To enable address masking, the Intelligent Peripheral Management Interface (IPMI) must be disabled by clearing the STRICT bit (I2CxCONL<11>).

**Note:** As a result of changes in the I<sup>2</sup>C protocol, the addresses in Table 18-2 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

| Required System FscL | Fcy    | l2CxB     | RG Value      |             |
|----------------------|--------|-----------|---------------|-------------|
|                      | FCY    | (Decimal) | (Hexadecimal) | Actual Fsc∟ |
| 100 kHz              | 16 MHz | 78        | 4E            | 100 kHz     |
| 100 kHz              | 8 MHz  | 38        | 26            | 100 kHz     |
| 100 kHz              | 4 MHz  | 18        | 12            | 100 kHz     |
| 400 kHz              | 16 MHz | 18        | 12            | 400 kHz     |
| 400 kHz              | 8 MHz  | 8         | 8             | 400 kHz     |
| 400 kHz              | 4 MHz  | 3         | 3             | 400 kHz     |
| 1 MHz                | 16 MHz | 6         | 6             | 1.000 MHz   |
| 1 MHz                | 8 MHz  | 2         | 2             | 1.000 MHz   |

# TABLE 18-1: I2Cx CLOCK RATES<sup>(1,2)</sup>

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

2: These clock rate values are for guidance only. The actual clock rate can be affected by various system-level parameters. The actual clock rate should be measured in its intended application.

|  | TABLE 18-2: | I2Cx RESERVED ADDRESSES <sup>(1)</sup> |
|--|-------------|----------------------------------------|
|--|-------------|----------------------------------------|

| Slave Address | R/W Bit | Description                            |  |  |  |
|---------------|---------|----------------------------------------|--|--|--|
| 000 000       | 0       | General Call Address <sup>(2)</sup>    |  |  |  |
| 0000 000      | 1       | Start Byte                             |  |  |  |
| 0000 001      | x       | Cbus Address                           |  |  |  |
| 0000 01x      | х       | Reserved                               |  |  |  |
| 0000 1xx      | x       | HS Mode Master Code                    |  |  |  |
| 1111 0xx      | x       | 10-Bit Slave Upper Byte <sup>(3)</sup> |  |  |  |
| 1111 1xx      | х       | Reserved                               |  |  |  |

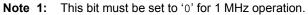
Note 1: The address bits listed here will never cause an address match independent of address mask settings.

- 2: This address will be Acknowledged only if GCEN = 1.
- 3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

| R/W-0      | U-0                                                                                                                                                                              | HC, R/W-0                                                                                                                                                         | R/W-1                                                                                                                            | R/W-0                                                                                              | R/W-0                                                | R/W-0                             | R/W-0                      |  |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------|----------------------------|--|--|--|
| I2CEN      |                                                                                                                                                                                  | I2CSIDL                                                                                                                                                           | SCLREL <sup>(1)</sup>                                                                                                            | STRICT                                                                                             | A10M                                                 | DISSLW                            | SMEN                       |  |  |  |
| bit 15     |                                                                                                                                                                                  |                                                                                                                                                                   | L                                                                                                                                |                                                                                                    | L                                                    | •                                 | bit 8                      |  |  |  |
|            |                                                                                                                                                                                  |                                                                                                                                                                   |                                                                                                                                  |                                                                                                    |                                                      |                                   |                            |  |  |  |
| R/W-0      | R/W-0                                                                                                                                                                            | R/W-0                                                                                                                                                             | HC, R/W-0                                                                                                                        | HC, R/W-0                                                                                          | HC, R/W-0                                            | HC, R/W-0                         | HC, R/W-0                  |  |  |  |
| GCEN       | STREN                                                                                                                                                                            | ACKDT                                                                                                                                                             | ACKEN                                                                                                                            | RCEN                                                                                               | PEN                                                  | RSEN                              | SEN                        |  |  |  |
| bit 7      |                                                                                                                                                                                  |                                                                                                                                                                   |                                                                                                                                  |                                                                                                    |                                                      |                                   | bit (                      |  |  |  |
|            |                                                                                                                                                                                  |                                                                                                                                                                   |                                                                                                                                  |                                                                                                    |                                                      |                                   |                            |  |  |  |
| Legend:    |                                                                                                                                                                                  | HC = Hardwa                                                                                                                                                       | re Clearable bi                                                                                                                  | t                                                                                                  |                                                      |                                   |                            |  |  |  |
| R = Read   | able bit                                                                                                                                                                         | W = Writable                                                                                                                                                      | bit                                                                                                                              | U = Unimplen                                                                                       | nented bit, read                                     | l as '0'                          |                            |  |  |  |
| -n = Value | e at POR                                                                                                                                                                         | '1' = Bit is set                                                                                                                                                  |                                                                                                                                  | '0' = Bit is clea                                                                                  | ared                                                 | x = Bit is unkn                   | own                        |  |  |  |
| bit 15     | 1 = Enables t                                                                                                                                                                    | Enable bit (writ<br>he I2Cx module<br>the I2Cx modul                                                                                                              | e and configure                                                                                                                  | es the SDAx an                                                                                     |                                                      | s serial port pin<br>s            | S                          |  |  |  |
| bit 14     | Unimplemen                                                                                                                                                                       | ted: Read as '                                                                                                                                                    | כי                                                                                                                               |                                                                                                    |                                                      |                                   |                            |  |  |  |
| bit 13     |                                                                                                                                                                                  | x Stop in Idle M                                                                                                                                                  |                                                                                                                                  |                                                                                                    |                                                      |                                   |                            |  |  |  |
|            |                                                                                                                                                                                  | ues module op<br>s module opera                                                                                                                                   |                                                                                                                                  |                                                                                                    | e mode                                               |                                   |                            |  |  |  |
| bit 11     | If STREN = 0<br>1 = Releases<br>0 = Forces clo<br>If STREN = 1<br>1 = Releases<br>0 = Holds cloo<br>STRICT: I2C><br>1 = Strict ress<br>In Slave<br>that category<br>0 = Reserved | clock<br>ock low (clock s<br>clock<br>ck low (clock st<br>cstrict Reserve<br>erved addressi<br>Mode: The dev<br>gory are NACK<br>r Mode: The de<br>d addressing w | stretch)<br>retch); user ma<br>ed Address Rul-<br>ng is enforced<br>vice doesn't res<br>ed.<br>vice is allowed<br>ould be Acknow | ay program this<br>e Enable bit<br>(for reserved a<br>spond to reserv<br>to generate ac<br>wledged | ddresses, refer<br>ved address sp<br>Idresses with r | to Table 18-2)<br>bace and addres | sses falling i<br>s space. |  |  |  |
|            | there is a<br>In Master                                                                                                                                                          | a match with an<br>r Mode: Reserv                                                                                                                                 | y of the reserve                                                                                                                 |                                                                                                    |                                                      | served address<br>generate an AC  |                            |  |  |  |
| bit 10     |                                                                                                                                                                                  | A10M: 10-Bit Slave Address Flag bit                                                                                                                               |                                                                                                                                  |                                                                                                    |                                                      |                                   |                            |  |  |  |
|            |                                                                                                                                                                                  | is a 10-bit slav<br>is a 7-bit slave                                                                                                                              |                                                                                                                                  |                                                                                                    |                                                      |                                   |                            |  |  |  |
| bit 9      | DISSLW: Slev                                                                                                                                                                     | w Rate Control                                                                                                                                                    | Disable bit                                                                                                                      |                                                                                                    |                                                      |                                   |                            |  |  |  |
|            |                                                                                                                                                                                  | control is disat<br>control is enab                                                                                                                               |                                                                                                                                  |                                                                                                    |                                                      | o disabled for 1                  | MHz mode)                  |  |  |  |
| Note 1:    | Automatically clear<br>of slave reception<br>ting the SCLREL<br>specified in Secti                                                                                               | h. The user soft bit. This delay                                                                                                                                  | ware must prov<br>must be greate                                                                                                 | vide a delay be<br>er than the mini                                                                | tween writing t                                      | o the transmit b                  | ouffer and set             |  |  |  |
|            |                                                                                                                                                                                  |                                                                                                                                                                   |                                                                                                                                  |                                                                                                    |                                                      |                                   |                            |  |  |  |

#### REGISTER 18-1: I2CxCONL: I2Cx CONTROL REGISTER LOW

**2:** Automatically cleared to '0' at the beginning of slave transmission.


# REGISTER 18-1: I2CxCONL: I2Cx CONTROL REGISTER LOW (CONTINUED)

| bit 8   | SMEN: SMBus Input Levels Enable bit                                                                                                                                                                                                                                                                                                                                                   |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | <ul> <li>1 = Enables input logic so thresholds are compliant with the SMBus specification</li> <li>0 = Disables SMBus-specific inputs</li> </ul>                                                                                                                                                                                                                                      |
| bit 7   | GCEN: General Call Enable bit (I <sup>2</sup> C Slave mode only)                                                                                                                                                                                                                                                                                                                      |
|         | <ul> <li>1 = Enables interrupt when a general call address is received in I2CxRSR; module is enabled for reception</li> <li>0 = General call address is disabled</li> </ul>                                                                                                                                                                                                           |
| bit 6   | STREN: SCLx Clock Stretch Enable bit                                                                                                                                                                                                                                                                                                                                                  |
|         | In I <sup>2</sup> C Slave mode only; used in conjunction with the SCLREL bit.<br>1 = Enables clock stretching<br>0 = Disables clock stretching                                                                                                                                                                                                                                        |
| bit 5   | ACKDT: Acknowledge Data bit                                                                                                                                                                                                                                                                                                                                                           |
|         | In I <sup>2</sup> C Master mode during Master Receive mode. The value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.                                                                                                                                                                                                               |
|         | In I <sup>2</sup> C Slave mode when AHEN = 1 or DHEN = 1. The value that the slave will transmit when it initiates<br>an Acknowledge sequence at the end of an address or data reception.<br>1 = NACK is sent<br>0 = ACK is sent                                                                                                                                                      |
| bit 4   | ACKEN: Acknowledge Sequence Enable bit                                                                                                                                                                                                                                                                                                                                                |
|         | In I <sup>2</sup> C Master mode only; applicable during Master Receive mode.<br>1 = Initiates Acknowledge sequence on SDAx and SCLx pins, and transmits the ACKDT data bit<br>0 = Acknowledge sequence is Idle                                                                                                                                                                        |
| bit 3   | <b>RCEN:</b> Receive Enable bit (I <sup>2</sup> C Master mode only)                                                                                                                                                                                                                                                                                                                   |
|         | 1 = Enables Receive mode for $I^2C$ ; automatically cleared by hardware at the end of the 8-bit receive data byte                                                                                                                                                                                                                                                                     |
|         | 0 = Receive sequence is not in progress                                                                                                                                                                                                                                                                                                                                               |
| bit 2   | <b>PEN:</b> Stop Condition Enable bit (I <sup>2</sup> C Master mode only)                                                                                                                                                                                                                                                                                                             |
|         | <ul> <li>1 = Initiates Stop condition on the SDAx and SCLx pins</li> <li>0 = Stop condition is Idle</li> </ul>                                                                                                                                                                                                                                                                        |
| bit 1   | <b>RSEN:</b> Restart Condition Enable bit (I <sup>2</sup> C Master mode only)                                                                                                                                                                                                                                                                                                         |
|         | <ul> <li>1 = Initiates Restart condition on the SDAx and SCLx pins</li> <li>0 = Restart condition is Idle</li> </ul>                                                                                                                                                                                                                                                                  |
| bit 0   | SEN: Start Condition Enable bit (I <sup>2</sup> C Master mode only)                                                                                                                                                                                                                                                                                                                   |
|         | <ul> <li>1 = Initiates Start condition on the SDAx and SCLx pins</li> <li>0 = Start condition is Idle</li> </ul>                                                                                                                                                                                                                                                                      |
| Note 1: | Automatically cleared to '0' at the beginning of slave transmission; automatically cleared to '0' at the end of slave reception. The user software must provide a delay between writing to the transmit buffer and setting the SCLREL bit. This delay must be greater than the minimum setup time for slave transmissions, as specified in Section 32.0 "Electrical Characteristics". |

2: Automatically cleared to '0' at the beginning of slave transmission.

| U-0          | U-0                                                                                                                                                                                                     | U-0                                                                                         | U-0                         | U-0                          | U-0             | U-0             | U-0         |  |  |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------|------------------------------|-----------------|-----------------|-------------|--|--|--|--|
| _            | _                                                                                                                                                                                                       |                                                                                             | _                           | _                            |                 | _               |             |  |  |  |  |
| bit 15       |                                                                                                                                                                                                         | •                                                                                           | •                           |                              |                 |                 | bit         |  |  |  |  |
| U-0          | R/W-0                                                                                                                                                                                                   | R/W-0                                                                                       | R/W-0                       | R/W-0                        | R/W-0           | R/W-0           | R/W-0       |  |  |  |  |
|              | PCIE                                                                                                                                                                                                    | SCIE                                                                                        | BOEN                        | SDAHT <sup>(1)</sup>         | SBCDE           | AHEN            | DHEN        |  |  |  |  |
| bit 7        |                                                                                                                                                                                                         |                                                                                             | _                           | -                            |                 |                 | bit         |  |  |  |  |
| Legend:      |                                                                                                                                                                                                         |                                                                                             |                             |                              |                 |                 |             |  |  |  |  |
| R = Readab   | le hit                                                                                                                                                                                                  | W = Writable                                                                                | hit                         | LI = Unimplem                | ented bit, read | as '0'          |             |  |  |  |  |
| -n = Value a |                                                                                                                                                                                                         | '1' = Bit is set                                                                            |                             | '0' = Bit is clea            |                 | x = Bit is unkn | own         |  |  |  |  |
|              |                                                                                                                                                                                                         | Dicio dec                                                                                   |                             |                              |                 |                 | iowii       |  |  |  |  |
| bit 15-7     | Unimplemen                                                                                                                                                                                              | ted: Read as '                                                                              | o'                          |                              |                 |                 |             |  |  |  |  |
| bit 6        | PCIE: Stop C                                                                                                                                                                                            | ondition Interru                                                                            | pt Enable bit (             | (I <sup>2</sup> C Slave mode | only)           |                 |             |  |  |  |  |
|              | <b>PCIE:</b> Stop Condition Interrupt Enable bit (I <sup>2</sup> C Slave mode only)<br>1 = Enables interrupt on detection of Stop condition                                                             |                                                                                             |                             |                              |                 |                 |             |  |  |  |  |
|              | 0 = Stop dete                                                                                                                                                                                           | 0 = Stop detection interrupts are disabled                                                  |                             |                              |                 |                 |             |  |  |  |  |
| bit 5        |                                                                                                                                                                                                         | SCIE: Start Condition Interrupt Enable bit (I <sup>2</sup> C Slave mode only)               |                             |                              |                 |                 |             |  |  |  |  |
|              | 1 = Enables interrupt on detection of Start or Restart conditions                                                                                                                                       |                                                                                             |                             |                              |                 |                 |             |  |  |  |  |
| <b>L:1</b>   | 0 = Start detection interrupts are disabled<br><b>BOEN:</b> Buffer Overwrite Enable bit $(l^2 C Slave mode only)$                                                                                       |                                                                                             |                             |                              |                 |                 |             |  |  |  |  |
| bit 4        | <b>BOEN:</b> Buffer Overwrite Enable bit (I <sup>2</sup> C Slave mode only)<br>1 = I2CxRCV is updated and an ACK is generated for a received address/data byte, ignoring the state                      |                                                                                             |                             |                              |                 |                 |             |  |  |  |  |
|              | of the I2COV bit only if RBF bit = 0                                                                                                                                                                    |                                                                                             |                             |                              |                 |                 |             |  |  |  |  |
|              |                                                                                                                                                                                                         | is only update                                                                              |                             | ∕ is clear                   |                 |                 |             |  |  |  |  |
| bit 3        | SDAHT: SDA                                                                                                                                                                                              | x Hold Time Se                                                                              | election bit <sup>(1)</sup> |                              |                 |                 |             |  |  |  |  |
|              | 1 = Minimum of 300 ns hold time on SDAx after the falling edge of SCLx                                                                                                                                  |                                                                                             |                             |                              |                 |                 |             |  |  |  |  |
|              | 0 = Minimum of 100 ns hold time on SDAx after the falling edge of SCLx                                                                                                                                  |                                                                                             |                             |                              |                 |                 |             |  |  |  |  |
| bit 2        |                                                                                                                                                                                                         | <b>SBCDE:</b> Slave Mode Bus Collision Detect Enable bit (I <sup>2</sup> C Slave mode only) |                             |                              |                 |                 |             |  |  |  |  |
|              | If, on the rising edge of SCLx, SDAx is sampled low when the module is outputting a high state, the BCL bit is set and the bus goes Idle. This Detection mode is only valid during data and ACK transmi |                                                                                             |                             |                              |                 |                 |             |  |  |  |  |
|              | sequences.                                                                                                                                                                                              |                                                                                             |                             |                              |                 |                 |             |  |  |  |  |
|              | 1 = Enables slave bus collision interrupts                                                                                                                                                              |                                                                                             |                             |                              |                 |                 |             |  |  |  |  |
|              | 0 = Slave bus collision interrupts are disabled                                                                                                                                                         |                                                                                             |                             |                              |                 |                 |             |  |  |  |  |
| bit 1        | AHEN: Address Hold Enable bit (I <sup>2</sup> C Slave mode only)                                                                                                                                        |                                                                                             |                             |                              |                 |                 |             |  |  |  |  |
|              | 1 = Following the 8th falling edge of SCLx for a matching received address byte; SCLREL b                                                                                                               |                                                                                             |                             |                              |                 |                 |             |  |  |  |  |
|              | (I2CxCONL<12>) will be cleared and SCLx will be held low<br>0 = Address holding is disabled                                                                                                             |                                                                                             |                             |                              |                 |                 |             |  |  |  |  |
| bit 0        |                                                                                                                                                                                                         | Hold Enable bit                                                                             |                             | ode only)                    |                 |                 |             |  |  |  |  |
|              |                                                                                                                                                                                                         |                                                                                             |                             | for a received da            | ata byte; slave | hardware clears | s the SCLRE |  |  |  |  |
|              | bit (I2Cx0<br>0 = Data holo                                                                                                                                                                             | CONL<12>) an                                                                                |                             | wol b                        |                 |                 |             |  |  |  |  |
|              |                                                                                                                                                                                                         |                                                                                             |                             |                              |                 |                 |             |  |  |  |  |

#### REGISTER 18-2: I2CxCONH: I2Cx CONTROL REGISTER HIGH



| HSC, R-0      | HSC, R-0                                                                                                                                                                                                                                                                                            | HSC, R-0                               | U-0                             | U-0               | HSC, R/C-0                    | HSC, R-0           | HSC, R-0       |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------|-------------------|-------------------------------|--------------------|----------------|
| ACKSTAT       | TRSTAT                                                                                                                                                                                                                                                                                              | ACKTIM                                 | _                               | —                 | BCL                           | GCSTAT             | ADD10          |
| bit 15        |                                                                                                                                                                                                                                                                                                     |                                        |                                 |                   |                               |                    | bit 8          |
|               |                                                                                                                                                                                                                                                                                                     |                                        |                                 |                   |                               |                    |                |
| HS, R/C-0     | HS, R/C-0                                                                                                                                                                                                                                                                                           | HSC, R-0                               | HSC, R/C-0                      | HSC, R/C-0        | HSC, R-0                      | HSC, R-0           | HSC, R-0       |
| IWCOL         | I2COV                                                                                                                                                                                                                                                                                               | D/A                                    | Р                               | S                 | R/W                           | RBF                | TBF            |
| bit 7         |                                                                                                                                                                                                                                                                                                     |                                        |                                 |                   |                               |                    | bit 0          |
|               |                                                                                                                                                                                                                                                                                                     |                                        |                                 |                   |                               |                    |                |
| Legend:       |                                                                                                                                                                                                                                                                                                     | C = Clearab                            |                                 | HS = Hardware     |                               | '0' = Bit is clear | red            |
| R = Readable  |                                                                                                                                                                                                                                                                                                     | W = Writable                           |                                 | •                 | ented bit, read as            |                    |                |
| -n = Value at | POR                                                                                                                                                                                                                                                                                                 | '1' = Bit is se                        | et                              | HSC = Hardwa      | re Settable/Cleara            | ble bit            |                |
| bit 15        | ACKSTAT: A<br>1 = Acknowle<br>0 = Acknowle                                                                                                                                                                                                                                                          | edge was not                           | received fron                   | n slave           | er and Slave moo              | les)               |                |
| bit 14        | <b>TRSTAT:</b> Transmit Status bit (when operating as I <sup>2</sup> C master; applicable to master transmit operation)<br>1 = Master transmit is in progress (8 bits + ACK)<br>0 = Master transmit is not in progress                                                                              |                                        |                                 |                   |                               |                    |                |
| bit 13        | <ul> <li>ACKTIM: Acknowledge Time Status bit (valid in I<sup>2</sup>C Slave mode only)</li> <li>1 = Indicates I<sup>2</sup>C bus is in an Acknowledge sequence, set on 8th falling edge of SCLx clock</li> <li>0 = Not an Acknowledge sequence, cleared on 9th rising edge of SCLx clock</li> </ul> |                                        |                                 |                   |                               |                    |                |
| bit 12-11     | Unimplemented: Read as '0'                                                                                                                                                                                                                                                                          |                                        |                                 |                   |                               |                    |                |
| bit 10        | -                                                                                                                                                                                                                                                                                                   |                                        |                                 | Slave mode; clea  | ared when I <sup>2</sup> C mo | dule is disabled.  | 12CEN = 0)     |
|               | <ul> <li>1 = A bus collision has been detected during a master or slave transmit operation</li> <li>0 = No bus collision has been detected</li> </ul>                                                                                                                                               |                                        |                                 |                   |                               |                    |                |
| bit 9         | GCSTAT: Ge                                                                                                                                                                                                                                                                                          | neral Call Sta                         | tus bit (clear                  | ed after Stop det | tection)                      |                    |                |
|               | 1 = General o<br>0 = General o                                                                                                                                                                                                                                                                      |                                        |                                 | ved               | ·                             |                    |                |
| bit 8         | ADD10: 10-E                                                                                                                                                                                                                                                                                         | Bit Address St                         | atus bit (clea                  | red after Stop de | etection)                     |                    |                |
|               | ADD10: 10-Bit Address Status bit (cleared after Stop detection)<br>1 = 10-bit address was matched<br>0 = 10-bit address was not matched                                                                                                                                                             |                                        |                                 |                   |                               |                    |                |
| bit 7         |                                                                                                                                                                                                                                                                                                     |                                        |                                 |                   |                               |                    |                |
|               |                                                                                                                                                                                                                                                                                                     | npt to write to<br>are                 |                                 |                   | ecause the I <sup>2</sup> C m | odule is busy; m   | ust be cleared |
| bit 6         | 12COV: 12Cx                                                                                                                                                                                                                                                                                         | Receive Ove                            | rflow Flag bit                  |                   |                               |                    |                |
|               | <ul> <li>1 = A byte was received while the I2CxRCV register is still holding the previous byte; I2COV is a "don't care" in Transmit mode, must be cleared in software</li> <li>0 = No overflow</li> </ul>                                                                                           |                                        |                                 |                   |                               |                    |                |
| bit 5         | <b>D/A:</b> Data/Ac<br>1 = Indicates<br>0 = Indicates                                                                                                                                                                                                                                               | that the last l                        | byte received                   |                   | vas an address                |                    |                |
| bit 4         | P: I2Cx Stop                                                                                                                                                                                                                                                                                        | bit<br>en Start, Rese<br>that a Stop b | t or Stop is d<br>it has been d | etected; cleared  | when the I <sup>2</sup> C mo  | dule is disabled,  | I2CEN = 0.     |

#### REGISTER 18-3: I2CxSTAT: I2Cx STATUS REGISTER

#### REGISTER 18-3: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

| bit 3 | <ul> <li>S: I2Cx Start bit</li> <li>Updated when Start, Reset or Stop is detected; cleared when the I<sup>2</sup>C module is disabled, I2CEN = 0.</li> <li>1 = Indicates that a Start (or Repeated Start) bit has been detected last</li> <li>0 = Start (or Repeated Start) bit was not detected last</li> </ul> |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 2 | <b>R/W</b> : Read/Write Information bit (when operating as $I^2C$ slave)                                                                                                                                                                                                                                         |
|       | <ul> <li>1 = Read: Indicates the data transfer is output from the slave</li> <li>0 = Write: Indicates the data transfer is input to the slave</li> </ul>                                                                                                                                                         |
| bit 1 | RBF: Receive Buffer Full Status bit                                                                                                                                                                                                                                                                              |
|       | 1 = Receive is complete, I2CxRCV is full<br>0 = Receive is not complete, I2CxRCV is empty                                                                                                                                                                                                                        |
| bit 0 | TBF: Transmit Buffer Full Status bit                                                                                                                                                                                                                                                                             |
|       | 1 = Transmit is in progress, I2CxTRN is full (8-bits of data)                                                                                                                                                                                                                                                    |
|       | 0 = Transmit is complete, I2CxTRN is empty                                                                                                                                                                                                                                                                       |

#### REGISTER 18-4: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

| U-0                                | U-0   | U-0   | U-0                                | U-0    | U-0                | R/W-0 | R/W-0 |
|------------------------------------|-------|-------|------------------------------------|--------|--------------------|-------|-------|
| _                                  | _     | —     |                                    | —      | —                  | MSK   | <9:8> |
| bit 15                             |       |       |                                    |        |                    |       | bit 8 |
|                                    |       |       |                                    |        |                    |       |       |
| R/W-0                              | R/W-0 | R/W-0 | R/W-0                              | R/W-0  | R/W-0              | R/W-0 | R/W-0 |
|                                    |       |       | MS                                 | K<7:0> |                    |       |       |
| bit 7                              |       |       |                                    |        |                    |       | bit C |
|                                    |       |       |                                    |        |                    |       |       |
| Legend:                            |       |       |                                    |        |                    |       |       |
| R = Readable bit W = Writable bi   |       | bit   | U = Unimplemented bit, read as '0' |        | d as '0'           |       |       |
| -n = Value at POR '1' = Bit is set |       |       | '0' = Bit is cleared               |        | x = Bit is unknown |       |       |

bit 15-10 Unimplemented: Read as '0'

bit 9-0 MSK<9:0>: I2Cx Mask for Address Bit x Select bits

1 = Enables masking for bit x of the incoming message address; bit match is not required in this position 0 = Disables masking for bit x; bit match is required in this position

# 19.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

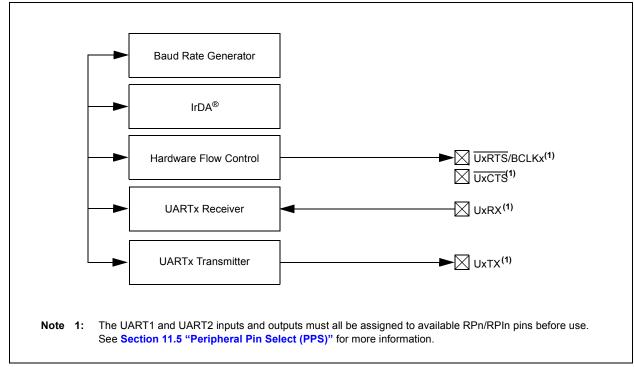
The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the PIC24F device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins. The UART module includes an IrDA<sup>®</sup> encoder/decoder unit.

The PIC24FJ256GA705 family devices are equipped with two UART modules, referred to as UART1 and UART2.

The primary features of the UARTx modules are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with the UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Range from up to 1 Mbps and Down to 15 Hz at 16 MIPS in 16x mode

- Baud Rates Range from up to 4 Mbps and Down to 61 Hz at 16 MIPS in 4x mode
- 4-Deep, First-In-First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9<sup>th</sup> bit = 1)
- Separate Transmit and Receive Interrupts
- · Loopback mode for Diagnostic Support
- · Polarity Control for Transmit and Receive Lines
- · Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- IrDA<sup>®</sup> Encoder and Decoder Logic
- Includes DMA Support
- 16x Baud Clock Output for IrDA Support


A simplified block diagram of the UARTx module is shown in Figure 19-1. The UARTx module consists of these key important hardware elements:

- · Baud Rate Generator
- · Asynchronous Transmitter
- Asynchronous Receiver

**Note:** Throughout this section, references to register and bit names that may be associated with a specific UART module are referred to generically by the use of 'x' in place of the specific module number. Thus, "UxSTA" might refer to the Status register for either UART1 or UART2.

# PIC24FJ256GA705 FAMILY

#### FIGURE 19-1: UARTX SIMPLIFIED BLOCK DIAGRAM



#### 19.1 UARTx Baud Rate Generator (BRG)

The UARTx module includes a dedicated, 16-bit Baud Rate Generator. The UxBRG register controls the period of a free-running, 16-bit timer. Equation 19-1 shows the formula for computation of the baud rate when BRGH = 0.

# EQUATION 19-1: UARTX BAUD RATE WITH BRGH = $0^{(1,2)}$

Baud Rate = 
$$\frac{FCY}{16 \cdot (UxBRG + 1)}$$
  
UxBRG =  $\frac{FCY}{16 \cdot Baud Rate} - 1$ 

**Note 1:** FCY denotes the instruction cycle clock frequency (Fosc/2).

**2:** Based on FCY = FOSC/2; Doze mode and PLL are disabled.

Example 19-1 shows the calculation of the baud rate error for the following conditions:

- Fcy = 4 MHz
- Desired Baud Rate = 9600

The maximum baud rate (BRGH = 0) possible is FCY/16 (for UxBRG = 0) and the minimum baud rate possible is FCY/(16 \* 65536).

Equation 19-2 shows the formula for computation of the baud rate when BRGH = 1.

# EQUATION 19-2: UARTx BAUD RATE WITH BRGH = $1^{(1,2)}$

Baud Rate = 
$$\frac{FCY}{4 \cdot (UxBRG + 1)}$$
  
UxBRG =  $\frac{FCY}{4 \cdot Baud Rate} - 1$ 

- Note 1: FCY denotes the instruction cycle clock frequency.
  - 2: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

The maximum baud rate (BRGH = 1) possible is FCY/4 (for UxBRG = 0) and the minimum baud rate possible is FCY/(4 \* 65536).

Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.

## EXAMPLE 19-1: BAUD RATE ERROR CALCULATION (BRGH = 0)<sup>(1)</sup>

Desired Baud Rate = FcY/(16 (UxBRG + 1))Solving for UxBRG Value: UxBRG = ((FCY/Desired Baud Rate)/16) - 1 UxBRG = ((4000000/9600)/16) - 1 UxBRG = 25Calculated Baud Rate = 4000000/(16 (25 + 1)) = 9615 Error = (Calculated Baud Rate – Desired Baud Rate)/Desired Baud Rate = (9615 - 9600)/9600 = 0.16%

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

#### 19.2 Transmitting in 8-Bit Data Mode

- 1. Set up the UARTx:
  - a) Write appropriate values for data, parity and Stop bits.
  - b) Write appropriate baud rate value to the UxBRG register.
  - c) Set up transmit and receive interrupt enable and priority bits.
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt, two cycles after being set).
- 4. Write a data byte to the lower byte of the UxTXREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock.
- Alternatively, the data byte may be transferred while UTXEN = 0 and then the user may set UTXEN. This will cause the serial bit stream to begin immediately because the baud clock will start from a cleared state.
- 6. A transmit interrupt will be generated as per interrupt control bits, UTXISEL<1:0>.

#### 19.3 Transmitting in 9-Bit Data Mode

- 1. Set up the UARTx (as described in Section 19.2 "Transmitting in 8-Bit Data Mode").
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt).
- 4. Write UxTXREG as a 16-bit value only.
- 5. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. The serial bit stream will start shifting out with the first rising edge of the baud clock.
- 6. A transmit interrupt will be generated as per the setting of control bits, UTXISELx.

# 19.4 Break and Sync Transmit Sequence

The following sequence will send a message frame header, made up of a Break, followed by an auto-baud Sync byte.

- 1. Configure the UARTx for the desired mode.
- 2. Set UTXEN and UTXBRK to set up the Break character.
- 3. Load the UxTXREG with a dummy character to initiate transmission (value is ignored).
- 4. Write '55h' to UxTXREG; this loads the Sync character into the transmit FIFO.
- 5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.

# 19.5 Receiving in 8-Bit or 9-Bit Data Mode

- 1. Set up the UARTx (as described in Section 19.2 "Transmitting in 8-Bit Data Mode").
- Enable the UARTx by setting the URXEN bit (UxSTA<12>).
- 3. A receive interrupt will be generated when one or more data characters have been received as per interrupt control bits, URXISEL<1:0>.
- 4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- 5. Read UxRXREG.

The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.

# 19.6 Operation of UxCTS and UxRTS Control Pins

UARTx Clear-to-Send (UxCTS) and Request-to-Send (UxRTS) are the two hardware controlled pins that are associated with the UARTx modules. These two pins allow the UARTx to operate in Simplex and Flow Control mode. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN<1:0> bits in the UxMODE register configure these pins.

### 19.7 Infrared Support

The UARTx module provides two types of infrared UART support: one is the IrDA clock output to support an external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder. Note that because the IrDA modes require a 16x baud clock, they will only work when the BRGH bit (UxMODE<3>) is '0'.

#### 19.7.1 IrDA CLOCK OUTPUT FOR EXTERNAL IrDA SUPPORT

To support external IrDA encoder and decoder devices, the BCLKx pin (same as the UxRTS pin) can be configured to generate the 16x baud clock. When UEN<1:0> = 11, the BCLKx pin will output the 16x baud clock if the UARTx module is enabled; it can be used to support the IrDA codec chip.

# 19.7.2 BUILT-IN IrDA ENCODER AND DECODER

The UARTx has full implementation of the IrDA encoder and decoder as part of the UARTx module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE<12>). When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

| R/W-0               | U-0                      | R/W-0                                                                          | R/W-0                         | R/W-0                                     | U-0                        | R/W-0            | R/W-0           |
|---------------------|--------------------------|--------------------------------------------------------------------------------|-------------------------------|-------------------------------------------|----------------------------|------------------|-----------------|
| UARTEN <sup>(</sup> | <sup>1)</sup> —          | USIDL                                                                          | IREN <sup>(2)</sup>           | RTSMD                                     |                            | UEN1             | UEN0            |
| bit 15              |                          |                                                                                |                               |                                           |                            |                  | bit 8           |
|                     | C R/W-0                  |                                                                                |                               | D/M/ O                                    | R/W-0                      | R/W-0            | R/W-0           |
| R/W-0, H0           |                          | R/W-0, HC                                                                      | R/W-0                         | R/W-0                                     | -                          |                  | -               |
| WAKE                | LPBACK                   | ABAUD                                                                          | URXINV                        | BRGH                                      | PDSEL1                     | PDSEL0           | STSEL           |
| bit 7               |                          |                                                                                |                               |                                           |                            |                  | bit (           |
| Legend:             |                          | HC = Hardwar                                                                   | e Clearable b                 | pit                                       |                            |                  |                 |
| R = Reada           | able bit                 | W = Writable b                                                                 | oit                           | U = Unimpler                              | nented bit, read           | l as '0'         |                 |
| -n = Value          | at POR                   | '1' = Bit is set                                                               |                               | '0' = Bit is cle                          | ared                       | x = Bit is unkn  | own             |
|                     |                          |                                                                                |                               |                                           |                            |                  |                 |
| bit 15              | UARTEN: U                | JARTx Enable bit <sup>(</sup>                                                  | 1)                            |                                           |                            |                  |                 |
|                     |                          | is enabled; all UA                                                             |                               |                                           |                            |                  |                 |
|                     |                          | is disabled; all UAF                                                           | -                             | ontrolled by port                         | latches, UARTx             | power consump    | otion is minima |
| bit 14              | •                        | ented: Read as '0                                                              |                               |                                           |                            |                  |                 |
| bit 13              |                          | RTx Stop in Idle M                                                             |                               |                                           |                            |                  |                 |
|                     |                          | inues module opereties module operati                                          |                               |                                           | e mode                     |                  |                 |
| bit 12              | IREN: IrDA               | <sup>®</sup> Encoder and De                                                    | coder Enable                  | e bit <sup>(2)</sup>                      |                            |                  |                 |
|                     | 1 = IrDA en              | coder and decode                                                               | r are enable                  | b                                         |                            |                  |                 |
|                     | 0 = IrDA en              | coder and decode                                                               | r are disable                 | d                                         |                            |                  |                 |
| bit 11              |                          | ode Selection for I                                                            |                               | it                                        |                            |                  |                 |
|                     |                          | pin is in Simplex r<br>pin is in Flow Con                                      |                               |                                           |                            |                  |                 |
| bit 10              | Unimpleme                | ented: Read as '0                                                              | ,                             |                                           |                            |                  |                 |
| bit 9-8             |                          | UARTx Enable bi                                                                |                               |                                           |                            |                  |                 |
|                     | 10 = UxTX,<br>01 = UxTX, | UxRX and BCLK:<br>UxRX, UxCTS ar<br>UxRX and UxRTS<br>and UxRX pins a<br>tches | nd UxRTS pir<br>S pins are en | ns are enabled a<br>abled and <u>used</u> | ind used<br>; UxCTS pin is | controlled by po | rt latches      |
| bit 7               | WAKE: Wal                | ke-up on Start Bit                                                             | Detect Durin                  | g Sleep Mode E                            | nable bit                  |                  |                 |
|                     | in hard                  | continues to sam<br>ware on the follow                                         | •                             | • •                                       | s generated on             | the falling edge | , bit is cleare |
| bit 6               |                          | ke-up is enabled<br>JARTx Loopback I                                           | Modo Soloct                   | hit                                       |                            |                  |                 |
|                     |                          | S Loopback mode                                                                |                               | DIL                                       |                            |                  |                 |
|                     |                          | ck mode is disable                                                             | ed                            |                                           |                            |                  |                 |
| bit 5               | -                        | uto-Baud Enable b                                                              |                               |                                           |                            |                  |                 |
|                     | cleared                  | s baud rate meas<br>I in hardware upor<br>ate measurement                      | n completion                  |                                           | er – requires re           | eception of a Sy | nc field (55h   |
| bit 4               |                          | ARTx Receive Po                                                                |                               | -                                         |                            |                  |                 |
|                     |                          | dle state is '0'                                                               | ,                             |                                           |                            |                  |                 |
|                     |                          | dle state is '1'                                                               |                               |                                           |                            |                  |                 |
|                     |                          | L, the peripheral in<br>on, see <b>Section 1</b>                               | -                             |                                           | -                          | available RPn/R  | PIn pin. For    |

REGISTER 19-1: UxMODE: UARTx MODE REGISTER

2: This feature is only available for the 16x BRG mode (BRGH = 0).

#### REGISTER 19-1: UxMODE: UARTx MODE REGISTER (CONTINUED)

- bit 3 BRGH: High Baud Rate Enable bit
  - 1 = High-Speed mode (4 BRG clock cycles per bit)0 = Standard Speed mode (16 BRG clock cycles per bit)
- bit 2-1 **PDSEL<1:0>:** Parity and Data Selection bits
- 11 = 9-bit data, no parity
  10 = 8-bit data, odd parity
  01 = 8-bit data, even parity
  - 01 = 8-bit data, even parity
- bit 0 STSEL: Stop Bit Selection bit
  - 1 = Two Stop bits
  - 0 = One Stop bit
- Note 1: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see Section 11.5 "Peripheral Pin Select (PPS)".
  - **2:** This feature is only available for the 16x BRG mode (BRGH = 0).

|                 | R/W-0                                                                                                                                    | R/W-0             | R/W-0            | R/W-0, HC          | R/W-0                                                                                                                                                                                                                  | R-0, HSC        | R-1, HSC     |  |  |  |  |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--|--|--|--|--|
| UTXISEL1        | UTXINV <sup>(1)</sup>                                                                                                                    | UTXISEL0          | URXEN            | UTXBRK             | UTXEN <sup>(2)</sup>                                                                                                                                                                                                   | UTXBF           | TRMT         |  |  |  |  |  |
| bit 15          |                                                                                                                                          |                   |                  |                    |                                                                                                                                                                                                                        |                 | bit 8        |  |  |  |  |  |
|                 |                                                                                                                                          |                   |                  |                    |                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
| R/W-0           | R/W-0                                                                                                                                    | R/W-0             | R-1, HSC         | R-0, HSC           | R-0, HSC                                                                                                                                                                                                               | R/C-0, HS       | R-0, HSC     |  |  |  |  |  |
| URXISEL1        | URXISEL0                                                                                                                                 | ADDEN             | RIDLE            | PERR               | FERR                                                                                                                                                                                                                   | OERR            | URXDA        |  |  |  |  |  |
| bit 7           |                                                                                                                                          |                   |                  |                    |                                                                                                                                                                                                                        |                 | bit (        |  |  |  |  |  |
|                 |                                                                                                                                          |                   | h:+              |                    | are Cetteble/C                                                                                                                                                                                                         | leeveble bit    |              |  |  |  |  |  |
| Legend:         | L.:.                                                                                                                                     | C = Clearable     |                  | HSC = Hardw        |                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
| R = Readable    |                                                                                                                                          | W = Writable I    | DIt              | U = Unimplem       |                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
| -n = Value at F | -                                                                                                                                        | '1' = Bit is set  |                  | '0' = Bit is clea  | ared                                                                                                                                                                                                                   | x = Bit is unkn | iown         |  |  |  |  |  |
| HS = Hardware   | e Settable bit                                                                                                                           | HC = Hardwa       | re Clearable b   | it                 |                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
| hit 15 10       |                                                                                                                                          |                   | omionion Into    | munt Mada Cala     | ation hita                                                                                                                                                                                                             |                 |              |  |  |  |  |  |
| bit 15,13       |                                                                                                                                          |                   | ismission inter  | rrupt Mode Sele    | ection bits                                                                                                                                                                                                            |                 |              |  |  |  |  |  |
|                 | 11 = Reserved; do not use<br>10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the   |                   |                  |                    |                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
|                 | transmit buffer becomes empty                                                                                                            |                   |                  |                    |                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
|                 | 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit                                       |                   |                  |                    |                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
|                 | operations are completed<br>00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at leas |                   |                  |                    |                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
|                 | one character open in the transmit buffer)                                                                                               |                   |                  |                    |                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
| bit 14          | UTXINV: UARTx IrDA <sup>®</sup> Encoder Transmit Polarity Inversion bit <sup>(1)</sup>                                                   |                   |                  |                    |                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
|                 | IREN = 0:                                                                                                                                |                   |                  |                    |                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
|                 | 1 = UxTX Idle state is '0'                                                                                                               |                   |                  |                    |                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
|                 | 0 = UxTX Idle state is '1'                                                                                                               |                   |                  |                    |                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
|                 | IREN = 1:<br>1 = UxTX Idle state is '1'                                                                                                  |                   |                  |                    |                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
|                 | 0 = UxTX Idle                                                                                                                            |                   |                  |                    |                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
| bit 12          | URXEN: UAR                                                                                                                               | RTx Receive En    | able bit         |                    |                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
|                 | 1 = Receive is enabled, UxRX pin is controlled by UARTx                                                                                  |                   |                  |                    |                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
|                 | 0 = Receive is disabled, UxRX pin is controlled by the port                                                                              |                   |                  |                    |                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
| bit 11          | UTXBRK: UA                                                                                                                               | RTx Transmit E    | Break bit        |                    |                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
|                 | 1 = Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit                                 |                   |                  |                    |                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
|                 | cleared by hardware upon completion<br>0 = Sync Break transmission is disabled or completed                                              |                   |                  |                    |                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
| bit 10          | 0 = Sync Break transmission is disabled or completed UTXEN: UARTx Transmit Enable bit(2)                                                 |                   |                  |                    |                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
| bit to          | 1 = Transmit is enabled, UxTX pin is controlled by UARTx                                                                                 |                   |                  |                    |                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
|                 | 0 = Transmit is disabled, any pending transmission is aborted and the buffer is reset; UxTX pin is                                       |                   |                  |                    |                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
|                 |                                                                                                                                          | d by the port     |                  |                    |                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
| bit 9           |                                                                                                                                          |                   | ffer Full Status | s bit (read-only)  |                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
|                 | <ul> <li>1 = Transmit buffer is full</li> <li>0 = Transmit buffer is not full, at least one more character can be written</li> </ul>     |                   |                  |                    |                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
|                 |                                                                                                                                          |                   |                  |                    | can de Written                                                                                                                                                                                                         |                 |              |  |  |  |  |  |
| <b>h</b> : 1 0  | TRMT: Transmit Shift Register Empty bit (read-only)                                                                                      |                   |                  |                    |                                                                                                                                                                                                                        |                 |              |  |  |  |  |  |
| bit 8           |                                                                                                                                          | -                 |                  |                    | <ul> <li>1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)</li> <li>0 = Transmit Shift Register is not empty, a transmission is in progress or gueued</li> </ul> |                 |              |  |  |  |  |  |
| bit 8           | 1 = Transmit S                                                                                                                           | Shift Register is | empty and tra    | insmit buffer is e |                                                                                                                                                                                                                        |                 | as completed |  |  |  |  |  |

| REGISTER 19-2: | <b>UxSTA: UARTx STATUS AND CONTROL REGISTER</b> |
|----------------|-------------------------------------------------|
|----------------|-------------------------------------------------|

2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see Section 11.5 "Peripheral Pin Select (PPS)".

# REGISTER 19-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

| bit 7-6 | URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits                                                                                                                                                                                                                                                                                                                                                  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | <ul> <li>11 = Interrupt is set on an RSR transfer, making the receive buffer full (i.e., has 4 data characters)</li> <li>10 = Interrupt is set on an RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters)</li> <li>0x = Interrupt is set when any character is received and transferred from the RSR to the receive buffer; receive buffer has one or more characters</li> </ul> |
| bit 5   | ADDEN: Address Character Detect bit (bit 8 of received data = 1)                                                                                                                                                                                                                                                                                                                                           |
|         | <ul> <li>1 = Address Detect mode is enabled (if 9-bit mode is not selected, this does not take effect)</li> <li>0 = Address Detect mode is disabled</li> </ul>                                                                                                                                                                                                                                             |
| bit 4   | RIDLE: Receiver Idle bit (read-only)                                                                                                                                                                                                                                                                                                                                                                       |
|         | 1 = Receiver is Idle<br>0 = Receiver is active                                                                                                                                                                                                                                                                                                                                                             |
| bit 3   | PERR: Parity Error Status bit (read-only)                                                                                                                                                                                                                                                                                                                                                                  |
|         | <ul> <li>1 = Parity error has been detected for the current character (the character at the top of the receive FIFO)</li> <li>0 = Parity error has not been detected</li> </ul>                                                                                                                                                                                                                            |
| bit 2   | FERR: Framing Error Status bit (read-only)                                                                                                                                                                                                                                                                                                                                                                 |
|         | <ul> <li>1 = Framing error has been detected for the current character (the character at the top of the receive FIFO)</li> <li>0 = Framing error has not been detected</li> </ul>                                                                                                                                                                                                                          |
| bit 1   | OERR: Receive Buffer Overrun Error Status bit (clear/read-only)                                                                                                                                                                                                                                                                                                                                            |
|         | <ul> <li>1 = Receive buffer has overflowed</li> <li>0 = Receive buffer has not overflowed (clearing a previously set OERR bit ('1' to '0' transition) will reset<br/>the receive buffer and the RSR to the empty state)</li> </ul>                                                                                                                                                                         |
| bit 0   | URXDA: UARTx Receive Buffer Data Available bit (read-only)                                                                                                                                                                                                                                                                                                                                                 |
|         | <ul> <li>1 = Receive buffer has data, at least one more character can be read</li> <li>0 = Receive buffer is empty</li> </ul>                                                                                                                                                                                                                                                                              |
| Note 1: | The value of this bit only affects the transmit properties of the module when the $IrDA^{(B)}$ encoder is enabled (IREN = 1).                                                                                                                                                                                                                                                                              |

2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. For more information, see Section 11.5 "Peripheral Pin Select (PPS)".

#### REGISTER 19-3: UxRXREG: UARTx RECEIVE REGISTER (NORMALLY READ-ONLY)

| U-0                                | U-0 | U-0 | U-0  | U-0                                     | U-0 | U-0 | R-0      |  |
|------------------------------------|-----|-----|------|-----------------------------------------|-----|-----|----------|--|
|                                    | _   | —   |      | _                                       | _   | _   | UxRXREG8 |  |
| bit 15                             |     |     |      | -                                       |     |     | bit 8    |  |
|                                    |     |     |      |                                         |     |     |          |  |
| R-0                                | R-0 | R-0 | R-0  | R-0                                     | R-0 | R-0 | R-0      |  |
|                                    |     |     | UxRX | REG<7:0>                                |     |     |          |  |
| bit 7                              |     |     |      |                                         |     |     | bit 0    |  |
|                                    |     |     |      |                                         |     |     |          |  |
| Legend:                            |     |     |      |                                         |     |     |          |  |
| R = Readable bit W = Writable bit  |     |     | it   | U = Unimplemented bit, read as '0'      |     |     |          |  |
| -n = Value at POR '1' = Bit is set |     |     |      | '0' = Bit is cleared x = Bit is unknown |     |     |          |  |

bit 15-9 Unimplemented: Read as '0'

bit 8-0 UxRXREG<8:0>: Data of the Received Character bits

#### REGISTER 19-4: UxTXREG: UARTx TRANSMIT REGISTER (NORMALLY WRITE-ONLY)

| U-0    | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | W-x      |
|--------|-----|-----|-----|-----|-----|-----|----------|
| —      | —   |     |     | —   |     | —   | UxTXREG8 |
| bit 15 |     |     |     |     |     |     | bit 8    |

| W-x   | W-x          | W-x | W-x | W-x | W-x | W-x | W-x   |  |  |  |
|-------|--------------|-----|-----|-----|-----|-----|-------|--|--|--|
|       | UxTXREG<7:0> |     |     |     |     |     |       |  |  |  |
| bit 7 |              |     |     |     |     |     | bit 0 |  |  |  |
|       |              |     |     |     |     |     |       |  |  |  |

| Legend:           |                  |                       |                    |
|-------------------|------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | , read as '0'      |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |

bit 15-9 Unimplemented: Read as '0'

bit 8-0 UxTXREG<8:0>: Data of the Transmitted Character bits

#### REGISTER 19-5: UxBRG: UARTx BAUD RATE GENERATOR REGISTER

| R/W-0                       | R/W-0 | R/W-0            | R/W-0                                    | R/W-0   | R/W-0 | R/W-0 | R/W-0 |
|-----------------------------|-------|------------------|------------------------------------------|---------|-------|-------|-------|
|                             |       |                  | BRO                                      | 6<15:8> |       |       |       |
| bit 15                      |       |                  |                                          |         |       |       | bit 8 |
|                             |       |                  |                                          |         |       |       |       |
| R/W-0                       | R/W-0 | R/W-0            | R/W-0                                    | R/W-0   | R/W-0 | R/W-0 | R/W-0 |
|                             |       |                  | BR                                       | G<7:0>  |       |       |       |
| bit 7                       |       |                  |                                          |         |       |       | bit 0 |
|                             |       |                  |                                          |         |       |       |       |
| Legend:                     |       |                  |                                          |         |       |       |       |
| R = Readable bit W = Writ   |       | W = Writable b   | e bit U = Unimplemented bit, read as '0' |         |       |       |       |
| -n = Value at POR '1' = Bit |       | '1' = Bit is set | et '0' = Bit is cleared x = Bit is unkn  |         |       |       | nown  |

bit 15-0 BRG<15:0>: Baud Rate Divisor bits

#### REGISTER 19-6: UxADMD: UARTx ADDRESS DETECT AND MATCH REGISTER

| R/W-0             | R/W-0    | R/W-0            | R/W-0    | R/W-0                              | R/W-0      | R/W-0              | R/W-0    |  |
|-------------------|----------|------------------|----------|------------------------------------|------------|--------------------|----------|--|
| ADMMASK7          | ADMMASK6 | ADMMASK5         | ADMMASK4 | ADMMASK3                           | ADMMASK2   | ADMMASK1           | ADMMASK0 |  |
| bit 15            |          |                  |          |                                    |            |                    | bit 8    |  |
|                   |          |                  |          |                                    |            |                    |          |  |
| R/W-0             | R/W-0    | R/W-0            | R/W-0    | R/W-0                              | R/W-0      | R/W-0              | R/W-0    |  |
| ADMADDR7          | ADMADDR6 | ADMADDR5         | ADMADDR4 | ADMADDR3                           | ADMADDR2   | ADMADDR1           | ADMADDR0 |  |
| bit 7             |          |                  |          |                                    |            |                    | bit 0    |  |
|                   |          |                  |          |                                    |            |                    |          |  |
| Legend:           |          |                  |          |                                    |            |                    |          |  |
| R = Readable      | bit      | W = Writable I   | oit      | U = Unimplemented bit, read as '0' |            |                    |          |  |
| -n = Value at POR |          | '1' = Bit is set |          | '0' = Bit is cleared               |            | x = Bit is unknown |          |  |
|                   |          |                  |          |                                    |            |                    |          |  |
| bit 15_8          |          |                  |          | MD<7.0>) Mag                       | skina hite |                    |          |  |

| DIT 15-8 | ADMMASK ?:0 : ADMADDR ?:0 (UXADMD ?:0 ) Masking bits                                                                                                 |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | For ADMMASKx:                                                                                                                                        |
|          | 1 = ADMADDRx is used to detect the address match                                                                                                     |
|          | 0 = ADMADDRx is not used to detect the address match                                                                                                 |
| bit 7-0  | ADMADDR<7:0>: Address Detect Task Off-Load bits                                                                                                      |
|          | Used with the ADMMASK<7:0> bits (UxADMD<15:8> to off-load the task of detecting the address character from the processor during Address Detect mode. |

# 20.0 ENHANCED PARALLEL MASTER PORT (EPMP)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Enhanced Parallel Master Port (EPMP)" (DS39730), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Enhanced Parallel Master Port (EPMP) module provides a parallel, 4-bit (Master mode only) or 8-bit (Master and Slave modes) data bus interface to communicate with off-chip modules, such as memories, FIFOs, LCD Controllers and other microcontrollers. This module can serve as either the master or the slave on the communication bus.

For EPMP Master modes, all external addresses are mapped into the internal Extended Data Space (EDS). This is done by allocating a region of the EDS for each Chip Select, and then assigning each Chip Select to a particular external resource, such as a memory or external controller. This region should not be assigned to another device resource, such as RAM or SFRs. To perform a write or read on an external resource, the CPU simply performs a write or read within the address range assigned for the EPMP. Key features of the EPMP module are:

- Extended Data Space (EDS) Interface Allows
   Direct Access from the CPU
- Up to 10 Programmable Address Lines
- · Up to 2 Chip Select Lines
- Up to 2 Acknowledgment Lines (one per Chip Select)
- 4-Bit or 8-Bit Wide Data Bus
- Programmable Strobe Options (per Chip Select):
  - Individual read and write strobes or;
    Read/Write strobe with enable strobe
- Programmable Address/Data Multiplexing
- Programmable Address Wait States
- Programmable Data Wait States (per Chip Select)
- Programmable Polarity on Control Signals (per Chip Select)
- · Legacy Parallel Slave Port Support
- Enhanced Parallel Slave Support:
  - Address support
  - 4-byte deep auto-incrementing buffer

Only the higher pin count packages in the family implement the EPMP. The EPMP feature is not available on 28-pin devices.

#### 20.1 Memory Addressable in Different Modes

The memory space addressable by the device depends on the address/data multiplexing selection; it varies from 1K to 2 MB. Refer to Table 20-1 for different Memory-Addressable modes.

#### 20.2 PMDOUT1 and PMDOUT2 Registers

The EPMP Data Output 1 and Data Output 2 registers are used only in Slave mode. These registers act as a buffer for outgoing data.

# 20.3 PMDIN1 and PMDIN2 Registers

The EPMP Data Input 1 and Data Input 2 registers are used in Slave modes to buffer incoming data. These registers hold data that is asynchronously clocked in. In Master mode, PMDIN1 is the holding register for incoming data.

| Data Port Size         | PMA<9:8>    | PMA<7:0>         | PMD<7:4>                    | PMD<3:0>  | Accessible Memory |  |
|------------------------|-------------|------------------|-----------------------------|-----------|-------------------|--|
|                        | Demulti     | plexed Address   | (ADRMUX<1:0>                | = 00)     |                   |  |
| 8-Bit (PTSZ<1:0> = 00) | Addr<9:8>   | Addr<7:0>        | Data                        |           | 1K                |  |
| 4-Bit (PTSZ<1:0> = 01) | Addr<9:8>   | Addr<7:0>        | —                           | Data      | 1K                |  |
|                        | 1 Ad        | dress Phase (AD  | <b>ORMUX&lt;1:0&gt; =</b> 0 | 1)        |                   |  |
| 8-Bit (PTSZ<1:0> = 00) | —           | PMALL            | Addr<7                      | 0> Data   | 1K                |  |
| 4-Bit (PTSZ<1:0> = 01) | Addr<9:8>   | PMALL            | Addr<7:4>                   | Addr<3:0> | 1K                |  |
|                        |             |                  | —                           | Data (1)  | 7                 |  |
|                        | 2 Add       | Iress Phases (Al | DRMUX<1:0> = 1              | .0)       | ·                 |  |
| 8-Bit (PTSZ<1:0> = 00) | _           | PMALL            | Addr<7:0>                   |           | 64K               |  |
|                        |             | PMALH            | Addr<                       | :15:8>    | 7                 |  |
|                        |             | _                | Da                          | ata       | 1                 |  |
| 4-Bit (PTSZ<1:0> = 01) | Addr<9:8>   | PMALL            | Addr<3:0>                   |           | 1K                |  |
|                        |             | PMALH            | Addr                        | <7:4>     | 7                 |  |
|                        |             | —                | Da                          | ata       | 7                 |  |
|                        | 3 Add       | Iress Phases (Al | DRMUX<1:0> = 1              | .1)       | ·                 |  |
| 8-Bit (PTSZ<1:0> = 00) | —           | PMALL            | Addr                        | <7:0>     | 2 Mbytes          |  |
|                        |             | PMALH            | Addr<                       | :15:8>    | 7                 |  |
|                        |             | PMALU            | Addr<                       | 22:16>    | 7                 |  |
|                        |             | _                | Da                          | ata       | 7                 |  |
| 4-Bit (PTSZ<1:0> = 01) | Addr<13:12> | PMALL            | Addr                        | <3:0>     | 16K               |  |
|                        |             | PMALH            | Addr                        | <7:4>     | 1                 |  |
|                        |             | PMALU            | Addr<                       | :11:8>    | 1                 |  |
|                        |             | _                | Da                          | ata       | 1                 |  |

#### TABLE 20-1: EPMP FEATURE DIFFERENCES BY DEVICE PIN COUNT

| Pin Name<br>(Alternate Function) | Туре | Description                                                            |
|----------------------------------|------|------------------------------------------------------------------------|
| PMA<22:16>                       | 0    | Address Bus bits<22:16>                                                |
| PMA14                            | 0    | Address Bus bit 14                                                     |
|                                  | I/O  | Data Bus bit 14 (16-bit port with Multiplexed Addressing)              |
| (PMCS1)                          | 0    | Chip Select 1 (alternate location)                                     |
| PMA<13:8>                        | 0    | Address Bus bits<13:8>                                                 |
| Γ                                | I/O  | Data Bus bits<13:8> (16-bit port with Multiplexed Addressing)          |
| PMA<7:3>                         | 0    | Address Bus bits<7:3>                                                  |
| PMA2                             | 0    | Address Bus bit 2                                                      |
| (PMALU)                          | 0    | Address Latch Upper Strobe for Multiplexed Address                     |
| PMA1                             | I/O  | Address Bus bit 1                                                      |
| (PMALH)                          | 0    | Address Latch High Strobe for Multiplexed Address                      |
| PMA0                             | I/O  | Address Bus bit 0                                                      |
| (PMALL)                          | 0    | Address Latch Low Strobe for Multiplexed Address                       |
| PMD<15:8>                        | I/O  | Data Bus bits<15:8> (Demultiplexed Addressing)                         |
| PMD<7:4>                         | I/O  | Data Bus bits<7:4>                                                     |
|                                  | 0    | Address Bus bits<7:4> (4-bit port with 1-Phase Multiplexed Addressing) |
| PMD<3:0>                         | I/O  | Data Bus bits<3:0>                                                     |
| PMCS1                            | 0    | Chip Select 1                                                          |
| PMCS2                            | 0    | Chip Select 2                                                          |
| PMWR                             | I/O  | Write Strobe <sup>(1)</sup>                                            |
| (PMENB)                          | I/O  | Enable Signal <sup>(1)</sup>                                           |
| PMRD                             | I/O  | Read Strobe <sup>(1)</sup>                                             |
| (PMRD/PMWR)                      | I/O  | Read/Write Signal <sup>(1)</sup>                                       |
| PMBE1                            | 0    | Byte Indicator                                                         |
| PMBE0                            | 0    | Nibble or Byte Indicator                                               |
| PMACK1                           | I    | Acknowledgment Signal 1                                                |
| PMACK2                           | I    | Acknowledgment Signal 2                                                |

**Note 1:** Signal function depends on the setting of the MODE<1:0> and SM bits (PMCON1<9:8> and PMCSxCF<8>).

| R/W-0                 | U-0                                                                                                                                                           | R/W-0                                                                                                                                                                    | R/W-0                             | R/W-0             | U-0              | R/W-0             | R/W-0 |  |  |  |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------|------------------|-------------------|-------|--|--|--|--|
| PMPEN                 | _                                                                                                                                                             | PSIDL                                                                                                                                                                    | ADRMUX1                           | ADRMUX0           |                  | MODE1             | MODE0 |  |  |  |  |
| bit 15                |                                                                                                                                                               |                                                                                                                                                                          |                                   |                   |                  |                   | bit   |  |  |  |  |
| R/W-0                 | R/W-0                                                                                                                                                         | R/W-0                                                                                                                                                                    | R/W-0                             | U-0               | R/W-0            | R/W-0             | R/W-0 |  |  |  |  |
| CSF1                  | CSF0                                                                                                                                                          | ALP                                                                                                                                                                      | ALMODE                            |                   | BUSKEEP          | IRQM1             | IRQM0 |  |  |  |  |
| bit 7                 | 0010                                                                                                                                                          | 7121                                                                                                                                                                     | TENODE                            |                   | BOOKEE           | integration       | bit   |  |  |  |  |
|                       |                                                                                                                                                               |                                                                                                                                                                          |                                   |                   |                  |                   |       |  |  |  |  |
| Legend:<br>R = Readab | lo hit                                                                                                                                                        | W = Writable                                                                                                                                                             | hit                               |                   | nented bit, read | 1 00 '0'          |       |  |  |  |  |
| -n = Value a          |                                                                                                                                                               | '1' = Bit is set                                                                                                                                                         |                                   | '0' = Bit is clea |                  | x = Bit is unkr   | own   |  |  |  |  |
|                       |                                                                                                                                                               |                                                                                                                                                                          | •                                 | 0 Dit io olo      |                  | X Dit lo uniti    |       |  |  |  |  |
| bit 15                | PMPEN: Par                                                                                                                                                    | allel Master Po                                                                                                                                                          | rt Enable bit                     |                   |                  |                   |       |  |  |  |  |
|                       | 1 = EPMP is                                                                                                                                                   |                                                                                                                                                                          |                                   |                   |                  |                   |       |  |  |  |  |
| bit 14                | 0 = EPMP is                                                                                                                                                   | ited: Read as '                                                                                                                                                          | 0'                                |                   |                  |                   |       |  |  |  |  |
| bit 13                | •                                                                                                                                                             |                                                                                                                                                                          | Stop in Idle Mo                   | nde hit           |                  |                   |       |  |  |  |  |
|                       |                                                                                                                                                               |                                                                                                                                                                          | peration when c                   |                   | lle mode         |                   |       |  |  |  |  |
|                       |                                                                                                                                                               |                                                                                                                                                                          | ation in Idle mo                  |                   |                  |                   |       |  |  |  |  |
| bit 12-11             | ADRMUX<1:                                                                                                                                                     | 0>: Address/D                                                                                                                                                            | ata Multiplexing                  | Selection bits    |                  |                   |       |  |  |  |  |
|                       | 11 = Lower address bits are multiplexed with data bits using 3 address phases                                                                                 |                                                                                                                                                                          |                                   |                   |                  |                   |       |  |  |  |  |
|                       | 10 = Lower address bits are multiplexed with data bits using 2 address phases<br>01 = Lower address bits are multiplexed with data bits using 1 address phase |                                                                                                                                                                          |                                   |                   |                  |                   |       |  |  |  |  |
|                       |                                                                                                                                                               |                                                                                                                                                                          | e multiplexed wi                  |                   | ng 1 address p   | nase              |       |  |  |  |  |
| bit 10                |                                                                                                                                                               |                                                                                                                                                                          | -                                 | , pino            |                  |                   |       |  |  |  |  |
| bit 9-8               | Unimplemented: Read as '0'<br>MODE<1:0>: Parallel Port Mode Select bits                                                                                       |                                                                                                                                                                          |                                   |                   |                  |                   |       |  |  |  |  |
|                       | 11 = Master mode                                                                                                                                              |                                                                                                                                                                          |                                   |                   |                  |                   |       |  |  |  |  |
|                       |                                                                                                                                                               |                                                                                                                                                                          | sed are PMRD                      |                   |                  |                   |       |  |  |  |  |
|                       |                                                                                                                                                               |                                                                                                                                                                          | ed are PMRD, I                    |                   |                  |                   |       |  |  |  |  |
| h:+ 7 C               | • •                                                                                                                                                           |                                                                                                                                                                          | Port; pins used                   | are PMRD, PM      | IWR, PMCS a      | nd PMD<7:0>       |       |  |  |  |  |
| bit 7-6               | CSF<1:0>: Chip Select Function bits                                                                                                                           |                                                                                                                                                                          |                                   |                   |                  |                   |       |  |  |  |  |
|                       | 11 = Reserved<br>10 = PMA14 is used for Chip Select 1                                                                                                         |                                                                                                                                                                          |                                   |                   |                  |                   |       |  |  |  |  |
|                       | 01 = Reserved                                                                                                                                                 |                                                                                                                                                                          |                                   |                   |                  |                   |       |  |  |  |  |
|                       | 00 = PMCS2 is used for Chip Select 2, PMCS1 is used for Chip Select 1                                                                                         |                                                                                                                                                                          |                                   |                   |                  |                   |       |  |  |  |  |
| bit 5                 |                                                                                                                                                               | s Latch Polarity                                                                                                                                                         |                                   |                   |                  |                   |       |  |  |  |  |
|                       | <ul> <li>1 = Active-high (PMALL, PMALH and PMALU)</li> <li>0 = Active-low (PMALL, PMALH and PMALU)</li> </ul>                                                 |                                                                                                                                                                          |                                   |                   |                  |                   |       |  |  |  |  |
| L:1 4                 |                                                                                                                                                               | •                                                                                                                                                                        |                                   | LU)               |                  |                   |       |  |  |  |  |
| bit 4                 |                                                                                                                                                               | ddress Latch S                                                                                                                                                           |                                   |                   |                  | at if the ourrant |       |  |  |  |  |
|                       |                                                                                                                                                               | 1 = Enables "smart" address strobes (each address phase is only present if the current access would<br>cause a different address in the latch than the previous address) |                                   |                   |                  |                   |       |  |  |  |  |
|                       |                                                                                                                                                               | "smart" addres                                                                                                                                                           |                                   |                   |                  |                   |       |  |  |  |  |
| bit 3                 | Unimplemen                                                                                                                                                    | ted: Read as '                                                                                                                                                           | 0'                                |                   |                  |                   |       |  |  |  |  |
| bit 2                 | BUSKEEP: E                                                                                                                                                    | Bus Keeper bit                                                                                                                                                           |                                   |                   |                  |                   |       |  |  |  |  |
|                       |                                                                                                                                                               | •                                                                                                                                                                        | value when not<br>pedance state   |                   |                  | ı                 |       |  |  |  |  |
| bit 1-0               | IRQM<1:0>:                                                                                                                                                    | Interrupt Requ                                                                                                                                                           | est Mode bits                     |                   |                  |                   |       |  |  |  |  |
|                       |                                                                                                                                                               |                                                                                                                                                                          | vhen Read Buff<br>peration when F |                   |                  |                   |       |  |  |  |  |
|                       | 10 = Reserve                                                                                                                                                  | he                                                                                                                                                                       |                                   |                   |                  |                   |       |  |  |  |  |
|                       |                                                                                                                                                               |                                                                                                                                                                          | at the end of a                   |                   |                  |                   |       |  |  |  |  |

## REGISTER 20-1: PMCON1: EPMP CONTROL REGISTER 1

| R-0, HSC                                                  | U-0                                                             | R/C-0, HS                                    | R/C-0, HS                    | U-0                                    | U-0                    | U-0                    | U-0                    |
|-----------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------|------------------------------|----------------------------------------|------------------------|------------------------|------------------------|
| BUSY                                                      | —                                                               | ERROR                                        | TIMEOUT                      | —                                      | —                      | —                      | —                      |
| bit 15                                                    |                                                                 |                                              |                              |                                        |                        |                        | bit 8                  |
|                                                           |                                                                 |                                              |                              |                                        |                        |                        |                        |
| R/W-0                                                     | R/W-0                                                           | R/W-0                                        | R/W-0                        | R/W-0                                  | R/W-0                  | R/W-0                  | R/W-0                  |
| RADDR23 <sup>(1)</sup>                                    | ) RADDR22 <sup>(1)</sup>                                        | RADDR21 <sup>(1)</sup>                       | RADDR20 <sup>(1)</sup>       | RADDR19 <sup>(1)</sup>                 | RADDR18 <sup>(1)</sup> | RADDR17 <sup>(1)</sup> | RADDR16 <sup>(1)</sup> |
| bit 7                                                     |                                                                 |                                              |                              |                                        |                        |                        | bit 0                  |
|                                                           |                                                                 |                                              |                              |                                        |                        |                        |                        |
| Legend:                                                   |                                                                 |                                              |                              |                                        |                        |                        |                        |
| R = Readable bit W = Writable bit                         |                                                                 | bit                                          | U = Unimpleme                | ented, read as '                       | 0'                     |                        |                        |
| -n = Value at POR                                         |                                                                 | '1' = Bit is set                             |                              | '0' = Bit is cleared x = Bit is unknow |                        | nown                   |                        |
| C = Clearabl                                              | e bit                                                           | HS = Hardward                                | e Settable bit               | HSC = Hardwa                           | are Settable/Cl        | earable bit            |                        |
|                                                           |                                                                 |                                              |                              |                                        |                        |                        |                        |
| bit 15                                                    | BUSY: Busy b                                                    | oit (Master mod                              | e only)                      |                                        |                        |                        |                        |
|                                                           | 1 = Port is bu                                                  | ,                                            |                              |                                        |                        |                        |                        |
|                                                           | 0 = Port is no                                                  | 2                                            |                              |                                        |                        |                        |                        |
| bit 14                                                    | Unimplement                                                     | ted: Read as '0                              | )'                           |                                        |                        |                        |                        |
| bit 13                                                    | ERROR: Erro                                                     | r bit                                        |                              |                                        |                        |                        |                        |
| 1 = Transaction error (illegal transaction was requested) |                                                                 |                                              |                              |                                        |                        |                        |                        |
|                                                           |                                                                 |                                              |                              | • •                                    |                        |                        |                        |
|                                                           |                                                                 | on completed s                               |                              |                                        |                        |                        |                        |
| bit 12                                                    |                                                                 | •                                            |                              |                                        |                        |                        |                        |
| bit 12                                                    | 0 = Transacti<br>TIMEOUT: Tir<br>1 = Transacti                  | ne-out bit<br>on timed out                   | successfully                 |                                        |                        |                        |                        |
|                                                           | 0 = Transacti<br>TIMEOUT: Tir<br>1 = Transacti<br>0 = Transacti | ne-out bit<br>on timed out<br>on completed s | successfully<br>successfully |                                        |                        |                        |                        |
| bit 12<br>bit 11-8                                        | 0 = Transacti<br>TIMEOUT: Tir<br>1 = Transacti<br>0 = Transacti | ne-out bit<br>on timed out                   | successfully<br>successfully |                                        |                        |                        |                        |

#### REGISTER 20-2: PMCON2: EPMP CONTROL REGISTER 2

Note 1: If RADDR<23:16> = 00000000, then the last EDS address for Chip Select 2 will be FFFFFh.

| R/W-0<br>PTWREN<br>bit 15<br>U-0<br><br>bit 7 | R/W-0<br>PTRDEN<br>U-0                                                     | R/W-0<br>PTBE1EN<br>U-0                    | R/W-0<br>PTBE0EN | U-0               | R/W-0<br>AWAITM1 | R/W-0<br>AWAITM0 | R/W-0<br>AWAITE |  |  |  |
|-----------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------|------------------|-------------------|------------------|------------------|-----------------|--|--|--|
| bit 15<br>U-0<br>—                            |                                                                            |                                            | PTBE0EN          | —                 | AWAITM1          | AWAITM0          | AWAITE          |  |  |  |
| U-0<br>—                                      | U-0                                                                        | U-0                                        |                  |                   |                  |                  |                 |  |  |  |
| —                                             | U-0                                                                        | U-0                                        |                  |                   |                  |                  | bit 8           |  |  |  |
| —                                             | U-0                                                                        | U-0                                        |                  |                   |                  |                  |                 |  |  |  |
|                                               | _                                                                          |                                            | U-0              | U-0               | U-0              | U-0              | U-0             |  |  |  |
| hit 7                                         |                                                                            |                                            |                  | <u> </u>          |                  |                  |                 |  |  |  |
| bit 7 bit                                     |                                                                            |                                            |                  |                   |                  |                  |                 |  |  |  |
|                                               |                                                                            |                                            |                  |                   |                  |                  |                 |  |  |  |
| Legend:                                       |                                                                            |                                            |                  |                   |                  |                  |                 |  |  |  |
| R = Readable                                  | e bit                                                                      | W = Writable I                             | oit              | U = Unimplem      | nented bit, read | l as '0'         |                 |  |  |  |
| -n = Value at                                 | POR                                                                        | '1' = Bit is set                           |                  | '0' = Bit is clea | ared             | x = Bit is unkn  | own             |  |  |  |
|                                               |                                                                            |                                            |                  |                   |                  |                  |                 |  |  |  |
| bit 15                                        | PTWREN: Wr                                                                 | ite/Enable Stro                            | be Port Enable   | e bit             |                  |                  |                 |  |  |  |
|                                               | 1 = PMWR/PMENB port is enabled                                             |                                            |                  |                   |                  |                  |                 |  |  |  |
| L:L 4 4                                       | 0 = PMWR/PMENB port is disabled                                            |                                            |                  |                   |                  |                  |                 |  |  |  |
| bit 14                                        | PTRDEN: Read/Write Strobe Port Enable bit<br>1 = PMRD/PMWR port is enabled |                                            |                  |                   |                  |                  |                 |  |  |  |
|                                               |                                                                            | MWR port is dis                            |                  |                   |                  |                  |                 |  |  |  |
| bit 13                                        |                                                                            | gh Nibble/Byte                             |                  | nable bit         |                  |                  |                 |  |  |  |
|                                               | 1 = PMBE1 p                                                                |                                            |                  |                   |                  |                  |                 |  |  |  |
|                                               | 0 = PMBE1 p                                                                | ort is disabled                            |                  |                   |                  |                  |                 |  |  |  |
| bit 12                                        | PTBE0EN: Lo                                                                | w Nibble/Byte                              | Enable Port E    | nable bit         |                  |                  |                 |  |  |  |
|                                               | 1 = PMBE0 p                                                                |                                            |                  |                   |                  |                  |                 |  |  |  |
|                                               | -                                                                          | ort is disabled                            |                  |                   |                  |                  |                 |  |  |  |
| bit 11                                        | -                                                                          | ted: Read as '(                            |                  |                   |                  |                  |                 |  |  |  |
| bit 10-9                                      |                                                                            | >: Address Lat                             | ch Strobe Wait   | State bits        |                  |                  |                 |  |  |  |
|                                               | 11 = Wait of 3                                                             |                                            |                  |                   |                  |                  |                 |  |  |  |
|                                               |                                                                            | 10 = Wait of 2½ Tcy<br>01 = Wait of 1½ Tcy |                  |                   |                  |                  |                 |  |  |  |
|                                               | 00 = Wait of ½                                                             | ∕₂ TCY                                     |                  |                   |                  |                  |                 |  |  |  |
| bit 8                                         | AWAITE: Add                                                                | Iress Hold After                           | Address Latc     | h Strobe Wait S   | state bits       |                  |                 |  |  |  |
|                                               | 1 = Wait of 1                                                              |                                            |                  |                   |                  |                  |                 |  |  |  |
|                                               | $0 = $ Wait of $\frac{1}{4}$                                               |                                            |                  |                   |                  |                  |                 |  |  |  |
| bit 7-0                                       | Unimplement                                                                | ted: Read as '0                            | )'               |                   |                  |                  |                 |  |  |  |

#### REGISTER 20-3: PMCON3: EPMP CONTROL REGISTER 3

#### REGISTER 20-4: PMCON4: EPMP CONTROL REGISTER 4

| U-0           | R/W-0      | R/W-0                                 | R/W-0         | R/W-0                              | R/W-0          | R/W-0              | R/W-0 |  |
|---------------|------------|---------------------------------------|---------------|------------------------------------|----------------|--------------------|-------|--|
|               | PTEN14     |                                       |               | PTEN                               | <13:8>         |                    |       |  |
| bit 15        |            |                                       |               |                                    |                |                    | bit 8 |  |
| R/W-0         | R/W-0      | R/W-0                                 | R/W-0         | R/W-0                              | R/W-0          | R/W-0              | R/W-0 |  |
|               | PTEN<7:3>  |                                       |               |                                    |                | PTEN<2:0>          |       |  |
| bit 7         |            |                                       |               |                                    |                |                    | bit 0 |  |
| <u></u>       |            |                                       |               |                                    |                |                    |       |  |
| Legend:       |            |                                       |               |                                    |                |                    |       |  |
| R = Readabl   | e bit      | W = Writable                          | bit           | U = Unimplemented bit, read as '0' |                |                    |       |  |
| -n = Value at | POR        | '1' = Bit is set                      |               | '0' = Bit is clea                  | ared           | x = Bit is unknown |       |  |
|               |            |                                       |               |                                    |                |                    |       |  |
| bit 15        | Unimpleme  | nted: Read as '0                      | )'            |                                    |                |                    |       |  |
| bit 14        | PTEN14: PM | IA14 Port Enabl                       | e bit         |                                    |                |                    |       |  |
|               |            | functions as eith<br>functions as por |               | ne 14 or Chip S                    | elect 1        |                    |       |  |
| bit 13-3      | PTEN<13:3> | : EPMP Addres                         | s Port Enable | bits                               |                |                    |       |  |
|               | 1 = PMA<13 | 3:3> function as                      | EPMP addres   | s lines                            |                |                    |       |  |
|               | 0 = PMA<13 | 3:3> function as                      | port I/Os     |                                    |                |                    |       |  |
| bit 2-0       | PTEN<2:0>: | PMALU/PMALH                           | H/PMALL Strol | be Enable bits                     |                |                    |       |  |
|               |            | 0> function as e<br>0> function as p  |               | lines or address                   | alatch strobes |                    |       |  |

| R/W-0        | R/W-0                                                                                                | R/W-0                                | R/W-0           | U-0               | R/W-0           | R/W-0           | R/W-0 |  |  |  |  |
|--------------|------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------|-------------------|-----------------|-----------------|-------|--|--|--|--|
| CSDIS        | CSP                                                                                                  | CSPTEN                               | BEP             |                   | WRSP            | RDSP            | SM    |  |  |  |  |
| bit 15       |                                                                                                      |                                      |                 |                   |                 |                 | bit 8 |  |  |  |  |
|              |                                                                                                      |                                      | 11.0            | 11.0              |                 | 11.0            |       |  |  |  |  |
| R/W-0        | R/W-0                                                                                                | R/W-0                                | U-0             | U-0               | U-0             | U-0             | U-0   |  |  |  |  |
| ACKP         | PTSZ1                                                                                                | PTSZ0                                | —               | —                 | —               | _               |       |  |  |  |  |
| bit 7        |                                                                                                      |                                      |                 |                   |                 |                 | bit ( |  |  |  |  |
| Legend:      |                                                                                                      |                                      |                 |                   |                 |                 |       |  |  |  |  |
| R = Readab   | le bit                                                                                               | W = Writable                         | bit             | U = Unimplen      | nented bit, rea | d as '0'        |       |  |  |  |  |
| -n = Value a | It POR                                                                                               | '1' = Bit is set                     |                 | '0' = Bit is clea | ared            | x = Bit is unkr | nown  |  |  |  |  |
|              |                                                                                                      |                                      |                 |                   |                 |                 |       |  |  |  |  |
| bit 15       | •                                                                                                    | Select x Disab                       |                 |                   |                 |                 |       |  |  |  |  |
|              |                                                                                                      | the Chip Selec                       |                 |                   |                 |                 |       |  |  |  |  |
|              |                                                                                                      | the Chip Selec                       |                 | у                 |                 |                 |       |  |  |  |  |
| bit 14       |                                                                                                      | elect x Polarity                     | DIT             |                   |                 |                 |       |  |  |  |  |
|              | 1 = Active-hi                                                                                        |                                      |                 |                   |                 |                 |       |  |  |  |  |
| bit 13       | 0 = Active-low (PMCSx)<br>CSPTEN: PMCSx Port Enable bit                                              |                                      |                 |                   |                 |                 |       |  |  |  |  |
|              | 1 = PMCSx port is enabled                                                                            |                                      |                 |                   |                 |                 |       |  |  |  |  |
|              |                                                                                                      | port is disabled                     |                 |                   |                 |                 |       |  |  |  |  |
| bit 12       | BEP: Chip Se                                                                                         | elect x Nibble/E                     | Byte Enable Po  | larity bit        |                 |                 |       |  |  |  |  |
|              |                                                                                                      | yte enable is ac                     |                 |                   |                 |                 |       |  |  |  |  |
|              | -                                                                                                    | yte enable is ac                     |                 | E0, PMBE1)        |                 |                 |       |  |  |  |  |
| bit 11       | -                                                                                                    | ted: Read as '                       |                 |                   |                 |                 |       |  |  |  |  |
| bit 10       | <b>WRSP:</b> Chip Select x Write Strobe Polarity bit<br>For Slave modes and Master mode when SM = 0: |                                      |                 |                   |                 |                 |       |  |  |  |  |
|              |                                                                                                      |                                      |                 | SM = 0:           |                 |                 |       |  |  |  |  |
|              |                                                                                                      | obe is active-hi<br>obe is active-lo |                 |                   |                 |                 |       |  |  |  |  |
|              |                                                                                                      | ode when SM                          | . ,             |                   |                 |                 |       |  |  |  |  |
|              |                                                                                                      | trobe is active-                     |                 | )                 |                 |                 |       |  |  |  |  |
|              |                                                                                                      | trobe is active-                     |                 |                   |                 |                 |       |  |  |  |  |
| bit 9        | RDSP: Chip S                                                                                         | Select x Read                        | Strobe Polarity | ' bit             |                 |                 |       |  |  |  |  |
|              |                                                                                                      | des and Maste                        |                 | SM = 0:           |                 |                 |       |  |  |  |  |
|              |                                                                                                      | obe is active-hi                     |                 |                   |                 |                 |       |  |  |  |  |
|              |                                                                                                      | obe is active-lo                     |                 |                   |                 |                 |       |  |  |  |  |
|              |                                                                                                      | ode when SM                          |                 |                   |                 |                 |       |  |  |  |  |
|              |                                                                                                      | ite strobe is act                    |                 |                   |                 |                 |       |  |  |  |  |
| bit 8        |                                                                                                      | ect x Strobe M                       | •               | ,                 |                 |                 |       |  |  |  |  |
|              |                                                                                                      |                                      |                 | MRD/PMWR an       | d PMENB)        |                 |       |  |  |  |  |
|              | 0 = Reads a                                                                                          | nd writes strobe                     | es (PMRD and    | I PMWR)           | -               |                 |       |  |  |  |  |
| bit 7        | ACKP: Chip                                                                                           | Select x Ackno                       | wledge Polarit  | y bit             |                 |                 |       |  |  |  |  |
|              |                                                                                                      | ctive-high (PM)<br>ctive-low (PMA    | /               |                   |                 |                 |       |  |  |  |  |
| bit 6-5      | PTSZ<1:0>:                                                                                           | Chip Select x F                      | ort Size bits   |                   |                 |                 |       |  |  |  |  |
|              | 11 = Reserve                                                                                         | ed                                   |                 |                   |                 |                 |       |  |  |  |  |
|              | 10 = Reserve                                                                                         |                                      | •               |                   |                 |                 |       |  |  |  |  |
|              | •                                                                                                    | rt size (PMD<3<br>rt size (PMD<7     | ,               |                   |                 |                 |       |  |  |  |  |
| hit 4 0      | -                                                                                                    | rt size (PMD<7                       | -               |                   |                 |                 |       |  |  |  |  |
| bit 4-0      | Unimplemen                                                                                           | ted: Read as '                       | U               |                   |                 |                 |       |  |  |  |  |

# REGISTER 20-5: PMCSxCF: EPMP CHIP SELECT x CONFIGURATION REGISTER

#### REGISTER 20-6: PMCSxBS: EPMP CHIP SELECT x BASE ADDRESS REGISTER<sup>(2)</sup>

| R/W <sup>(1)</sup>                 | R/W <sup>(1)</sup> | R/W <sup>(1)</sup> | R/W <sup>(1)</sup> | R/W <sup>(1)</sup>     | R/W <sup>(1)</sup> | R/W <sup>(1)</sup> | R/W <sup>(1)</sup> |
|------------------------------------|--------------------|--------------------|--------------------|------------------------|--------------------|--------------------|--------------------|
|                                    |                    |                    | BASE               | <23:16>                |                    |                    |                    |
| bit 15                             |                    |                    |                    |                        |                    |                    | bit 8              |
| (1)                                |                    |                    |                    | (1)                    |                    |                    |                    |
| R/W <sup>(1)</sup>                 | U-0                | U-0                | U-0                | R/W <sup>(1)</sup>     | U-0                | U-0                | U-0                |
| BASE15                             | —                  | —                  | —                  | BASE11                 | —                  | —                  | —                  |
| bit 7                              |                    |                    |                    |                        |                    |                    | bit 0              |
|                                    |                    |                    |                    |                        |                    |                    |                    |
| Legend:                            |                    |                    |                    |                        |                    |                    |                    |
| R = Readable                       | bit                | W = Writable b     | oit                | U = Unimplem           | ented bit, read    | d as '0'           |                    |
| -n = Value at POR '1' = Bit is set |                    |                    | '0' = Bit is clea  | ared                   | x = Bit is unknown |                    |                    |
|                                    |                    |                    |                    |                        |                    |                    |                    |
| bit 15-7                           | BASE<23:1          | 5>: Chip Select x  | Base Addre         | ss bits <sup>(1)</sup> |                    |                    |                    |
| h:+ C 4                            |                    | mtadi Daad aa (o   | ,                  |                        |                    |                    |                    |

bit 6-4 Unimplemented: Read as '0'

bit 3 BASE11: Chip Select x Base Address bit<sup>(1)</sup>

bit 2-0 Unimplemented: Read as '0'

Note 1: The value at POR is 0080h for PMCS1BS and 8080h for PMCS2BS.

2: If the whole PMCS2BS register is written together as 0x0000, then the last EDS address for the Chip Select 1 will be FFFFFh. In this case, Chip Select 2 should not be used. PMCS1BS has no such feature.

| R/W-0            | R/W-0                                                                                                                          | R/W-0                                | R/W-0          | R/W-0             | U-0             | U-0             | U-0              |  |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------|-------------------|-----------------|-----------------|------------------|--|--|--|
| ACKM1            | ACKM0                                                                                                                          | AMWAIT2                              | AMWAIT1        | AMWAIT0           |                 | _               |                  |  |  |  |
| bit 15           | •                                                                                                                              |                                      |                |                   |                 |                 | bit 8            |  |  |  |
| DAMA             | D/14/ 0                                                                                                                        | DAMA                                 | DANO           | DAMA              | DAMA            | <b>D</b> /// 0  | DAMA             |  |  |  |
| R/W-0            | R/W-0                                                                                                                          | R/W-0                                | R/W-0          | R/W-0             | R/W-0           | R/W-0           | R/W-0            |  |  |  |
| DWAITB1<br>bit 7 | DWAITB0                                                                                                                        | DWAITM3                              | DWAITM2        | DWAITM1           | DWAITM0         | DWAITE1         | DWAITE0<br>bit 0 |  |  |  |
|                  |                                                                                                                                |                                      |                |                   |                 |                 | Dit C            |  |  |  |
| Legend:          |                                                                                                                                |                                      |                |                   |                 |                 |                  |  |  |  |
| R = Readable     | e bit                                                                                                                          | W = Writable                         | bit            | U = Unimplem      | ented bit, read | l as '0'        |                  |  |  |  |
| -n = Value at    | POR                                                                                                                            | '1' = Bit is set                     |                | '0' = Bit is clea | ared            | x = Bit is unkr | iown             |  |  |  |
|                  |                                                                                                                                |                                      |                |                   |                 |                 |                  |  |  |  |
| bit 15-14        | ACKM<1:0>:                                                                                                                     | Chip Select x                        | Acknowledge N  | /lode bits        |                 |                 |                  |  |  |  |
|                  | 11 = Reserve                                                                                                                   |                                      |                |                   |                 |                 |                  |  |  |  |
|                  |                                                                                                                                |                                      |                | a read/write ope  |                 |                 |                  |  |  |  |
|                  | 01 = PMACKx is used to determine when a read/write operation is complete with time-out $(f_{\rm DWA})$                         |                                      |                |                   |                 |                 |                  |  |  |  |
|                  | (If DWAITM<3:0> = 0000, the maximum time-out is 255 TcY or else it is DWAITM<3:0> cycles.)<br>00 = PMACKx is not used          |                                      |                |                   |                 |                 |                  |  |  |  |
| bit 13-11        | AMWAIT<2:0                                                                                                                     | >: Chip Select                       | x Alternate Ma | ster Wait State   | bits            |                 |                  |  |  |  |
|                  | 111 = Wait of 10 alternate master cycles                                                                                       |                                      |                |                   |                 |                 |                  |  |  |  |
|                  |                                                                                                                                |                                      |                |                   |                 |                 |                  |  |  |  |
|                  |                                                                                                                                | f 4 alternate ma<br>f 3 alternate ma | -              |                   |                 |                 |                  |  |  |  |
| bit 10-8         | 000 = Wait of 3 alternate master cycles<br>Unimplemented: Read as '0'                                                          |                                      |                |                   |                 |                 |                  |  |  |  |
| bit 7-6          | -                                                                                                                              |                                      |                | Before Read/Wr    | ite Strobe Wait | State bits      |                  |  |  |  |
|                  | 11 = Wait of 3¼ TCY                                                                                                            |                                      |                |                   |                 |                 |                  |  |  |  |
|                  | 10 = Wait of 2                                                                                                                 |                                      |                |                   |                 |                 |                  |  |  |  |
|                  | 01 = Wait of                                                                                                                   |                                      |                |                   |                 |                 |                  |  |  |  |
| bit 5-2          | 00 = Wait of C                                                                                                                 |                                      | v Data Boad/M  | Vrite Strobe Wa   | it Stata hite   |                 |                  |  |  |  |
| DIL 3-2          | For Write Ope                                                                                                                  | -                                    | x Dala Redu/v  |                   |                 |                 |                  |  |  |  |
|                  | 1111 = Wait                                                                                                                    |                                      |                |                   |                 |                 |                  |  |  |  |
|                  |                                                                                                                                |                                      |                |                   |                 |                 |                  |  |  |  |
|                  | 0001 = Wait                                                                                                                    |                                      |                |                   |                 |                 |                  |  |  |  |
|                  | 0000 = Wait                                                                                                                    |                                      |                |                   |                 |                 |                  |  |  |  |
|                  | For Read Ope                                                                                                                   |                                      |                |                   |                 |                 |                  |  |  |  |
|                  |                                                                                                                                | 01 1074 101                          |                |                   |                 |                 |                  |  |  |  |
|                  | 0001 = Wait                                                                                                                    |                                      |                |                   |                 |                 |                  |  |  |  |
| bit 1-0          | 0000 = Wait of <sup>3</sup> / <sub>4</sub> Tcy<br>DWAITE<1:0>: Chip Select x Data Hold After Read/Write Strobe Wait State bits |                                      |                |                   |                 |                 |                  |  |  |  |
|                  | For Write Ope                                                                                                                  | •                                    |                |                   |                 |                 |                  |  |  |  |
|                  | 11 = Wait of 3                                                                                                                 |                                      |                |                   |                 |                 |                  |  |  |  |
|                  | 10 = Wait of 2                                                                                                                 |                                      |                |                   |                 |                 |                  |  |  |  |
|                  | 01 = Wait of<br>00 = Wait of                                                                                                   |                                      |                |                   |                 |                 |                  |  |  |  |
|                  | For Read Op                                                                                                                    |                                      |                |                   |                 |                 |                  |  |  |  |
|                  | 11 = Wait of 3                                                                                                                 |                                      |                |                   |                 |                 |                  |  |  |  |
|                  |                                                                                                                                |                                      |                |                   |                 |                 |                  |  |  |  |
|                  | 10 = Wait of 2                                                                                                                 | 2 TCY                                |                |                   |                 |                 |                  |  |  |  |
|                  | 10 = Wait of 2<br>01 = Wait of 2<br>00 = Wait of 0                                                                             | 1 TCY                                |                |                   |                 |                 |                  |  |  |  |

#### REGISTER 20-7: PMCSxMD: EPMP CHIP SELECT x MODE REGISTER

#### REGISTER 20-8: PMSTAT: EPMP STATUS REGISTER (SLAVE MODE ONLY)

| R-0, HSC | R/W-0, HS | U-0 | U-0 | R-0, HSC            | R-0, HSC            | R-0, HSC            | R-0, HSC            |
|----------|-----------|-----|-----|---------------------|---------------------|---------------------|---------------------|
| IBF      | IBOV      | —   | —   | IB3F <sup>(1)</sup> | IB2F <sup>(1)</sup> | IB1F <sup>(1)</sup> | IB0F <sup>(1)</sup> |
| bit 15   |           |     |     |                     |                     |                     | bit 8               |

| R-1, HSC | R/W-0, HS | U-0 | U-0 | R-1, HSC | R-1, HSC | R-1, HSC | R-1, HSC |
|----------|-----------|-----|-----|----------|----------|----------|----------|
| OBE      | OBUF      | —   | —   | OB3E     | OB2E     | OB1E     | OB0E     |
| bit 7    |           |     |     |          |          |          | bit 0    |

| Legend:           | HS = Hardware Settable bit | HSC = Hardware Settable/C          | learable bit       |
|-------------------|----------------------------|------------------------------------|--------------------|
| R = Readable bit  | W = Writable bit           | U = Unimplemented bit, read as '0' |                    |
| -n = Value at POR | '1' = Bit is set           | '0' = Bit is cleared               | x = Bit is unknown |

| bit 15    | IBF: Input Buffer Full Status bit                                                                                                          |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|
|           | 1 = All writable Input Buffer registers are full                                                                                           |
|           | 0 = Some or all of the writable Input Buffer registers are empty                                                                           |
| bit 14    | IBOV: Input Buffer Overflow Status bit                                                                                                     |
|           | <ul> <li>1 = A write attempt to a full Input register occurred (must be cleared in software)</li> <li>0 = No overflow occurred</li> </ul>  |
| bit 13-12 | Unimplemented: Read as '0'                                                                                                                 |
| bit 11-8  | IB3F:IB0F: Input Buffer x Status Full bits <sup>(1)</sup>                                                                                  |
|           | 1 = Input buffer contains unread data (reading the buffer will clear this bit)                                                             |
|           | 0 = Input buffer does not contain unread data                                                                                              |
| bit 7     | OBE: Output Buffer Empty Status bit                                                                                                        |
|           | 1 = All readable Output Buffer registers are empty                                                                                         |
|           | 0 = Some or all of the readable Output Buffer registers are full                                                                           |
| bit 6     | OBUF: Output Buffer Underflow Status bit                                                                                                   |
|           | <ul><li>1 = A read occurred from an empty Output Buffer register (must be cleared in software)</li><li>0 = No underflow occurred</li></ul> |
| bit 5-4   | Unimplemented: Read as '0'                                                                                                                 |
| bit 3-0   | <b>OB3E:OB0E:</b> Output Buffer x Status Empty bits                                                                                        |
|           | 1 = Output Buffer x is empty (writing data to the buffer will clear this bit)                                                              |
|           | 0 = Output Buffer x contains untransmitted data                                                                                            |
|           |                                                                                                                                            |

**Note 1:** Even though an individual bit represents the byte in the buffer, the bits corresponding to the word (Byte 0 and 1 or Byte 2 and 3) get cleared, even on byte reading.

| R/W-0   | U-0         | U-0 | U-0 | U-0 | U-0 | U-0 | U-0    |  |  |
|---------|-------------|-----|-----|-----|-----|-----|--------|--|--|
| IOCON   | —           | _   | —   | —   |     |     | —      |  |  |
| bit 15  |             |     |     |     |     |     | bit 8  |  |  |
|         |             |     |     |     |     |     |        |  |  |
| U-0     | U-0         | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-0  |  |  |
| —       | —           | —   | —   | —   | —   | —   | PMPTTL |  |  |
| bit 7   | bit 7 bit 0 |     |     |     |     |     |        |  |  |
|         |             |     |     |     |     |     |        |  |  |
| Legend: | Legend:     |     |     |     |     |     |        |  |  |

### REGISTER 20-9: PADCON: PAD CONFIGURATION CONTROL REGISTER

| Legend:           |                  |                            |                    |
|-------------------|------------------|----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, rea | d as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared       | x = Bit is unknown |

bit 15 IOCON: Used for Non-PMP functionality

bit 14-1 Unimplemented: Read as '0'

bit 0

PMPTTL: EPMP Module TTL Input Buffer Select bit

1 = EPMP module inputs (PMDx, PMCS1) use TTL input buffers

0 = EPMP module inputs use Schmitt Trigger input buffers

# 21.0 REAL-TIME CLOCK AND CALENDAR (RTCC) WITH TIMESTAMP

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Real-Time Clock and Calendar, refer to the "dsPIC33/PIC24 Family Reference Manual", "RTCC with Timestamp" (DS70005193), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The RTCC provides the user with a Real-Time Clock and Calendar (RTCC) function that can be calibrated.

Key features of the RTCC module are:

- Selectable Clock Source
- Provides Hours, Minutes and Seconds Using 24-Hour Format
- · Visibility of One Half Second Period
- Provides Calendar Weekday, Date, Month and Year
- Alarm-Configurable for Half a Second, 1 Second, 10 Seconds, 1 Minute, 10 Minutes, 1 Hour, 1 Day, 1 Week, 1 Month or 1 Year
- Alarm Repeat with Decrementing Counter
- · Alarm with Indefinite Repeat Chime
- Year 2000 to 2099 Leap Year Correction
- BCD Format for Smaller Software Overhead
- Optimized for Long-Term Battery Operation
- User Calibration of the 32.768 kHz Clock Crystal/32 kHz INTRC Frequency with Periodic Auto-Adjust
- Fractional Second Synchronization
- Calibration to within ±2.64 Seconds Error per Month
- Calibrates up to 260 ppm of Crystal Error
- Ability to Periodically Wake-up External Devices without CPU Intervention (external power control)
- Power Control Output for External Circuit Control
- Calibration takes Effect Every 15 Seconds
- Timestamp Capture register for Time and Date
- Programmable Prescaler and Clock Divider Circuit allows Operation with Any Clock Source up to 32 MHz, Including 32.768 kHz Crystal, 50/60 Hz Powerline Clock, External Real-Time Clock (RTC) or 31.25 kHz LPRC Clock

# 21.1 RTCC Source Clock

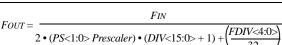
The RTCC clock divider block converts the incoming oscillator source into accurate 1/2 and 1 second clocks for the RTCC. The clock divider is optimized to work with three different oscillator sources:

- · 32.768 kHz crystal oscillator
- 31 kHz Low-Power RC Oscillator (LPRC)
- External 50 Hz or 60 Hz powerline frequency

An asynchronous prescaler, PS<1:0> (RTCCON2L<5:4>), is provided that allows the RTCC to work with higher speed clock sources, such as the system clock. Divide ratios of 1:16, 1:64 or 1:256 may be selected, allowing sources up to 32 MHz to clock the RTCC.

#### 21.1.1 COARSE FREQUENCY DIVISION

The clock divider block has a 16-bit counter used to divide the input clock frequency. The divide ratio is set by the DIV<15:0> register bits (RTCCON2H<15:0>). The DIV<15:0> bits should be programmed with a value to produce a nominal 1/2 second clock divider count period.

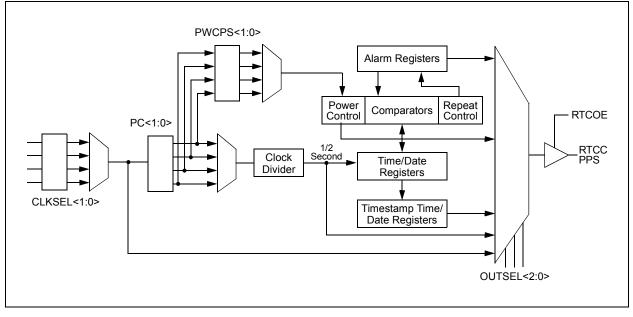

#### 21.1.2 FINE FREQUENCY DIVISION

The fine frequency division is set using the FDIV<4:0> (RTCCON2L<15:11>) bits. Increasing the FDIVx value will lengthen the overall clock divider period.

If FDIV<4:0> = 00000, the fine frequency division circuit is effectively disabled. Otherwise, it will optionally remove a clock pulse from the input of the clock divider every 1/2 second. This functionality will allow the user to remove up to 31 pulses over a fixed period of 16 seconds, depending on the value of FDIVx.

The value for DIV<15:0> is calculated as shown in Equation 21-1. The fractional remainder of the DIV<15:0> calculation result can be used to calculate the value for FDIV<4:0>.

#### EQUATION 21-1: RTCC CLOCK DIVIDER OUTPUT FREQUENCY




The DIV<15:0> value is the integer part of this calculation:

$$DIV < 15:0 > = \frac{FIN}{2 \cdot (PS < 1:0 > Prescaler)} - 1$$

The FDIV<4:0> value is the fractional part of the DIV<15:0> calculation, multiplied by 32.

#### FIGURE 21-1: RTCC BLOCK DIAGRAM



#### 21.2 RTCC Module Registers

The RTCC module registers are organized into four categories:

- RTCC Control Registers
- RTCC Value Registers
- Alarm Value Registers
- Timestamp Registers

#### 21.2.1 REGISTER MAPPING

Previous RTCC implementations used a Register Pointer to access the RTCC Time and Date registers, as well as the Alarm Time and Date registers. These Registers are now mapped to memory and are individually addressable.

#### 21.2.2 WRITE LOCK

To prevent spurious changes to the Time Control or Time Value registers, the WRLOCK bit (RTCCON1L1<11>) must be cleared ('0'). The POR default state is when the WRLOCK bit is '0' and is cleared on any device Reset (POR, BOR, MCLR). It is recommended that the WRLOCK bit be set to '1' after the Date and Time registers are properly initialized, and after the RTCEN bit (RTCCON1L<15>) has been set.

Any attempt to write to the RTCEN bit, the RTCCON2L/H registers, or the Date or Time registers, will be ignored as long as WRLOCK is '1'. The Alarm, Power Control and Timestamp registers can be changed when WRLOCK is '1'.

EXAMPLE 21-1: SETTING THE WRLOCK BIT

Clearing the WRLOCK bit requires an unlock sequence after it has been written to a '1', writing two bytes consecutively to the NVMKEY register. A sample assembly sequence is shown in Example 21-1. If WRLOCK is already cleared, it can be set to '1' without using the unlock sequence.

Note: To avoid accidental writes to the timer, it is recommended that the WRLOCK bit (RTCCON1L<11>) is kept clear at any other time. For the WRLOCK bit to be set, there is only one instruction cycle time window allowed between the 55h/AA sequence and the setting of WRLOCK; therefore, it is recommended that code follow the procedure in Example 21-1.

#### 21.2.3 SELECTING RTCC CLOCK SOURCE

The clock source for the RTCC module can be selected using the CLKSEL<1:0> bits in the RTCCON2L register. When the bits are set to '00', the Secondary Oscillator (SOSC) is used as the reference clock and when the bits are '01', LPRC is used as the reference clock. When CLKSEL<1:0> = 10, the external powerline (50 Hz and 60 Hz) is used as the clock source. When CLKSEL<1:0> = 11, the system clock is used as the clock source.

| DISI | #6                | ;disable interrupts for 6 instructions |
|------|-------------------|----------------------------------------|
| MOV  | #NVKEY, W1        |                                        |
| MOV  | #0x55, W2         | ; first unlock code                    |
| MOV  | W2, [W1]          | ; write first unlock code              |
| MOV  | #0xAA, W3         | ; second unlock sequence               |
| MOV  | W3, [W1]          | ; write second unlock sequence         |
| BCLR | RTCCON1L, #WRLOCK | ; clear the WRLOCK bit                 |

# 21.3 Registers

#### 21.3.1 RTCC CONTROL REGISTERS

### REGISTER 21-1: RTCCON1L: RTCC CONTROL REGISTER 1 (LOW)

| R/W-0  | U-0 | U-0 | U-0 | R/W-0  | R/W-0 | R/W-0  | R/W-0  |
|--------|-----|-----|-----|--------|-------|--------|--------|
| RTCEN  | —   | —   | —   | WRLOCK | PWCEN | PWCPOL | PWCPOE |
| bit 15 |     |     |     |        |       |        | bit 8  |

| R/W-0 | R/W-0   | R/W-0   | R/W-0   | U-0 | U-0 | U-0 | R/W-0 |
|-------|---------|---------|---------|-----|-----|-----|-------|
| RTCOE | OUTSEL2 | OUTSEL1 | OUTSEL0 | _   | _   | _   | TSAEN |
| bit 7 |         |         |         |     |     |     | bit 0 |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

| bit 15    | <b>RTCEN:</b> RTCC Enable bit<br>1 = RTCC is enabled and counts from selected clock source<br>0 = RTCC is not enabled               |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------|
| bit 14-12 | Unimplemented: Read as '0'                                                                                                          |
| bit 11    | WRLOCK: RTCC Register Write Lock                                                                                                    |
|           | <ul><li>1 = RTCC registers are locked</li><li>0 = RTCC registers may be written to by user</li></ul>                                |
| bit 10    | PWCEN: Power Control Enable bit                                                                                                     |
|           | <ul><li>1 = Power control is enabled</li><li>0 = Power control is disabled</li></ul>                                                |
| bit 9     | PWCPOL: Power Control Polarity bit                                                                                                  |
|           | <ol> <li>Power control output is active-high</li> <li>Power control output is active-low</li> </ol>                                 |
| bit 8     | PWCPOE: Power Control Output Enable bit                                                                                             |
|           | <ul><li>1 = Power control output pin is enabled</li><li>0 = Power control output pin is disabled</li></ul>                          |
| bit 7     | RTCOE: RTCC Output Enable bit                                                                                                       |
|           | <ul><li>1 = RTCC output is enabled</li><li>0 = RTCC output is disabled</li></ul>                                                    |
| bit 6-4   | OUTSEL<2:0>: RTCC Output Signal Selection bits                                                                                      |
|           | 111 = Unused<br>110 = Unused                                                                                                        |
|           | 101 = Unused                                                                                                                        |
|           | 100 = Timestamp A event<br>011 = Power control                                                                                      |
|           | 010 = RTCC input clock                                                                                                              |
|           | 001 = Second clock                                                                                                                  |
|           | 000 = Alarm event                                                                                                                   |
| bit 3-1   | Unimplemented: Read as '0'                                                                                                          |
| bit 0     | <b>TSAEN:</b> Timestamp A Enable bit                                                                                                |
|           | <ul> <li>1 = Timestamp event will occur when a low pulse is detected on the TMPRN pin</li> <li>0 = Timestamp is disabled</li> </ul> |

### REGISTER 21-2: RTCCON1H: RTCC CONTROL REGISTER 1 (HIGH)

| R/W-0         | R/W-0                                                                                                             | U-0              | U-0                     | R/W-0             | R/W-0            | R/W-0                                   | R/W-0          |  |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------|------------------|-------------------------|-------------------|------------------|-----------------------------------------|----------------|--|--|--|
| ALRMEN        | CHIME                                                                                                             | —                | —                       | AMASK3            | AMASK2           | AMASK1                                  | AMASK0         |  |  |  |
| bit 15        |                                                                                                                   |                  |                         |                   |                  |                                         | bit 8          |  |  |  |
| R/W-0         | R/W-0                                                                                                             | R/W-0            | R/W-0                   | R/W-0             | R/W-0            | R/W-0                                   | R/W-0          |  |  |  |
| ALMRPT7       | ALMRPT6                                                                                                           | ALMRPT5          | ALMRPT4                 | ALMRPT3           | ALMRPT2          | ALMRPT1                                 | ALMRPTO        |  |  |  |
| bit 7         | 7.2.011                                                                                                           | , izini ti ro    | , ( <b>L</b> ini († † † |                   | ,                | , , , , , , , , , , , , , , , , , , , , | bit (          |  |  |  |
| Legend:       |                                                                                                                   |                  |                         |                   |                  |                                         |                |  |  |  |
| R = Readable  | a hit                                                                                                             | W = Writable b   | nit                     |                   | nented bit, read | 1 26 (0)                                |                |  |  |  |
| -n = Value at |                                                                                                                   | '1' = Bit is set | JIL                     | '0' = Bit is clea |                  | x = Bit is unkr                         |                |  |  |  |
|               | FUR                                                                                                               | I - DILIS SEL    |                         |                   | areu             |                                         | IOWIT          |  |  |  |
| bit 15        | ALRMEN: Ala                                                                                                       | arm Enable bit   |                         |                   |                  |                                         |                |  |  |  |
|               | 1 = Alarm is (<br>CHIME =<br>0 = Alarm is (                                                                       | /                | d automaticall          | y after an alarn  | n event whenev   | ver ALMRPT<7                            | 7:0> = 00h and |  |  |  |
| bit 14        | CHIME: Chim                                                                                                       |                  |                         |                   |                  |                                         |                |  |  |  |
|               | 1 = Chime is                                                                                                      | enabled; ALMR    |                         |                   |                  |                                         |                |  |  |  |
|               |                                                                                                                   | disabled; ALMF   |                         | stop once they    | reach 00h        |                                         |                |  |  |  |
| bit 13-12     | -                                                                                                                 | ted: Read as '0  |                         |                   |                  |                                         |                |  |  |  |
| bit 11-8      |                                                                                                                   | >: Alarm Mask (  | Configuration b         | oits              |                  |                                         |                |  |  |  |
|               | 0000 = Every<br>0000 = Every                                                                                      |                  |                         |                   |                  |                                         |                |  |  |  |
|               | 0010 = Every                                                                                                      |                  |                         |                   |                  |                                         |                |  |  |  |
|               | 0011 = Every                                                                                                      |                  |                         |                   |                  |                                         |                |  |  |  |
|               | 0100 = Every                                                                                                      |                  |                         |                   |                  |                                         |                |  |  |  |
|               | 0101 = Every                                                                                                      |                  |                         |                   |                  |                                         |                |  |  |  |
|               | 0110 = Once a day                                                                                                 |                  |                         |                   |                  |                                         |                |  |  |  |
|               | 0111 = Once a week                                                                                                |                  |                         |                   |                  |                                         |                |  |  |  |
|               | 1000 = Once a month                                                                                               |                  |                         |                   |                  |                                         |                |  |  |  |
|               | 1001 = Once a year (except when configured for February 29th, once every 4 years)<br>101x = Reserved – do not use |                  |                         |                   |                  |                                         |                |  |  |  |
|               |                                                                                                                   |                  |                         |                   |                  |                                         |                |  |  |  |
| bit 7-0       | 11xx = Reserved – do not use<br><b>ALMRPT&lt;7:0&gt;:</b> Alarm Repeat Counter Value bits                         |                  |                         |                   |                  |                                         |                |  |  |  |
|               | 11111111 = Alarm will repeat 255 more times                                                                       |                  |                         |                   |                  |                                         |                |  |  |  |
|               | •                                                                                                                 |                  |                         |                   |                  |                                         |                |  |  |  |
|               | •                                                                                                                 |                  |                         |                   |                  |                                         |                |  |  |  |
|               |                                                                                                                   |                  |                         |                   |                  |                                         |                |  |  |  |
|               | •                                                                                                                 | Alarm will repea | 4.0                     | _                 |                  |                                         |                |  |  |  |

| R/W-0         | R/W-0                                                                         | R/W-0            | R/W-0          | R/W-0                                  | U-0            | U-0             | U-0     |  |  |  |
|---------------|-------------------------------------------------------------------------------|------------------|----------------|----------------------------------------|----------------|-----------------|---------|--|--|--|
| FDIV4         | FDIV3                                                                         | FDIV2            | FDIV1          | FDIV0                                  | _              | —               |         |  |  |  |
| bit 15        | ·                                                                             | •                |                |                                        |                |                 | bit 8   |  |  |  |
| R/W-0         | R/W-0                                                                         | R/W-0            | R/W-0          | U-0                                    | U-0            | R/W-0           | R/W-0   |  |  |  |
| PWCPS1        | PWCPS0                                                                        | PS1              | PS0            | —                                      | _              | CLKSEL1         | CLKSEL0 |  |  |  |
| bit 7         |                                                                               |                  |                |                                        |                |                 | bit C   |  |  |  |
| Legend:       |                                                                               |                  |                |                                        |                |                 |         |  |  |  |
| R = Readable  | e bit                                                                         | W = Writable     | oit            | U = Unimplem                           | ented bit, rea | ad as '0'       |         |  |  |  |
| -n = Value at | POR                                                                           | '1' = Bit is set |                | '0' = Bit is clea                      | ared           | x = Bit is unkr | nown    |  |  |  |
|               |                                                                               |                  |                | ut clock cycles e<br>ut clock cycles e |                |                 |         |  |  |  |
| bit 10-8      |                                                                               | ted: Read as '(  | •              |                                        |                | 105             |         |  |  |  |
| bit 7-6       | <b>PWCPS&lt;1:0&gt;</b><br>00 = 1:1<br>01 = 1:16<br>10 = 1:64<br>11 = 1:256   | Power Control    | bl Prescale Se | elect bits                             |                |                 |         |  |  |  |
| bit 5-4       | <b>PS&lt;1:0&gt;:</b> Pre<br>00 = 1:1<br>01 = 1:16<br>10 = 1:64<br>11 = 1:256 | scale Select bi  | ts             |                                        |                |                 |         |  |  |  |
| bit 3-2       | Unimplemented: Read as '0'                                                    |                  |                |                                        |                |                 |         |  |  |  |
| bit 1-0       | -                                                                             | >: Clock Select  |                |                                        |                |                 |         |  |  |  |

#### REGISTER 21-3: RTCCON2L: RTCC CONTROL REGISTER 2 (LOW)

#### 21.3.2 RTCVAL REGISTER MAPPINGS

# REGISTER 21-4: RTCCON2H: RTCC CONTROL REGISTER 2 (HIGH)<sup>(1)</sup>

| R/W-0   | R/W-0 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 |
|---------|-------|-------|-------|-------|-------|-------|-------|
|         |       |       | DIV<  | 15:8> |       |       |       |
| bit 15  |       |       |       |       |       |       | bit 8 |
|         |       |       |       |       |       |       |       |
| R/W-1   | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 | R/W-1 |
|         |       |       | DIV   | <7:0> |       |       |       |
| bit 7   |       |       |       |       |       |       | bit 0 |
|         |       |       |       |       |       |       |       |
| Legend: |       |       |       |       |       |       |       |
|         |       |       |       |       |       |       |       |

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |
|-------------------|------------------|------------------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |

bit 15-0 DIV<15:0>: Clock Divide bits

Sets the period of the clock divider counter; value should cause a nominal 1/2 second underflow.

**Note 1:** A write to this register is only allowed when WRLOCK = 1.

| R/W-0                                                                                                                            | R/W-0                                                                                                                                                                                                                                                                                                                                 | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| PWCSAMP6                                                                                                                         | PWCSAMP5                                                                                                                                                                                                                                                                                                                              | PWCSAMP4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PWCSAMP3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PWCSAMP2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PWCSAMP1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PWCSAMP0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bit 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| R/W-0                                                                                                                            | R/W-0                                                                                                                                                                                                                                                                                                                                 | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| PWCSTAB6                                                                                                                         | PWCSTAB5                                                                                                                                                                                                                                                                                                                              | PWCSTAB4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PWCSTAB3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PWCSTAB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PWCSTAB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PWCSTAB0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bit 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| bit                                                                                                                              | W = Writable b                                                                                                                                                                                                                                                                                                                        | bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U = Unimplem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ented bit, read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| POR                                                                                                                              | '1' = Bit is set                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | '0' = Bit is clea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ired                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x = Bit is unk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| <pre>11111111 = Sample window is always enabled, even when PWCEN = 0 11111110 = Sample window is 254 TPWCCLK clock periods</pre> |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 11111111 = S<br>11111110 = S<br>•<br>•                                                                                           | Stability window<br>Stability window<br>Stability window                                                                                                                                                                                                                                                                              | is 255 TPWCCLI<br>is 254 TPWCCLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | K clock periods<br>K clock periods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sub>S</sub> (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                                                                                                  | PWCSAMP6         R/W-0         PWCSTAB6         bit         POR         PWCSAMP         PWCSAMP         1111111         S         1111111         S         00000001         PWCSTAB         00000000         PWCSTAB         1111111         S         1111111         S         00000001         N         PWCSTAB         00000001 | PWCSAMP6         PWCSAMP5           R/W-0         R/W-0           PWCSTAB6         PWCSTAB5           bit         W = Writable b           POR         '1' = Bit is set           PWCSAMP<7:0>: Power Cor           1111111 = Sample window is           1111110 = Sample window is           00000001 = Sample window is           00000000 = No sample window is           00000000 = No sample window           1111111 = Stability window           1111111 = Stability window           1111111 = Stability window | PWCSAMP6       PWCSAMP5       PWCSAMP4         R/W-0       R/W-0       R/W-0         PWCSTAB6       PWCSTAB5       PWCSTAB4         bit       W = Writable bit       PWCSTAB4         PWCSAMP       1' = Bit is set       PWCSAMP         PWCSAMP       '1' = Bit is set       PWCSAMP         PWCSAMP       '1' = Bit is set       PWCSAMP         PWCSAMP       Sample window is always enable       1111111         Sample window is 254 TPWCCLK       '         ·       00000001 = Sample window is 1 TPWCCLK clc         00000000 = No sample window       PWCSTAB         PWCSTAB       ': Power Control Stability Wi         1111111 = Stability window is 255 TPWCCLI         ·       :         ·       : | PWCSAMP6       PWCSAMP5       PWCSAMP4       PWCSAMP3         R/W-0       R/W-0       R/W-0       R/W-0         PWCSTAB6       PWCSTAB5       PWCSTAB4       PWCSTAB3         bit       W = Writable bit       U = Unimplem         POR       '1' = Bit is set       '0' = Bit is cleated         PWCSAMP       PWCSAMP       PWCSTAB5         PWCSAMP       '1' = Bit is set       '0' = Bit is cleated         PWCSAMP       '1' = Bit is set       '0' = Bit is cleated         PWCSAMP       '1' = Bit is set       '0' = Bit is cleated         PWCSAMP       '1' = Bit is set       '0' = Bit is cleated         PWCSAMP       '1' = Bit is set       '0' = Bit is cleated         PWCSAMP       '1' = Bit is set       '0' = Bit is cleated         PWCSAMP       '1' = Bit is set       '0' = Bit is cleated         PWCSAMP       '1' = Bit is set       '0' = Bit is cleated         PWCSAMP       Sample window is always enabled, even when P       '1'1'1'1'1'1''''''''''''''''''''''''' | PWCSAMP6       PWCSAMP5       PWCSAMP4       PWCSAMP3       PWCSAMP2         R/W-0       R/W-0       R/W-0       R/W-0       R/W-0         PWCSTAB6       PWCSTAB5       PWCSTAB4       PWCSTAB3       PWCSTAB2         bit       W = Writable bit       U = Unimplemented bit, read         PWCSAMP       '0' = Bit is cleared         PWCSAMP       PWCSTAB5       PWCSTAB4         PWCSAMP       '0' = Bit is cleared         PWCSAMP       PWCSAMP       '0' = Bit is cleared         PWCSAMP       PWCSTAB5       PWCSTAB5         PWCSAMP       '1' = Bit is set       '0' = Bit is cleared         PWCSAMP       PWCSTON       PWCSTAB5       PWCSTAB5         PWCSAMP       PWCSTON       Sample window is always enabled, even when PWCEN = 0         1111110       = Sample window is 254 TPWCCLK clock periods       '         .       .       .       .         00000001       = Sample window is 1 TPWCCLK clock period       .         00000001       = Sample window       PWCSTAB         PWCSTAB       PWCSTAB       .         .       .       .         .       .       .         .       .       . | PWCSAMP6       PWCSAMP5       PWCSAMP4       PWCSAMP3       PWCSAMP2       PWCSAMP1         R/W-0       R/W-0       R/W-0       R/W-0       R/W-0       R/W-0         PWCSTAB6       PWCSTAB5       PWCSTAB4       PWCSTAB3       PWCSTAB2       PWCSTAB1         bit       W = Writable bit       U = Unimplemented bit, read as '0'       POC       POC       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unk         PWCSAMP       Ti = Bit is set       '0' = Bit is cleared       x = Bit is unk         PWCSAMP       PWCSAMP       PWCSTAB5       PWCSTAB5       PWCSTAB5         PWCSTAB5       PWCSTAB4       PWCSTAB3       PWCSTAB2       PWCSTAB1         PWCSAMP       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unk         PWCSAMP       Power Control Sample Window Timer bits       1111111       Sample window is 254 TPWCCLK clock periods         00000001       Sample window       S1 TPWCCLK clock periods       00000000 = No sample window       255 TPWCCLK clock periods         1111111       Stability window is 254 TPWCCLK clock periods       1111110 = Stability window is 254 TPWCCLK clock periods |  |

#### REGISTER 21-5: RTCCON3L: RTCC CONTROL REGISTER 3 (LOW)

Note 1: The sample window always starts when the stability window timer expires, except when its initial value is 00h.

| U-0       U-0       R/C-0       U-0       R/C-0       R-0         -       -       ALMEVT       -       TSAEVT <sup>(1)</sup> SYNC       ALMSYNC       HAL         bit 7         Legend:       C = Clearable bit       U = Unimplemented bit, read as '0'         n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15-6       Unimplemented: Read as '0'       bit 5       ALMEVT: Alarm Event bit       1 = An alarm event has occurred       0 = An alarm event has not occurred         bit 4       Unimplemented: Read as '0'       bit 3       TSAEVT: Timestamp A Event bit <sup>(1)</sup> 1 = A timestamp event has cocurred         bit 3       TSAEVT: Timestamp A Event bit <sup>(1)</sup> 1 = A timestamp event has not occurred       0 = A timestamp event has not occurred         bit 4       Unimplemented: Read as '0'       bit 1 = TIME registers may change during software read       0 = TIME registers may change during software read         0 = A timestamp event has not occurred       SYNC: Synchronization Status bit       1 = TIME registers (ALMTIME and ALMDATE) and Alarm bits (AMASK<3:0>) should not be r<br>and Alarm Control bits (ALMENT-7:0>) may change during software read         0 = Alarm registers and Alarm Control bits may be written/modified safely         bit 0       HALFSEC: Half Second Status bit <sup>(2)</sup><br>1 = Second half period of a second | U-0            | U-0                 | U-0               | U-0                    | U-0                   | U-0             | U-0             | U-0                   |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------|-------------------|------------------------|-----------------------|-----------------|-----------------|-----------------------|--|--|--|
| -       ALMEVT       -       TSAEVT <sup>(1)</sup> SYNC       ALMSYNC       HAL         bit 7         Legend:       C = Clearable bit       U = Unimplemented bit, read as '0'         -n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15-6       Unimplemented: Read as '0'         bit 5       ALMEVT: Alarm Event bit       1 = An alarm event has occurred         0 = An alarm event has not occurred       0 = An alarm event has occurred       0 = A timestamp event has occurred         bit 3       TSAEVT: Timestamp A Event bit <sup>(1)</sup> 1 = A timestamp event has not occurred         bit 2       SYNC: Synchronization Status bit       1 = TIME registers may change during software read         0 = TIME registers may be read safely       bit 1       ALMSYNC: Alarm Synchronization Status bit         1 = Alarm registers (ALMTIME and ALMDATE) and Alarm bits (AMASK<3:0>) should not be r and Alarm Control bits (ALRMEN, ALMRPT<7:0>) may change during software read         0 = Alarm registers and Alarm Control bits may be written/modified safely         bit 0       HALFSEC: Half Second Status bit <sup>(2)</sup> 1 = Second half period of a second       0 = First half period of a second                                                                                                                                                                           | _              | —                   | _                 | —                      | —                     | _               | _               | _                     |  |  |  |
| -       ALMEVT       -       TSAEVT <sup>(1)</sup> SYNC       ALMSYNC       HAL         bit 7         Legend:       C = Clearable bit       U = Unimplemented bit, read as '0'         -n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15-6       Unimplemented: Read as '0'         bit 5       ALMEVT: Alarm Event bit       1 = An alarm event has occurred         0 = An alarm event has not occurred       0 = An alarm event has occurred       0 = A timestamp event has occurred         bit 3       TSAEVT: Timestamp A Event bit <sup>(1)</sup> 1 = A timestamp event has occurred       0 = A timestamp event has occurred         bit 2       SYNC: Synchronization Status bit       1 = TIME registers may change during software read       0 = TIME registers may be read safely         bit 1       ALMSYNC: Alarm Synchronization Status bit       1 = Alarm registers (ALMTIME and ALMDATE) and Alarm bits (AMASK<3:0>) should not be r and Alarm Control bits (ALRMEN, ALMRPT<7:0>) may change during software read       0 = Alarm registers and Alarm Control bits may be written/modified safely         bit 0       HALFSEC: Half Second Status bit <sup>(2)</sup> 1 = Second half period of a second         0 = First half period of a second       0 = First half period of a second                                                                                                | 15             |                     | ·                 |                        | ·                     |                 |                 | bit                   |  |  |  |
| -       ALMEVT       -       TSAEVT <sup>(1)</sup> SYNC       ALMSYNC       HAL         bit 7         Legend:       C = Clearable bit       U = Unimplemented bit, read as '0'         -n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15-6       Unimplemented: Read as '0'         bit 5       ALMEVT: Alarm Event bit       1 = An alarm event has occurred         0 = An alarm event has not occurred       0 = An alarm event has occurred       0 = A timestamp event has occurred         bit 3       TSAEVT: Timestamp A Event bit <sup>(1)</sup> 1 = A timestamp event has occurred       0 = A timestamp event has occurred         bit 2       SYNC: Synchronization Status bit       1 = TIME registers may change during software read       0 = TIME registers may be read safely         bit 1       ALMSYNC: Alarm Synchronization Status bit       1 = Alarm registers (ALMTIME and ALMDATE) and Alarm bits (AMASK<3:0>) should not be r and Alarm Control bits (ALRMEN, ALMRPT<7:0>) may change during software read       0 = Alarm registers and Alarm Control bits may be written/modified safely         bit 0       HALFSEC: Half Second Status bit <sup>(2)</sup> 1 = Second half period of a second         0 = First half period of a second       0 = First half period of a second                                                                                                |                |                     |                   |                        |                       |                 |                 |                       |  |  |  |
| bit 7         Legend:       C = Clearable bit         R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'         -n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15-6       Unimplemented: Read as '0'       bit 5       ALMEVT: Alarm Event bit         1 = An alarm event has occurred       0 = An alarm event has not occurred       0 = An alarm event has not occurred         bit 3       TSAEVT: Timestamp A Event bit <sup>(1)</sup> 1 = A timestamp event has occurred       0 = A timestamp event has occurred         bit 2       SYNC: Synchronization Status bit       1 = TIME registers may change during software read       0 = TIME registers may be read safely         bit 1       ALMSYNC: Alarm Synchronization Status bit       1 = Alarm registers (ALMTIME and ALMDATE) and Alarm bits (AMASK<3:0>) should not be r and Alarm Control bits (ALRMEN, ALMRPT<7:0>) may change during software read         0 = Alarm registers and Alarm Control bits may be written/modified safely         bit 0       HALFSEC: Half Second Status bit <sup>(2)</sup> 1 = Second half period of a second       0 = First half period of a second                                                                                                                                                                                                                       | U-0            | U-0                 | R/C-0             | U-0                    |                       | R-0             | R-0             | R-0                   |  |  |  |
| Legend:       C = Clearable bit         R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'         -n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15-6       Unimplemented: Read as '0'         bit 5       ALMEVT: Alarm Event bit         1 = An alarm event has occurred       0 = An alarm event has not occurred         bit 4       Unimplemented: Read as '0'         bit 3       TSAEVT: Timestamp A Event bit <sup>(1)</sup> 1 = A timestamp event has occurred       0 = A timestamp event has occurred         bit 2       SYNC: Synchronization Status bit         1 = TIME registers may be read safely       Ead as '0'         bit 1       ALMESYNC: Alarm Synchronization Status bit         1 = Alarm registers (ALMTIME and ALMDATE) and Alarm bits (AMASK<3:0>) should not be r and Alarm Control bits (ALRMEN, ALMRPT<7:0>) may change during software read         0 = Alarm registers and Alarm Control bits may be written/modified safely         bit 0       HALFSEC: Half Second Status bit <sup>(2)</sup> 1 = Second half period of a second       0 = First half period of a second                                                                                                                                                                                                                                                                 |                |                     | ALMEVT            | —                      | TSAEVT <sup>(1)</sup> | SYNC            | ALMSYNC         | HALFSEC <sup>(2</sup> |  |  |  |
| R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'         -n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15-6       Unimplemented: Read as '0'       bit 5       ALMEVT: Alarm Event bit         1 = An alarm event has occurred       0 = An alarm event has not occurred       0 = An alarm event has not occurred         bit 4       Unimplemented: Read as '0'       bit 3       TSAEVT: Timestamp A Event bit <sup>(1)</sup> 1 = A timestamp event has occurred       0 = A timestamp event has not occurred       0 = A timestamp event has not occurred         bit 2       SYNC: Synchronization Status bit       1 = TIME registers may change during software read       0 = TIME registers may be read safely         bit 1       ALMSYNC: Alarm Synchronization Status bit       1 = Alarm registers (ALMTIME and ALMDATE) and Alarm bits (AMASK<3:0>) should not be r and Alarm Control bits (ALRMEN, ALMRPT<7:0>) may change during software read         0 = A larm registers and Alarm Control bits may be written/modified safely         bit 0       HALFSEC: Half Second Status bit <sup>(2)</sup> 1 = Second half period of a second       0 = First half period of a second                                                                                                                                                                              | 7              |                     |                   |                        |                       |                 |                 | bit                   |  |  |  |
| R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'         -n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15-6       Unimplemented: Read as '0'       bit 5       ALMEVT: Alarm Event bit         1 = An alarm event has occurred       0 = An alarm event has not occurred       0 = An alarm event has not occurred         bit 4       Unimplemented: Read as '0'       bit 3       TSAEVT: Timestamp A Event bit <sup>(1)</sup> 1 = A timestamp event has not occurred       0 = A timestamp event has not occurred       0 = A timestamp event has not occurred         bit 2       SYNC: Synchronization Status bit       1 = TIME registers may change during software read       0 = TIME registers may be read safely         bit 1       ALMSYNC: Alarm Synchronization Status bit       1 = Alarm registers (ALMTIME and ALMDATE) and Alarm bits (AMASK<3:0>) should not be r and Alarm Control bits (ALRMEN, ALMRPT<7:0>) may change during software read         0 = A larm registers and Alarm Control bits may be written/modified safely       bit 0         HALFSEC: Half Second Status bit <sup>(2)</sup> 1 = Second half period of a second         0 = First half period of a second       0 = First half period of a second                                                                                                                                | aend:          |                     | C = Clearable     | bit                    |                       |                 |                 |                       |  |  |  |
| -n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15-6       Unimplemented: Read as '0'       bit 5       ALMEVT: Alarm Event bit         1 = An alarm event has occurred       0 = An alarm event has not occurred       bit 4         bit 3       TSAEVT: Timestamp A Event bit( <sup>1</sup> )       1 = A timestamp event has occurred         bit 4       Unimplemented: Read as '0'       bit 3         bit 5       FALMEVT: Timestamp A Event bit( <sup>1</sup> )       1 = A timestamp event has occurred         bit 2       SYNC: Synchronization Status bit       1 = TIME registers may change during software read         0 = TIME registers may be read safely       bit 1       ALMSYNC: Alarm Synchronization Status bit         1 = Alarm registers (ALMTIME and ALMDATE) and Alarm bits (AMASK<3:0>) should not be r and Alarm Control bits (ALRMEN, ALMRPT<7:0>) may change during software read         0 = Alarm registers and Alarm Control bits may be written/modified safely       bit 0         bit 0       HALFSEC: Half Second Status bit <sup>(2)</sup> 1 = Second half period of a second         1 = Second half period of a second       0 = First half period of a second                                                                                                                                                                                                      | -              | ole bit             | W = Writable      | bit                    | U = Unimplem          | ented bit. read | d as '0'        |                       |  |  |  |
| bit 15-6 Unimplemented: Read as '0'<br>bit 5 ALMEVT: Alarm Event bit<br>1 = An alarm event has occurred<br>0 = An alarm event has not occurred<br>bit 4 Unimplemented: Read as '0'<br>bit 3 TSAEVT: Timestamp A Event bit <sup>(1)</sup><br>1 = A timestamp event has occurred<br>0 = A timestamp event has not occurred<br>bit 2 SYNC: Synchronization Status bit<br>1 = TIME registers may change during software read<br>0 = TIME registers may be read safely<br>bit 1 ALMSYNC: Alarm Synchronization Status bit<br>1 = Alarm registers (ALMTIME and ALMDATE) and Alarm bits (AMASK<3:0>) should not be r<br>and Alarm Control bits (ALRMEN, ALMRPT<7:0>) may change during software read<br>0 = Alarm registers and Alarm Control bits may be written/modified safely<br>bit 0 HALFSEC: Half Second Status bit <sup>(2)</sup><br>1 = Second half period of a second<br>0 = First half period of a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = Value a      | at POR              | '1' = Bit is set  |                        | •                     |                 |                 | nown                  |  |  |  |
| bit 5       ALMEVT: Alarm Event bit         1 = An alarm event has not occurred         0 = An alarm event has not occurred         bit 4       Unimplemented: Read as '0'         bit 3       TSAEVT: Timestamp A Event bit <sup>(1)</sup> 1 = A timestamp event has occurred         0 = A timestamp event has not occurred         bit 2       SYNC: Synchronization Status bit         1 = TIME registers may change during software read         0 = TIME registers may be read safely         bit 1       ALMSYNC: Alarm Synchronization Status bit         1 = Alarm registers (ALMTIME and ALMDATE) and Alarm bits (AMASK<3:0>) should not be r and Alarm Control bits (ALRMEN, ALMRPT<7:0>) may change during software read         0 = Alarm registers and Alarm Control bits may be written/modified safely         bit 0       HALFSEC: Half Second Status bit <sup>(2)</sup> 1 = Second half period of a second       0 = First half period of a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                     |                   |                        |                       |                 |                 |                       |  |  |  |
| <ul> <li>1 = An alarm event has occurred</li> <li>0 = An alarm event has not occurred</li> <li>bit 4 Unimplemented: Read as '0'</li> <li>bit 3 TSAEVT: Timestamp A Event bit<sup>(1)</sup></li> <li>1 = A timestamp event has occurred</li> <li>0 = A timestamp event has not occurred</li> <li>bit 2 SYNC: Synchronization Status bit</li> <li>1 = TIME registers may change during software read</li> <li>0 = TIME registers may be read safely</li> <li>bit 1 ALMSYNC: Alarm Synchronization Status bit</li> <li>1 = Alarm registers (ALMTIME and ALMDATE) and Alarm bits (AMASK&lt;3:0&gt;) should not be r and Alarm Control bits (ALRMEN, ALMRPT&lt;7:0&gt;) may change during software read</li> <li>0 = Alarm registers and Alarm Control bits may be written/modified safely</li> <li>bit 0 HALFSEC: Half Second Status bit<sup>(2)</sup></li> <li>1 = Second half period of a second</li> <li>0 = First half period of a second</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15-6           | Unimplemen          | ted: Read as '    | )'                     |                       |                 |                 |                       |  |  |  |
| <ul> <li>a larm event has not occurred</li> <li>bit 4</li> <li>Unimplemented: Read as '0'</li> <li>bit 3</li> <li>TSAEVT: Timestamp A Event bit<sup>(1)</sup></li> <li>1 = A timestamp event has occurred</li> <li>0 = A timestamp event has not occurred</li> <li>bit 2</li> <li>SYNC: Synchronization Status bit</li> <li>1 = TIME registers may change during software read</li> <li>0 = TIME registers may be read safely</li> <li>bit 1</li> <li>ALMSYNC: Alarm Synchronization Status bit</li> <li>1 = Alarm registers (ALMTIME and ALMDATE) and Alarm bits (AMASK&lt;3:0&gt;) should not be r and Alarm Control bits (ALRMEN, ALMRPT&lt;7:0&gt;) may change during software read</li> <li>0 = Alarm registers and Alarm Control bits may be written/modified safely</li> <li>bit 0</li> <li>HALFSEC: Half Second Status bit<sup>(2)</sup></li> <li>1 = Second half period of a second</li> <li>0 = First half period of a second</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5              | ALMEVT: Ala         | arm Event bit     |                        |                       |                 |                 |                       |  |  |  |
| <ul> <li>bit 4 Unimplemented: Read as '0'</li> <li>bit 3 TSAEVT: Timestamp A Event bit<sup>(1)</sup> <ol> <li>= A timestamp event has occurred</li> <li>= A timestamp event has not occurred</li> </ol> </li> <li>bit 2 SYNC: Synchronization Status bit <ol> <li>= TIME registers may change during software read</li> <li>= TIME registers may be read safely</li> </ol> </li> <li>bit 1 ALMSYNC: Alarm Synchronization Status bit <ol> <li>= Alarm registers (ALMTIME and ALMDATE) and Alarm bits (AMASK&lt;3:0&gt;) should not be r and Alarm Control bits (ALRMEN, ALMRPT&lt;7:0&gt;) may change during software read</li> <li>= Alarm registers and Alarm Control bits may be written/modified safely</li> </ol> </li> <li>bit 0 HALFSEC: Half Second Status bit<sup>(2)</sup> <ol> <li>= Second half period of a second</li> <li>= First half period of a second</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | 1 = An alarm        | event has occu    | rred                   |                       |                 |                 |                       |  |  |  |
| bit 3       TSAEVT: Timestamp A Event bit <sup>(1)</sup> 1 = A timestamp event has occurred         0 = A timestamp event has not occurred         bit 2       SYNC: Synchronization Status bit         1 = TIME registers may change during software read         0 = TIME registers may be read safely         bit 1       ALMSYNC: Alarm Synchronization Status bit         1 = Alarm registers (ALMTIME and ALMDATE) and Alarm bits (AMASK<3:0>) should not be r<br>and Alarm Control bits (ALRMEN, ALMRPT<7:0>) may change during software read         0 = Alarm registers and Alarm Control bits may be written/modified safely         bit 0       HALFSEC: Half Second Status bit <sup>(2)</sup> 1 = Second half period of a second       0 = First half period of a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | 0 <b>= An alarm</b> | event has not o   | occurred               |                       |                 |                 |                       |  |  |  |
| <ul> <li>1 = A timestamp event has occurred</li> <li>0 = A timestamp event has not occurred</li> <li>bit 2</li> <li>SYNC: Synchronization Status bit</li> <li>1 = TIME registers may change during software read</li> <li>0 = TIME registers may be read safely</li> <li>bit 1</li> <li>ALMSYNC: Alarm Synchronization Status bit</li> <li>1 = Alarm registers (ALMTIME and ALMDATE) and Alarm bits (AMASK&lt;3:0&gt;) should not be r and Alarm Control bits (ALRMEN, ALMRPT&lt;7:0&gt;) may change during software read</li> <li>0 = Alarm registers and Alarm Control bits may be written/modified safely</li> <li>bit 0</li> <li>HALFSEC: Half Second Status bit<sup>(2)</sup></li> <li>1 = Second half period of a second</li> <li>0 = First half period of a second</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4              | •                   |                   |                        |                       |                 |                 |                       |  |  |  |
| <ul> <li>0 = A timestamp event has not occurred</li> <li>bit 2</li> <li>SYNC: Synchronization Status bit         <ol> <li>1 = TIME registers may change during software read</li> <li>0 = TIME registers may be read safely</li> </ol> </li> <li>bit 1</li> <li>ALMSYNC: Alarm Synchronization Status bit         <ol> <li>1 = Alarm registers (ALMTIME and ALMDATE) and Alarm bits (AMASK&lt;3:0&gt;) should not be r and Alarm Control bits (ALRMEN, ALMRPT&lt;7:0&gt;) may change during software read</li> <li>0 = Alarm registers and Alarm Control bits may be written/modified safely</li> </ol> </li> <li>bit 0</li> <li>HALFSEC: Half Second Status bit<sup>(2)</sup> <ol> <li>1 = Second half period of a second</li> <li>0 = First half period of a second</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3              | TSAEVT: Tim         | nestamp A Ever    | nt bit <sup>(1)</sup>  |                       |                 |                 |                       |  |  |  |
| bit 2       SYNC: Synchronization Status bit         1 = TIME registers may change during software read       0 = TIME registers may be read safely         bit 1       ALMSYNC: Alarm Synchronization Status bit         1 = Alarm registers (ALMTIME and ALMDATE) and Alarm bits (AMASK<3:0>) should not be r<br>and Alarm Control bits (ALRMEN, ALMRPT<7:0>) may change during software read         0 = Alarm registers and Alarm Control bits may be written/modified safely         bit 0       HALFSEC: Half Second Status bit <sup>(2)</sup> 1 = Second half period of a second       0 = First half period of a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                     |                   |                        |                       |                 |                 |                       |  |  |  |
| <ul> <li>1 = TIME registers may change during software read</li> <li>0 = TIME registers may be read safely</li> <li>bit 1</li> <li>ALMSYNC: Alarm Synchronization Status bit</li> <li>1 = Alarm registers (ALMTIME and ALMDATE) and Alarm bits (AMASK&lt;3:0&gt;) should not be r<br/>and Alarm Control bits (ALRMEN, ALMRPT&lt;7:0&gt;) may change during software read</li> <li>0 = Alarm registers and Alarm Control bits may be written/modified safely</li> <li>bit 0</li> <li>HALFSEC: Half Second Status bit<sup>(2)</sup></li> <li>1 = Second half period of a second</li> <li>0 = First half period of a second</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -              |                     | •                 |                        |                       |                 |                 |                       |  |  |  |
| <ul> <li>0 = TIME registers may be read safely</li> <li>bit 1 ALMSYNC: Alarm Synchronization Status bit</li> <li>1 = Alarm registers (ALMTIME and ALMDATE) and Alarm bits (AMASK&lt;3:0&gt;) should not be r<br/>and Alarm Control bits (ALRMEN, ALMRPT&lt;7:0&gt;) may change during software read</li> <li>0 = Alarm registers and Alarm Control bits may be written/modified safely</li> <li>bit 0 HALFSEC: Half Second Status bit<sup>(2)</sup></li> <li>1 = Second half period of a second</li> <li>0 = First half period of a second</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2              |                     |                   |                        |                       |                 |                 |                       |  |  |  |
| <ul> <li>1 = Alarm registers (ALMTIME and ALMDATE) and Alarm bits (AMASK&lt;3:0&gt;) should not be r and Alarm Control bits (ALRMEN, ALMRPT&lt;7:0&gt;) may change during software read</li> <li>0 = Alarm registers and Alarm Control bits may be written/modified safely</li> <li>bit 0 HALFSEC: Half Second Status bit<sup>(2)</sup></li> <li>1 = Second half period of a second</li> <li>0 = First half period of a second</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                     |                   |                        | tware read            |                 |                 |                       |  |  |  |
| and Alarm Control bits (ALRMEN, ALMRPT<7:0>) may change during software read<br>0 = Alarm registers and Alarm Control bits may be written/modified safely<br>bit 0 HALFSEC: Half Second Status bit <sup>(2)</sup><br>1 = Second half period of a second<br>0 = First half period of a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1              | ALMSYNC:            | Alarm Synchron    | ization Status         | bit                   |                 |                 |                       |  |  |  |
| <ul> <li>0 = Alarm registers and Alarm Control bits may be written/modified safely</li> <li>bit 0</li> <li>HALFSEC: Half Second Status bit<sup>(2)</sup></li> <li>1 = Second half period of a second</li> <li>0 = First half period of a second</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                     |                   |                        |                       |                 |                 |                       |  |  |  |
| <ul><li>1 = Second half period of a second</li><li>0 = First half period of a second</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                     |                   |                        |                       |                 |                 |                       |  |  |  |
| 0 = First half period of a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0              | HALFSEC: H          | alf Second Sta    | tus bit <sup>(2)</sup> |                       |                 |                 |                       |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | 1 = Second h        | alf period of a s | second                 |                       |                 |                 |                       |  |  |  |
| Note de la constance monumite o (2) to this location to initiate o Timostome A such timostome - such a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 0 = First half      | period of a seco  | ond                    |                       |                 |                 |                       |  |  |  |
| Note 1: User software may write a '1' to this location to initiate a Timestamp A event; timestamp capture i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>te 1։</b> Լ | Jser software ma    | ay write a '1' to | this location to       | o initiate a Times    | tamp A event;   | ; timestamp cap | pture is not          |  |  |  |

### REGISTER 21-6: RTCSTATL: RTCC STATUS REGISTER (LOW)

**2:** This bit is read-only; it is cleared to '0' on a write to the SECONE<3:0> bits.

#### 21.3.3 RTCC VALUE REGISTERS

#### REGISTER 21-7: TIMEL: RTCC TIME REGISTER (LOW)

| U-0    | R/W-x   |
|--------|---------|---------|---------|---------|---------|---------|---------|
| _      | SECTEN2 | SECTEN1 | SECTEN0 | SECONE3 | SECONE2 | SECONE1 | SECONE0 |
| bit 15 |         |         |         |         |         |         | bit 8   |
|        |         |         |         |         |         |         |         |
| U-0    | U-0     | U-0     | U-0     | U-0     | U-0     | U-0     | U-0     |
| —      | —       | —       | —       | —       | —       | —       | —       |
| bit 7  |         |         |         |         |         |         | bit 0   |
|        |         |         |         |         |         |         |         |

### Legend:

| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |
|-------------------|------------------|-----------------------------|--------------------|
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

| bit 14-12 | SECTEN<2:0>: Binary Coded Decimal Value of Seconds '10' Digit bits |
|-----------|--------------------------------------------------------------------|
|           | Contains a value from 0 to 5.                                      |
| bit 11-8  | SECONE<3:0>: Binary Coded Decimal Value of Seconds '1' Digit bits  |
|           | Contains a value from 0 to 9.                                      |

bit 7-0 Unimplemented: Read as '0'

#### REGISTER 21-8: TIMEH: RTCC TIME REGISTER (HIGH)

| U-0    | U-0     | R/W-0   | R/W-x   | R/W-x   | R/W-x   | R/W-x   | R/W-x   |
|--------|---------|---------|---------|---------|---------|---------|---------|
| —      | —       | HRTEN1  | HRTEN0  | HRONE3  | HRONE2  | HRONE1  | HRONE0  |
| bit 15 |         |         |         |         |         |         | bit 8   |
|        |         |         |         |         |         |         |         |
| U-0    | R/W-0   | R/W-0   | R/W-x   | R/W-x   | R/W-x   | R/W-x   | R/W-x   |
| —      | MINTEN2 | MINTEN1 | MINTEN0 | MINONE3 | MINONE2 | MINONE1 | MINONE0 |
| bit 7  |         |         |         |         |         |         | bit 0   |

| Legend:           |                  |                            |                    |
|-------------------|------------------|----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, rea | d as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared       | x = Bit is unknown |

bit 15-14 Unimplemented: Read as '0' bit 13-12 HRTEN<1:0>: Binary Coded Decimal Value of Hours '10' Digit bits Contains a value from 0 to 2. bit 11-8 HRONE<3:0>: Binary Coded Decimal Value of Hours '1' Digit bits Contains a value from 0 to 9. bit 7 Unimplemented: Read as '0' bit 6-4 MINTEN<2:0>: Binary Coded Decimal Value of Minutes '10' Digit bits Contains a value from 0 to 5. bit 3-0 MINONE<3:0>: Binary Coded Decimal Value of Minutes '1' Digit bits Contains a value from 0 to 9.

x = Bit is unknown

| U-0          | U-0 | R/W-0        | R/W-0   | R/W-0        | R/W-0            | R/W-0   | R/W-0   |
|--------------|-----|--------------|---------|--------------|------------------|---------|---------|
| —            | _   | DAYTEN1      | DAYTEN0 | DAYONE3      | DAYONE2          | DAYONE1 | DAYONE0 |
| bit 15       |     |              |         |              |                  |         | bit 8   |
|              |     |              |         |              |                  |         |         |
| U-0          | U-0 | U-0          | U-0     | U-0          | R/W-x            | R/W-x   | R/W-x   |
| —            |     | _            | _       | —            | WDAY2            | WDAY1   | WDAY0   |
| bit 7        |     |              |         |              |                  |         | bit 0   |
|              |     |              |         |              |                  |         |         |
| Legend:      |     |              |         |              |                  |         |         |
| R = Readable | bit | W = Writable | bit     | U = Unimplem | nented bit, read | as '0'  |         |

'0' = Bit is cleared

#### REGISTER 21-9: DATEL: RTCC DATE REGISTER (LOW)

'1' = Bit is set

| bit 15-14 | Unimplemented: Read as '0'                                       |
|-----------|------------------------------------------------------------------|
| bit 13-12 | DAYTEN<1:0>: Binary Coded Decimal Value of Days '10' Digit bits  |
|           | Contains a value from 0 to 3.                                    |
| bit 11-8  | DAYONE<3:0>: Binary Coded Decimal Value of Days '1' Digit bits   |
|           | Contains a value from 0 to 9.                                    |
| bit 7-3   | Unimplemented: Read as '0'                                       |
| bit 2-0   | WDAY<2:0>: Binary Coded Decimal Value of Weekdays '1' Digit bits |

Contains a value from 0 to 6.

-n = Value at POR

#### REGISTER 21-10: DATEH: RTCC DATE REGISTER (HIGH)

| R/W-0  | R/W-0  | R/W-0  | R/W-0  | R/W-x  | R/W-x  | R/W-x  | R/W-x  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| YRTEN3 | YRTEN2 | YRTEN1 | YRTEN0 | YRONE3 | YRONE2 | YRONE1 | YRONE0 |
| bit 15 |        |        |        |        |        |        | bit 8  |

| U-0   | U-0 | U-0 | R/W-x  | R/W-x   | R/W-x   | R/W-x   | R/W-x   |
|-------|-----|-----|--------|---------|---------|---------|---------|
| —     | —   | —   | MTHTEN | MTHONE3 | MTHONE2 | MTHONE1 | MTHONE0 |
| bit 7 |     |     |        |         |         |         | bit 0   |

| Legend:           |                  |                        |                    |
|-------------------|------------------|------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, | , read as '0'      |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared   | x = Bit is unknown |

| bit 15-12 | YRTEN<3:0>: Binary Coded Decimal Value of Years '10' Digit bits |
|-----------|-----------------------------------------------------------------|
|-----------|-----------------------------------------------------------------|

bit 11-8 **YRONE<3:0>:** Binary Coded Decimal Value of Years '1' Digit bits

bit 7-5 Unimplemented: Read as '0'

| bit 4 | MTHTEN: Binary Coded Decimal Value of Months '10' Digit bit |
|-------|-------------------------------------------------------------|
|       | Contains a value from 0 to 1.                               |

bit 3-0 MTHONE<3:0>: Binary Coded Decimal Value of Months '1' Digit bits Contains a value from 0 to 9.

© 2016-2018 Microchip Technology Inc.

#### 21.3.4 ALARM VALUE REGISTERS

#### REGISTER 21-11: ALMTIMEL: RTCC ALARM TIME REGISTER (LOW)

| U-0    | R/W-0   |
|--------|---------|---------|---------|---------|---------|---------|---------|
| —      | SECTEN2 | SECTEN1 | SECTEN0 | SECONE3 | SECONE2 | SECONE1 | SECONE0 |
| bit 15 |         |         |         |         |         |         | bit 8   |
|        |         |         |         |         |         |         |         |
| U-0    | U-0     | U-0     | U-0     | U-0     | U-0     | U-0     | U-0     |
|        | _       |         | _       | _       | _       |         | —       |
| bit 7  |         |         |         |         |         |         | bit 0   |

| Legend | ł |
|--------|---|
|--------|---|

| Legena:           |                  |                        |                    |
|-------------------|------------------|------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, | read as '0'        |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared   | x = Bit is unknown |

| bit 15    | Unimplemented: Read as '0'                                         |
|-----------|--------------------------------------------------------------------|
| bit 14-12 | SECTEN<2:0>: Binary Coded Decimal Value of Seconds '10' Digit bits |
|           | Contains a value from 0 to 5.                                      |
| bit 11-8  | SECONE<3:0>: Binary Coded Decimal Value of Seconds '1' Digit bits  |
|           | Contains a value from 0 to 9.                                      |
| bit 7-0   | Unimplemented: Read as '0'                                         |

#### REGISTER 21-12: ALMTIMEH: RTCC ALARM TIME REGISTER (HIGH)

| Legend:R = Readable bitW = Writable bit |         | U = Unimplem | nented bit, read | as '0'  |         |         |         |
|-----------------------------------------|---------|--------------|------------------|---------|---------|---------|---------|
| bit 7                                   |         |              |                  |         |         |         | bit 0   |
| —                                       | MINTEN2 | MINTEN1      | MINTEN0          | MINONE3 | MINONE2 | MINONE1 | MINONE0 |
| U-0                                     | R/W-0   | R/W-0        | R/W-0            | R/W-0   | R/W-0   | R/W-0   | R/W-0   |
|                                         |         |              |                  |         |         |         |         |
| bit 15                                  |         |              |                  |         |         |         | bit 8   |
| _                                       | —       | HRTEN1       | HRTEN0           | HRONE3  | HRONE2  | HRONE1  | HRONE0  |
| U-0                                     | U-0     | R/W-0        | R/W-0            | R/W-0   | R/W-0   | R/W-0   | R/W-0   |

| -n = Value a | at POR   | '1' = Bit is set          | '0' = Bit is cleared                | x = Bit is unknown |
|--------------|----------|---------------------------|-------------------------------------|--------------------|
|              |          |                           |                                     |                    |
| bit 15-14    | Unimpler | nented: Read as '0'       |                                     |                    |
| bit 13-12    | HRTEN<   | 1:0>: Binary Coded Decima | al Value of Hours '10' Digit bits   |                    |
|              | Contains | a value from 0 to 2.      |                                     |                    |
| bit 11-8     | HRONE<   | 3:0>: Binary Coded Decima | al Value of Hours '1' Digit bits    |                    |
|              | Contains | a value from 0 to 9.      |                                     |                    |
| bit 7        | Unimpler | nented: Read as '0'       |                                     |                    |
| bit 6-4      | MINTEN<  | 2:0>: Binary Coded Decim  | al Value of Minutes '10' Digit bits | i                  |
|              | Contains | a value from 0 to 5.      |                                     |                    |
| bit 3-0      | MINONE   | <3:0>: Binary Coded Decin | nal Value of Minutes '1' Digit bits |                    |
|              | Contains | a value from 0 to 9.      |                                     |                    |

| U-0                                | U-0 | R/W-0   | R/W-0                                   | R/W-0   | R/W-0   | R/W-0   | R/W-0   |
|------------------------------------|-----|---------|-----------------------------------------|---------|---------|---------|---------|
| —                                  | —   | DAYTEN1 | DAYTEN0                                 | DAYONE3 | DAYONE2 | DAYONE1 | DAYONE0 |
| bit 15                             |     |         |                                         |         |         |         | bit 8   |
|                                    |     |         |                                         |         |         |         |         |
| U-0                                | U-0 | U-0     | U-0                                     | U-0     | R/W-0   | R/W-0   | R/W-0   |
| —                                  |     | —       | —                                       | —       | WDAY2   | WDAY1   | WDAY0   |
| bit 7                              |     | •       |                                         | •       |         |         | bit 0   |
|                                    |     |         |                                         |         |         |         |         |
| Legend:                            |     |         |                                         |         |         |         |         |
| R = Readable bit W = Writable bit  |     | oit     | U = Unimplemented bit, read as '0'      |         |         |         |         |
| -n = Value at POR '1' = Bit is set |     |         | '0' = Bit is cleared x = Bit is unknown |         |         | nown    |         |
| •                                  |     |         |                                         |         |         |         |         |

### REGISTER 21-13: ALMDATEL: RTCC ALARM DATE REGISTER (LOW)

| bit 15-14 | Unimplemented: Read as '0'                                       |
|-----------|------------------------------------------------------------------|
| bit 13-12 | DAYTEN<1:0>: Binary Coded Decimal Value of Days '10' Digit bits  |
|           | Contains a value from 0 to 3.                                    |
| bit 11-8  | DAYONE<3:0>: Binary Coded Decimal Value of Days '1' Digit bits   |
|           | Contains a value from 0 to 9.                                    |
| bit 7-3   | Unimplemented: Read as '0'                                       |
| bit 2-0   | WDAY<2:0>: Binary Coded Decimal Value of Weekdays '1' Digit bits |
|           | Contains a value from 0 to 6.                                    |

#### REGISTER 21-14: ALMDATEH: RTCC ALARM DATE REGISTER (HIGH)

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| YRTEN3 | YRTEN2 | YRTEN1 | YRTEN0 | YRONE3 | YRONE2 | YRONE1 | YRONE0 |
| bit 15 |        |        |        |        |        |        | bit 8  |

| U-0   | U-0 | U-0 | R/W-0  | R/W-0   | R/W-0   | R/W-0   | R/W-0   |
|-------|-----|-----|--------|---------|---------|---------|---------|
| —     | —   | —   | MTHTEN | MTHONE3 | MTHONE2 | MTHONE1 | MTHONE0 |
| bit 7 |     |     |        |         |         |         | bit 0   |

| Legend:           |                  |                       |                    |
|-------------------|------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | , read as '0'      |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |

| bit 15-12 | YRTEN<3:0>: Binary Coded Decimal Value of Years '10' Digit bits |
|-----------|-----------------------------------------------------------------|
|-----------|-----------------------------------------------------------------|

- bit 11-8YRONE<3:0>: Binary Coded Decimal Value of Years '1' Digit bitsbit 7-5Unimplemented: Read as '0'
- bit 4 MTHTEN: Binary Coded Decimal Value of Months '10' Digit bit Contains a value from 0 to 1.
- bit 3-0 MTHONE<3:0>: Binary Coded Decimal Value of Months '1' Digit bits Contains a value from 0 to 9.

#### 21.3.5 TIMESTAMP REGISTERS

#### REGISTER 21-15: TSATIMEL: RTCC TIMESTAMP A TIME REGISTER (LOW)<sup>(1)</sup>

| R/W-0   | R/W-0   | R/W-0           | R/W-0                   | R/W-0                           | R/W-0                                   | R/W-0                                           |
|---------|---------|-----------------|-------------------------|---------------------------------|-----------------------------------------|-------------------------------------------------|
| SECTEN2 | SECTEN1 | SECTEN0         | SECONE3                 | SECONE2                         | SECONE1                                 | SECONE0                                         |
|         |         |                 |                         |                                 |                                         | bit 8                                           |
|         |         |                 |                         |                                 |                                         |                                                 |
| U-0     | U-0     | U-0             | U-0                     | U-0                             | U-0                                     | U-0                                             |
| —       | —       | —               | —                       | _                               | —                                       | —                                               |
|         |         |                 |                         |                                 |                                         | bit 0                                           |
|         | SECTEN2 | SECTEN2 SECTEN1 | SECTEN2 SECTEN1 SECTEN0 | SECTEN2 SECTEN1 SECTEN0 SECONE3 | SECTEN2 SECTEN1 SECTEN0 SECONE3 SECONE2 | SECTEN2 SECTEN1 SECTEN0 SECONE3 SECONE2 SECONE1 |

| Legend:           |                  |                                    |                    |  |
|-------------------|------------------|------------------------------------|--------------------|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |

bit 15 Unimplemented: Read as '0'

bit 14-12 SECTEN<2:0>: Binary Coded Decimal Value of Seconds '10' Digit bits Contains a value from 0 to 5.

bit 11-8 SECONE<3:0>: Binary Coded Decimal Value of Seconds '1' Digit bits Contains a value from 0 to 9.

bit 7-0 Unimplemented: Read as '0'

**Note 1:** If TSAEN = 0, bits<15:0> can be used for persistent storage throughout a non-Power-on Reset (MCLR, WDT, etc.).

| U-0                            | U-0                                                                                                      | R/W-0                                                                                                                         | R/W-0                                                                 | R/W-0                               | R/W-0                       | R/W-0              | R/W-0   |
|--------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------|-----------------------------|--------------------|---------|
| _                              | —                                                                                                        | HRTEN1                                                                                                                        | HRTEN0                                                                | HRONE3                              | HRONE2                      | HRONE1             | HRONE0  |
| bit 15                         |                                                                                                          |                                                                                                                               |                                                                       |                                     |                             |                    | bit 8   |
| U-0                            | R/W-0                                                                                                    | R/W-0                                                                                                                         | R/W-0                                                                 | R/W-0                               | R/W-0                       | R/W-0              | R/W-0   |
| _                              | MINTEN2                                                                                                  | MINTEN1                                                                                                                       | MINTEN0                                                               | MINONE3                             | MINONE2                     | MINONE1            | MINONE0 |
| bit 7                          |                                                                                                          |                                                                                                                               |                                                                       |                                     |                             | I                  | bit 0   |
| • • • • • •                    |                                                                                                          |                                                                                                                               |                                                                       |                                     |                             |                    |         |
| Legend:                        |                                                                                                          |                                                                                                                               |                                                                       |                                     |                             |                    |         |
| R = Readab                     | le bit                                                                                                   | W = Writable bit                                                                                                              |                                                                       | U = Unimplemented bit, read         |                             |                    |         |
| -n = Value a                   | t POR                                                                                                    | '1' = Bit is set                                                                                                              |                                                                       | '0' = Bit is cleared                |                             | x = Bit is unknown |         |
|                                |                                                                                                          |                                                                                                                               | <b>`</b>                                                              |                                     |                             |                    |         |
| bit 15-14                      | Unimplemen                                                                                               | ted: Read as '                                                                                                                | )                                                                     |                                     |                             |                    |         |
| bit 15-14<br>bit 13-12         | Unimplemen<br>HRTEN<1:0>                                                                                 |                                                                                                                               |                                                                       | e of Hours '10'                     | Diait bits                  |                    |         |
| bit 15-14<br>bit 13-12         | HRTEN<1:0>                                                                                               |                                                                                                                               | Decimal Value                                                         | e of Hours '10'                     | Digit bits                  |                    |         |
|                                | HRTEN<1:0><br>Contains a va                                                                              | : Binary Codec<br>lue from 0 to 2                                                                                             | l Decimal Value                                                       |                                     | •                           |                    |         |
| bit 13-12                      | HRTEN<1:0><br>Contains a va<br>HRONE<3:0>                                                                | : Binary Codec<br>lue from 0 to 2                                                                                             | l Decimal Value<br>d Decimal Valu                                     | e of Hours '10'<br>e of Hours '1' [ | •                           |                    |         |
| bit 13-12                      | HRTEN<1:0><br>Contains a va<br>HRONE<3:0><br>Contains a va                                               | : Binary Codec<br>lue from 0 to 2<br>: Binary Codec                                                                           | l Decimal Value<br>d Decimal Valu                                     |                                     | •                           |                    |         |
| bit 13-12<br>bit 11-8          | HRTEN<1:0><br>Contains a va<br>HRONE<3:0><br>Contains a va<br>Unimplemen                                 | : Binary Codec<br>lue from 0 to 2<br>: Binary Codec<br>lue from 0 to 9<br>ted: Read as '                                      | l Decimal Value<br>d Decimal Valu<br><sub>0</sub> '                   | e of Hours '1' [                    | Digit bits                  |                    |         |
| bit 13-12<br>bit 11-8<br>bit 7 | HRTEN<1:0><br>Contains a va<br>HRONE<3:0><br>Contains a va<br>Unimplemen<br>MINTEN<2:0                   | : Binary Codec<br>lue from 0 to 2<br>: Binary Codec<br>lue from 0 to 9<br>ted: Read as '                                      | l Decimal Value<br>d Decimal Valu<br>o'<br>d Decimal Valu             |                                     | Digit bits                  |                    |         |
| bit 13-12<br>bit 11-8<br>bit 7 | HRTEN<1:0><br>Contains a va<br>HRONE<3:0><br>Contains a va<br>Unimplemen<br>MINTEN<2:03<br>Contains a va | : Binary Codec<br>lue from 0 to 2<br>: Binary Codec<br>lue from 0 to 9<br>ted: Read as '<br>>: Binary Code<br>lue from 0 to 5 | l Decimal Value<br>d Decimal Valu<br><sub>D</sub> '<br>d Decimal Valu | e of Hours '1' [                    | Digit bits<br>0' Digit bits |                    |         |

# REGISTER 21-16: TSATIMEH: RTCC TIMESTAMP A TIME REGISTER (HIGH)<sup>(1)</sup>

**Note 1:** If TSAEN = 0, bits<15:0> can be used for persistence storage throughout a non-Power-on Reset (MCLR, WDT, etc.).

| U-0          | U-0                           | R/W-0            | R/W-0           | R/W-0                | R/W-0            | R/W-0              | R/W-0   |
|--------------|-------------------------------|------------------|-----------------|----------------------|------------------|--------------------|---------|
| _            | —                             | DAYTEN1          | DAYTEN0         | DAYONE3              | DAYONE2          | DAYONE1            | DAYONE0 |
| bit 15       | ·                             |                  |                 |                      |                  |                    | bit 8   |
|              |                               |                  |                 |                      |                  |                    |         |
| U-0          | U-0                           | U-0              | U-0             | U-0                  | R/W-0            | R/W-0              | R/W-0   |
|              | _                             |                  | _               | —                    | WDAY2            | WDAY1              | WDAY0   |
| bit 7        |                               |                  |                 |                      |                  |                    | bit 0   |
|              |                               |                  |                 |                      |                  |                    |         |
| Legend:      |                               |                  |                 |                      |                  |                    |         |
| R = Readab   | ole bit                       | W = Writable     | bit             | U = Unimplem         | nented bit, read | l as '0'           |         |
| -n = Value a | it POR                        | '1' = Bit is set |                 | '0' = Bit is cleared |                  | x = Bit is unknown |         |
|              |                               |                  |                 |                      |                  |                    |         |
| bit 15-14    | Unimplemen                    | ted: Read as '   | כי              |                      |                  |                    |         |
| bit 13-12    | DAYTEN<1:0                    | >: Binary Code   | ed Decimal Valu | ue of Days '10'      | Digit bits       |                    |         |
|              | Contains a va                 | lue from 0 to 3  |                 |                      |                  |                    |         |
| bit 11-8     | DAYONE<3:0                    | >: Binary Code   | ed Decimal Val  | ue of Days '1' I     | Digit bits       |                    |         |
|              | Contains a value from 0 to 9. |                  |                 |                      |                  |                    |         |
| bit 7-3      | Unimplemen                    | ted: Read as '   | כי              |                      |                  |                    |         |
| bit 2-0      | WDAY<2:0>:                    | Binary Coded     | Decimal Value   | of Weekdays ':       | 1' Digit bits    |                    |         |
|              | Contains a va                 | lue from 0 to 6  |                 |                      |                  |                    |         |
|              |                               |                  |                 |                      |                  |                    |         |

# REGISTER 21-17: TSADATEL: RTCC TIMESTAMP A DATE REGISTER (LOW)<sup>(1)</sup>

**Note 1:** If TSAEN = 0, bits<15:0> can be used for persistence storage throughout a non-Power-on Reset (MCLR, WDT, etc.).

| R/W-0                | R/W-0                         | R/W-0            | R/W-0           | R/W-0                              | R/W-0      | R/W-0              | R/W-0   |  |  |
|----------------------|-------------------------------|------------------|-----------------|------------------------------------|------------|--------------------|---------|--|--|
| YRTEN3               | YRTEN2                        | YRTEN1           | YRTEN0          | YRONE3                             | YRONE2     | YRONE1             | YRONE0  |  |  |
| bit 15               |                               |                  |                 | ·                                  |            | •                  | bit 8   |  |  |
|                      |                               |                  |                 |                                    |            |                    |         |  |  |
| U-0                  | U-0                           | U-0              | R/W-0           | R/W-0                              | R/W-0      | R/W-0              | R/W-0   |  |  |
|                      | —                             | —                | MTHTEN          | MTHONE3                            | MTHONE2    | MTHONE1            | MTHONE0 |  |  |
| bit 7                |                               |                  |                 |                                    |            |                    | bit 0   |  |  |
|                      |                               |                  |                 |                                    |            |                    |         |  |  |
| Legend:              |                               |                  |                 |                                    |            |                    |         |  |  |
| R = Readable         | e bit                         | W = Writable     | bit             | U = Unimplemented bit, read as '0' |            |                    |         |  |  |
| -n = Value at POR '1 |                               | '1' = Bit is set | 1' = Bit is set |                                    | ared       | x = Bit is unknown |         |  |  |
|                      |                               |                  |                 |                                    |            |                    |         |  |  |
| bit 15-12            | YRTEN<3:0>                    | : Binary Coded   | I Decimal Value | e of Years '10' l                  | Digit bits |                    |         |  |  |
| bit 11-8             | YRONE<3:0>                    | Binary Codeo     | d Decimal Valu  | e of Years '1' D                   | igit bits  |                    |         |  |  |
| bit 7-5              | Unimplemented: Read as '0'    |                  |                 |                                    |            |                    |         |  |  |
| bit 4                | MTHTEN: Bir                   | nary Coded Dec   | cimal Value of  | Months '10' Dig                    | git bit    |                    |         |  |  |
|                      | Contains a value from 0 to 1. |                  |                 |                                    |            |                    |         |  |  |

# REGISTER 21-18: TSADATEH: RTCC TIMESTAMP A DATE REGISTER (HIGH)<sup>(1)</sup>

| bit 3-0 | MTHONE<2:0>: Binary Coded Decimal Value of Months '1' Digit bits |
|---------|------------------------------------------------------------------|
|         | Contains a value from 0 to 9.                                    |

**Note 1:** If TSAEN = 0, bits<15:0> can be used for persistence storage throughout a non-Power-on Reset (MCLR, WDT, etc.).

#### 21.4 Calibration

#### 21.4.1 CLOCK SOURCE CALIBRATION

A crystal oscillator that is connected to the RTCC may be calibrated to provide an accurate 1 second clock in two ways. First, coarse frequency adjustment is performed by adjusting the value written to the DIV<15:0> bits. Secondly, a 5-bit value can be written to the FDIV<4:0> control bits to perform a fine clock division.

The DIVx and FDIVx values can be concatenated and considered as a 21-bit prescaler value. If the oscillator source is slightly faster than ideal, the FDIV<4:0> value can be increased to make a small decrease in the RTC frequency. The value of DIV<15:0> should be increased to make larger decreases in the RTC frequency. If the oscillator source is slower than ideal, FDIV<4:0> may be decreased for small calibration changes and DIV<15:0> may need to be decreased to make larger calibration changes.

Before calibration, the user must determine the error of the crystal. This should be done using another timer resource on the device or an external timing reference. It is up to the user to include in the error value, the initial error of the crystal, drift due to temperature and drift due to crystal aging.

#### 21.5 Alarm

- · Configurable from half second to one year
- Enabled using the ALRMEN bit (RTCCON1H<15>)
- One-time alarm and repeat alarm options are available

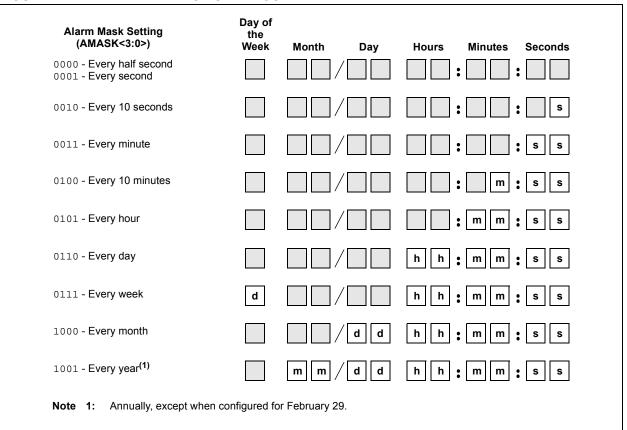
#### 21.5.1 CONFIGURING THE ALARM

The alarm feature is enabled using the ALRMEN bit. This bit is cleared when an alarm is issued. Writes to the Alarm Value registers should only take place when ALRMEN = 0.

As shown in Figure 21-2, the interval selection of the alarm is configured through the AMASK<3:0> bits (RTCCON1H<11:8>). These bits determine which and how many digits of the alarm must match the clock value for the alarm to occur.

The alarm can also be configured to repeat based on a preconfigured interval. The amount of times this occurs, once the alarm is enabled, is stored in the ALMRPT<7:0> bits (RTCCON1H<7:0>). When the value of the ALMRPTx bits equals 00h and the CHIME bit (RTCCON1H<14>) is cleared, the repeat function is disabled and only a single alarm will occur. The alarm can be repeated, up to 255 times, by loading ALMRPT<7:0> with FFh.

After each alarm is issued, the value of the ALMRPTx bits is decremented by one. Once the value has reached 00h, the alarm will be issued one last time, after which, the ALRMEN bit will be cleared automatically and the alarm will turn off.


Indefinite repetition of the alarm can occur if the CHIME bit = 1. Instead of the alarm being disabled when the value of the ALMRPTx bits reaches 00h, it rolls over to FFh and continues counting indefinitely while CHIME is set.

#### 21.5.2 ALARM INTERRUPT

At every alarm event, an interrupt is generated. This output is completely synchronous to the RTCC clock and can be used as a trigger clock to the other peripherals.

| Note: | Changing any of the register bits, other<br>than the RTCOE bit (RTCCON1L<7>), the<br>ALMRPT<7:0> bits (RTCCON1H<7:0><br>and the CHIME bit, while the alarm is<br>enabled (ALRMEN = 1), can result in a<br>false alarm event leading to a false alarm |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | interrupt. To avoid a false alarm event, the timer and alarm values should only be changed while the alarm is disabled (ALRMEN = 0).                                                                                                                 |





#### 21.6 Power Control

The RTCC includes a power control feature that allows the device to periodically wake-up an external device, wait for the device to be stable before sampling wake-up events from that device and then shut down the external device. This can be done completely autonomously by the RTCC, without the need to wake-up from the current lower power mode.

To use this feature:

- 1. Enable the RTCC (RTCEN = 1).
- 2. Set the PWCEN bit (RTCCON1L<10>).
- Configure the RTCC pin to drive the PWC control signal (RTCOE = 1 and OUTSEL<2:0> = 011).

The polarity of the PWC control signal may be chosen using the PWCPOL bit (RTCCON1L<9>). An activelow or active-high signal may be used with the appropriate external switch to turn on or off the power to one or more external devices. The active-low setting may also be used in conjunction with an open-drain setting on the RTCC pin, in order to drive the ground pin(s) of the external device directly (with the appropriate external VDD pull-up device), without the need for external switches. Finally, the CHIME bit should be set to enable the PWC periodicity. Once the RTCC and PWC are enabled and running, the PWC logic will generate a control output and a sample gate output. The control output is driven out on the RTCC pin (when RTCOE = 1 and OUTSEL<2:0 > = 011) and is used to power up or down the device, as described above.

Once the control output is asserted, the stability window begins, in which the external device is given enough time to power up and provide a stable output.

Once the output is stable, the RTCC provides a sample gate during the sample window. The use of this sample gate depends on the external device being used, but typically, it is used to mask out one or more wake-up signals from the external device.

Finally, both the stability and the sample windows close after the expiration of the sample window and the external device is powered down.

#### 21.6.1 POWER CONTROL CLOCK SOURCE

The stability and sample windows are controlled by the PWCSAMPx and PWCSTABx bit fields in the RTCCON3L register (RTCCON3L<15:8> and <7:0>, respectively). As both the stability and sample windows are defined in terms of the RTCC clock, their absolute values vary by the value of the PWC clock base period (TPWCCLK). For example, using a 32.768 kHz SOSC input clock would produce a TPWCCLK of 1/32768 = 30.518 µs. The 8-bit magnitude of PWCSTABx and PWCSAMPx allows for a window size of 0 to 255 TPWCCLK. The period of the PWC clock can also be adjusted with a 1:1, 1:16, 1:64 or 1:256 prescaler, determined by the PWCPS<1:0> bits (RTCCON2L<7:6>).

In addition, certain values for the PWCSTABx and PWCSAMPx fields have specific control meanings in determining power control operations. If either bit field is 00h, the corresponding window is inactive. In addition, if the PWCSTABx field is FFh, the stability window remains active continuously, even if power control is disabled.

### 21.7 Event Timestamping

The RTCC includes a set of Timestamp registers that may be used for the capture of Time and Date register values when an external input signal is received. The RTCC will trigger a timestamp event when a low pulse occurs on the TMPRN pin.

#### 21.7.1 TIMESTAMP OPERATION

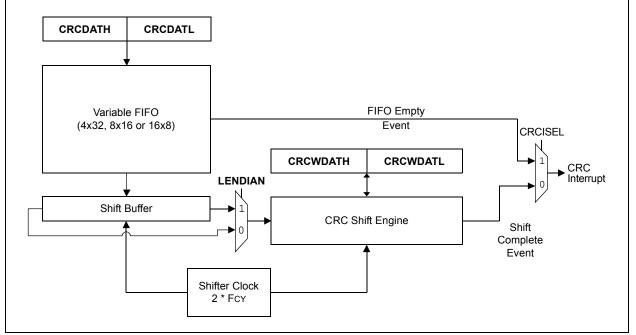
The event input is enabled for timestamping using the TSAEN bit (RTCCON1L<0>). When the timestamp event occurs, the present time and date values will be stored in the TSATIMEL/H and TSADATEL/H registers, the TSAEVT status bit (RTCSTATL<3>) will be set and an RTCC interrupt will occur. A new timestamp capture event cannot occur until the user clears the TSAEVT status bit.

| Note 1: | The TSATIMEL/H and TSADATEL/H regis-        |  |  |  |  |  |  |  |
|---------|---------------------------------------------|--|--|--|--|--|--|--|
|         | ter pairs can be used for data storage when |  |  |  |  |  |  |  |
|         | TSAEN = 0. The values of TSATIMEL/H         |  |  |  |  |  |  |  |
|         | and TSADATEL/H will be maintained           |  |  |  |  |  |  |  |
|         | throughout all types of non-Power-on        |  |  |  |  |  |  |  |
|         | Resets (MCLR, WDT, etc).                    |  |  |  |  |  |  |  |

#### 21.7.2 MANUAL TIMESTAMP OPERATION

The current time and date may be captured in the TSATIMEL/H and TSADATEL/H registers by writing a '1' to the TSAEVT bit location while the timestamp functionality is enabled (TSAEN = 1). This write will not set the TSAEVT bit, but it will initiate a timestamp capture. The TSAEVT bit will be set when the capture operation is complete. The user must poll the TSAEVT bit to determine when the capture operation is complete.

After the Timestamp registers have been read, the TSAEVT bit should be cleared to allow further hardware or software timestamp capture events.


#### 22.0 32-BIT PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS30009729), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM. The 32-bit programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

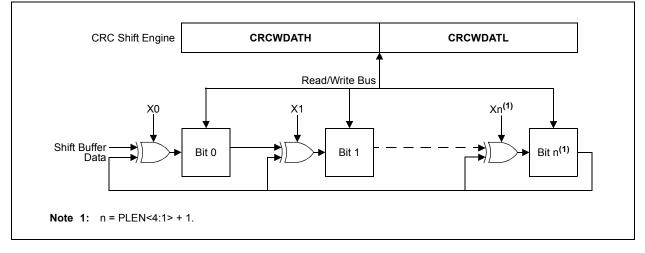

- User-Programmable CRC Polynomial Equation, up to 32 Bits
- Programmable Shift Direction (little or big-endian)
- Independent Data and Polynomial Lengths
- Configurable Interrupt Output
- Data FIFO

Figure 22-1 displays a simplified block diagram of the CRC generator. A simple version of the CRC shift engine is displayed in Figure 22-2.

#### FIGURE 22-1: CRC BLOCK DIAGRAM



#### FIGURE 22-2: CRC SHIFT ENGINE DETAIL



© 2016-2018 Microchip Technology Inc.

#### 22.1 User Interface

#### 22.1.1 POLYNOMIAL INTERFACE

The CRC module can be programmed for CRC polynomials of up to the  $32^{nd}$  order, using up to 32 bits.

Polynomial length, which reflects the highest exponent in the equation, is selected by the PLEN<4:0> bits (CRCCON2<4:0>).

The CRCXORL and CRCXORH registers control which exponent terms are included in the equation. Setting a particular bit includes that exponent term in the equation. Functionally, this includes an XOR operation on the corresponding bit in the CRC engine. Clearing the bit disables the XOR.

For example, consider two CRC polynomials, one a 16-bit and the other a 32-bit equation.

# EQUATION 22-1: 16-BIT, 32-BIT CRC POLYNOMIALS

#### X16 + X12 + X5 + 1

and

 $\begin{array}{c} X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + \\ X8 + X7 + X5 + X4 + X2 + X + 1 \end{array}$ 

To program these polynomials into the CRC generator, set the register bits, as shown in Table 22-1.

Note that the appropriate positions are set to '1' to indicate that they are used in the equation (for example, X26 and X23). The '0' bit required by the equation is always XORed; thus, X0 is a don't care. For a polynomial of length 32, it is assumed that the 32<sup>nd</sup> bit will be used. Therefore, the X<31:1> bits do not have the 32<sup>nd</sup> bit.

#### 22.1.2 DATA INTERFACE

The module incorporates a FIFO that works with a variable data width. Input data width can be configured to any value between 1 and 32 bits using the DWIDTH<4:0> bits (CRCCON2<12:8>). When the data width is greater than 15, the FIFO is 4 words deep. When the DWIDTHx bits are between 15 and 8, the FIFO is 8 words deep. When the DWIDTHx bits are less than 8, the FIFO is 16 words deep.

The data for which the CRC is to be calculated must first be written into the FIFO. Even if the data width is less than 8, the smallest data element that can be written into the FIFO is 1 byte. For example, if the DWIDTHx bits are 5, then the size of the data is DWIDTH<4:0> + 1 or 6. The data is written as a whole byte; the two unused upper bits are ignored by the module.

Once data is written into the MSb of the CRCDAT registers (that is, the MSb as defined by the data width), the value of the VWORD<4:0> bits (CRCCON1<12:8>) increments by one. For example, if the DWIDTHx bits are 24, the VWORDx bits will increment when bit 7 of CRCDATH is written. Therefore, CRCDATL must always be written to before CRCDATH.

The CRC engine starts shifting data when the CRCGO bit (CRCCON1<4>) is set and the value of the VWORDx bits is greater than zero.

Each word is copied out of the FIFO into a buffer register, which decrements the VWORDx bits. The data is then shifted out of the buffer. The CRC engine continues shifting at a rate of two bits per instruction cycle, until the VWORDx bits reach zero. This means that for a given data width, it takes half that number of instructions for each word to complete the calculation. For example, it takes 16 cycles to calculate the CRC for a single word of 32-bit data.

When the VWORDx bits reach the maximum value for the configured value of the DWIDTHx bits (4, 8 or 16), the CRCFUL bit (CRCCON1<7>) becomes set. When the VWORDx bits reach zero, the CRCMPT bit (CRCCON1<6>) becomes set. The FIFO is emptied and the VWORD<4:0> bits are set to '00000' whenever CRCEN is '0'.

At least one instruction cycle must pass after a write to CRCWDAT before a read of the VWORDx bits is done.

#### TABLE 22-1: CRC SETUP EXAMPLES FOR 16 AND 32-BIT POLYNOMIALS

| CRC Control Bits | Bit Values          |                     |  |  |  |
|------------------|---------------------|---------------------|--|--|--|
|                  | 16-Bit Polynomial   | 32-Bit Polynomial   |  |  |  |
| PLEN<4:0>        | 01111               | 11111               |  |  |  |
| X<31:16>         | 0000 0000 0000 0001 | 0000 0100 1100 0001 |  |  |  |
| X<15:1>          | 0001 0000 0010 000  | 0001 1101 1011 011  |  |  |  |

#### 22.1.3 DATA SHIFT DIRECTION

The LENDIAN bit (CRCCON1<3>) is used to control the shift direction. By default, the CRC will shift data through the engine, MSb first. Setting LENDIAN (= 1) causes the CRC to shift data, LSb first. This setting allows better integration with various communication schemes and removes the overhead of reversing the bit order in software. Note that this only changes the direction the data is shifted into the engine. The result of the CRC calculation will still be a normal CRC result, not a reverse CRC result.

#### 22.1.4 INTERRUPT OPERATION

The module generates an interrupt that is configurable by the user for either of two conditions.

If CRCISEL is '0', an interrupt is generated when the VWORD<4:0> bits make a transition from a value of '1' to '0'. If CRCISEL is '1', an interrupt will be generated after the CRC operation finishes and the module sets the CRCGO bit to '0'. Manually setting CRCGO to '0' will not generate an interrupt. Note that when an interrupt occurs, the CRC calculation would not yet be complete. The module will still need (PLENx + 1)/2 clock cycles after the interrupt is generated until the CRC calculation is finished.

#### 22.1.5 TYPICAL OPERATION

To use the module for a typical CRC calculation:

- 1. Set the CRCEN bit to enable the module.
- 2. Configure the module for desired operation:
  - a) Program the desired polynomial using the CRCXOR registers and PLEN<4:0> bits.
  - b) Configure the data width and shift direction using the DWIDTH<4:0> and LENDIAN bits.
- 3. Set the CRCGO bit to start the calculations.
- 4. Set the desired CRC non-direct initial value by writing to the CRCWDAT registers.
- Load all data into the FIFO by writing to the CRCDAT registers as space becomes available (the CRCFUL bit must be zero before the next data loading).
- 6. Wait until the data FIFO is empty (CRCMPT bit is set).
- Read the result: If the data width (DWIDTH<4:0> bits) is more than the polynomial length (PLEN<4:0> bits):
  - a) Wait (DWIDTH<4:0> + 1)/2 instruction cycles to make sure that shifts from the shift buffer are finished.
  - b) Change the data width to the polynomial length (DWIDTH<4:0> = PLEN<4:0>).
  - c) Write one dummy data word to the CRCDAT registers.
  - d) Wait 2 instruction cycles to move the data from the FIFO to the shift buffer and (PLEN<4:0> + 1)/2 instruction cycles to shift out the result.

Or, if the data width (DWIDTH<4:0> bits) is less than the polynomial length (PLEN<4:0> bits):

- Clear the CRC Interrupt Selection bit (CRCISEL = 0) to get the interrupt when all shifts are done. Clear the CRC interrupt flag. Write dummy data in the CRCDAT registers and wait until the CRC interrupt flag is set.
- 2. Read the final CRC result from the CRCWDAT registers.
- Restore the data width (DWIDTH<4:0> bits) for further calculations (OPTIONAL). If the data width (DWIDTH<4:0> bits) is equal to, or less than, the polynomial length (PLEN<4:0> bits):
  - a) Clear the CRC Interrupt Selection bit (CRCISEL = 0) to get the interrupt when all shifts are done.
  - b) Suspend the calculation by setting CRCGO = 0.
  - c) Clear the CRC interrupt flag.
  - Write the dummy data with the total data length equal to the polynomial length in the CRCDAT registers.
  - e) Resume the calculation by setting CRCGO = 1.
  - f) Wait until the CRC interrupt flag is set.
  - g) Read the final CRC result from the CRCWDAT registers.

There are eight registers used to control programmable CRC operation:

- CRCCON1
- CRCCON2
- CRCXORL
- CRCXORH
- CRCDATL
- CRCDATH
- CRCWDATL
- CRCWDATH

The CRCCON1 and CRCCON2 registers (Register 22-1 and Register 22-2) control the operation of the module and configure the various settings.

The CRCXOR registers (Register 22-3 and Register 22-4) select the polynomial terms to be used in the CRC equation. The CRCDAT and CRCWDAT registers are each register pairs that serve as buffers for the double-word input data, and CRC processed output, respectively.

|                | 11.0                                           | DAMA                                       |                    |                   |                  |                  |                 |
|----------------|------------------------------------------------|--------------------------------------------|--------------------|-------------------|------------------|------------------|-----------------|
| R/W-0<br>CRCEN | U-0                                            | R/W-0                                      | R-0, HSC           | R-0, HSC          | R-0, HSC         | R-0, HSC         | R-0, HSC        |
|                | —                                              | CSIDL                                      | VWORD4             | VWORD3            | VWORD2           | VWORD1           | VWORD0          |
| bit 15         |                                                |                                            |                    |                   |                  |                  | bit 8           |
| R-0, HSC       | R-1, HSC                                       | R/W-0                                      | R/W-0, HC          | R/W-0             | U-0              | U-0              | U-0             |
| CRCFUL         | CRCMPT                                         | CRCISEL                                    | CRCGO              | LENDIAN           |                  | _                |                 |
| bit 7          |                                                |                                            |                    |                   |                  |                  | bit 0           |
|                |                                                |                                            |                    |                   |                  |                  |                 |
| Legend:        |                                                | HC = Hardware                              | e Clearable bit    | HSC = Hardw       | are Settable/C   | learable bit     |                 |
| R = Readab     | ole bit                                        | W = Writable b                             | it                 | U = Unimplem      | nented bit, read | d as '0'         |                 |
| -n = Value a   | t POR                                          | '1' = Bit is set                           |                    | '0' = Bit is clea | ared             | x = Bit is unkr  | nown            |
| bit 15         | 1 = Enable                                     | s module; all sta                          | te machines, po    | inters and CRC    | WDAT/CRCDA       | \T registers res | et; other SFRs  |
| bit 14         |                                                | nted: Read as '                            | 0'                 |                   |                  |                  |                 |
| bit 13         | -                                              | C Stop in Idle Mo                          |                    |                   |                  |                  |                 |
|                | 1 = Discont                                    | inues module oper                          | peration when de   |                   | e mode           |                  |                 |
| bit 12-8       | VWORD<4:                                       | 0>: CRC Pointe                             | r Value bits       |                   |                  |                  |                 |
|                | Indicates the when PLEN                        | e number of valie $<4:0> \le 7.$           | d words in the Fl  | FO. Has a max     | imum value of    | 8 when PLEN<     | <4:0> ≥ 7 or 16 |
| bit 7          | <b>CRCFUL:</b> C<br>1 = FIFO is<br>0 = FIFO is |                                            | t                  |                   |                  |                  |                 |
| bit 6          | CRCMPT: C                                      | RC FIFO Empty                              | / bit              |                   |                  |                  |                 |
|                | 1 = FIFO is<br>0 = FIFO is                     |                                            |                    |                   |                  |                  |                 |
| bit 5          |                                                | CRC Interrupt Se                           | election bit       |                   |                  |                  |                 |
|                | 1 = Interrup                                   | t on FIFO is emp<br>t on shift is comp     | oty; the final wor |                   | shifting throug  | h the CRC        |                 |
| bit 4          | CRCGO: St                                      | art CRC bit                                |                    | -                 |                  |                  |                 |
|                | 1 = Starts C                                   | CRC serial shifte                          | r                  |                   |                  |                  |                 |
|                |                                                | erial shifter is tur                       |                    |                   |                  |                  |                 |
| bit 3          |                                                | Data Shift Direct                          |                    |                   |                  |                  |                 |
|                |                                                | ord is shifted into<br>ord is shifted into |                    |                   |                  |                  |                 |
| bit 2-0        |                                                | ented: Read as '                           |                    |                   | n (nig enulan)   |                  |                 |
|                | ommpleme                                       | ineu. Neau do                              | U                  |                   |                  |                  |                 |

#### REGISTER 22-1: CRCCON1: CRC CONTROL 1 REGISTER

| U-0                                | U-0 | U-0          | R/W-0                                   | R/W-0                              | R/W-0   | R/W-0   | R/W-0   |
|------------------------------------|-----|--------------|-----------------------------------------|------------------------------------|---------|---------|---------|
|                                    | —   | —            | DWIDTH4                                 | DWIDTH3                            | DWIDTH2 | DWIDTH1 | DWIDTH0 |
| bit 15                             | •   |              |                                         |                                    |         |         | bit 8   |
|                                    |     |              |                                         |                                    |         |         |         |
| U-0                                | U-0 | U-0          | R/W-0                                   | R/W-0                              | R/W-0   | R/W-0   | R/W-0   |
|                                    | —   | —            | PLEN4                                   | PLEN3                              | PLEN2   | PLEN1   | PLEN0   |
| bit 7                              |     |              |                                         |                                    |         |         | bit 0   |
|                                    |     |              |                                         |                                    |         |         |         |
| Legend:                            |     |              |                                         |                                    |         |         |         |
| R = Readable                       | bit | W = Writable | bit                                     | U = Unimplemented bit, read as '0' |         |         |         |
| -n = Value at POR '1' = Bit is set |     |              | '0' = Bit is cleared x = Bit is unknown |                                    |         | iown    |         |

#### REGISTER 22-2: CRCCON2: CRC CONTROL 2 REGISTER

bit 15-13 **Unimplemented:** Read as '0'

bit 12-8 **DWIDTH<4:0>:** CRC Data Word Width Configuration bits

Configures the width of the data word (Data Word Width – 1).

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **PLEN<4:0>:** Polynomial Length Configuration bits Configures the length of the polynomial (Polynomial Length – 1).

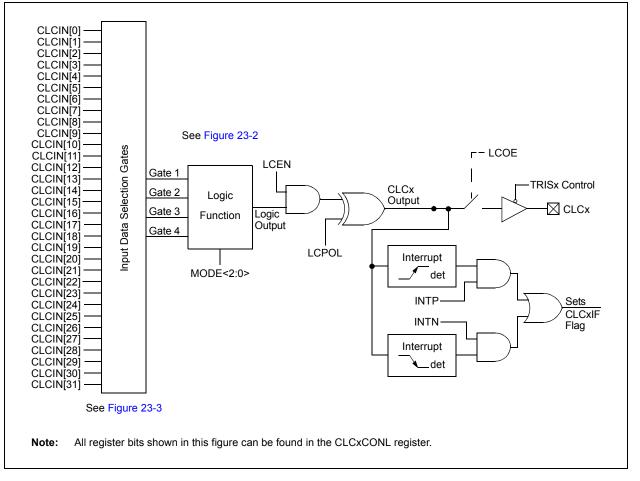
#### REGISTER 22-3: CRCXORL: CRC XOR POLYNOMIAL REGISTER, LOW WORD

| R/W-0                             | R/W-0 | R/W-0            | R/W-0                              | R/W-0                | R/W-0 | R/W-0              | R/W-0 |
|-----------------------------------|-------|------------------|------------------------------------|----------------------|-------|--------------------|-------|
|                                   |       |                  | Х<                                 | :15:8>               |       |                    |       |
| bit 15                            |       |                  |                                    |                      |       |                    | bit 8 |
|                                   |       |                  |                                    |                      |       |                    |       |
| R/W-0                             | R/W-0 | R/W-0            | R/W-0                              | R/W-0                | R/W-0 | R/W-0              | U-0   |
|                                   |       |                  | X<7:1>                             |                      |       |                    |       |
| bit 7                             |       |                  |                                    |                      |       |                    | bit 0 |
| Legend:                           |       |                  |                                    |                      |       |                    |       |
| R = Readable bit W = Writable bit |       | bit              | U = Unimplemented bit, read as '0' |                      |       |                    |       |
| -n = Value at POR                 |       | '1' = Bit is set |                                    | '0' = Bit is cleared |       | x = Bit is unknown |       |

bit 15-1 X<15:1>: XOR of Polynomial Term x<sup>n</sup> Enable bits

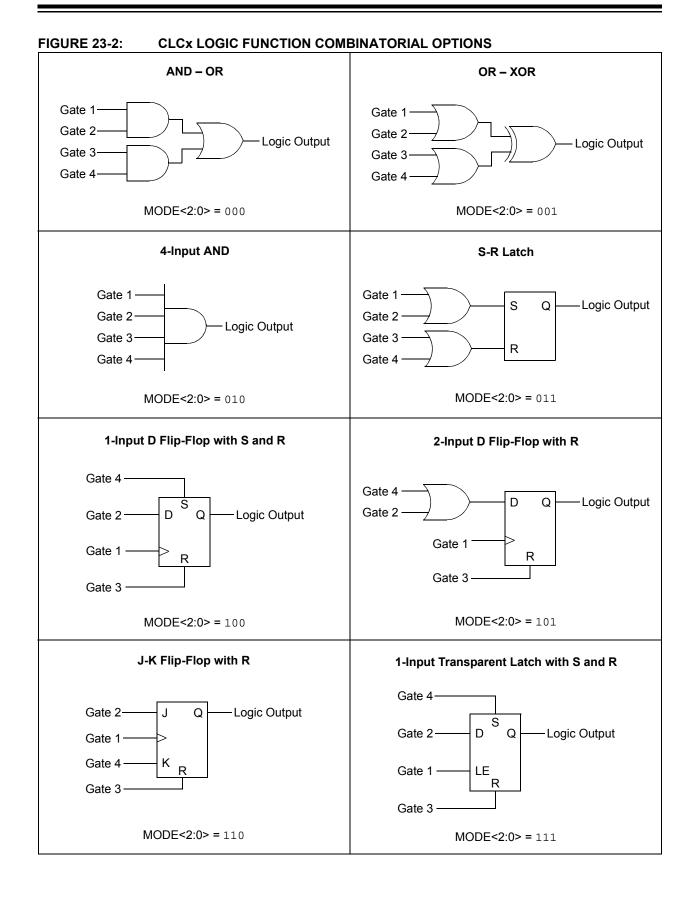
bit 0 Unimplemented: Read as '0'

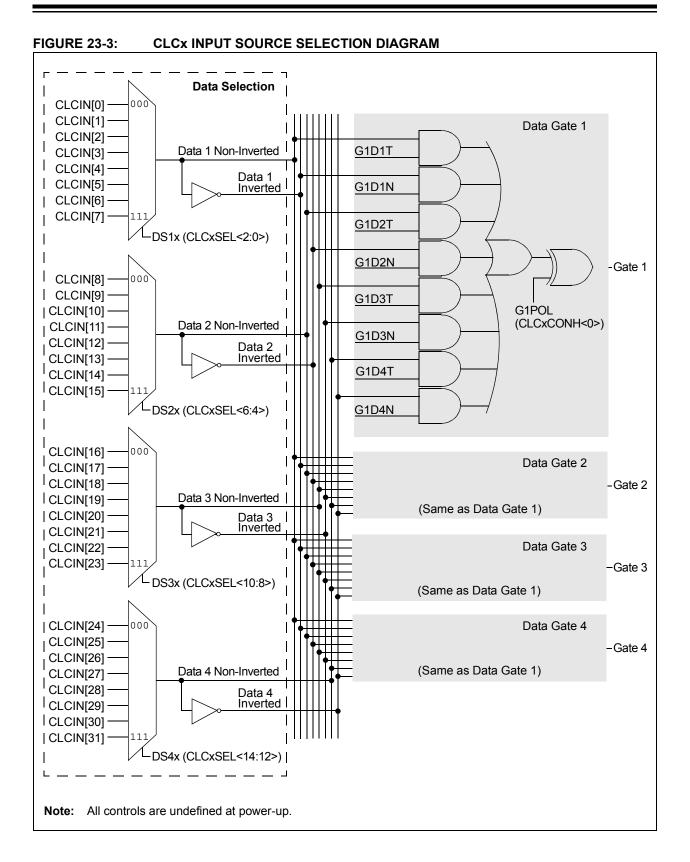
#### REGISTER 22-4: CRCXORH: CRC XOR POLYNOMIAL REGISTER, HIGH WORD


| R/W-0                              | R/W-0   | R/W-0 | R/W-0                              | R/W-0  | R/W-0           | R/W-0  | R/W-0 |
|------------------------------------|---------|-------|------------------------------------|--------|-----------------|--------|-------|
| N/W-U                              | N/ VV-0 | N/W-U |                                    |        | N/VV-0          | N/ W-U | N/W-0 |
|                                    |         |       | X<                                 | 31:24> |                 |        |       |
| bit 15                             |         |       |                                    |        |                 |        | bit 8 |
|                                    |         |       |                                    |        |                 |        |       |
| R/W-0                              | R/W-0   | R/W-0 | R/W-0                              | R/W-0  | R/W-0           | R/W-0  | R/W-0 |
|                                    |         |       | Х<                                 | 23:16> |                 |        |       |
| bit 7                              |         |       |                                    |        |                 |        | bit C |
| Logondy                            |         |       |                                    |        |                 |        |       |
| Legend:                            |         |       |                                    |        |                 |        |       |
| R = Readable bit W = Writable bit  |         | bit   | U = Unimplemented bit, read as '0' |        |                 |        |       |
| -n = Value at POR '1' = Bit is set |         |       | '0' = Bit is clea                  | ared   | x = Bit is unkr | nown   |       |

bit 15-0 X<31:16>: XOR of Polynomial Term x<sup>n</sup> Enable bits

### 23.0 CONFIGURABLE LOGIC CELL (CLC) GENERATOR


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Configurable Logic Cell (CLC)" (DS70005298), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM. The Configurable Logic Cell (CLC) module allows the user to specify combinations of signals as inputs to a logic function and to use the logic output to control other peripherals or I/O pins. This provides greater flexibility and potential in embedded designs, since the CLC module can operate outside the limitations of software execution and supports a vast amount of output designs.


There are four input gates to the selected logic function. These four input gates select from a pool of up to 32 signals that are selected using four data source selection multiplexers. Figure 23-1 shows an overview of the module. Figure 23-3 shows the details of the data source multiplexers and logic input gate connections.



#### FIGURE 23-1: CLCx MODULE

# PIC24FJ256GA705 FAMILY





#### 23.1 Control Registers

The CLCx module is controlled by the following registers:

- CLCxCONL
- CLCxCONH
- CLCxSEL
- CLCxGLSL
- CLCxGLSH

The CLCx Control registers (CLCxCONL and CLCxCONH) are used to enable the module and interrupts, control the output enable bit, select output polarity and select the logic function. The CLCx Control registers also allow the user to control the logic polarity of not only the cell output, but also some intermediate variables. The CLCx Input MUX Select register (CLCxSEL) allows the user to select up to 4 data input sources using the 4 data input selection multiplexers. Each multiplexer has a list of 8 data sources available.

The CLCx Gate Logic Input Select registers (CLCxGLSL and CLCxGLSH) allow the user to select which outputs from each of the selection MUXes are used as inputs to the input gates of the logic cell. Each data source MUX outputs both a true and a negated version of its output. All of these 8 signals are enabled, ORed together by the logic cell input gates.

#### REGISTER 23-1: CLCxCONL: CLCx CONTROL REGISTER (LOW)

| R/W-0        | U-0                                         | U-0                                     | U-0              | R/W-0            | R/W-0            | U-0             | U-0   |  |  |  |
|--------------|---------------------------------------------|-----------------------------------------|------------------|------------------|------------------|-----------------|-------|--|--|--|
| LCEN         | —                                           | —                                       | _                | INTP             | INTN             | —               | —     |  |  |  |
| bit 15       |                                             |                                         |                  |                  |                  |                 | bit 8 |  |  |  |
|              |                                             |                                         |                  |                  |                  |                 |       |  |  |  |
| R/W-0        | R-0                                         | R/W-0                                   | U-0              | U-0              | R/W-0            | R/W-0           | R/W-0 |  |  |  |
| LCOE         | LCOUT                                       | LCPOL                                   | —                |                  | MODE2            | MODE1           | MODE0 |  |  |  |
| bit 7        |                                             |                                         |                  |                  |                  |                 | bit 0 |  |  |  |
| Legend:      |                                             |                                         |                  |                  |                  |                 |       |  |  |  |
| R = Readab   | le bit                                      | W = Writable                            | oit              | U = Unimpler     | nented bit, read | l as '0'        |       |  |  |  |
| -n = Value a | t POR                                       | '1' = Bit is set                        |                  | '0' = Bit is cle | ared             | x = Bit is unkn | nown  |  |  |  |
|              |                                             |                                         |                  |                  |                  |                 |       |  |  |  |
| bit 15       | LCEN: CLCx                                  | Enable bit                              |                  |                  |                  |                 |       |  |  |  |
|              |                                             | enabled and mi                          |                  |                  |                  |                 |       |  |  |  |
|              |                                             | disabled and ha                         | •                | utputs           |                  |                 |       |  |  |  |
| bit 14-12    | -                                           | ted: Read as '                          |                  |                  |                  |                 |       |  |  |  |
| bit 11       |                                             | Positive Edge Ir                        |                  |                  |                  |                 |       |  |  |  |
|              |                                             | will be generate<br>will not be gene    |                  | ng edge occurs   | on LCOUT         |                 |       |  |  |  |
| bit 10       |                                             | Negative Edge                           |                  | ole bit          |                  |                 |       |  |  |  |
|              |                                             |                                         |                  | ing edge occurs  | s on LCOUT       |                 |       |  |  |  |
|              | 0 = Interrupt                               | will not be gene                        | erated           |                  |                  |                 |       |  |  |  |
| bit 9-8      | Unimplemen                                  | ted: Read as '                          | )'               |                  |                  |                 |       |  |  |  |
| bit 7        | LCOE: CLCx                                  | Port Enable bit                         |                  |                  |                  |                 |       |  |  |  |
|              |                                             | t pin output is e                       |                  |                  |                  |                 |       |  |  |  |
| 1.11.0       | •                                           | t pin output is d                       |                  |                  |                  |                 |       |  |  |  |
| bit 6        | LCOUT: CLCx Data Output Status bit          |                                         |                  |                  |                  |                 |       |  |  |  |
|              | 1 = CLCx output high<br>0 = CLCx output low |                                         |                  |                  |                  |                 |       |  |  |  |
| bit 5        |                                             | LCPOL: CLCx Output Polarity Control bit |                  |                  |                  |                 |       |  |  |  |
|              |                                             | ut of the modul                         | •                |                  |                  |                 |       |  |  |  |
|              | 0 = The outp                                | ut of the modul                         | e is not inverte | ed               |                  |                 |       |  |  |  |
| bit 4-3      | Unimplemen                                  | ted: Read as 'd                         | )'               |                  |                  |                 |       |  |  |  |
|              |                                             |                                         |                  |                  |                  |                 |       |  |  |  |

#### REGISTER 23-1: CLCxCONL: CLCx CONTROL REGISTER (LOW) (CONTINUED)

bit 2-0 MODE<2:0>: CLCx Mode bits

- 111 = Cell is a 1-input transparent latch with S and R
- 110 = Cell is a JK flip-flop with R
- 101 = Cell is a 2-input D flip-flop with R
- 100 = Cell is a 1-input D flip-flop with S and R
- 011 = Cell is an SR latch
- 010 = Cell is a 4-input AND
- 001 = Cell is an OR-XOR
- 000 = Cell is an AND-OR

#### REGISTER 23-2: CLCxCONH: CLCx CONTROL REGISTER (HIGH)

| U-0    | U-0 | U-0 | U-0 | U-0 | U-0 | U-0 | U-0   |
|--------|-----|-----|-----|-----|-----|-----|-------|
| —      | —   | —   |     | —   |     | _   | —     |
| bit 15 |     |     |     |     |     |     | bit 8 |

| U-0   | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
|-------|-----|-----|-----|-------|-------|-------|-------|
| —     | —   | —   | —   | G4POL | G3POL | G2POL | G1POL |
| bit 7 |     |     |     |       |       |       | bit 0 |

#### Legend:

| Legena.           |                  |                             |                    |  |
|-------------------|------------------|-----------------------------|--------------------|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | d as '0'           |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |  |

| bit 15-4 | Unimplemented: Read as '0'                                                                                                                                  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 3    | G4POL: Gate 4 Polarity Control bit                                                                                                                          |
|          | <ul> <li>1 = The output of Channel 4 logic is inverted when applied to the logic cell</li> <li>0 = The output of Channel 4 logic is not inverted</li> </ul> |
| bit 2    | G3POL: Gate 3 Polarity Control bit                                                                                                                          |
|          | <ul><li>1 = The output of Channel 3 logic is inverted when applied to the logic cell</li><li>0 = The output of Channel 3 logic is not inverted</li></ul>    |
| bit 1    | G2POL: Gate 2 Polarity Control bit                                                                                                                          |
|          | <ul> <li>1 = The output of Channel 2 logic is inverted when applied to the logic cell</li> <li>0 = The output of Channel 2 logic is not inverted</li> </ul> |
| bit 0    | G1POL: Gate 1 Polarity Control bit                                                                                                                          |
|          | <ul> <li>1 = The output of Channel 1 logic is inverted when applied to the logic cell</li> <li>0 = The output of Channel 1 logic is not inverted</li> </ul> |

| U-0          | R/W-0                                                                                                                         | R/W-0                                                                                               | R/W-0          | U-0              | R/W-0           | R/W-0           | R/W-0 |  |  |  |  |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------|------------------|-----------------|-----------------|-------|--|--|--|--|--|
| _            |                                                                                                                               | DS4<2:0>                                                                                            |                |                  |                 | DS3<2:0>        |       |  |  |  |  |  |
| bit 15       |                                                                                                                               |                                                                                                     |                |                  |                 |                 | bita  |  |  |  |  |  |
|              | DAMA                                                                                                                          |                                                                                                     | DAMA           |                  | DAMA            | <b>D</b> 444.0  | DAMA  |  |  |  |  |  |
| U-0          | R/W-0                                                                                                                         | R/W-0                                                                                               | R/W-0          | U-0              | R/W-0           | R/W-0           | R/W-0 |  |  |  |  |  |
|              |                                                                                                                               | DS2<2:0>                                                                                            |                | —                |                 | DS1<2:0>        |       |  |  |  |  |  |
| bit 7        |                                                                                                                               |                                                                                                     |                |                  |                 |                 | bit   |  |  |  |  |  |
| Legend:      |                                                                                                                               |                                                                                                     |                |                  |                 |                 |       |  |  |  |  |  |
| R = Readab   | ole bit                                                                                                                       | W = Writable b                                                                                      | oit            | U = Unimpler     | mented bit, rea | d as '0'        |       |  |  |  |  |  |
| -n = Value a | at POR                                                                                                                        | '1' = Bit is set                                                                                    |                | '0' = Bit is cle |                 | x = Bit is unkn | own   |  |  |  |  |  |
|              |                                                                                                                               |                                                                                                     |                |                  |                 |                 |       |  |  |  |  |  |
| bit 15       | Unimpleme                                                                                                                     | nted: Read as '0                                                                                    | 3              |                  |                 |                 |       |  |  |  |  |  |
| bit 14-12    | DS4<2:0>: [                                                                                                                   | Data Selection M                                                                                    | UX 4 Signal S  | Selection bits   |                 |                 |       |  |  |  |  |  |
|              |                                                                                                                               | P3 Compare Eve                                                                                      | •              | • • •            |                 |                 |       |  |  |  |  |  |
|              |                                                                                                                               | P1 Compare Eve                                                                                      | nt Interrupt F | lag (CCP1IF)     |                 |                 |       |  |  |  |  |  |
|              | 101 = Unim<br>100 = CTMI                                                                                                      |                                                                                                     |                |                  |                 |                 |       |  |  |  |  |  |
|              |                                                                                                                               | 100 = CTMU A/D trigger<br>011 = SPIx Input (SDIx) corresponding to the CLCx module (see Table 23-1) |                |                  |                 |                 |       |  |  |  |  |  |
|              | 010 = Comp                                                                                                                    | 010 = Comparator 3 output                                                                           |                |                  |                 |                 |       |  |  |  |  |  |
|              |                                                                                                                               | 001 = Module-specific CLCx output (see Table 23-1)                                                  |                |                  |                 |                 |       |  |  |  |  |  |
|              | 000 = CLCII                                                                                                                   | •                                                                                                   | ,              |                  |                 |                 |       |  |  |  |  |  |
| bit 11       | -                                                                                                                             | nted: Read as '0                                                                                    |                |                  |                 |                 |       |  |  |  |  |  |
| bit 10-8     | DS3<2:0>: Data Selection MUX 3 Signal Selection bits                                                                          |                                                                                                     |                |                  |                 |                 |       |  |  |  |  |  |
|              | <ul><li>111 = MCCP3 Compare Event Interrupt Flag (CCP3IF)</li><li>110 = MCCP2 Compare Event Interrupt Flag (CCP2IF)</li></ul> |                                                                                                     |                |                  |                 |                 |       |  |  |  |  |  |
|              | 110 = MCCP2 Compare Event Interrupt Flag (CCP2IF)<br>101 = DMA Channel 1 interrupt                                            |                                                                                                     |                |                  |                 |                 |       |  |  |  |  |  |
|              |                                                                                                                               | x RX output corr                                                                                    |                |                  |                 |                 |       |  |  |  |  |  |
|              |                                                                                                                               | Output (SDOx) c                                                                                     | orresponding   | to the CLCx m    | odule (see Tab  | le 23-1)        |       |  |  |  |  |  |
|              |                                                                                                                               | 010 = Comparator 2 output<br>001 = CLCx output (see Table 23-1)                                     |                |                  |                 |                 |       |  |  |  |  |  |
|              | 000 = CLCI                                                                                                                    |                                                                                                     | 6 23-1)        |                  |                 |                 |       |  |  |  |  |  |
| bit 7        |                                                                                                                               | nted: Read as '0                                                                                    | ,              |                  |                 |                 |       |  |  |  |  |  |
| bit 6-4      | •                                                                                                                             |                                                                                                     |                | Selection bits   |                 |                 |       |  |  |  |  |  |
|              | DS2<2:0>: Data Selection MUX 2 Signal Selection bits<br>111 = MCCP2 Compare Event Interrupt Flag (CCP2IF)                     |                                                                                                     |                |                  |                 |                 |       |  |  |  |  |  |
|              | 110 = MCCP1 Compare Event Interrupt Flag (CCP1IF)                                                                             |                                                                                                     |                |                  |                 |                 |       |  |  |  |  |  |
|              |                                                                                                                               | 101 = DMA Channel 0 interrupt                                                                       |                |                  |                 |                 |       |  |  |  |  |  |
|              |                                                                                                                               | 100 = A/D conversion done interrupt                                                                 |                |                  |                 |                 |       |  |  |  |  |  |
|              |                                                                                                                               | 011 = UARTx TX input corresponding to the CLCx module (see Table 23-1)<br>010 = Comparator 1 output |                |                  |                 |                 |       |  |  |  |  |  |
|              |                                                                                                                               | output (see Tabl                                                                                    | e 23-1)        |                  |                 |                 |       |  |  |  |  |  |
|              | 000 <b>= CLCII</b>                                                                                                            | NB I/O pin                                                                                          |                |                  |                 |                 |       |  |  |  |  |  |
| bit 3        | -                                                                                                                             | nted: Read as '0                                                                                    |                |                  |                 |                 |       |  |  |  |  |  |
| bit 2-0      | DS1<2:0>: [                                                                                                                   | Data Selection M                                                                                    | UX 1 Signal    | Selection bits   |                 |                 |       |  |  |  |  |  |
|              | -                                                                                                                             | 3 match event                                                                                       |                |                  |                 |                 |       |  |  |  |  |  |
|              | 110 = Timer<br>101 = Unim                                                                                                     | 2 match event                                                                                       |                |                  |                 |                 |       |  |  |  |  |  |
|              | 101 <b>– Ohim</b><br>100 <b>= REFC</b>                                                                                        |                                                                                                     |                |                  |                 |                 |       |  |  |  |  |  |
|              |                                                                                                                               | C/LPRC clock so                                                                                     | urce           |                  |                 |                 |       |  |  |  |  |  |
|              |                                                                                                                               | C clock source                                                                                      |                |                  |                 |                 |       |  |  |  |  |  |
|              |                                                                                                                               | m clock (TCY)                                                                                       |                |                  |                 |                 |       |  |  |  |  |  |
|              | 000 <b>= CLCII</b>                                                                                                            | va I/O pin                                                                                          |                |                  |                 |                 |       |  |  |  |  |  |

| Bit Field Value |     | Input Source |             |  |  |  |
|-----------------|-----|--------------|-------------|--|--|--|
| BITFI           |     | CLC1         | CLC2        |  |  |  |
| DS4<2:0>        | 011 | SDI1         | SDI2        |  |  |  |
|                 | 001 | CLC2 Output  | CLC1 Output |  |  |  |
| DS3<2:0>        | 100 | U1RX         | U2RX        |  |  |  |
|                 | 011 | SDO1         | SDO2        |  |  |  |
|                 | 001 | CLC1 Output  | CLC2 Output |  |  |  |
| DS2<2:0>        | 011 | U1TX         | U2TX        |  |  |  |
|                 | 001 | CLC2 Output  | CLC1 Output |  |  |  |

#### TABLE 23-1: MODULE-SPECIFIC INPUT DATA SOURCES

#### REGISTER 23-4: CLCxGLSL: CLCx GATE LOGIC INPUT SELECT LOW REGISTER

| R/W-0  | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
|--------|-------|-------|-------|-------|-------|-------|-------|
| G2D4T  | G2D4N | G2D3T | G2D3N | G2D2T | G2D2N | G2D1T | G2D1N |
| bit 15 |       |       |       |       |       |       | bit 8 |

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| G1D4T | G1D4N | G1D3T | G1D3N | G1D2T | G1D2N | G1D1T | G1D1N |
| bit 7 |       |       |       |       |       |       | bit 0 |

| Legend:           |                  |                            |                    |
|-------------------|------------------|----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, rea | d as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared       | x = Bit is unknown |

| bit 15 | G2D4T: Gate 2 Data Source 4 True Enable bit                                                                                                           |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | <ul> <li>1 = The Data Source 4 signal is enabled for Gate 2</li> <li>0 = The Data Source 4 signal is disabled for Gate 2</li> </ul>                   |
| bit 14 | G2D4N: Gate 2 Data Source 4 Negated Enable bit                                                                                                        |
|        | <ul><li>1 = The Data Source 4 inverted signal is enabled for Gate 2</li><li>0 = The Data Source 4 inverted signal is disabled for Gate 2</li></ul>    |
| bit 13 | G2D3T: Gate 2 Data Source 3 True Enable bit                                                                                                           |
|        | <ul> <li>1 = The Data Source 3 signal is enabled for Gate 2</li> <li>0 = The Data Source 3 signal is disabled for Gate 2</li> </ul>                   |
| bit 12 | G2D3N: Gate 2 Data Source 3 Negated Enable bit                                                                                                        |
|        | <ul> <li>1 = The Data Source 3 inverted signal is enabled for Gate 2</li> <li>0 = The Data Source 3 inverted signal is disabled for Gate 2</li> </ul> |
| bit 11 | G2D2T: Gate 2 Data Source 2 True Enable bit                                                                                                           |
|        | <ul><li>1 = The Data Source 2 signal is enabled for Gate 2</li><li>0 = The Data Source 2 signal is disabled for Gate 2</li></ul>                      |
| bit 10 | G2D2N: Gate 2 Data Source 2 Negated Enable bit                                                                                                        |
|        | <ul> <li>1 = The Data Source 2 inverted signal is enabled for Gate 2</li> <li>0 = The Data Source 2 inverted signal is disabled for Gate 2</li> </ul> |
| bit 9  | G2D1T: Gate 2 Data Source 1 True Enable bit                                                                                                           |
|        | <ul><li>1 = The Data Source 1 signal is enabled for Gate 2</li><li>0 = The Data Source 1 signal is disabled for Gate 2</li></ul>                      |
|        |                                                                                                                                                       |

#### REGISTER 23-4: CLCxGLSL: CLCx GATE LOGIC INPUT SELECT LOW REGISTER (CONTINUED)

| bit 8 | G2D1N: Gate 2 Data Source 1 Negated Enable bit                                                                                                        |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | <ul><li>1 = The Data Source 1 inverted signal is enabled for Gate 2</li><li>0 = The Data Source 1 inverted signal is disabled for Gate 2</li></ul>    |
| bit 7 | G1D4T: Gate 1 Data Source 4 True Enable bit                                                                                                           |
|       | <ul> <li>1 = The Data Source 4 signal is enabled for Gate 1</li> <li>0 = The Data Source 4 signal is disabled for Gate 1</li> </ul>                   |
| bit 6 | G1D4N: Gate 1 Data Source 4 Negated Enable bit                                                                                                        |
|       | <ul> <li>1 = The Data Source 4 inverted signal is enabled for Gate 1</li> <li>0 = The Data Source 4 inverted signal is disabled for Gate 1</li> </ul> |
| bit 5 | G1D3T: Gate 1 Data Source 3 True Enable bit                                                                                                           |
|       | <ul><li>1 = The Data Source 3 signal is enabled for Gate 1</li><li>0 = The Data Source 3 signal is disabled for Gate 1</li></ul>                      |
| bit 4 | G1D3N: Gate 1 Data Source 3 Negated Enable bit                                                                                                        |
|       | <ul> <li>1 = The Data Source 3 inverted signal is enabled for Gate 1</li> <li>0 = The Data Source 3 inverted signal is disabled for Gate 1</li> </ul> |
| bit 3 | G1D2T: Gate 1 Data Source 2 True Enable bit                                                                                                           |
|       | <ul> <li>1 = The Data Source 2 signal is enabled for Gate 1</li> <li>0 = The Data Source 2 signal is disabled for Gate 1</li> </ul>                   |
| bit 2 | G1D2N: Gate 1 Data Source 2 Negated Enable bit                                                                                                        |
|       | <ul> <li>1 = The Data Source 2 inverted signal is enabled for Gate 1</li> <li>0 = The Data Source 2 inverted signal is disabled for Gate 1</li> </ul> |
| bit 1 | G1D1T: Gate 1 Data Source 1 True Enable bit                                                                                                           |
|       | <ul> <li>1 = The Data Source 1 signal is enabled for Gate 1</li> <li>0 = The Data Source 1 signal is disabled for Gate 1</li> </ul>                   |
| bit 0 | G1D1N: Gate 1 Data Source 1 Negated Enable bit                                                                                                        |
|       | <ul> <li>1 = The Data Source 1 inverted signal is enabled for Gate 1</li> <li>0 = The Data Source 1 inverted signal is disabled for Gate 1</li> </ul> |

#### REGISTER 23-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER

| R/W-0         | R/W-0                                                                                                                                                 | R/W-0                            | R/W-0            | R/W-0            | R/W-0           | R/W-0                        | R/W-0 |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------|------------------|-----------------|------------------------------|-------|--|
| G4D4T         | G4D4N                                                                                                                                                 | G4D3T                            | G4D3N            | G4D2T            | G4D2N           | G4D1T                        | G4D1N |  |
| bit 15        |                                                                                                                                                       |                                  |                  |                  |                 |                              | bit 8 |  |
| R/W-0         | R/W-0                                                                                                                                                 | R/W-0                            | R/W-0            | R/W-0            | R/W-0           | R/W-0                        | R/W-0 |  |
| G3D4T         | G3D4N                                                                                                                                                 | G3D3T                            | G3D3N            | G3D2T            | G3D2N           | G3D1T                        | G3D1N |  |
| bit 7         | GSD4N                                                                                                                                                 | 63031                            | G3D3N            | G3D21            | GSDZN           | G3D11                        | bit C |  |
| Laward        |                                                                                                                                                       |                                  |                  |                  |                 |                              |       |  |
| Legend:       | a h:t                                                                                                                                                 | $\lambda = \lambda $             | L :4             |                  | nented bit ree  |                              |       |  |
| R = Readabl   |                                                                                                                                                       | W = Writable bit                 |                  | -                | nented bit, rea | a as 0<br>x = Bit is unknown |       |  |
| -n = Value at | PUR                                                                                                                                                   | '1' = Bit is set                 |                  | '0' = Bit is cle | ared            | x = Bit is unkr              | lown  |  |
| bit 15        | G4D4T: Gate                                                                                                                                           | 4 Data Source                    | 4 True Enable    | bit              |                 |                              |       |  |
|               |                                                                                                                                                       | Source 4 signa                   |                  |                  |                 |                              |       |  |
|               |                                                                                                                                                       | Source 4 signa                   |                  |                  |                 |                              |       |  |
| bit 14        | G4D4N: Gate                                                                                                                                           | 4 Data Source                    | e 4 Negated Er   | able bit         |                 |                              |       |  |
|               |                                                                                                                                                       | Source 4 inver                   |                  |                  |                 |                              |       |  |
|               |                                                                                                                                                       | Source 4 inver                   | -                |                  | e 4             |                              |       |  |
| bit 13        |                                                                                                                                                       | 4 Data Source                    |                  |                  |                 |                              |       |  |
|               | <ul> <li>1 = The Data Source 3 signal is enabled for Gate 4</li> <li>0 = The Data Source 3 signal is disabled for Gate 4</li> </ul>                   |                                  |                  |                  |                 |                              |       |  |
| bit 12        | G4D3N: Gate 4 Data Source 3 Negated Enable bit                                                                                                        |                                  |                  |                  |                 |                              |       |  |
|               | <ul> <li>1 = The Data Source 3 inverted signal is enabled for Gate 4</li> <li>0 = The Data Source 3 inverted signal is disabled for Gate 4</li> </ul> |                                  |                  |                  |                 |                              |       |  |
| bit 11        |                                                                                                                                                       | 4 Data Source                    | •                |                  |                 |                              |       |  |
|               | 1 = The Data                                                                                                                                          | Source 2 signa<br>Source 2 signa | I is enabled fo  | r Gate 4         |                 |                              |       |  |
| bit 10        |                                                                                                                                                       | 4 Data Source                    |                  |                  |                 |                              |       |  |
|               |                                                                                                                                                       | Source 2 inver                   | •                |                  | e 4             |                              |       |  |
|               | 0 = The Data                                                                                                                                          | Source 2 inver                   | ted signal is di | sabled for Gate  | e 4             |                              |       |  |
| bit 9         | G4D1T: Gate                                                                                                                                           | 4 Data Source                    | 1 True Enable    | bit              |                 |                              |       |  |
|               |                                                                                                                                                       | Source 1 signa                   |                  |                  |                 |                              |       |  |
|               |                                                                                                                                                       | Source 1 signa                   |                  |                  |                 |                              |       |  |
| bit 8         |                                                                                                                                                       | 4 Data Source                    | -                |                  |                 |                              |       |  |
|               |                                                                                                                                                       | Source 1 inver<br>Source 1 inver |                  |                  |                 |                              |       |  |
| bit 7         | G3D4T: Gate                                                                                                                                           | 3 Data Source                    | 4 True Enable    | bit              |                 |                              |       |  |
|               | <ul> <li>1 = The Data Source 4 signal is enabled for Gate 3</li> <li>0 = The Data Source 4 signal is disabled for Gate 3</li> </ul>                   |                                  |                  |                  |                 |                              |       |  |
| bit 6         | G3D4N: Gate                                                                                                                                           | 3 Data Source                    | 4 Negated Er     | able bit         |                 |                              |       |  |
|               | 1 = The Data                                                                                                                                          | Source 4 inver<br>Source 4 inver | ted signal is er | habled for Gate  |                 |                              |       |  |
| bit 5         |                                                                                                                                                       | 3 Data Source                    | -                |                  |                 |                              |       |  |
|               |                                                                                                                                                       | Source 3 signa                   |                  |                  |                 |                              |       |  |
|               |                                                                                                                                                       | Source 3 signa                   |                  |                  |                 |                              |       |  |
| bit 4         | G3D3N: Gate                                                                                                                                           | 3 Data Source                    | e 3 Negated Er   | able bit         |                 |                              |       |  |
|               |                                                                                                                                                       | Source 3 inver                   |                  |                  |                 |                              |       |  |
|               | 0 - The Data                                                                                                                                          | Source 3 inver                   | ted signal is di | sabled for Gate  | - 3             |                              |       |  |

© 2016-2018 Microchip Technology Inc.

# REGISTER 23-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER (CONTINUED)

| bit 3 | G3D2T: Gate 3 Data Source 2 True Enable bit                                    |
|-------|--------------------------------------------------------------------------------|
|       | 1 = The Data Source 2 signal is enabled for Gate 3                             |
|       | 0 = The Data Source 2 signal is disabled for Gate 3                            |
| bit 2 | G3D2N: Gate 3 Data Source 2 Negated Enable bit                                 |
|       | 1 = The Data Source 2 inverted signal is enabled for Gate 3                    |
|       | $\ensuremath{_{0}}$ = The Data Source 2 inverted signal is disabled for Gate 3 |
| bit 1 | G3D1T: Gate 3 Data Source 1 True Enable bit                                    |
|       | 1 = The Data Source 1 signal is enabled for Gate 3                             |
|       | 0 = The Data Source 1 signal is disabled for Gate 3                            |
| bit 0 | G3D1N: Gate 3 Data Source 1 Negated Enable bit                                 |
|       | GSD IN. Gale 5 Data Source Theyated Linable bit                                |
|       | 1 = The Data Source 1 inverted signal is enabled for Gate 3                    |

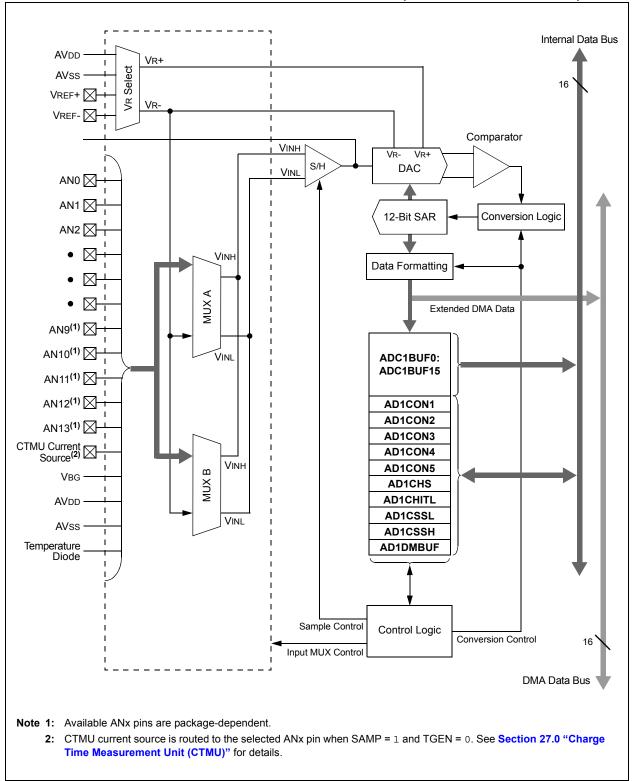
### 24.0 12-BIT A/D CONVERTER WITH THRESHOLD DETECT

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the 12-Bit A/D Converter, refer to the "dsPIC33/PIC24 Family Reference Manual", "12-Bit A/D Converter with Threshold Detect" (DS39739), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The A/D Converter has the following key features:

- Successive Approximation Register (SAR)
   Conversion
- Selectable 10-Bit or 12-Bit (default) Conversion Resolution
- · Conversion Speeds of up to 200 ksps (12-bit)
- Up to 19 Analog Input Channels (internal and external)
- Multiple Internal Reference Input Channels
- External Voltage Reference Input Pins
- Unipolar Differential Sample-and-Hold (S/H)
   Amplifier
- Automated Threshold Scan and Compare
   Operation to Pre-Evaluate Conversion Results
- Selectable Conversion Trigger Source
- Fixed Length (one word per channel), Configurable Conversion Result Buffer
- Four Options for Results Alignment
- Configurable Interrupt Generation
- Enhanced DMA Operations with Indirect Address Generation
- Operation During CPU Sleep and Idle modes

The 12-bit A/D Converter module is an enhanced version of the 10-bit module offered in earlier PIC24 devices. It is a Successive Approximation Register (SAR) Converter, enhanced with 12-bit resolution, a wide range of automatic sampling options, tighter integration with other analog modules and a configurable results buffer.


It also includes a unique Threshold Detect feature that allows the module itself to make simple decisions based on the conversion results, and enhanced operation with the DMA Controller through Peripheral Indirect Addressing (PIA).

A simplified block diagram for the module is shown in Figure 24-1.

#### 24.1 Basic Operation

To perform a standard A/D conversion:

- 1. Configure the module:
  - a) Configure port pins as analog inputs by setting the appropriate bits in the ANSx registers (see Section 11.2 "Configuring Analog Port Pins (ANSx)" for more information).
  - b) Select the voltage reference source to match the expected range on analog inputs (AD1CON2<15:13>).
  - c) Select the positive and negative multiplexer inputs for each channel (AD1CHS<15:0>).
  - d) Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
  - e) Select the appropriate sample/conversion sequence (AD1CON1<7:4> and AD1CON3<12:8>).
  - For Channel A scanning operations, select the positive channels to be included (AD1CSSH and AD1CSSL registers).
  - g) Select how conversion results are presented in the buffer (AD1CON1<9:8> and AD1CON5 register).
  - h) Select the interrupt rate (AD1CON2<5:2>).
  - i) Turn on A/D module (AD1CON1<15>).
- 2. Configure the A/D interrupt (if required):
  - a) Clear the AD1IF bit (IFS0<13>).
  - b) Enable the AD1IE interrupt (IEC0<13>).
  - c) Select the A/D interrupt priority (IPC3<6:4>).
- If the module is configured for manual sampling, set the SAMP bit (AD1CON1<1>) to begin sampling.



#### FIGURE 24-1: 12-BIT A/D CONVERTER BLOCK DIAGRAM (PIC24FJ256GA705 FAMILY)

# 24.2 Extended DMA Operations

In addition to the standard features available on all 12-bit A/D Converters, PIC24FJ256GA705 family devices implement a limited extension of DMA functionality. This extension adds features that work with the device's DMA Controller to expand the A/D module's data storage abilities beyond the module's built-in buffer.

The Extended DMA functionality is controlled by the DMAEN bit (AD1CON1<11>); setting this bit enables the functionality. The DMABM bit (AD1CON1<12>) configures how the DMA feature operates.

### 24.2.1 EXTENDED BUFFER MODE

Extended Buffer mode (DMABM = 1) maps the A/D Data Buffer registers and data from all channels above 13 into a user-specified area of data RAM. This allows users to read the conversion results of channels above 13, which do not have their own memory-mapped A/D buffer locations, from data memory.

To accomplish this, the DMA must be configured in Peripheral Indirect Addressing mode and the DMA destination address must point to the beginning of the buffer. The DMA count must be set to generate an interrupt after the desired number of conversions.

In Extended Buffer mode, the A/D control bits will function similarly to non-DMA modes. The BUFREGEN bit will still select between FIFO mode and Channel-Aligned mode, but the number of words in the destination FIFO will be determined by the SMPI<4:0> bits in DMA mode. In FIFO mode, the BUFM bit will still split the output FIFO into two sets of 13 results (the SMPIx bits should be set accordingly) and the BUFS bit will still indicate which set of results is being written to and which can be read.

### 24.2.2 PIA MODE

When DMABM = 0, the A/D module is configured to function with the DMA Controller for Peripheral Indirect Addressing (PIA) mode operations. In this mode, the A/D module generates an 11-bit Indirect Address (IA). This is ORed with the destination address in the DMA Controller to define where the A/D conversion data will be stored.

In PIA mode, the buffer space is created as a series of contiguous smaller buffers, one per analog channel. The size of the channel buffer determines how many analog channels can be accommodated. The size of the buffer is selected by the DMABL<2:0> bits (AD1CON4<2:0>). The size options range from a single word per buffer to 128 words. Each channel is allocated a buffer of this size, regardless of whether or not the channel will actually have conversion data.

The IA is created by combining the base address within a channel buffer with three to five bits (depending on the buffer size) to identify the channel. The base address ranges from zero to seven bits wide, depending on the buffer size. The address is right-padded with a '0' in order to maintain address alignment in the Data Space. The concatenated channel and base address bits are then left-padded with zeros, as necessary, to complete the 11-bit IA.

The IA is configured to auto-increment which channel is written in each analog input's sub-buffer during write operations by using the SMPIx bits (AD1CON2<6:2>).

As with PIA operations for any DMA-enabled module, the base destination address in the DMADSTn register must be masked properly to accommodate the IA. Table 24-1 shows how complete addresses are formed. Note that the address masking varies for each buffer size option. Because of masking requirements, some address ranges may not be available for certain buffer sizes. Users should verify that the DMA base address is compatible with the buffer size selected.

Figure 24-2 shows how the parts of the address define the buffer locations in data memory. In this case, the module "allocates" 256 bytes of data RAM (1000h to 1100h) for 32 buffers of four words each. However, this is not a hard allocation and nothing prevents these locations from being used for other purposes. For example, in the current case, if Analog Channels 1, 3 and 8 are being sampled and converted, conversion data will only be written to the channel buffers, starting at 1008h, 1018h and 1040h. The holes in the PIA buffer space can be used for any other purpose. It is the user's responsibility to keep track of buffer locations and prevent data overwrites.

# 24.3 Registers

The 12-bit A/D Converter is controlled through a total of 13 registers:

- AD1CON1 through AD1CON5 (Register 24-1 through Register 24-5)
- AD1CHS (Register 24-6)
- ANCFG (Register 24-7)

- AD1CHITL (Register 24-8)
- AD1CSSH and AD1CSSL (Register 24-9 and Register 24-10)
- AD1CTMENH and AD1CTMENL (Register 24-11 and Register 24-12)
- AD1DMBUF (not shown) The 16-bit conversion buffer for Extended Buffer mode

| <b>ΤΔΒΙ Ε 24-1</b> · | INDIRECT ADDRESS GENERATION IN PIA MODE |
|----------------------|-----------------------------------------|
| IADLL 24-1.          |                                         |

| DMABL<2:0> | Buffer Size per<br>Channel (words) | Generated Offset<br>Address (lower 11 bits) | Available<br>Input<br>Channels | Allowable DMADSTn<br>Addresses |
|------------|------------------------------------|---------------------------------------------|--------------------------------|--------------------------------|
| 000        | 1                                  | 000 00cc ccc0                               | 32                             | xxxx xxxx xx00 0000            |
| 001        | 2                                  | 000 0ccc ccn0                               | 32                             | xxxx xxxx x000 0000            |
| 010        | 4                                  | 000 cccc cnn0                               | 32                             | xxxx xxxx 0000 0000            |
| 011        | 8                                  | 00c cccc nnn0                               | 32                             | xxxx xxx0 0000 0000            |
| 100        | 16                                 | 0cc cccn nnn0                               | 32                             | xxxx xx00 0000 0000            |
| 101        | 32                                 | ccc ccnn nnn0                               | 32                             | xxxx x000 0000 0000            |
| 110        | 64                                 | ccc cnnn nnn0                               | 16                             | xxxx x000 0000 0000            |
| 111        | 128                                | ccc nnnn nnn0                               | 8                              | xxxx x000 0000 0000            |

**Legend:** CCC = Channel number (three to five bits), n = Base buffer address (zero to seven bits), x = User-definable range of DMADSTn for base address, 0 = Masked bits of DMADSTn for IA

# 24.4 Achieving Maximum A/D Converter Performance

In order to get the shortest overall conversion time (called the 'throughput') while maintaining accuracy, several factors must be considered. These are described in detail below.

- Dependence of AVDD If the AVDD supply is < 2.7V, the Charge Pump Enable bit (PUMPEN, AD1CON3<13>) should be set to '1'. The input channel multiplexer has a varying resistance with AVDD (the lower AVDD, the higher the internal switch resistance). The charge pump provides a higher internal AVDD to keep the switch resistance as low as possible.
- Dependence on TAD The ADC timing is driven by TAD, not TCYC. Selecting the TAD time correctly is critical to getting the best ADC throughput. It is important to note that the overall ADC throughput is not simply the 'Conversion Time' of the SAR. It is the combination of the Conversion Time, the Sample Time and additional TAD delays for internal synchronization logic.
- Relationship between TCYC and TAD There is not a fixed 1:1 timing relationship between TCYC and TAD. The fastest possible throughput is fundamentally set by TAD (min), not by TCYC. The TAD time is set as a programmable integer multiple of TCYC by the ADCS<7:0> bits. Referring to Table 32-25, the TAD (min) time is greater than the 4 MHz period of the dedicated ADC RC clock generator. Therefore, TAD must be 2 TCYC in order to use the RC clock for fastest throughput. The TAD (min) is a multiple of 3.597 MHz as opposed to 4 MHz. To run as fast as possible, TCYC must be a multiple of TAD (min) because values of ADCSx are integers. For example, if a standard 'color burst' crystal of 14.31818 MHz is used, TCYC is 279.4 ns, which is very close to TAD (min) and the ADC throughput is optimal. Running at 16 MHz will actually reduce the throughput, because TAD will have to be 500 ns as the TCYC of 250 ns violates TAD (min).

 Dependence on driving Source Resistance (Rs) – Certain transducers have high output impedance (> 2.5 k $\Omega$ ). Having a high Rs will require longer sampling time to charge the S/H cap through the resistance path (see Figure 25-3). The worst case is a full-range voltage step of AVss to AVDD with the sampling cap at AVss. The capacitor time constant is (Rs + RIC + Rss) (CHOLD) and the sample time needs to be 6 time constants minimum (8 are preferred). Since the ADC logic timing is TAD-based, the sample time (in TAD) must be long enough, over all conditions, to charge/discharge CHOLD. Do not assume one TAD is sufficient sample time; longer times may be required to achieve the accuracy needed by the application. The value of CHOLD is 40 pF.

A small amount of charge is present at the ADC input pin when the sample switch is closed. If Rs is high, this will generate a DC error exceeding 1 LSB. Keeping Rs <  $50\Omega$  is recommenced for best results. The error can also be reduced by increasing sample time (a  $2 k\Omega$  value of Rs requires a  $3 \mu$ S sample time to eliminate the error).

Calculating Throughput – The throughput of the ADC is based on TAD. The throughput is given by:

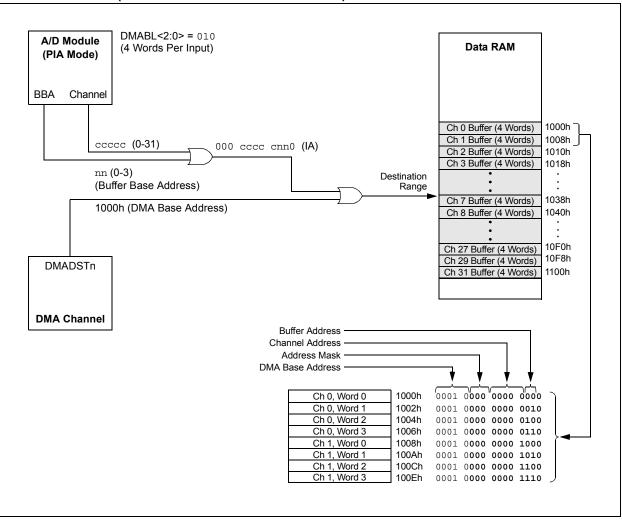
*Throughput* = 1/(Sample Time + SAR Conversion Time + Clock Sync Time)

### where:

Sample Time is the calculated TAD periods for the application. SAR Conversion Time is 12 TAD for 10-bit and 14 TAD for 12-bit conversions. Clock Sync Time is 2.5 TAD (worst case).

**Example:** For a 12-bit ADC throughput, if using FRC = 8 MHz and the Sample Time is 1 TAD, the use of an 8 MHz FRC means the TCYC = 250 ns and this requires: TAD = 2 TCYC = 500 ns. Therefore, the throughput is:

 $Throughput = \frac{1}{(500 \text{ ns})} + (14 * 500 \text{ ns}) + (2.5 * 500 \text{ ns}) = \frac{114.28 \text{KS/sec}}{114.28 \text{KS/sec}}$ 


Note that the clock sync delay could be as little as 1.5 TAD, which could produce 121 KS/sec, but that cannot be ensured as the timing relationship is asynchronous and not specified. The worst case timing of 2.5 TAD should be used to calculate throughput.

**Example:** A certain transducer has a 20 k $\Omega$  output impedance. If AVDD is 3.0, the maximum sample time needed would be determined by the following:

Sample Time = 
$$6 * (Rs + Ric + Rss) * CHOLD$$
  
=  $6 * (20K + 250 + 350) * 40 \, pF$   
=  $4.95 \, uS$ 

If TAD = 500 ns, this requires a Sample Time of 4.95  $\mu$ s/ 500 ns = 10 TAD (for a full-step voltage on the transducer output). Rss is 350 $\Omega$  because AVDD is above 2.7V.

# FIGURE 24-2: EXAMPLE OF BUFFER ADDRESS GENERATION IN PIA MODE (4-WORD BUFFERS PER CHANNEL)



| R/W-0         | U-0                                                                                                                                                    | R/W-0                      | R/W-0                             | R/W-0             | R/W-0            | R/W-0           | R/W-0      |  |  |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------|-------------------|------------------|-----------------|------------|--|--|--|
| ADON          |                                                                                                                                                        | ADSIDL                     | DMABM <sup>(1)</sup>              | DMAEN             | MODE12           | FORM1           | FORM0      |  |  |  |
| bit 15        |                                                                                                                                                        |                            |                                   |                   |                  |                 | bit 8      |  |  |  |
|               |                                                                                                                                                        |                            |                                   |                   |                  |                 |            |  |  |  |
| R/W-0         | R/W-0                                                                                                                                                  | R/W-0                      | R/W-0                             | U-0               | R/W-0            | R/W-0, HSC      | R/C-0, HSC |  |  |  |
| SSRC3         | SSRC2                                                                                                                                                  | SSRC1                      | SSRC0                             | —                 | ASAM             | SAMP            | DONE       |  |  |  |
| bit 7         |                                                                                                                                                        |                            |                                   |                   |                  |                 | bit        |  |  |  |
|               |                                                                                                                                                        |                            |                                   |                   |                  |                 |            |  |  |  |
| Legend:       |                                                                                                                                                        | C = Clearable              |                                   | •                 | nented bit, read |                 |            |  |  |  |
| R = Readable  |                                                                                                                                                        | W = Writable               |                                   |                   | are Settable/C   |                 |            |  |  |  |
| -n = Value at | POR                                                                                                                                                    | '1' = Bit is set           |                                   | '0' = Bit is clea | ared             | x = Bit is unkn | own        |  |  |  |
| bit 15        |                                                                                                                                                        | Derating Mode              | , hit                             |                   |                  |                 |            |  |  |  |
| DIC 15        |                                                                                                                                                        | erter is operati           |                                   |                   |                  |                 |            |  |  |  |
|               | 0 = A/D Conv                                                                                                                                           | •                          | ng                                |                   |                  |                 |            |  |  |  |
| bit 14        | Unimplemen                                                                                                                                             | ted: Read as '             | 0'                                |                   |                  |                 |            |  |  |  |
| bit 13        | ADSIDL: A/D                                                                                                                                            | Stop in Idle M             | ode bit                           |                   |                  |                 |            |  |  |  |
|               |                                                                                                                                                        |                            | eration when de                   |                   | le mode          |                 |            |  |  |  |
|               |                                                                                                                                                        |                            | ation in Idle mod                 |                   |                  |                 |            |  |  |  |
| bit 12        | DMABM: Extended DMA Buffer Mode Select bit <sup>(1)</sup><br>1 = Extended Buffer mode: Buffer address is defined by the DMADSTn register               |                            |                                   |                   |                  |                 |            |  |  |  |
|               |                                                                                                                                                        |                            |                                   |                   |                  |                 | >          |  |  |  |
| bit 11        | <ul> <li>PIA mode: Buffer addresses are defined by the DMA Controller and AD1CON4&lt;2:0&gt;</li> <li>DMAEN: Extended DMA/Buffer Enable bit</li> </ul> |                            |                                   |                   |                  |                 |            |  |  |  |
|               |                                                                                                                                                        |                            | er features are                   | enabled           |                  |                 |            |  |  |  |
|               | 0 = Extended                                                                                                                                           | features are d             | isabled                           |                   |                  |                 |            |  |  |  |
| bit 10        | MODE12: A/I                                                                                                                                            | D 12-Bit Opera             | tion Mode bit                     |                   |                  |                 |            |  |  |  |
|               | 1 = 12-bit A/D                                                                                                                                         |                            |                                   |                   |                  |                 |            |  |  |  |
| bit 9-8       | 0 = 10-bit A/D                                                                                                                                         | •                          | ormat bits (see                   | formata fallowi   | ng)              |                 |            |  |  |  |
| DIL 9-0       |                                                                                                                                                        | al result, signe           | -                                 | IOITTIALS IOITOWI | ng)              |                 |            |  |  |  |
|               |                                                                                                                                                        |                            | ult, unsigned, le                 | ft justified      |                  |                 |            |  |  |  |
|               |                                                                                                                                                        | result, signed,            |                                   | -                 |                  |                 |            |  |  |  |
|               |                                                                                                                                                        |                            | t, unsigned, righ                 |                   |                  |                 |            |  |  |  |
| bit 7-4       |                                                                                                                                                        | -                          | Source Select                     | bits              |                  |                 |            |  |  |  |
|               | 0000 = SAMF<br>0001 = INTO                                                                                                                             | <sup>o</sup> is cleared by | sonware                           |                   |                  |                 |            |  |  |  |
|               | 0001 = INTO<br>0010 = Timer3                                                                                                                           |                            |                                   |                   |                  |                 |            |  |  |  |
|               | 0100 = CTMU trigger                                                                                                                                    |                            |                                   |                   |                  |                 |            |  |  |  |
|               |                                                                                                                                                        |                            | er during Sleep<br>during Sleep m |                   |                  |                 |            |  |  |  |
|               |                                                                                                                                                        | Convert mode               | during Sleep In                   | iuue)             |                  |                 |            |  |  |  |
| bit 3         | Unimplemen                                                                                                                                             | ted: Read as '             | 0'                                |                   |                  |                 |            |  |  |  |
| bit 2         | -                                                                                                                                                      | Sample Auto-St             |                                   |                   |                  |                 |            |  |  |  |
|               |                                                                                                                                                        | -                          | iately after last                 | conversion; SA    | MP bit is auto   | -set            |            |  |  |  |
|               | 0 = Sampling                                                                                                                                           | -                          |                                   |                   |                  |                 |            |  |  |  |

### REGISTER 24-1: AD1CON1: A/D CONTROL REGISTER 1

Note 1: This bit is only available when Extended DMA and buffer features are available (DMAEN = 1).

## REGISTER 24-1: AD1CON1: A/D CONTROL REGISTER 1 (CONTINUED)

- bit 1SAMP: A/D Sample Enable bit1 = A/D Sample-and-Hold amplifiers are sampling0 = A/D Sample-and-Hold amplifiers are holdingbit 0DONE: A/D Conversion Status bit1 = A/D conversion cycle has completed
  - 0 = A/D conversion cycle has not started or is in progress
- Note 1: This bit is only available when Extended DMA and buffer features are available (DMAEN = 1).

| REGISTER      |                              | CON2: A/D CO                             | _               |                                        |                   |                    |                  |  |  |  |
|---------------|------------------------------|------------------------------------------|-----------------|----------------------------------------|-------------------|--------------------|------------------|--|--|--|
| R/W-0         | R/W-0                        | R/W-0                                    | r-0             | R/W-0                                  | R/W-0             | U-0                | U-0              |  |  |  |
| PVCFG1        | PVCFG0                       | NVCFG0                                   |                 | BUFREGEN                               | CSCNA             |                    |                  |  |  |  |
| bit 15        |                              |                                          |                 |                                        |                   |                    | bit 8            |  |  |  |
| R-0           | R/W-0                        | R/W-0                                    | R/W-0           | R/W-0                                  | R/W-0             | R/W-0              | R/W-0            |  |  |  |
| BUFS          | SMPI4                        | SMPI3                                    | SMPI2           | SMPI1                                  | SMPI0             | BUFM               | ALTS             |  |  |  |
| bit 7         |                              |                                          |                 |                                        |                   |                    | bit 0            |  |  |  |
| Legend:       |                              | r = Reserved b                           | oit             |                                        |                   |                    |                  |  |  |  |
| R = Readabl   | e bit                        | W = Writable b                           | oit             | U = Unimpleme                          | ented bit, read   | 1 as '0'           |                  |  |  |  |
| -n = Value at | POR                          | '1' = Bit is set                         |                 | '0' = Bit is clea                      |                   | x = Bit is unkn    | own              |  |  |  |
|               |                              |                                          |                 |                                        |                   |                    |                  |  |  |  |
| bit 15-14     | PVCFG<1:0>                   | A/D Converter                            | Positive Vol    | tage Reference C                       | Configuration b   | oits               |                  |  |  |  |
|               |                              | mented, do not                           | use             |                                        |                   |                    |                  |  |  |  |
|               | 01 = External<br>00 = AVDD   | I VREF+                                  |                 |                                        |                   |                    |                  |  |  |  |
| bit 13        |                              | Converter Neo                            | ative Voltage   | e Reference Conf                       | figuration bit    |                    |                  |  |  |  |
|               | 1 = External \               | -                                        | jaare renage    |                                        | .garation ait     |                    |                  |  |  |  |
|               | 0 = AVss                     |                                          |                 |                                        |                   |                    |                  |  |  |  |
| bit 12        | Reserved: M                  | aintain as '0'                           |                 |                                        |                   |                    |                  |  |  |  |
| bit 11        | BUFREGEN:                    | A/D Buffer Reg                           | ister Enable    | bit                                    |                   |                    |                  |  |  |  |
|               |                              | on result is loade<br>t buffer is treate |                 | Iffer location dete                    | ermined by the    | e converted chai   | nnel             |  |  |  |
| bit 10        | CSCNA: Sca                   | n Input Selectio                         | ns for CH0+ I   | During Sample A                        | bit               |                    |                  |  |  |  |
|               | 1 = Scans inp                |                                          |                 |                                        |                   |                    |                  |  |  |  |
|               | 0 = Does not                 | -                                        |                 |                                        |                   |                    |                  |  |  |  |
| bit 9-8       | Unimplemen                   | ted: Read as '0                          | ,               |                                        |                   |                    |                  |  |  |  |
| bit 7         | BUFS: Buffer Fill Status bit |                                          |                 |                                        |                   |                    |                  |  |  |  |
|               |                              | N = 1 and DMAI                           |                 |                                        | ratartı (buffa    |                    |                  |  |  |  |
|               | [buffer sta                  |                                          | e – 1)]. User s | ouffer from [buffe<br>should access da |                   |                    | 0                |  |  |  |
|               | -                            | •                                        | · •             | buffer from [buffe                     | r start] to [buf  | fer start + (buffe | er size/2) – 1]  |  |  |  |
|               |                              |                                          | located from    | buffer start + (buf                    | fer size/2)] to [ | buffer start + (bu | uffer size – 1)] |  |  |  |
|               | When DMAE                    |                                          |                 | DC1BUF25, user                         | should acces      | s data in          |                  |  |  |  |
|               |                              | F0-ADC1BUF1                              |                 |                                        | SHOULD ALLES      |                    |                  |  |  |  |
|               |                              |                                          |                 | C1BUF12, user s                        | should access     | data in            |                  |  |  |  |
|               | ADC1BU                       | F13-ADC1BUF                              | 25              |                                        |                   |                    |                  |  |  |  |

# REGISTER 24-2: AD1CON2: A/D CONTROL REGISTER 2

# REGISTER 24-2: AD1CON2: A/D CONTROL REGISTER 2 (CONTINUED)

| bit 6-2 | SMPI<4:0>: Interrupt Sample/DMA Increment Rate Select bits                                                                                                                            |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | When DMAEN = 1 and DMABM = 0:                                                                                                                                                         |
|         | 11111 = Increments the DMA address after completion of the 32nd sample/conversion operation                                                                                           |
|         | 11110 = Increments the DMA address after completion of the 31st sample/conversion operation                                                                                           |
|         | •                                                                                                                                                                                     |
|         | •                                                                                                                                                                                     |
|         | •                                                                                                                                                                                     |
|         | 00001 = Increments the DMA address after completion of the 2nd sample/conversion operation<br>00000 = Increments the DMA address after completion of each sample/conversion operation |
|         | When DMAEN = 1 and DMABM = 1:                                                                                                                                                         |
|         | 11111 = Resets the DMA offset after completion of the 32nd sample/conversion operation<br>11110 = Resets the DMA offset after completion of the 31nd sample/conversion operation      |
|         | •                                                                                                                                                                                     |
|         | •                                                                                                                                                                                     |
|         | •                                                                                                                                                                                     |
|         | 00001 = Resets the DMA offset after completion of the 2nd sample/conversion operation<br>00000 = Resets the DMA offset after completion of every sample/conversion operation          |
|         | When DMAEN = 0:                                                                                                                                                                       |
|         | 11111 = Interrupts at the completion of the conversion for each 32nd sample                                                                                                           |
|         | 11110 = Interrupts at the completion of the conversion for each 31st sample                                                                                                           |
|         | •                                                                                                                                                                                     |
|         | •                                                                                                                                                                                     |
|         | •                                                                                                                                                                                     |
|         | 00001 = Interrupts at the completion of the conversion for every other sample<br>00000 = Interrupts at the completion of the conversion for each sample                               |
| bit 1   | BUFM: Buffer Fill Mode Select bit                                                                                                                                                     |
|         | <ul> <li>1 = Starts buffer filling at ADC1BUF0 on first interrupt and ADC1BUF13 on next interrupt</li> <li>0 = Always starts filling buffer at ADC1BUF0</li> </ul>                    |
| bit 0   | ALTS: Alternate Input Sample Mode Select bit                                                                                                                                          |
|         | <ul> <li>1 = Uses channel input selects for Sample A on first sample and Sample B on next sample</li> <li>0 = Always uses channel input selects for Sample A</li> </ul>               |

| R/W-0               | R-0                                                                                                                                                                                                                | R/W-0                                                                                                                                                         | R/W-0                                                                                                   | R/W-0             | R/W-0            | R/W-0           | R/W-0 |  |  |  |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------|------------------|-----------------|-------|--|--|--|--|
| ADRC <sup>(1)</sup> | EXTSAM                                                                                                                                                                                                             | PUMPEN <sup>(2)</sup>                                                                                                                                         | SAMC4                                                                                                   | SAMC3             | SAMC2            | SAMC1           | SAMC0 |  |  |  |  |
| bit 15              |                                                                                                                                                                                                                    |                                                                                                                                                               |                                                                                                         |                   |                  |                 | bit 8 |  |  |  |  |
|                     |                                                                                                                                                                                                                    |                                                                                                                                                               |                                                                                                         |                   |                  |                 |       |  |  |  |  |
| R/W-0               | R/W-0                                                                                                                                                                                                              | R/W-0                                                                                                                                                         | R/W-0                                                                                                   | R/W-0             | R/W-0            | R/W-0           | R/W-0 |  |  |  |  |
| ADCS7               | ADCS6                                                                                                                                                                                                              | ADCS5                                                                                                                                                         | ADCS4                                                                                                   | ADCS3             | ADCS2            | ADCS1           | ADCS0 |  |  |  |  |
| bit 7               |                                                                                                                                                                                                                    |                                                                                                                                                               |                                                                                                         |                   |                  |                 | bit ( |  |  |  |  |
| Legend:             |                                                                                                                                                                                                                    |                                                                                                                                                               |                                                                                                         |                   |                  |                 |       |  |  |  |  |
| R = Readabl         | le bit                                                                                                                                                                                                             | W = Writable b                                                                                                                                                | oit                                                                                                     | U = Unimplem      | nented bit, read | d as '0'        |       |  |  |  |  |
| -n = Value at       | t POR                                                                                                                                                                                                              | '1' = Bit is set                                                                                                                                              |                                                                                                         | '0' = Bit is clea | ared             | x = Bit is unkr | nown  |  |  |  |  |
|                     |                                                                                                                                                                                                                    |                                                                                                                                                               |                                                                                                         |                   |                  |                 |       |  |  |  |  |
| bit 15              | ADRC: A/D (                                                                                                                                                                                                        | Conversion Cloc                                                                                                                                               | k Source bit <sup>(1</sup>                                                                              | )                 |                  |                 |       |  |  |  |  |
|                     | 1 = Dedicate                                                                                                                                                                                                       | d ADC RC clock                                                                                                                                                | generator (4                                                                                            | MHz nominal).     |                  |                 |       |  |  |  |  |
|                     |                                                                                                                                                                                                                    | rived from syster                                                                                                                                             |                                                                                                         |                   |                  |                 |       |  |  |  |  |
| bit 14              | EXTSAM: Extended Sampling Time bit                                                                                                                                                                                 |                                                                                                                                                               |                                                                                                         |                   |                  |                 |       |  |  |  |  |
|                     |                                                                                                                                                                                                                    |                                                                                                                                                               | 3                                                                                                       |                   |                  |                 |       |  |  |  |  |
|                     |                                                                                                                                                                                                                    |                                                                                                                                                               | •                                                                                                       |                   |                  |                 |       |  |  |  |  |
|                     | 1 = A/D is stil                                                                                                                                                                                                    | ll sampling after<br>ished sampling                                                                                                                           | •                                                                                                       |                   |                  |                 |       |  |  |  |  |
| bit 13              | 1 = A/D is stil<br>0 = A/D is fini                                                                                                                                                                                 | I sampling after                                                                                                                                              | SAMP = 0                                                                                                |                   |                  |                 |       |  |  |  |  |
| bit 13              | 1 = A/D is stil<br>0 = A/D is fini<br><b>PUMPEN:</b> Ch                                                                                                                                                            | ll sampling after ished sampling                                                                                                                              | SAMP = $0$<br>able bit <sup>(2)</sup>                                                                   |                   |                  |                 |       |  |  |  |  |
| bit 13              | 1 = A/D is stil<br>0 = A/D is fini<br><b>PUMPEN:</b> Cf<br>1 = Charge p                                                                                                                                            | ll sampling after<br>ished sampling<br>narge Pump Ena                                                                                                         | SAMP = 0<br>able bit <sup>(2)</sup><br>s is enabled                                                     |                   |                  |                 |       |  |  |  |  |
| bit 13<br>bit 12-8  | 1 = A/D is stil<br>0 = A/D is fini<br><b>PUMPEN:</b> Cf<br>1 = Charge p<br>0 = Charge p                                                                                                                            | I sampling after<br>ished sampling<br>narge Pump Ena<br>ump for switche                                                                                       | SAMP = 0<br>able bit <sup>(2)</sup><br>s is enabled<br>s is disabled                                    | is                |                  |                 |       |  |  |  |  |
|                     | 1 = A/D is stil<br>0 = A/D is fini<br><b>PUMPEN:</b> Cf<br>1 = Charge p<br>0 = Charge p                                                                                                                            | I sampling after<br>ished sampling<br>narge Pump Ena<br>ump for switche<br>ump for switche<br>Auto-Sample T                                                   | SAMP = 0<br>able bit <sup>(2)</sup><br>s is enabled<br>s is disabled                                    | is                |                  |                 |       |  |  |  |  |
|                     | 1 = A/D is stil<br>0 = A/D is fini<br><b>PUMPEN:</b> Cf<br>1 = Charge p<br>0 = Charge p<br><b>SAMC&lt;4:0&gt;:</b>                                                                                                 | I sampling after<br>ished sampling<br>narge Pump Ena<br>ump for switche<br>ump for switche<br>Auto-Sample T                                                   | SAMP = 0<br>able bit <sup>(2)</sup><br>s is enabled<br>s is disabled                                    | ts                |                  |                 |       |  |  |  |  |
|                     | 1 = A/D is stil<br>0 = A/D is fini<br><b>PUMPEN:</b> CH<br>1 = Charge p<br>0 = Charge p<br><b>SAMC&lt;4:0&gt;:</b><br>11111 = 31                                                                                   | I sampling after<br>ished sampling<br>narge Pump Ena<br>ump for switche<br>ump for switche<br>Auto-Sample T<br>IAD                                            | SAMP = 0<br>able bit <sup>(2)</sup><br>s is enabled<br>s is disabled                                    | ts                |                  |                 |       |  |  |  |  |
|                     | 1 = A/D is stil<br>0 = A/D is fini<br><b>PUMPEN:</b> CH<br>1 = Charge p<br>0 = Charge p<br><b>SAMC&lt;4:0&gt;:</b><br>11111 = 31 T                                                                                 | I sampling after<br>ished sampling<br>narge Pump Ena<br>ump for switche<br>ump for switche<br>Auto-Sample T<br>IAD                                            | SAMP = 0<br>able bit <sup>(2)</sup><br>s is enabled<br>s is disabled                                    | ls                |                  |                 |       |  |  |  |  |
| bit 12-8            | 1 = A/D is stil<br>0 = A/D is fini<br><b>PUMPEN:</b> Cf<br>1 = Charge p<br>0 = Charge p<br><b>SAMC&lt;4:0&gt;:</b><br>11111 = 31 T<br>•••<br>00001 = 1 TA<br>00000 = 0 TA                                          | I sampling after<br>ished sampling<br>narge Pump Ena<br>ump for switche<br>ump for switche<br>Auto-Sample T<br>IAD                                            | SAMP = 0<br>able bit <sup>(2)</sup><br>s is enabled<br>s is disabled<br>ime Select bi                   |                   |                  |                 |       |  |  |  |  |
|                     | 1 = A/D is stil<br>0 = A/D is fini<br><b>PUMPEN:</b> Cf<br>1 = Charge p<br>0 = Charge p<br><b>SAMC&lt;4:0&gt;:</b><br>11111 = 31 T<br>•••<br>00001 = 1 TA<br>00000 = 0 TA<br><b>ADCS&lt;7:0&gt;:</b>               | I sampling after<br>ished sampling<br>harge Pump Ena<br>ump for switche<br>ump for switche<br>Auto-Sample T<br>TAD                                            | SAMP = 0<br>able bit <sup>(2)</sup><br>s is enabled<br>s is disabled<br>ime Select bin<br>n Clock Selec |                   |                  |                 |       |  |  |  |  |
| bit 12-8            | 1 = A/D is stil<br>0 = A/D is fini<br><b>PUMPEN:</b> Cf<br>1 = Charge p<br>0 = Charge p<br><b>SAMC&lt;4:0&gt;:</b><br>11111 = 31 T<br>•••<br>00001 = 1 TA<br>00000 = 0 TA<br><b>ADCS&lt;7:0&gt;:</b><br>11111111 = | I sampling after<br>ished sampling<br>harge Pump Ena<br>ump for switche<br>ump for switche<br>Auto-Sample T<br>FAD<br>AD<br>A/D Conversior<br>256 • Tcy = TAD | SAMP = 0<br>able bit <sup>(2)</sup><br>s is enabled<br>s is disabled<br>ime Select bin<br>n Clock Selec |                   |                  |                 |       |  |  |  |  |
| bit 12-8            | 1 = A/D is stil<br>0 = A/D is fini<br><b>PUMPEN:</b> Cf<br>1 = Charge p<br>0 = Charge p<br><b>SAMC&lt;4:0&gt;:</b><br>11111 = 31 T<br>•••<br>00001 = 1 TA<br>00000 = 0 TA<br><b>ADCS&lt;7:0&gt;:</b><br>11111111 = | I sampling after<br>ished sampling<br>harge Pump Ena<br>ump for switche<br>ump for switche<br>Auto-Sample T<br>FAD<br>AD<br>A/D Conversior<br>256 • TCY = TAD | SAMP = 0<br>able bit <sup>(2)</sup><br>s is enabled<br>s is disabled<br>ime Select bin<br>n Clock Selec |                   |                  |                 |       |  |  |  |  |

### REGISTER 24-3: AD1CON3: A/D CONTROL REGISTER 3

ADRC = 1 will violate the TAD (min) specification.
2: The user should enable the charge pump if AVDD is < 2.7 V. Longer sample times are required due to the increase of the internal resistance of the MUX if the charge pump is disabled.</li>

## REGISTER 24-4: AD1CON4: A/D CONTROL REGISTER 4

| U-0                                                                  | U-0 | U-0              | U-0 | U-0               | U-0                     | U-0                      | U-0   |
|----------------------------------------------------------------------|-----|------------------|-----|-------------------|-------------------------|--------------------------|-------|
| —                                                                    | —   | —                | —   | —                 | —                       | —                        | —     |
| bit 15                                                               |     |                  |     |                   |                         |                          | bit 8 |
|                                                                      |     |                  |     |                   |                         |                          |       |
| U-0                                                                  | U-0 | U-0              | U-0 | U-0               | R/W-0                   | R/W-0                    | R/W-0 |
| _                                                                    | —   | —                | —   | —                 | [                       | DMABL<2:0> <sup>(1</sup> | )     |
| bit 7                                                                |     |                  |     |                   |                         |                          | bit 0 |
|                                                                      |     |                  |     |                   |                         |                          |       |
| Legend:                                                              |     |                  |     |                   |                         |                          |       |
| R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' |     |                  |     |                   |                         |                          |       |
| -n = Value at                                                        | POR | '1' = Bit is set |     | '0' = Bit is clea | ared x = Bit is unknown |                          |       |

#### bit 15-3 Unimplemented: Read as '0'

- bit 2-0 DMABL<2:0>: DMA Buffer Size Select bits<sup>(1)</sup>
  - 111 = Allocates 128 words of buffer to each analog input
  - 110 = Allocates 64 words of buffer to each analog input
  - 101 = Allocates 32 words of buffer to each analog input
  - 100 = Allocates 16 words of buffer to each analog input
  - 011 = Allocates 8 words of buffer to each analog input
  - 010 = Allocates 4 words of buffer to each analog input
  - 001 = Allocates 2 words of buffer to each analog input
  - 000 = Allocates 1 word of buffer to each analog input
- **Note 1:** The DMABL<2:0> bits are only used when AD1CON1<11> = 1 and AD1CON1<12> = 0; otherwise, their value is ignored.

| R/W-0                        | R/W-0                                                                                                                                                      | R/W-0                                                                 | R/W-0            | U-0                 | U-0                | R/W-0            | R/W-0          |  |  |  |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------|---------------------|--------------------|------------------|----------------|--|--|--|
| ASEN                         | LPEN                                                                                                                                                       | CTMREQ                                                                | BGREQ            | _                   | —                  | ASINT1           | ASINT0         |  |  |  |
| bit 15                       | ·                                                                                                                                                          | •                                                                     |                  |                     |                    |                  | bit            |  |  |  |
| U-0                          | U-0                                                                                                                                                        | U-0                                                                   | U-0              | R/W-0               | R/W-0              | R/W-0            | R/W-0          |  |  |  |
|                              |                                                                                                                                                            |                                                                       | _                | WM1                 | WM0                | CM1              | CM0            |  |  |  |
| bit 7                        |                                                                                                                                                            |                                                                       |                  |                     |                    | 0                | bit            |  |  |  |
| Logondi                      |                                                                                                                                                            |                                                                       |                  |                     |                    |                  |                |  |  |  |
| <b>Legend:</b><br>R = Readab | le hit                                                                                                                                                     | W = Writable I                                                        | nit              | U = Unimplem        | onted hit read     | d as 'O'         |                |  |  |  |
|                              |                                                                                                                                                            |                                                                       | JIL              | -                   |                    | x = Bit is unki  | 2014/2         |  |  |  |
| -n = Value a                 | IPUR                                                                                                                                                       | '1' = Bit is set                                                      |                  | '0' = Bit is clea   | areu               |                  | IOWII          |  |  |  |
| bit 15                       | ASEN: Auto-                                                                                                                                                | Scan Enable bit                                                       | i i              |                     |                    |                  |                |  |  |  |
|                              | 1 = Auto-sca                                                                                                                                               |                                                                       |                  |                     |                    |                  |                |  |  |  |
|                              | 0 = Auto-sca                                                                                                                                               |                                                                       |                  |                     |                    |                  |                |  |  |  |
| bit 14                       |                                                                                                                                                            | Power Enable bi                                                       |                  |                     |                    |                  |                |  |  |  |
|                              | •                                                                                                                                                          | er is enabled aff                                                     |                  |                     |                    |                  |                |  |  |  |
| bit 13                       | -                                                                                                                                                          | er is enabled after                                                   |                  |                     |                    |                  |                |  |  |  |
| DIL 13                       |                                                                                                                                                            | TMU Request b<br>enabled when t                                       |                  | alad and active     |                    |                  |                |  |  |  |
|                              |                                                                                                                                                            | not enabled by                                                        |                  |                     |                    |                  |                |  |  |  |
| bit 12                       |                                                                                                                                                            | BGREQ: Band Gap Request bit                                           |                  |                     |                    |                  |                |  |  |  |
|                              | 1 = Band gap                                                                                                                                               | o is enabled whe                                                      | en the A/D is e  | nabled and acti     | ve                 |                  |                |  |  |  |
| bit 11-10                    | Unimplemen                                                                                                                                                 | nted: Read as 'o                                                      | )'               |                     |                    |                  |                |  |  |  |
| bit 9-8                      | ASINT<1:0>                                                                                                                                                 | : Auto-Scan (Th                                                       | reshold Detect   | t) Interrupt Mod    | e bits             |                  |                |  |  |  |
|                              | 10 = Interrup                                                                                                                                              | ot after Threshol<br>ot after valid com<br>ot after Threshol<br>rrupt | pare has occu    | urred               |                    | compare has o    | occurred       |  |  |  |
| bit 7-4                      | Unimplemer                                                                                                                                                 | nted: Read as 'd                                                      | )'               |                     |                    |                  |                |  |  |  |
| bit 3-2                      | <b>WM&lt;1:0&gt;:</b> W                                                                                                                                    | /rite Mode bits                                                       |                  |                     |                    |                  |                |  |  |  |
|                              | 11 = Reserve                                                                                                                                               |                                                                       |                  |                     |                    |                  |                |  |  |  |
|                              |                                                                                                                                                            | mpare only (co                                                        |                  |                     |                    | s are generate   | d when a vali  |  |  |  |
|                              | match occurs, as defined by the CMx and ASINTx bits)<br>01 = Convert and save (conversion results are saved to locations as determined by the register bit |                                                                       |                  |                     |                    |                  |                |  |  |  |
|                              | when a match occurs, as defined by the CMx bits)                                                                                                           |                                                                       |                  |                     |                    |                  |                |  |  |  |
|                              | 00 = Legacy                                                                                                                                                | operation (conv                                                       | ersion data is   | saved to a loca     | tion determine     | ed by the Buffer | register bits) |  |  |  |
| bit 1-0                      | CM<1:0>: Compare Mode bits                                                                                                                                 |                                                                       |                  |                     |                    |                  |                |  |  |  |
|                              |                                                                                                                                                            | Window mode                                                           |                  |                     | conversion res     | sult is outside  | of the windo   |  |  |  |
|                              |                                                                                                                                                            | by the correspo<br>Vindow mode: V                                     |                  |                     | ersion result is   | inside the wind  | how defined h  |  |  |  |
|                              |                                                                                                                                                            | esponding buffe                                                       |                  |                     |                    |                  |                |  |  |  |
|                              | 01 = Greater                                                                                                                                               | Than mode: Va                                                         |                  | rs if the result is | greater than t     | he value in the  | correspondin   |  |  |  |
|                              | Duffor r                                                                                                                                                   | aniatan                                                               |                  |                     |                    |                  |                |  |  |  |
|                              |                                                                                                                                                            | egister<br>nan mode: Valid                                            | match anothing ' | fthe readities to   | o those the second | in the comment   | nondine Duff   |  |  |  |

# REGISTER 24-5: AD1CON5: A/D CONTROL REGISTER 5

| R/W-0         | R/W-0                                                                   | R/W-0                                                                                                             | R/W-0                                                  | R/W-0             | R/W-0            | R/W-0           | R/W-0  |
|---------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------|------------------|-----------------|--------|
| CH0NB2        | CH0NB1                                                                  | CH0NB0                                                                                                            | CH0SB4                                                 | CH0SB3            | CH0SB2           | CH0SB1          | CH0SB0 |
| bit 15        |                                                                         |                                                                                                                   |                                                        |                   |                  |                 | bit 8  |
| R/W-0         | R/W-0                                                                   | R/W-0                                                                                                             | R/W-0                                                  | R/W-0             | R/W-0            | R/W-0           | R/W-0  |
| CH0NA2        | CH0NA1                                                                  | CHONAO                                                                                                            | CH0SA4                                                 | CH0SA3            | CH0SA2           | CH0SA1          | CH0SA0 |
| bit 7         | 0.101.0.1                                                               | 0.10.0.0                                                                                                          |                                                        | 0.100.10          | 0.1001.2         | 0.100.11        | bit    |
| Legend:       |                                                                         |                                                                                                                   |                                                        |                   |                  |                 |        |
| R = Readabl   | e bit                                                                   | W = Writable I                                                                                                    | oit                                                    | U = Unimplem      | nented bit, read | l as '0'        |        |
| -n = Value at |                                                                         | '1' = Bit is set                                                                                                  |                                                        | '0' = Bit is clea |                  | x = Bit is unkn | iown   |
|               |                                                                         |                                                                                                                   |                                                        |                   |                  |                 |        |
|               | 1xx = Unimpl<br>01x = Unimpl<br>001 = Unimpl<br>000 = AVss              | emented<br>emented                                                                                                |                                                        |                   |                  |                 |        |
| bit 12-8      | 11110 = AVD<br>11101 = AVS<br>11100 = Ban<br>10000-1101<br>01111 = No e | D <sup>(1)</sup><br>S <sup>(1)</sup><br>d Gap Reference<br>external channe<br>external channe<br>3<br>2<br>1<br>0 | ce (V <sub>BG</sub> ) <sup>(1)</sup><br>Is connected ( | used for CTMU     | )                | sensor)         |        |
| bit 7-5       |                                                                         | : Sample A Cha                                                                                                    | -                                                      | ve Input Select   | bits             |                 |        |
| bit 4-0       | CH0SA<4:0><br>Same definition                                           | -                                                                                                                 |                                                        | e Input Select b  | pits             |                 |        |

### REGISTER 24-6: AD1CHS: A/D SAMPLE SELECT REGISTER

Note 1: These input channels do not have corresponding memory-mapped result buffers.

### REGISTER 24-7: ANCFG: A/D BAND GAP REFERENCE CONFIGURATION REGISTER

|              |              | -                | -               | _                    |                           |                       |                       |
|--------------|--------------|------------------|-----------------|----------------------|---------------------------|-----------------------|-----------------------|
| U-0          | U-0          | U-0              | U-0             | U-0                  | U-0                       | U-0                   | U-0                   |
| _            |              |                  | _               |                      | —                         | —                     | _                     |
| bit 15       |              |                  |                 |                      |                           |                       | bit 8                 |
|              |              |                  |                 |                      |                           |                       |                       |
| U-0          | U-0          | U-0              | U-0             | U-0                  | R/W-0                     | R/W-0                 | R/W-0                 |
| _            | —            | —                | —               | —                    | VBGEN3 <sup>(1)</sup>     | VBGEN2 <sup>(1)</sup> | VBGEN1 <sup>(1)</sup> |
| bit 7        |              |                  |                 |                      |                           |                       | bit 0                 |
|              |              |                  |                 |                      |                           |                       |                       |
| Legend:      |              |                  |                 |                      |                           |                       |                       |
| R = Readal   | ble bit      | W = Writable     | bit             | U = Unimplem         | nented bit, read          | 1 as '0'              |                       |
| -n = Value a | at POR       | '1' = Bit is set |                 | '0' = Bit is clea    | ared                      | x = Bit is unkr       | nown                  |
|              |              |                  |                 |                      |                           |                       |                       |
| bit 15-3     | Unimplemen   | ted: Read as '   | 0'              |                      |                           |                       |                       |
| bit 2        | VBGEN3: A/I  | D Band Gap Re    | eference Enable | e bit <sup>(1)</sup> |                           |                       |                       |
|              | 1 = Band gap | reference is er  | nabled          |                      |                           |                       |                       |
|              | 0 = Band gap | reference is di  | sabled          |                      |                           |                       |                       |
| bit 1        | VBGEN2: CT   | MU and Comp      | arator Band Ga  | ap Reference E       | inable bit <sup>(1)</sup> |                       |                       |
|              | 1 = Band gap | reference is ei  | nabled          |                      |                           |                       |                       |
|              |              | · · ·            |                 |                      |                           |                       |                       |

0 = Band gap reference is disabled

### bit 0 VBGEN1: VREG, BOR, HLVD, FRC, NVM and A/D Boost Band Gap Reference Enable bit<sup>(1)</sup>

- 1 = Band gap reference is enabled
- 0 = Band gap reference is disabled
- **Note 1:** When a module requests a band gap reference voltage, that reference will be enabled automatically after a brief start-up time. The user can manually enable the band gap references using the ANCFG register before enabling the module requesting the band gap reference to avoid this start-up time (~1 ms).

| U-0          | U-0           | R/W-0               | R/W-0                    | R/W-0                                  | R/W-0           | R/W-0     | R/W-0 |  |  |
|--------------|---------------|---------------------|--------------------------|----------------------------------------|-----------------|-----------|-------|--|--|
| _            |               |                     | CHH<13:8> <sup>(1)</sup> |                                        |                 |           |       |  |  |
| bit 15       | ÷             | ·                   |                          |                                        |                 |           | bit 8 |  |  |
|              |               |                     |                          |                                        |                 |           |       |  |  |
| R/W-0        | R/W-0         | R/W-0               | R/W-0                    | R/W-0                                  | R/W-0           | R/W-0     | R/W-0 |  |  |
|              |               |                     | CHH                      | I<7:0>                                 |                 |           |       |  |  |
| bit 7        |               |                     |                          |                                        |                 |           | bit 0 |  |  |
|              |               |                     |                          |                                        |                 |           |       |  |  |
| Legend:      |               |                     |                          |                                        |                 |           |       |  |  |
| R = Readab   | le bit        | W = Writable bit    | t                        | U = Unimplen                           | nented bit, rea | ad as '0' |       |  |  |
| -n = Value a | It POR        | '1' = Bit is set    |                          | '0' = Bit is cleared x = Bit is unknow |                 |           | nown  |  |  |
|              |               |                     |                          |                                        |                 |           |       |  |  |
| bit 15-14    | -             | nted: Read as '0'   | (1)                      |                                        |                 |           |       |  |  |
| bit 13-0     | CHH<13:0>:    | A/D Compare Hit     | bits <sup>(1)</sup>      |                                        |                 |           |       |  |  |
|              | If CM<1:0> =  | 11:                 |                          |                                        |                 |           |       |  |  |
|              | 1 = A/D Res   | ult Buffer n has be | en written w             | ith data or a ma                       | tch has occu    | rred      |       |  |  |
|              | 0 = A/D Res   | ult Buffer n has no | t been writte            | en with data                           |                 |           |       |  |  |
|              | For All Other | Values of CM<1:0    | )> <u>:</u>              |                                        |                 |           |       |  |  |
|              | 1 = A match   | has occurred on A   | VD Result C              | hannel n                               |                 |           |       |  |  |
|              | 0 = No matcl  | h has occurred on   | A/D Result               | Channel n                              |                 |           |       |  |  |
|              |               |                     |                          |                                        |                 |           |       |  |  |

**Note 1:** The CHH<13:10> bits are not implemented on 28-pin devices.

## REGISTER 24-9: AD1CSSH: A/D INPUT SCAN SELECT REGISTER (HIGH WORD)

| U-0                                | U-0   | U-0            | R/W-0                                | R/W-0                              | R/W-0      | R/W-0 | R/W-0 |  |
|------------------------------------|-------|----------------|--------------------------------------|------------------------------------|------------|-------|-------|--|
| —                                  | —     | —              |                                      |                                    | CSS<28:24> |       |       |  |
| bit 15                             |       |                |                                      |                                    |            |       | bit 8 |  |
|                                    |       |                |                                      |                                    |            |       |       |  |
| U-0                                | U-0   | U-0            | U-0                                  | U-0                                | U-0        | U-0   | U-0   |  |
| —                                  | —     | —              | —                                    | —                                  | —          | —     | —     |  |
| bit 7                              | pit 7 |                |                                      |                                    |            |       | bit 0 |  |
|                                    |       |                |                                      |                                    |            |       |       |  |
| Legend:                            |       |                |                                      |                                    |            |       |       |  |
| R = Readable                       | bit   | W = Writable b | bit                                  | U = Unimplemented bit, read as '0' |            |       |       |  |
| -n = Value at POR '1' = Bit is set |       |                | '0' = Bit is cleared x = Bit is unkr |                                    |            | iown  |       |  |

| bit 15-13 | Unimplemented: Read as '0'                        |
|-----------|---------------------------------------------------|
| bit 12-8  | CSS<28:24>: A/D Input Scan Selection bits         |
|           | 1 = Includes corresponding channel for input scan |
|           | 0 = Skips channel for input scan                  |
| bit 7-0   | Unimplemented: Read as '0'                        |

# REGISTER 24-10: AD1CSSL: A/D INPUT SCAN SELECT REGISTER (LOW WORD)

| R/W-0                             | R/W-0 | R/W-0            | R/W-0                              | R/W-0             | R/W-0 | R/W-0           | R/W-0 |
|-----------------------------------|-------|------------------|------------------------------------|-------------------|-------|-----------------|-------|
|                                   |       |                  | CSS                                | S<15:8>           |       |                 |       |
| bit 15                            |       |                  |                                    |                   |       |                 | bit 8 |
| R/W-0                             | R/W-0 | R/W-0            | R/W-0                              | R/W-0             | R/W-0 | R/W-0           | R/W-0 |
|                                   |       |                  | CS                                 | S<7:0>            |       |                 |       |
| bit 7                             |       |                  |                                    |                   |       |                 | bit 0 |
|                                   |       |                  |                                    |                   |       |                 |       |
| Legend:                           |       |                  |                                    |                   |       |                 |       |
| R = Readable bit W = Writable bit |       | bit              | U = Unimplemented bit, read as '0' |                   |       |                 |       |
| -n = Value at I                   | POR   | '1' = Bit is set |                                    | '0' = Bit is clea | ared  | x = Bit is unkr | nown  |

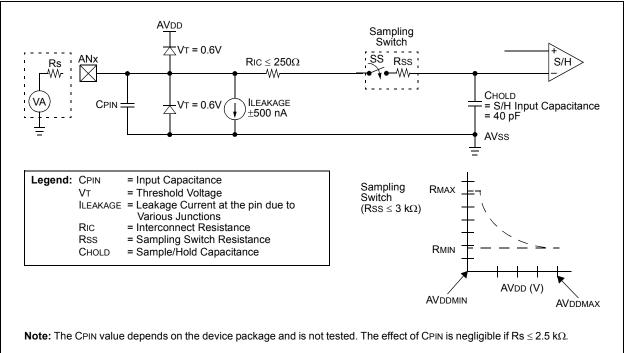
bit 15-0 CSS<15:0>: A/D Input Scan Selection bits

1 = Includes corresponding channel for input scan

0 = Skips channel for input scan

| U-0          | R/W-0     | R/W-0                                   | R/W-0        | U-0                           | U-0              | R/W-0           | R/W-0   |
|--------------|-----------|-----------------------------------------|--------------|-------------------------------|------------------|-----------------|---------|
| _            |           | CTMEN<30:28>                            |              | —                             | —                | CTMEN           | <25:24> |
| bit 15       |           |                                         |              |                               |                  | •               | bit 8   |
|              |           |                                         |              |                               |                  |                 |         |
| R/W-0        | R/W-0     | R/W-0                                   | R/W-0        | R/W-0                         | R/W-0            | R/W-0           | R/W-0   |
|              |           |                                         | CTMEN        | <23:16> <sup>(1)</sup>        |                  |                 |         |
| bit 7        |           |                                         |              |                               |                  |                 | bit 0   |
|              |           |                                         |              |                               |                  |                 |         |
| Legend:      |           |                                         |              |                               |                  |                 |         |
| R = Readab   | ole bit   | W = Writable bi                         | t            | U = Unimplem                  | nented bit, read | as '0'          |         |
| -n = Value a | t POR     | '1' = Bit is set                        |              | '0' = Bit is cleared          |                  | x = Bit is unkn | iown    |
|              |           |                                         |              |                               |                  |                 |         |
| bit 15       | Unimpleme | nted: Read as '0'                       |              |                               |                  |                 |         |
| bit 14-12    | CTMEN<30: | :28>: CTMU Enab                         | led During C | Conversion bits               |                  |                 |         |
|              |           | s enabled and con<br>s not connected to |              |                               | nel during conv  | ersion          |         |
| bit 11-10    | Unimpleme | nted: Read as '0'                       |              |                               |                  |                 |         |
| bit 9-0      | CTMEN<25  | : <b>16&gt;:</b> CTMU Enab              | led During C | Conversion bits <sup>(1</sup> | )                |                 |         |
|              |           | enabled and con                         | •            |                               |                  | ersion          |         |
|              |           | s not connected to                      |              |                               | -                |                 |         |
| Note di      |           | hite are not evail.                     |              | :                             |                  |                 |         |

## REGISTER 24-11: AD1CTMENH: A/D CTMU ENABLE REGISTER (HIGH WORD)


Note 1: CTMEN<23:16> bits are not available on 64-pin parts.

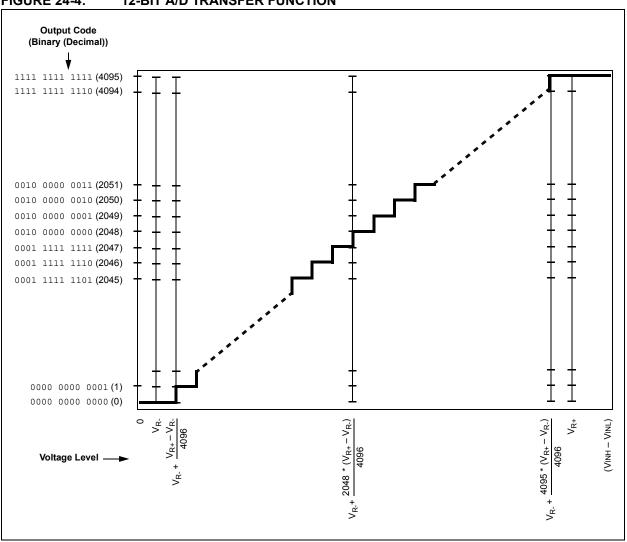
## REGISTER 24-12: AD1CTMENL: A/D CTMU ENABLE REGISTER (LOW WORD)

| R/W-0                             | R/W-0 | R/W-0            | R/W-0                              | R/W-0                | R/W-0 | R/W-0              | R/W-0 |
|-----------------------------------|-------|------------------|------------------------------------|----------------------|-------|--------------------|-------|
|                                   |       |                  | CTN                                | IEN<15:8>            |       |                    |       |
| bit 15                            |       |                  |                                    |                      |       |                    | bit 8 |
| R/W-0                             | R/W-0 | R/W-0            | R/W-0                              | R/W-0                | R/W-0 | R/W-0              | R/W-0 |
|                                   |       |                  | CTN                                | /IEN<7:0>            |       |                    |       |
| bit 7                             |       |                  |                                    |                      |       |                    | bit C |
| Legend:                           |       |                  |                                    |                      |       |                    |       |
| R = Readable bit W = Writable bit |       | bit              | U = Unimplemented bit, read as '0' |                      |       |                    |       |
| -n = Value at POR                 |       | '1' = Bit is set |                                    | '0' = Bit is cleared |       | x = Bit is unknown |       |

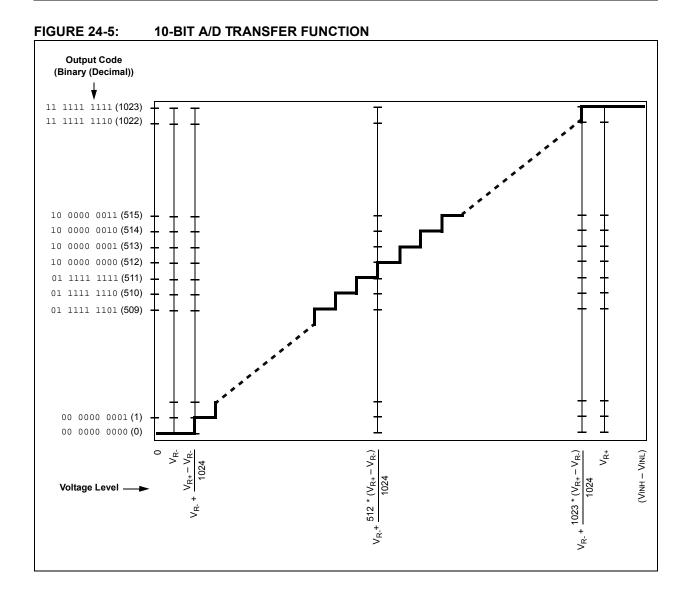
bit 15-0 **CTMEN<15:0>:** CTMU Enabled During Conversion bits 1 = CTMU is enabled and connected to the selected channel during conversion 0 = CTMU is not connected to this channel






### EQUATION 24-1: A/D CONVERSION CLOCK PERIOD

$$TAD = TCY (ADCS + 1)$$


$$ADCS = \frac{TAD}{TCY} - 1$$

ź

**Note:** Based on Tcy = 2/Fosc; Doze mode and PLL are disabled.



### FIGURE 24-4: 12-BIT A/D TRANSFER FUNCTION



NOTES:

# 25.0 TRIPLE COMPARATOR MODULE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Scalable Comparator Module" (DS39734), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The triple comparator module provides three dual input comparators. The inputs to the comparator can be configured to use any one of five external analog inputs (CxINA, CxINB, CxINC, CxIND and CVREF+) and a

voltage reference input from one of the internal band gap references or the comparator voltage reference generator (VBG and CVREF).

The comparator outputs may be directly connected to the CxOUT pins. When the respective COE bit equals '1', the I/O pad logic makes the unsynchronized output of the comparator available on the pin.

A simplified block diagram of the module in shown in Figure 25-1. Diagrams of the possible individual comparator configurations are shown in Figure 25-2 through Figure 25-4.

Each comparator has its own control register, CMxCON (Register 25-1), for enabling and configuring its operation. The output and event status of all three comparators is provided in the CMSTAT register (Register 25-2).

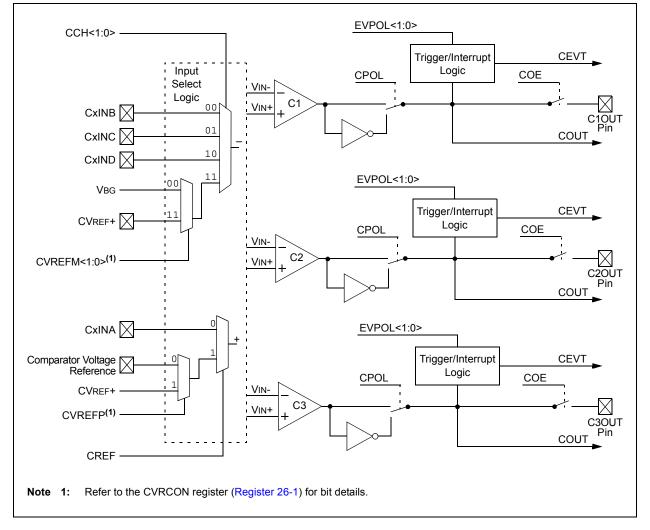



FIGURE 25-1: TRIPLE COMPARATOR MODULE BLOCK DIAGRAM



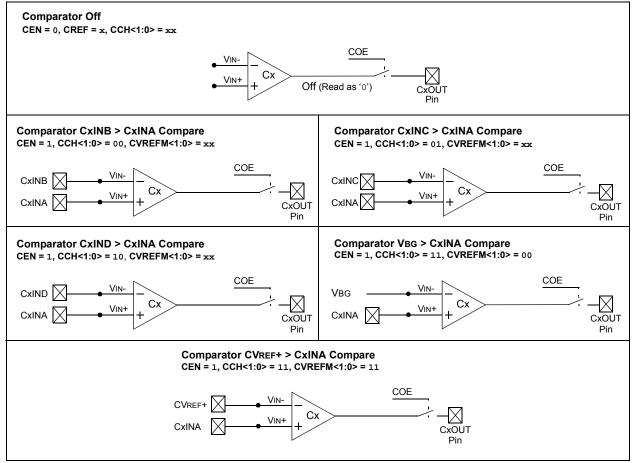
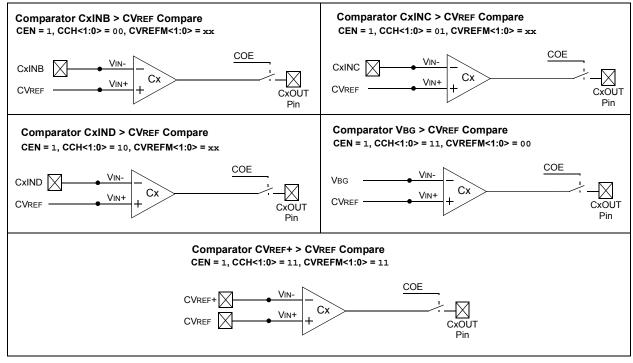
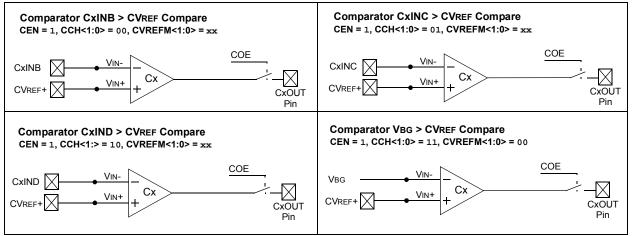





FIGURE 25-3: INDIVIDUAL COMPARATOR CONFIGURATIONS WHEN CREF = 1 AND CVREFP = 0







# REGISTER 25-1: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 THROUGH 3)

| R/W-0<br>CEN<br>bit 15<br>R/W-0<br>EVPOL1 | R/W-0<br>COE<br>R/W-0                                                                                                                       | R/W-0<br>CPOL                                                                                                             | U-0                                                                                                            | U-0                                | U-0            | R/W-0, HS<br>CEVT | R-0, HSC<br>COUT<br>bit 8 |  |  |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------|----------------|-------------------|---------------------------|--|--|
| bit 15<br>R/W-0<br>EVPOL1                 |                                                                                                                                             |                                                                                                                           | —                                                                                                              | _                                  | —              | CEVT              |                           |  |  |
| R/W-0<br>EVPOL1                           | R/W-0                                                                                                                                       | 11-0                                                                                                                      |                                                                                                                |                                    |                |                   | bit 8                     |  |  |
| EVPOL1                                    | R/W-0                                                                                                                                       | 11-0                                                                                                                      |                                                                                                                |                                    |                |                   |                           |  |  |
| EVPOL1                                    | R/W-0                                                                                                                                       | 11-0                                                                                                                      |                                                                                                                |                                    |                |                   |                           |  |  |
| -                                         |                                                                                                                                             | 0-0                                                                                                                       | R/W-0                                                                                                          | U-0                                | U-0            | R/W-0             | R/W-0                     |  |  |
|                                           | EVPOL0                                                                                                                                      |                                                                                                                           | CREF                                                                                                           |                                    | —              | CCH1              | CCH0                      |  |  |
| bit 7                                     |                                                                                                                                             |                                                                                                                           |                                                                                                                |                                    |                |                   | bit 0                     |  |  |
|                                           |                                                                                                                                             |                                                                                                                           |                                                                                                                |                                    |                |                   |                           |  |  |
| Legend:                                   |                                                                                                                                             | HS = Hardware                                                                                                             | e Settable bit                                                                                                 | HSC = Hardv                        | vare Settable  | /Clearable bit    |                           |  |  |
| R = Readabl                               | e bit                                                                                                                                       | W = Writable b                                                                                                            | oit                                                                                                            | U = Unimpler                       | nented bit, re | ad as '0'         |                           |  |  |
| -n = Value at                             | POR                                                                                                                                         | '1' = Bit is set                                                                                                          |                                                                                                                | '0' = Bit is cle                   | ared           | x = Bit is unkr   | nown                      |  |  |
| bit 15<br>bit 14                          | 1 = Compara<br>0 = Compara<br><b>COE:</b> Compa<br>1 = Compara                                                                              | arator Enable bit<br>ator is enabled<br>ator is disabled<br>arator Output En<br>ator output is pre<br>ator output is inte | able bit<br>esent on the C>                                                                                    | xOUT pin                           |                |                   |                           |  |  |
| bit 13                                    | •                                                                                                                                           | parator Output P                                                                                                          |                                                                                                                | pit                                |                |                   |                           |  |  |
|                                           | 1 = Compara                                                                                                                                 | ator output is inv<br>ator output is not                                                                                  | erted                                                                                                          |                                    |                |                   |                           |  |  |
| bit 12-10                                 | Unimplemer                                                                                                                                  | nted: Read as '0                                                                                                          | ,                                                                                                              |                                    |                |                   |                           |  |  |
| bit 9                                     | CEVT: Comparator Event bit                                                                                                                  |                                                                                                                           |                                                                                                                |                                    |                |                   |                           |  |  |
|                                           | are disal                                                                                                                                   | ator event that is<br>bled until the bit<br>ator event has n                                                              | is cleared                                                                                                     | POL<1:0> has o                     | occurred; sub  | sequent triggers  | and interrupts            |  |  |
| bit 8                                     | COUT: Comp                                                                                                                                  | parator Output bi                                                                                                         | t                                                                                                              |                                    |                |                   |                           |  |  |
|                                           | $\frac{\text{When CPOL}}{1 = \text{VIN} + > \text{V}}$ $0 = \text{VIN} + < \text{V}$ $\frac{\text{When CPOL}}{1 = \text{VIN} + < \text{V}}$ | /IN-<br>/IN-<br>= 1:                                                                                                      |                                                                                                                |                                    |                |                   |                           |  |  |
|                                           | 1 = VIN+ < V<br>0 = VIN+ > V                                                                                                                |                                                                                                                           |                                                                                                                |                                    |                |                   |                           |  |  |
| bit 7-6                                   | EVPOL<1:0><br>11 = Trigger/<br>10 = Trigger/<br>If CPOL<br>High-to<br>If CPOL<br>Low-to-                                                    | : Trigger/Event/                                                                                                          | s generated on<br>s generated on<br><u>ed polarity):</u><br>hly.<br><u>plarity):</u><br>nly.<br>s generated on | any change of<br>transition of the | e comparator   |                   | CEVT = 0)                 |  |  |
|                                           | If CPOL<br>Low-to-<br>If CPOL                                                                                                               | <u>= = 0 (non-invert</u><br>high transition o<br><u>= = 1 (inverted p</u><br>-low transition or                           | nly.<br>olarity):                                                                                              |                                    |                |                   |                           |  |  |
|                                           | If CPOL<br>Low-to-<br>If CPOL<br>High-to                                                                                                    | high transition o<br>_ = 1 (inverted p                                                                                    | nly.<br><u>olarity):</u><br>nly.                                                                               | sabled                             |                |                   |                           |  |  |

### REGISTER 25-1: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 THROUGH 3) (CONTINUED)

- bit 4 **CREF:** Comparator Reference Select bits (non-inverting input)
  - 1 = Non-inverting input connects to the internal CVREF voltage
  - 0 = Non-inverting input connects to the CxINA pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Channel Select bits
  - 11 = Inverting input of the comparator connects to the internal selectable reference voltage specified by the CVREFM<1:0> bits in the CVRCON register
  - 10 = Inverting input of the comparator connects to the CxIND pin
  - 01 = Inverting input of the comparator connects to the CxINC pin
  - 00 = Inverting input of the comparator connects to the CxINB pin

### REGISTER 25-2: CMSTAT: COMPARATOR MODULE STATUS REGISTER

| R/W-0  | U-0 | U-0 | U-0 | U-0 | R-0, HSC | R-0, HSC | R-0, HSC |
|--------|-----|-----|-----|-----|----------|----------|----------|
| CMIDL  | —   | _   | —   | —   | C3EVT    | C2EVT    | C1EVT    |
| bit 15 |     |     |     |     |          |          | bit 8    |

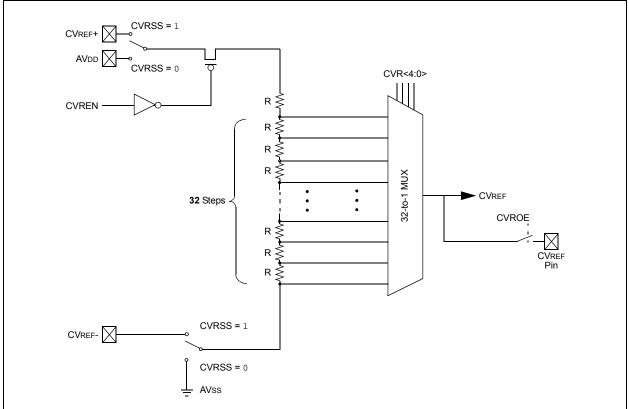
| U-0   | U-0 | U-0 | U-0 | U-0 | R-0, HSC | R-0, HSC | R-0, HSC |
|-------|-----|-----|-----|-----|----------|----------|----------|
| —     | —   |     | —   | —   | C3OUT    | C2OUT    | C1OUT    |
| bit 7 |     |     |     |     |          |          | bit 0    |

| Legend:           | HSC = Hardware Settable/Clearable bit |                             |                    |  |  |
|-------------------|---------------------------------------|-----------------------------|--------------------|--|--|
| R = Readable bit  | W = Writable bit                      | U = Unimplemented bit, read | d as '0'           |  |  |
| -n = Value at POR | '1' = Bit is set                      | '0' = Bit is cleared        | x = Bit is unknown |  |  |

| bit 15    | CMIDL: Comparator Stop in Idle Mode bit                                                                                                                                 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | <ul> <li>1 = Discontinues operation of all comparators when device enters Idle mode</li> <li>0 = Continues operation of all enabled comparators in Idle mode</li> </ul> |
| bit 14-11 | Unimplemented: Read as '0'                                                                                                                                              |
| bit 10    | C3EVT: Comparator 3 Event Status bit (read-only)                                                                                                                        |
|           | Shows the current event status of Comparator 3 (CM3CON<9>).                                                                                                             |
| bit 9     | C2EVT: Comparator 2 Event Status bit (read-only)                                                                                                                        |
|           | Shows the current event status of Comparator 2 (CM2CON<9>).                                                                                                             |
| bit 8     | C1EVT: Comparator 1 Event Status bit (read-only)                                                                                                                        |
|           | Shows the current event status of Comparator 1 (CM1CON<9>).                                                                                                             |
| bit 7-3   | Unimplemented: Read as '0'                                                                                                                                              |
| bit 2     | C3OUT: Comparator 3 Output Status bit (read-only)                                                                                                                       |
|           | Shows the current output of Comparator 3 (CM3CON<8>).                                                                                                                   |
| bit 1     | C2OUT: Comparator 2 Output Status bit (read-only)                                                                                                                       |
|           | Shows the current output of Comparator 2 (CM2CON<8>).                                                                                                                   |
| bit 0     | C10UT: Comparator 1 Output Status bit (read-only)                                                                                                                       |
|           | Shows the current output of Comparator 1 (CM1CON<8>).                                                                                                                   |

NOTES:

# 26.0 COMPARATOR VOLTAGE REFERENCE


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "dsPIC33/PIC24 Family Reference Manual", "Dual Comparator Module" (DS39710), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

# 26.1 Configuring the Comparator Voltage Reference

The voltage reference module is controlled through the CVRCON register (Register 26-1). The comparator voltage reference provides two ranges of output voltage, each with 16 distinct levels. The primary difference between the ranges is the size of the steps selected by the CVREF Value Selection bits (CVR<4:0>), with one range offering finer resolution.

The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<5>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.



### FIGURE 26-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

|               | 11.0                                                                                                                                                                                                  | 11.0             | 11.0            | 11.0                   |                  |                 |         |  |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|------------------------|------------------|-----------------|---------|--|--|--|
| U-0           | U-0                                                                                                                                                                                                   | U-0              | U-0             | U-0                    | R/W-0            | R/W-0           | R/W-0   |  |  |  |
|               | _                                                                                                                                                                                                     | —                |                 | —                      | CVREFP           | CVREFM1         | CVREFM0 |  |  |  |
| bit 15        |                                                                                                                                                                                                       |                  |                 |                        |                  |                 | bit 8   |  |  |  |
| R/W-0         | R/W-0                                                                                                                                                                                                 | R/W-0            | R/W-0           | R/W-0                  | R/W-0            | R/W-0           | R/W-0   |  |  |  |
| CVREN         | CVROE                                                                                                                                                                                                 | CVRSS            | CVR4            | CVR3                   | CVR2             | CVR1            | CVR0    |  |  |  |
| bit 7         |                                                                                                                                                                                                       | I                |                 |                        |                  |                 | bit 0   |  |  |  |
|               |                                                                                                                                                                                                       |                  |                 |                        |                  |                 |         |  |  |  |
| Legend:       |                                                                                                                                                                                                       |                  |                 |                        |                  |                 |         |  |  |  |
| R = Readabl   | le bit                                                                                                                                                                                                | W = Writable b   | bit             | U = Unimplen           | nented bit, read | d as '0'        |         |  |  |  |
| -n = Value at | POR                                                                                                                                                                                                   | '1' = Bit is set |                 | '0' = Bit is clea      | ared             | x = Bit is unkr | nown    |  |  |  |
|               |                                                                                                                                                                                                       |                  |                 |                        |                  |                 |         |  |  |  |
| bit 15-11     | Unimplemen                                                                                                                                                                                            | ted: Read as '0  | ,               |                        |                  |                 |         |  |  |  |
| bit 10        | CVREFP: Comparator Voltage Reference Select bit (valid only when CREF is '1')                                                                                                                         |                  |                 |                        |                  |                 |         |  |  |  |
|               | <ul> <li>1 = CVREF+ is used as a reference voltage to the comparators</li> <li>0 = The CVR&lt;4:0&gt; bits (5-bit DAC) within this module provide the reference voltage to the comparators</li> </ul> |                  |                 |                        |                  |                 |         |  |  |  |
|               |                                                                                                                                                                                                       | -                | -               | -                      |                  | -               | -       |  |  |  |
| bit 9-8       | <b>CVREFM&lt;1:0&gt;:</b> Comparator Band Gap Reference Source Select bits (valid only when CCH<1:0> = 11)                                                                                            |                  |                 |                        |                  |                 |         |  |  |  |
|               | 00 = Band gap voltage is provided as an input to the comparators<br>01 = Reserved                                                                                                                     |                  |                 |                        |                  |                 |         |  |  |  |
|               | 10 = Reserved                                                                                                                                                                                         |                  |                 |                        |                  |                 |         |  |  |  |
|               | 11 = CVREF+                                                                                                                                                                                           | is provided as a | an input to the | e comparators          |                  |                 |         |  |  |  |
| bit 7         | CVREN: Comparator Voltage Reference Enable bit                                                                                                                                                        |                  |                 |                        |                  |                 |         |  |  |  |
|               | 1 = CVREF circuit is powered on                                                                                                                                                                       |                  |                 |                        |                  |                 |         |  |  |  |
|               | 0 = CVREF circuit is powered down                                                                                                                                                                     |                  |                 |                        |                  |                 |         |  |  |  |
| bit 6         | CVROE: Comparator VREF Output Enable bit                                                                                                                                                              |                  |                 |                        |                  |                 |         |  |  |  |
|               | <ol> <li>CVREF voltage level is output on the CVREF pin</li> <li>CVREF voltage level is disconnected from the CVREF pin</li> </ol>                                                                    |                  |                 |                        |                  |                 |         |  |  |  |
| bit 5         |                                                                                                                                                                                                       | nparator VREF S  |                 |                        |                  |                 |         |  |  |  |
| bit 5         |                                                                                                                                                                                                       | •                |                 |                        | VREE-            |                 |         |  |  |  |
|               | 1 = Comparator reference source, CVRSRC = CVREF+ – CVREF-<br>0 = Comparator reference source, CVRSRC = AVDD – AVSS                                                                                    |                  |                 |                        |                  |                 |         |  |  |  |
| bit 4-0       | <b>CVR&lt;4:0&gt;:</b> C                                                                                                                                                                              | comparator VREI  | Value Selec     | tion bits ( $0 \le CV$ | /R<4:0> ≤ 31)    |                 |         |  |  |  |
|               | When CVRSS                                                                                                                                                                                            |                  |                 |                        |                  |                 |         |  |  |  |
|               | •                                                                                                                                                                                                     | REF-) + (CVR<4   | :0>/32) • (CV   | REF+ – CVREF-)         | 1                |                 |         |  |  |  |
|               | When CVRSS                                                                                                                                                                                            |                  | (22) - (A)/pp   |                        |                  |                 |         |  |  |  |
|               | OVREF = (AVS                                                                                                                                                                                          | ss) + (CVR<4:0   | ≈13Z) ● (AVDD   | - AVSS)                |                  |                 |         |  |  |  |
|               |                                                                                                                                                                                                       |                  |                 |                        |                  |                 |         |  |  |  |

## REGISTER 26-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

# 27.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Charge Time Measurement Unit, refer to the "dsPIC33/PIC24 Family Reference Manual", "Charge Time Measurement Unit (CTMU) and CTMU Operation with Threshold Detect" (DS30009743), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.

The Charge Time Measurement Unit (CTMU) is a flexible analog module that provides charge measurement, accurate differential time measurement between pulse sources and asynchronous pulse generation. Its key features include:

- Thirteen External Edge Input Trigger Sources
- Polarity Control for Each Edge Source
- Control of Edge Sequence
- Control of Response to Edge Levels or Edge
   Transitions
- Time Measurement Resolution of One Nanosecond
- Accurate Current Source Suitable for Capacitive Measurement

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock. The CTMU module is ideal for interfacing with capacitive-based touch sensors.

The CTMU is controlled through three registers: CTMUCON1L, CTMUCON1H and CTMUCON2L. CTMUCON1L enables the module, controls the mode of operation of the CTMU, controls edge sequencing, selects the current range of the current source and trims the current. CTMUCON1H controls edge source selection and edge source polarity selection. The CTMUCON2L register selects the current discharge source.

# 27.1 Measuring Capacitance

The CTMU module measures capacitance by generating an output pulse, with a width equal to the time between edge events, on two separate input channels. The pulse edge events to both input channels can be selected from four sources: two internal peripheral modules (OC1 and Timer1) and up to 13 external pins (CTED1 through CTED13). This pulse is used with the module's precision current source to calculate capacitance according to the relationship:

### EQUATION 27-1:

$$I = C \bullet \frac{dV}{dT}$$

For capacitance measurements, the A/D Converter samples an external Capacitor (CAPP) on one of its input channels, after the CTMU output's pulse. A Precision Resistor (RPR) provides current source calibration on a second A/D channel. After the pulse ends, the converter determines the voltage on the capacitor. The actual calculation of capacitance is performed in software by the application.

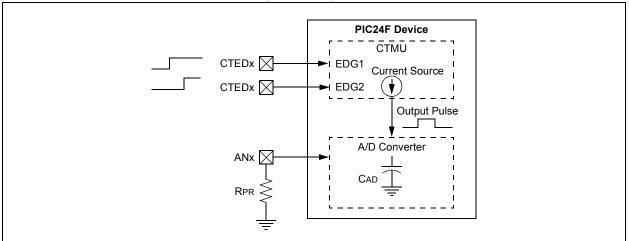
Figure 27-1 illustrates the external connections used for capacitance measurements, and how the CTMU and A/D modules are related in this application. This example also shows the edge events coming from Timer1, but other configurations using external edge sources are possible. A detailed discussion on measuring capacitance and time with the CTMU module is provided in the *"dsPIC33/PIC24 Family Reference Manual"*, **"Charge Time Measurement Unit (CTMU) and CTMU Operation with Threshold Detect"** (DS30009743).

# FIGURE 27-1: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR CAPACITANCE MEASUREMENT



# 27.2 Measuring Time/Routing Current Source to A/D Input Pin

Time measurements on the pulse width can be similarly performed using the A/D module's Internal Capacitor (CAD) and a precision resistor for current calibration. Figure 27-2 displays the external connections used for time measurements, and how the CTMU and A/D modules are related in this application. This example also shows both edge events coming from the external CTEDx pins, but other configurations using internal edge sources are possible.


This mode is enabled by clearing the TGEN bit (CTMUCON1L<12>). The current source is tied to the input of the A/D after the sampling switch. Therefore, the A/D bit, SAMP, must be set to '1' in order for the current to be routed through the channel selection MUX to the desired pin.

# 27.3 Pulse Generation and Delay

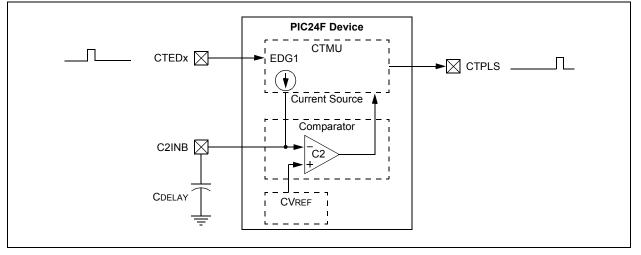

The CTMU module can also generate an output pulse with edges that are not synchronous with the device's system clock. More specifically, it can generate a pulse with a programmable delay from an edge event input to the module. When the module is configured for pulse generation delay by setting the TGEN bit (CTMUCON1<12>), the internal current source is connected to the B input of Comparator 2. A Capacitor (CDELAY) is connected to the Comparator 2 pin, C2INB, and the Comparator Voltage Reference, CVREF, is connected to C2INA. CVREF is then configured for a specific trip point. The module begins to charge CDELAY when an edge event is detected. When CDELAY charges above the CVREF trip point, a pulse is output on CTPLS. The length of the pulse delay is determined by the value of CDELAY and the CVREF trip point.

Figure 27-3 illustrates the external connections for pulse generation, as well as the relationship of the different analog modules required. While CTED1 is shown as the input pulse source, other options are available. A detailed discussion on pulse generation with the CTMU module is provided in the "dsPIC33/ PIC24 Family Reference Manual".

### FIGURE 27-2: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR TIME MEASUREMENT (TGEN = 0)



### FIGURE 27-3: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR PULSE DELAY GENERATION (TGEN = 1)



# 27.4 Measuring Die Temperature

The CTMU can be configured to use the A/D to measure the die temperature using dedicated A/D Channel 24. Perform the following steps to measure the diode voltage:

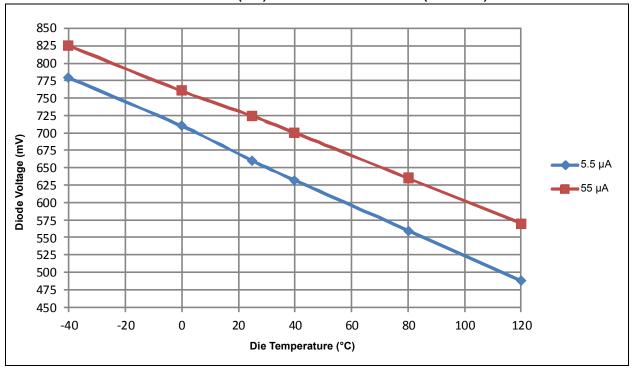
- The internal current source must be set for either 5.5  $\mu$ A (IRNG<1:0> = 0x2) or 55  $\mu$ A (IRNG<1:0> = 0x3).
- In order to route the current source to the diode, the EDG1STAT and EDG2STAT bits must be equal (either both '0' or both '1').
- The CTMREQ bit (AD1CON5<13>) must be set to '1'.
- The A/D Channel Select bits must be 24 (0x18) using a single-ended measurement.

The voltage of the diode will vary over temperature according to the graphs shown below (Figure 27-4). Note that the graphs are different, based on the magnitude of

the current source selected. The slopes are nearly linear over the range of -40°C to +100°C and the temperature can be calculated as follows:

### **EQUATION 27-2:**

For 5.5 µA Current Source:


$$Tdie = \frac{710 \ mV - V diode}{1.8}$$

where Vdiode is in mV, Tdie is in °C

For 55 µA Current Source:

$$Tdie = \frac{760 \ mV - V diode}{1.55}$$

where Vdiode is in mV, Tdie is in °C



## FIGURE 27-4: DIODE VOLTAGE (mV) vs. DIE TEMPERATURE (TYPICAL)

| R/W-0         | U-0                                                             | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R/W-0           | R/W-0            | R/W-0                                            | R/W-0           | R/W-0   |  |  |
|---------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|--------------------------------------------------|-----------------|---------|--|--|
| CTMUEN        | _                                                               | CTMUSIDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TGEN            | EDGEN            | EDGSEQEN                                         | IDISSEN         | CTTRIG  |  |  |
| bit 15        |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  | 1 1                                              |                 | bit     |  |  |
|               |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                                  |                 |         |  |  |
| R/W-0         | R/W-0                                                           | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R/W-0           | R/W-0            | R/W-0                                            | R/W-0           | R/W-0   |  |  |
| ITRIM5        | ITRIM4                                                          | ITRIM3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ITRIM2          | ITRIM1           | ITRIM0                                           | IRNG1           | IRNG0   |  |  |
| bit 7         |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                                  |                 | bit     |  |  |
| Legend:       |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                                  |                 |         |  |  |
| R = Readable  | e bit                                                           | W = Writable I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | oit             | U = Unimple      | mented bit, read                                 | as '0'          |         |  |  |
| -n = Value at | POR                                                             | '1' = Bit is set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | '0' = Bit is cle | eared                                            | x = Bit is unkn | own     |  |  |
| bit 15        | CTMUEN: C                                                       | TMU Enable bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                  |                                                  |                 |         |  |  |
|               | 1 = Module is<br>0 = Module is                                  | s enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                  |                                                  |                 |         |  |  |
| bit 14        |                                                                 | nted: Read as '0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )'              |                  |                                                  |                 |         |  |  |
| bit 13        | -                                                               | CTMU Stop in le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                                  |                 |         |  |  |
|               | 1 = Discontin                                                   | ues module operations module operations and the second sec | eration when c  |                  | dle mode                                         |                 |         |  |  |
| bit 12        | TGEN: Time Generation Enable bit                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                                  |                 |         |  |  |
|               |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  | nt source to the contract to the source to the s |                 | put pin |  |  |
| bit 11        | EDGEN: Edge Enable bit                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                                  |                 |         |  |  |
|               | 1 = Edges ar<br>0 = Edges ar                                    | e not blocked<br>e blocked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                  |                                                  |                 |         |  |  |
| bit 10        | EDGSEQEN: Edge Sequence Enable bit                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                                  |                 |         |  |  |
|               |                                                                 | vent must occur sequence is nee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | 2 event can oo   | cur                                              |                 |         |  |  |
| bit 9         | IDISSEN: Analog Current Source Control bit                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                                  |                 |         |  |  |
|               | •                                                               | urrent source ou<br>urrent source ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                  |                                                  |                 |         |  |  |
| bit 8         | CTTRIG: CTMU Trigger Control bit                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                                  |                 |         |  |  |
|               | 00                                                              | utput is enabled<br>utput is disabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                  |                                                  |                 |         |  |  |
| bit 7-2       | ITRIM<5:0>: Current Source Trim bits                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                                  |                 |         |  |  |
|               | 011111 = Maximum positive change from nominal current<br>011110 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                                  |                 |         |  |  |
|               | •                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                                  |                 |         |  |  |
|               | •                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                                  |                 |         |  |  |
|               | 000000 <b>= No</b>                                              | inimum positive<br>ominal current o<br>inimum negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | utput specified | d by IRNG<1:0    | >                                                |                 |         |  |  |
|               |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                                  |                 |         |  |  |
|               | •                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                                  |                 |         |  |  |
|               | •<br>100010                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                                                  |                 |         |  |  |

## REGISTER 27-1: CTMUCON1L: CTMU CONTROL REGISTER 1 LOW

### REGISTER 27-1: CTMUCON1L: CTMU CONTROL REGISTER 1 LOW (CONTINUED)

bit 1-0 IRNG<1:0>: Current Source Range Select bits If IRNGH = 0: 11 = 55  $\mu$ A range 10 = 5.5  $\mu$ A range 01 = 550  $\mu$ A range 00 = 550  $\mu$ A range If IRNGH = 1: 11 = Reserved 10 = Reserved 01 = 2.2 mA range 00 = 550  $\mu$ A range

| EDG1MOD                           | R/W-0                                                                                                                                    | R/W-0                                                                                                | R/W-0                                           | R/W-0                                                                        | R/W-0             | R/W-0              | R/W-0    |  |  |  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------|-------------------|--------------------|----------|--|--|--|
|                                   | EDG1POL                                                                                                                                  | EDG1SEL3                                                                                             | EDG1SEL2                                        | EDG1SEL1                                                                     | EDG1SEL0          | EDG2STAT           | EDG1STAT |  |  |  |
| oit 15                            |                                                                                                                                          |                                                                                                      |                                                 |                                                                              |                   |                    | bit 8    |  |  |  |
| R/W-0                             | R/W-0                                                                                                                                    | R/W-0                                                                                                | R/W-0                                           | R/W-0                                                                        | R/W-0             | U-0                | R/W-0    |  |  |  |
| EDG2MOD                           | EDG2POL                                                                                                                                  | EDG2SEL3                                                                                             | EDG2SEL2                                        | EDG2SEL1                                                                     | EDG2SEL0          | _                  | IRNGH    |  |  |  |
| pit 7                             |                                                                                                                                          |                                                                                                      |                                                 | LDOLOLLI                                                                     |                   |                    | bit 0    |  |  |  |
| egend:                            |                                                                                                                                          |                                                                                                      |                                                 |                                                                              |                   |                    |          |  |  |  |
| R = Readable bit W = Writable bit |                                                                                                                                          | nit                                                                                                  | U = Unimplemented bit, read as '0'              |                                                                              |                   |                    |          |  |  |  |
|                                   |                                                                                                                                          |                                                                                                      |                                                 | -                                                                            |                   |                    |          |  |  |  |
| -n = Value at POR                 |                                                                                                                                          | i = Bit is set                                                                                       | '1' = Bit is set '0' = Bit is cleared           |                                                                              | ared              | x = Bit is unknown |          |  |  |  |
| bit 15                            | EDG1MOD: E                                                                                                                               | Edge 1 Edge-Se                                                                                       | ensitive Select                                 | bit                                                                          |                   |                    |          |  |  |  |
|                                   | 1 = Input is eq                                                                                                                          |                                                                                                      |                                                 |                                                                              |                   |                    |          |  |  |  |
| bit 14                            | <ul> <li>0 = Input is level-sensitive</li> <li>EDG1POL: Edge 1 Polarity Select bit</li> </ul>                                            |                                                                                                      |                                                 |                                                                              |                   |                    |          |  |  |  |
| 14                                | <ul> <li>1 = Edge 1 is programmed for a positive edge response</li> <li>0 = Edge 1 is programmed for a negative edge response</li> </ul> |                                                                                                      |                                                 |                                                                              |                   |                    |          |  |  |  |
| bit 13-10                         | EDG1SEL<3:0>: Edge 1 Source Select bits                                                                                                  |                                                                                                      |                                                 |                                                                              |                   |                    |          |  |  |  |
|                                   | 1111 = CMP C3OUT                                                                                                                         |                                                                                                      |                                                 |                                                                              |                   |                    |          |  |  |  |
|                                   | 1110 = CMP C2OUT                                                                                                                         |                                                                                                      |                                                 |                                                                              |                   |                    |          |  |  |  |
|                                   | 1101 = CMP C10UT                                                                                                                         |                                                                                                      |                                                 |                                                                              |                   |                    |          |  |  |  |
|                                   | 1100 = IC3 interrupt                                                                                                                     |                                                                                                      |                                                 |                                                                              |                   |                    |          |  |  |  |
|                                   | 1011 = IC2 interrupt<br>1010 = IC1 interrupt                                                                                             |                                                                                                      |                                                 |                                                                              |                   |                    |          |  |  |  |
|                                   | 1010 = CTED8 pin                                                                                                                         |                                                                                                      |                                                 |                                                                              |                   |                    |          |  |  |  |
|                                   | 1000 = CTED7 pin                                                                                                                         |                                                                                                      |                                                 |                                                                              |                   |                    |          |  |  |  |
|                                   | 0111 = CTED6 pin                                                                                                                         |                                                                                                      |                                                 |                                                                              |                   |                    |          |  |  |  |
|                                   | 0110 = CTED5 pin                                                                                                                         |                                                                                                      |                                                 |                                                                              |                   |                    |          |  |  |  |
|                                   | 0101 = CTED4 pin                                                                                                                         |                                                                                                      |                                                 |                                                                              |                   |                    |          |  |  |  |
|                                   | 0100 = CTED3 pin                                                                                                                         |                                                                                                      |                                                 |                                                                              |                   |                    |          |  |  |  |
|                                   | 0011 = CTED1 pin                                                                                                                         |                                                                                                      |                                                 |                                                                              |                   |                    |          |  |  |  |
|                                   | 0010 = CTED2 pin<br>0001 = OC1                                                                                                           |                                                                                                      |                                                 |                                                                              |                   |                    |          |  |  |  |
|                                   | 0000 = Timer                                                                                                                             | 1 match                                                                                              |                                                 |                                                                              |                   |                    |          |  |  |  |
| oit 9                             | EDG2STAT: Edge 2 Status bit                                                                                                              |                                                                                                      |                                                 |                                                                              |                   |                    |          |  |  |  |
|                                   | Indicates the status of Edge 2 and can be written to control current source.                                                             |                                                                                                      |                                                 |                                                                              |                   |                    |          |  |  |  |
|                                   | 1 = Edge 2 has occurred                                                                                                                  |                                                                                                      |                                                 |                                                                              |                   |                    |          |  |  |  |
|                                   | 0 = Edge 2 has not occurred                                                                                                              |                                                                                                      |                                                 |                                                                              |                   |                    |          |  |  |  |
|                                   | EDG1STAT: Edge 1 Status bit                                                                                                              |                                                                                                      |                                                 |                                                                              |                   |                    |          |  |  |  |
| oit 8                             | EDGISTAL                                                                                                                                 |                                                                                                      |                                                 | Indicates the status of Edge 1 and can be written to control current source. |                   |                    |          |  |  |  |
| vit 8                             | Indicates the                                                                                                                            | status of Edge                                                                                       |                                                 | vritten to contro                                                            | or current source | Э.                 |          |  |  |  |
| vit 8                             | Indicates the s<br>1 = Edge 1 ha                                                                                                         | status of Edge<br>as occurred                                                                        |                                                 | vritten to contro                                                            |                   | Э.                 |          |  |  |  |
|                                   | Indicates the s<br>1 = Edge 1 ha<br>0 = Edge 1 ha                                                                                        | status of Edge<br>as occurred<br>as not occurred                                                     | 1 and can be w                                  |                                                                              |                   | 9.                 |          |  |  |  |
| bit 8<br>bit 7                    | Indicates the s<br>1 = Edge 1 ha<br>0 = Edge 1 ha<br>EDG2MOD: E                                                                          | status of Edge<br>as occurred<br>as not occurred<br>Edge 2 Edge-Se                                   | 1 and can be w                                  |                                                                              | in current source | <del>2</del> .     |          |  |  |  |
|                                   | Indicates the s<br>1 = Edge 1 ha<br>0 = Edge 1 ha<br>EDG2MOD: E<br>1 = Input is ec                                                       | status of Edge<br>as occurred<br>as not occurred<br>Edge 2 Edge-Se<br>dge-sensitive                  | 1 and can be w                                  |                                                                              | in current source | 9.                 |          |  |  |  |
| bit 7                             | Indicates the s<br>1 = Edge 1 ha<br>0 = Edge 1 ha<br><b>EDG2MOD:</b> E<br>1 = Input is ec<br>0 = Input is le                             | status of Edge<br>as occurred<br>as not occurred<br>Edge 2 Edge-Se<br>dge-sensitive<br>vel-sensitive | 1 and can be w                                  |                                                                              | a current source  | e.                 |          |  |  |  |
|                                   | Indicates the s<br>1 = Edge 1 ha<br>0 = Edge 1 ha<br><b>EDG2MOD:</b> E<br>1 = Input is le<br><b>EDG2POL:</b> E                           | status of Edge<br>as occurred<br>as not occurred<br>Edge 2 Edge-Se<br>dge-sensitive                  | 1 and can be w<br>ensitive Select<br>Select bit | bit                                                                          | a current source  | <del>2</del> .     |          |  |  |  |

## REGISTER 27-2: CTMUCON1H: CTMU CONTROL REGISTER 1 HIGH

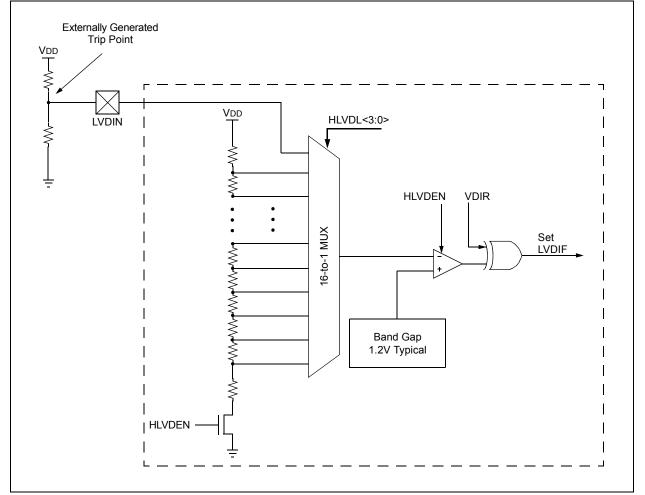
### REGISTER 27-2: CTMUCON1H: CTMU CONTROL REGISTER 1 HIGH (CONTINUED)

- bit 5-2 EDG2SEL<3:0>: Edge 2 Source Select bits
  - 1111 = CMP C3OUT 1110 = CMP C2OUT 1101 = CMP C1OUT 1100 = Peripheral clock 1011 = IC3 interrupt 1010 = IC2 interrupt 1001 = IC1 interrupt 1000 = CTED13 pin 0111 = CTED12 pin 0110 = CTED11 pin 0101 = CTED10 pin 0100 = CTED9 pin 0011 = CTED1 pin 0010 = CTED2 pin 0001 = OC1 0000 = Timer1 match
- bit 1 Unimplemented: Read as '0'
- bit 0 IRNGH: High-Current Range Select bit
  - 1 = Uses the higher current ranges (550  $\mu$ A-2.2 mA)
  - 0 = Uses the lower current ranges (550 nA-50 μA)
  - Current output is set by the IRNG<1:0> bits in the CTMUCON1L register.

| U-0                                                     | U-0                                                                  | U-0                                                                                | U-0             | U-0                                | U-0                | U-0           | U-0          |  |  |
|---------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------|------------------------------------|--------------------|---------------|--------------|--|--|
| _                                                       | —                                                                    | —                                                                                  | —               | —                                  | —                  | —             | —            |  |  |
| bit 15                                                  |                                                                      |                                                                                    |                 |                                    |                    |               | bit 8        |  |  |
|                                                         |                                                                      |                                                                                    |                 |                                    |                    |               |              |  |  |
| U-0                                                     | U-0                                                                  | U-0                                                                                | R/W-0           | U-0                                | R/W-0              | R/W-0         | R/W-0        |  |  |
| —                                                       | —                                                                    | —                                                                                  | IRSTEN          | —                                  | DSCHS2             | DSCHS1        | DSCHS0       |  |  |
| bit 7                                                   |                                                                      |                                                                                    |                 |                                    |                    |               | bit 0        |  |  |
|                                                         |                                                                      |                                                                                    |                 |                                    |                    |               |              |  |  |
| Legend:                                                 |                                                                      |                                                                                    |                 |                                    |                    |               |              |  |  |
| R = Readal                                              | ole bit                                                              | W = Writable                                                                       | bit             | U = Unimplemented bit, read as '0' |                    |               |              |  |  |
| -n = Value at POR '1' = Bit is set '0' = Bit is cleared |                                                                      |                                                                                    |                 |                                    | x = Bit is unknown |               |              |  |  |
|                                                         |                                                                      |                                                                                    |                 |                                    |                    |               |              |  |  |
| bit 15-5                                                | Unimpleme                                                            | nted: Read as '                                                                    | 0'              |                                    |                    |               |              |  |  |
| bit 4                                                   | IRSTEN: CT                                                           | MU Current So                                                                      | urce Reset Ena  | able bit                           |                    |               |              |  |  |
|                                                         |                                                                      | elected by DSC                                                                     |                 |                                    | rol bit will rese  | t CTMU edge o | letect logic |  |  |
| bit 3                                                   | Unimpleme                                                            | nted: Read as '                                                                    | 0'              |                                    |                    |               |              |  |  |
| bit 2-0                                                 | DSCHS<2:0                                                            | >: Discharge So                                                                    | ource Select Bi | its                                |                    |               |              |  |  |
|                                                         | 111 = CLC2<br>110 = CLC1<br>101 = Disab<br>100 = A/D e<br>011 = MCCI | 2 out<br>out<br>oled<br>end of conversio<br>P3 auxiliary outp<br>P2 auxiliary outp | n<br>out<br>out |                                    |                    |               |              |  |  |

000 = Disabled

NOTES:


## 28.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the High/Low-Voltage Detect, refer to the "dsPIC33/PIC24 Family Reference Manual", "High-Level Integration with Programmable High/Low-Voltage Detect (HLVD)" (DS39725), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM. The High/Low-Voltage Detect (HLVD) module is a programmable circuit that allows the user to specify both the device voltage trip point and the direction of change.

An interrupt flag is set if the device experiences an excursion past the trip point in the direction of change. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt. The LVDIF flag may be set during a POR or BOR event. The firmware should clear the flag before the application uses it for the first time, even if the interrupt was disabled.

The HLVD Control register (see Register 28-1) completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current.

#### FIGURE 28-1: HIGH/LOW-VOLTAGE DETECT (HLVD) MODULE BLOCK DIAGRAM



| R/W-0         | U-0                                                             | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U-0              | R/W-0            | HS, HC, R-0      | HS, HC, R-0       |                       |  |
|---------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|-------------------|-----------------------|--|
| HLVDEN        | —                                                               | LSIDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | VDIR             | BGVST            | IRVST             | LVDEVT <sup>(2)</sup> |  |
| bit 15        |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                  |                  |                   | bit 8                 |  |
|               |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                  |                  |                   |                       |  |
| U-0           | U-0                                                             | U-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U-0              | R/W-0            | R/W-0            | R/W-0             | R/W-0                 |  |
| _             | —                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | HLVDL3           | HLVDL2           | HLVDL1            | HLVDL0                |  |
| bit 7         |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                  |                  |                   | bit C                 |  |
| Legend:       |                                                                 | HS = Hardware                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e Settable bit   | HC = Hardwa      | re Clearable bit |                   |                       |  |
| R = Readabl   | e bit                                                           | W = Writable b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oit              | U = Unimpler     | nented bit, read | l as '0'          |                       |  |
| -n = Value at | POR                                                             | '1' = Bit is set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | '0' = Bit is cle |                  | x = Bit is unkr   | iown                  |  |
| bit 15        | HLVDEN: Hig<br>1 = HLVD is<br>0 = HLVD is                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Detect Power I   | Enable bit       |                  |                   |                       |  |
| bit 14        | Unimplemen                                                      | ted: Read as '0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,                |                  |                  |                   |                       |  |
| bit 13        |                                                                 | Stop in Idle Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                  |                  |                   |                       |  |
|               |                                                                 | ues module opera s module opera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                  | le mode          |                   |                       |  |
| bit 12        | Unimplemented: Read as '0'                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                  |                  |                   |                       |  |
| bit 11        | VDIR: Voltage                                                   | e Change Direct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tion Select bit  |                  |                  |                   |                       |  |
|               |                                                                 | curs when voltag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                  |                  |                   |                       |  |
| bit 10        |                                                                 | d Gap Voltage S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                |                  |                  |                   |                       |  |
|               |                                                                 | that the band gather that the band gather the |                  |                  |                  |                   |                       |  |
| bit 9         | IRVST: Intern                                                   | al Reference Vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ltage Stable F   | lag bit          |                  |                   |                       |  |
|               | specified<br>0 = Internal r                                     | eference voltage<br>voltage range<br>eference voltage<br>e specified volta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e is unstable; t | he High-Voltag   | e Detect logic w | vill not generate |                       |  |
| bit 8         |                                                                 | /-Voltage Event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                  |                  |                   |                       |  |
|               |                                                                 | t is true during o<br>t is not true duri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                  |                  |                   |                       |  |
| bit 7-4       | Unimplemen                                                      | ted: Read as '0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                |                  |                  |                   |                       |  |
| bit 3-0       |                                                                 | : High/Low-Volta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                |                  |                  |                   |                       |  |
|               | 1111 = Exter<br>1110 = Trip F<br>1101 = Trip F<br>1100 = Trip F | oint 2 <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | is used (input   | comes from th    | e LVDIN pin)     |                   |                       |  |
|               | •                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                  |                  |                   |                       |  |
|               | •                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                  |                  |                   |                       |  |
|               | 0100 <b>= Trip F</b><br>00xx <b>= Unus</b>                      | oint 11 <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                  |                  |                   |                       |  |

#### REGISTER 28-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

2: The LVDIF flag cannot be cleared by software unless LVDEVT = 0. The voltage must be monitored so that the HLVD condition (as set by VDIR and HLVDL<3:0>) is not asserted.

## 29.0 SPECIAL FEATURES

- Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the following sections of the *"dsPIC33/PIC24 Family Reference Manual"*, which are available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM.
  - "Watchdog Timer (WDT)" (DS39697)
  - "High-Level Device Integration" (DS39719)
  - "Programming and Diagnostics" (DS39716)

PIC24FJ256GA705 family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming<sup>™</sup>
- · In-Circuit Emulation

## 29.1 Configuration Bits

The Configuration bits are stored in the last page location of implemented program memory. These bits can be set or cleared to select various device configurations. There are two types of Configuration bits: system operation bits and code-protect bits. The system operation bits determine the power-on settings for system-level components, such as the oscillator and the Watchdog Timer. The code-protect bits prevent program memory from being read and written.

#### 29.1.1 CONSIDERATIONS FOR CONFIGURING PIC24FJ256GA705 FAMILY DEVICES

In PIC24FJ256GA705 family devices, the Configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored in the three words at the top of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 29-1. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration registers during device Resets.

Note: Configuration data is reloaded on all types of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Word for configuration data. This is to make certain that program code is not stored in this address when the code is compiled.

The upper byte of all Flash Configuration Words in program memory should always be '0000 0000'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '0's to these locations has no effect on device operation.

| Configuration<br>Register | PIC24FJ256GA70X | PIC24FJ128GA70X | PIC24FJ64GA70X |  |
|---------------------------|-----------------|-----------------|----------------|--|
| FSEC                      | 02AF00h         | 015F00h         | 00AF00h        |  |
| FBSLIM                    | 02AF10h         | 015F10h         | 00AF10h        |  |
| FSIGN                     | 02AF14h         | 015F14h         | 00AF14h        |  |
| FOSCSEL                   | 02AF18h         | 015F18h         | 00AF18h        |  |
| FOSC                      | 02AF1Ch         | 015F1Ch         | 00AF1Ch        |  |
| FWDT                      | 02AF20h         | 015F20h         | 00AF20h        |  |
| FPOR                      | 02AF24h         | 015F24h         | 00AF24h        |  |
| FICD                      | 02AF28h         | 015F28h         | 00AF28h        |  |
| FDEVOPT1                  | 02AF2Ch         | 015F2Ch         | 00AF2Ch        |  |

TABLE 29-1: CONFIGURATION WORD ADDRESSES

| U-1           | U-1                                                                                                                  | U-1                                  | U-1           | U-1                 | U-1              | U-1             | U-1    |  |  |  |  |
|---------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------|---------------------|------------------|-----------------|--------|--|--|--|--|
| _             | —                                                                                                                    | —                                    | _             | —                   | —                | —               | —      |  |  |  |  |
| bit 23        |                                                                                                                      |                                      |               |                     |                  |                 | bit 16 |  |  |  |  |
|               |                                                                                                                      |                                      |               |                     |                  |                 |        |  |  |  |  |
| R/PO-1        | U-1                                                                                                                  | U-1                                  | U-1           | R/PO-1              | R/PO-1           | R/PO-1          | R/PO-1 |  |  |  |  |
| AIVTDIS       | —                                                                                                                    | —                                    |               | CSS2                | CSS1             | CSS0            | CWRP   |  |  |  |  |
| bit 15        |                                                                                                                      |                                      |               |                     |                  |                 | bit 8  |  |  |  |  |
| R/PO-1        | R/PO-1                                                                                                               | R/PO-1                               | U-1           | R/PO-1              | R/PO-1           | R/PO-1          | R/PO-1 |  |  |  |  |
| GSS1          | GSS0                                                                                                                 | GWRP                                 |               | BSEN                | BSS1             | BSS0            | BWRP   |  |  |  |  |
| bit 7         | 0000                                                                                                                 | OWN                                  |               | DOLIN               | DOOT             | DOOU            | bit 0  |  |  |  |  |
|               |                                                                                                                      |                                      |               |                     |                  |                 |        |  |  |  |  |
| Legend:       |                                                                                                                      | PO = Program                         | Once bit      |                     |                  |                 |        |  |  |  |  |
| R = Readabl   | e bit                                                                                                                | W = Writable b                       | oit           | U = Unimplen        | nented bit, read | d as '0'        |        |  |  |  |  |
| -n = Value at | POR                                                                                                                  | '1' = Bit is set                     |               | '0' = Bit is clea   | ared             | x = Bit is unkr | iown   |  |  |  |  |
|               |                                                                                                                      |                                      |               |                     |                  |                 |        |  |  |  |  |
| bit 23-16     | •                                                                                                                    | ted: Read as '1                      |               |                     |                  |                 |        |  |  |  |  |
| bit 15        |                                                                                                                      | ernate Interrupt                     |               |                     |                  |                 |        |  |  |  |  |
|               |                                                                                                                      |                                      |               | N) bit is not avail |                  |                 |        |  |  |  |  |
| bit 14-12     | <ul> <li>0 = Enables AIVT; INTCON2&lt;8&gt; (AIVTEN) bit is available</li> <li>Unimplemented: Read as '1'</li> </ul> |                                      |               |                     |                  |                 |        |  |  |  |  |
| bit 11-9      | •                                                                                                                    |                                      |               | Code Protection     | l evel bits      |                 |        |  |  |  |  |
|               | CSS<2:0>: Configuration Segment (CS) Code Protection Level bits<br>111 = No protection (other than CWRP)             |                                      |               |                     |                  |                 |        |  |  |  |  |
|               | 110 = Standard security                                                                                              |                                      |               |                     |                  |                 |        |  |  |  |  |
|               | 10x = Enhance                                                                                                        |                                      |               |                     |                  |                 |        |  |  |  |  |
| bit 8         | 0xx = High se                                                                                                        |                                      | ant Program \ | Nrite Protection    | hit              |                 |        |  |  |  |  |
| DILO          |                                                                                                                      | ition Segment is                     |               |                     | DIL              |                 |        |  |  |  |  |
|               |                                                                                                                      | ition Segment is                     |               |                     |                  |                 |        |  |  |  |  |
| bit 7-6       | <b>GSS&lt;1:0&gt;:</b> G                                                                                             | eneral Segmer                        | t (GS) Code   | Protection Leve     | l bits           |                 |        |  |  |  |  |
|               |                                                                                                                      | 11 = No protection (other than GWRP) |               |                     |                  |                 |        |  |  |  |  |
|               | 10 = Standard security<br>0x = High security                                                                         |                                      |               |                     |                  |                 |        |  |  |  |  |
| bit 5         | Ũ                                                                                                                    | -                                    | ooram Write   | Protection hit      |                  |                 |        |  |  |  |  |
| Sit 0         | <b>GWRP:</b> General Segment Program Write Protection bit<br>1 = General Segment is not write-protected              |                                      |               |                     |                  |                 |        |  |  |  |  |
|               |                                                                                                                      | Segment is write                     |               | -                   |                  |                 |        |  |  |  |  |
| bit 4         | Unimplemen                                                                                                           | ted: Read as '1                      | ,             |                     |                  |                 |        |  |  |  |  |
| bit 3         | BSEN: Boot S                                                                                                         | Segment (BS) C                       | Control bit   |                     |                  |                 |        |  |  |  |  |
|               |                                                                                                                      | Segment is enal                      |               |                     |                  |                 |        |  |  |  |  |
| 1.1.0.4       | •                                                                                                                    | ment size is det                     | •             |                     |                  |                 |        |  |  |  |  |
| bit 2-1       |                                                                                                                      | oot Segment Co                       |               | n Level bits        |                  |                 |        |  |  |  |  |
|               | 11 = No prote                                                                                                        | ection (other tha<br>d security      | II DWRP)      |                     |                  |                 |        |  |  |  |  |
|               | 0x = High sec                                                                                                        | •                                    |               |                     |                  |                 |        |  |  |  |  |
| bit 0         | BWRP: Boot                                                                                                           | Segment Progr                        | am Write Pro  | tection bit         |                  |                 |        |  |  |  |  |
|               |                                                                                                                      | ment can be wr                       |               |                     |                  |                 |        |  |  |  |  |
|               |                                                                                                                      | ment is write-pr                     |               |                     |                  |                 |        |  |  |  |  |

x = Bit is unknown

| U-1          | U-1    | U-1          | U-1        | U-1          | U-1              | U-1      | U-1    |  |  |
|--------------|--------|--------------|------------|--------------|------------------|----------|--------|--|--|
| _            | —      | —            | —          | —            | —                | —        | —      |  |  |
| bit 23       |        |              |            |              |                  |          | bit 16 |  |  |
|              |        |              |            |              |                  |          |        |  |  |
| U-1          | U-1    | U-1          | R/PO-1     | R/PO-1       | R/PO-1           | R/PO-1   | R/PO-1 |  |  |
| —            | —      | —            |            |              | BSLIM<12:8>      |          |        |  |  |
| bit 15       |        |              |            |              |                  |          | bit 8  |  |  |
|              |        |              |            |              |                  |          |        |  |  |
| R/PO-1       | R/PO-1 | R/PO-1       | R/PO-1     | R/PO-1       | R/PO-1           | R/PO-1   | R/PO-1 |  |  |
|              |        |              | BSLIN      | /I<7:0>      |                  |          |        |  |  |
| bit 7        |        |              |            |              |                  |          | bit 0  |  |  |
|              |        |              |            |              |                  |          |        |  |  |
| Legend:      |        | PO = Prograr | n Once bit |              |                  |          |        |  |  |
| R = Readable | e bit  | W = Writable | bit        | U = Unimplen | nented bit, read | l as '0' |        |  |  |
|              |        |              |            |              |                  |          |        |  |  |

#### **REGISTER 29-2: FBSLIM CONFIGURATION REGISTER**

'1' = Bit is set

bit 23-13 Unimplemented: Read as '1'

-n = Value at POR

bit 12-0 **BSLIM<12:0>:** Active Boot Segment Code Flash Page Address Limit (Inverted) bits This bit field contains the last active Boot Segment Page + 1 (i.e., first page address of GS). The value is stored as an inverted page address, such that programming additional '0's can only increase the size of BS. If BSLIM<12:0> is set to all '1's (unprogrammed default), the active Boot Segment size is zero.

'0' = Bit is cleared

| U-1                           | U-1 | U-1              | U-1        | U-1                                | U-1  | U-1             | U-1    |  |
|-------------------------------|-----|------------------|------------|------------------------------------|------|-----------------|--------|--|
| —                             | —   | —                | —          | —                                  | —    | —               | —      |  |
| bit 23                        |     |                  |            |                                    |      |                 | bit 16 |  |
|                               |     |                  |            |                                    |      |                 |        |  |
| r-0                           | U-1 | U-1              | U-1        | U-1                                | U-1  | U-1             | U-1    |  |
| —                             | _   | —                | —          | —                                  |      | —               | —      |  |
| bit 15                        |     |                  |            |                                    |      |                 | bit 8  |  |
|                               |     |                  |            |                                    |      |                 |        |  |
| U-1                           | U-1 | U-1              | U-1        | U-1                                | U-1  | U-1             | U-1    |  |
| —                             | —   | —                | —          | —                                  |      | —               | —      |  |
| bit 7                         |     |                  |            |                                    |      |                 | bit 0  |  |
|                               |     |                  |            |                                    |      |                 |        |  |
| Legend: PO = Program Once bit |     |                  | n Once bit | r = Reserved bit                   |      |                 |        |  |
| R = Readable                  | bit | W = Writable bit |            | U = Unimplemented bit, read as '0' |      |                 |        |  |
| -n = Value at I               | POR | '1' = Bit is set |            | '0' = Bit is clea                  | ared | x = Bit is unkr | nown   |  |
|                               |     |                  |            |                                    |      |                 |        |  |

bit 23-16 Unimplemented: Read as '1'

bit 15 Reserved: Maintain as '0'

bit 14-0 Unimplemented: Read as '1'

| U-1    | U-1 | U-1 | U-1 | U-1 | U-1 | U-1 | U-1    |
|--------|-----|-----|-----|-----|-----|-----|--------|
| —      | —   | —   | —   | —   | —   | —   | —      |
| bit 23 | •   |     | •   | •   | •   | •   | bit 16 |
|        |     |     |     |     |     |     |        |
| U-1    | U-1 | U-1 | U-1 | U-1 | U-1 | r-0 | r-0    |
| —      | —   | —   | —   | —   | —   | —   | —      |
| bit 15 |     |     |     |     | •   | •   | bit 8  |
|        |     |     |     |     |     |     |        |

| R/PO-1 | R/PO-1   | R/PO-1   | R/PO-1   | R/PO-1   | R/PO-1 | R/PO-1 | R/PO-1 |
|--------|----------|----------|----------|----------|--------|--------|--------|
| IESO   | PLLMODE3 | PLLMODE2 | PLLMODE1 | PLLMODE0 | FNOSC2 | FNOSC1 | FNOSC0 |
| bit 7  |          |          |          |          |        |        | bit 0  |

| Legend:           | PO = Program Once bit | r = Reserved bit            |                    |
|-------------------|-----------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit      | U = Unimplemented bit, read | d as '0'           |
| -n = Value at POR | '1' = Bit is set      | '0' = Bit is cleared        | x = Bit is unknown |

| bit 23-10 | Unimplemented: Read as '1'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 9-8   | Reserved: Maintain as '0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| bit 7     | <ul> <li>IESO: Two-Speed Oscillator Start-up Enable bit</li> <li>1 = Starts up the device with FRC, then automatically switches to the user-selected oscillator when ready</li> <li>0 = Starts up the device with the user-selected oscillator source</li> </ul>                                                                                                                                                                                                                                                                                                                                                           |
| bit 6-3   | PLLMODE<3:0>: Frequency Multiplier Select bits<br>1111 = No PLL is used (PLLEN bit is unavailable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | <ul> <li>1110 = 8x PLL is selected</li> <li>1101 = 6x PLL is selected</li> <li>0110 = 4x PLL is selected (Input Frequency = 48 MHz)</li> <li>0110 = 96 MHz PLL is selected (Input Frequency = 32 MHz)</li> <li>0101 = 96 MHz PLL is selected (Input Frequency = 24 MHz)</li> <li>0100 = 96 MHz PLL is selected (Input Frequency = 20 MHz)</li> <li>0011 = 96 MHz PLL is selected (Input Frequency = 16 MHz)</li> <li>0010 = 96 MHz PLL is selected (Input Frequency = 12 MHz)</li> <li>0010 = 96 MHz PLL is selected (Input Frequency = 8 MHz)</li> <li>0001 = 96 MHz PLL is selected (Input Frequency = 4 MHz)</li> </ul> |
| bit 2-0   | FNOSC<2:0>: Oscillator Selection bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | <ul> <li>111 = Oscillator with Frequency Divider (OSCFDIV)</li> <li>110 = Reserved</li> <li>101 = Low-Power RC Oscillator (LPRC)</li> <li>100 = Secondary Oscillator (SOSC)</li> <li>011 = Primary Oscillator with PLL (XTPLL, HSPLL, ECPLL)</li> <li>010 = Primary Oscillator (XT, HS, EC)</li> <li>001 = Fast RC Oscillator with PLL (FRCPLL)</li> <li>000 = Fast RC Oscillator (FRC)</li> </ul>                                                                                                                                                                                                                         |

## REGISTER 29-5: FOSC CONFIGURATION REGISTER

| U-1    | U-1    | U-1     | U-1    | U-1     | U-1      | U-1     | U-1     |
|--------|--------|---------|--------|---------|----------|---------|---------|
| —      | —      |         | —      | —       | —        | —       | —       |
| bit 23 |        |         |        |         |          |         | bit 16  |
|        |        |         |        |         |          |         |         |
| U-1    | U-1    | U-1     | U-1    | U-1     | U-1      | U-1     | U-1     |
| —      | —      |         | —      | —       | —        | —       | —       |
| bit 15 |        |         |        |         |          |         | bit 8   |
|        |        |         |        |         |          |         |         |
| R/PO-1 | R/PO-1 | R/PO-1  | R/PO-1 | R/PO-1  | R/PO-1   | R/PO-1  | R/PO-1  |
| FCKSM1 | FCKSM0 | IOL1WAY | PLLSS  | SOSCSEL | OSCIOFCN | POSCMD1 | POSCMD0 |
| bit 7  |        |         |        |         |          |         | bit 0   |

| Legend:           | PO = Program Once bit |                        |                    |
|-------------------|-----------------------|------------------------|--------------------|
| R = Readable bit  | W = Writable bit      | U = Unimplemented bit, | read as '0'        |
| -n = Value at POR | '1' = Bit is set      | '0' = Bit is cleared   | x = Bit is unknown |

| bit 23-8 | Unimplemented: Read as '1'                                                                                                                                                                                                                                                                              |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 7-6  | FCKSM<1:0>: Clock Switching and Monitor Selection bits                                                                                                                                                                                                                                                  |
|          | <ul> <li>1x = Clock switching and the Fail-Safe Clock Monitor are disabled</li> <li>01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled</li> <li>00 = Clock switching and the Fail-Safe Clock Monitor are enabled</li> </ul>                                                           |
| bit 5    | IOL1WAY: Peripheral Pin Select Configuration bit                                                                                                                                                                                                                                                        |
|          | <ul> <li>1 = The IOLOCK bit can be set only once (with unlock sequence).</li> <li>0 = The IOLOCK bit can be set and cleared as needed (with unlock sequence)</li> </ul>                                                                                                                                 |
| bit 4    | PLLSS: PLL Secondary Selection Configuration bit                                                                                                                                                                                                                                                        |
|          | This Configuration bit only takes effect when the PLL is NOT being used by the system (i.e., not selected as part of the system clock source). Used to generate an independent clock out of REFO.<br>1 = PLL is fed by the Primary Oscillator<br>0 = PLL is fed by the on-chip Fast RC (FRC) Oscillator |
| bit 3    | SOSCSEL: SOSC Selection Configuration bit                                                                                                                                                                                                                                                               |
|          | 1 = Crystal (SOSCI/SOSCO) mode<br>0 = Digital (SOSCI) Externally Supplied Clock mode                                                                                                                                                                                                                    |
| bit 2    | OSCIOFCN: CLKO Enable Configuration bit                                                                                                                                                                                                                                                                 |
|          | <ul> <li>1 = CLKO output signal is active on the OSCO pin (when the Primary Oscillator is disabled or configured for EC mode)</li> <li>0 = CLKO output is disabled</li> </ul>                                                                                                                           |
| bit 1-0  | POSCMD<1:0>: Primary Oscillator Configuration bits                                                                                                                                                                                                                                                      |
|          | <ul> <li>11 = Primary Oscillator mode is disabled</li> <li>10 = HS Oscillator mode is selected (10 MHz-32 MHz)</li> <li>01 = XT Oscillator mode is selected (1.5 MHz-10 MHz)</li> <li>00 = External Clock mode is selected</li> </ul>                                                                   |

| REGISTER 29-6: F | WDT CONFIGURATION REGISTER |
|------------------|----------------------------|
|------------------|----------------------------|

| U-1    | U-1 | U-1 | U-1 | U-1 | U-1 | U-1 | U-1    |
|--------|-----|-----|-----|-----|-----|-----|--------|
| —      | —   | —   | —   | —   | —   | —   | —      |
| bit 23 |     |     |     |     |     |     | bit 16 |

| U-1    | R/PO-1  | R/PO-1  | U-1 | R/PO-1 | U-1 | R/PO-1  | R/PO-1  |
|--------|---------|---------|-----|--------|-----|---------|---------|
|        | WDTCLK1 | WDTCLK0 | —   | WDTCMX |     | WDTWIN1 | WDTWIN0 |
| bit 15 |         |         |     |        |     |         | bit 8   |

| R/PO-1 | R/PO-1  | R/PO-1  | R/PO-1 | R/PO-1 | R/PO-1 | R/PO-1 | R/PO-1 |
|--------|---------|---------|--------|--------|--------|--------|--------|
| WINDIS | FWDTEN1 | FWDTEN0 | FWPSA  | WDTPS3 | WDTPS2 | WDTPS1 | WDTPS0 |
| bit 7  |         |         |        |        |        |        | bit 0  |

| Legend:           | PO = Program Once bit |                             |                    |
|-------------------|-----------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit      | U = Unimplemented bit, read | d as '0'           |
| -n = Value at POR | '1' = Bit is set      | '0' = Bit is cleared        | x = Bit is unknown |

| bit 23-15 | Unimplemented: Read as '1'                                                                                                                                                                                                                                                                               |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 14-13 | WDTCLK<1:0>: Watchdog Timer Clock Select bits (when WDTCMX = 1)                                                                                                                                                                                                                                          |
|           | <ul> <li>11 = Always uses LPRC</li> <li>10 = Uses FRC when WINDIS = 0, system clock is not LPRC and device is not in Sleep; otherwise, uses LPRC</li> <li>01 = Always uses SOSC</li> <li>00 = Uses peripheral clock when system clock is not LPRC and device is not in Sleep; otherwise, uses</li> </ul> |
|           | LPRC                                                                                                                                                                                                                                                                                                     |
| bit 12    | Unimplemented: Read as '1'                                                                                                                                                                                                                                                                               |
| bit 11    | WDTCMX: WDT Clock MUX Control bit                                                                                                                                                                                                                                                                        |
|           | <ul> <li>1 = Enables WDT clock MUX, WDT clock is selected by WDTCLK&lt;1:0&gt;</li> <li>0 = WDT clock is LPRC</li> </ul>                                                                                                                                                                                 |
| bit 10    | Unimplemented: Read as '1'                                                                                                                                                                                                                                                                               |
| bit 9-8   | WDTWIN<1:0>: Watchdog Timer Window Width bits                                                                                                                                                                                                                                                            |
|           | 11 = WDT window is 25% of the WDT period                                                                                                                                                                                                                                                                 |
|           | 10 = WDT window is 37.5% of the WDT period<br>01 = WDT window is 50% of the WDT period                                                                                                                                                                                                                   |
|           | 00 = WDT window is 75% of the WDT period                                                                                                                                                                                                                                                                 |
| bit 7     | WINDIS: Windowed Watchdog Timer Disable bit                                                                                                                                                                                                                                                              |
|           | 1 = Windowed WDT is disabled                                                                                                                                                                                                                                                                             |
|           | 0 = Windowed WDT is enabled                                                                                                                                                                                                                                                                              |
| bit 6-5   | FWDTEN<1:0>: Watchdog Timer Enable bits                                                                                                                                                                                                                                                                  |
|           | 11 = WDT is enabled                                                                                                                                                                                                                                                                                      |
|           | <ul> <li>10 = WDT is disabled (control is placed on the SWDTEN bit)</li> <li>01 = WDT is enabled only while device is active and disabled in Sleep; SWDTEN bit is disabled</li> </ul>                                                                                                                    |
|           | 00 = WDT and SWDTEN are disabled                                                                                                                                                                                                                                                                         |
| bit 4     | FWPSA: Watchdog Timer Prescaler bit                                                                                                                                                                                                                                                                      |
|           | 1 = WDT prescaler ratio of 1:128                                                                                                                                                                                                                                                                         |
|           | 0 = WDT prescaler ratio of 1:32                                                                                                                                                                                                                                                                          |
|           |                                                                                                                                                                                                                                                                                                          |

#### REGISTER 29-6: FWDT CONFIGURATION REGISTER (CONTINUED)

- bit 3-0 WDTPS<3:0>: Watchdog Timer Postscale Select bits 1111 = 1:32,768 1110 = 1:16,384 1101 = 1:8,192 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:1,024 1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16
  - 0011 = 1:8 0010 = 1:4
  - 0010 = 1.40001 = 1.2
  - 0000 = 1:1

| U-1           | U-1                                                     | U-1              | U-1           | U-1                                     | U-1              | U-1      | U-1    |  |
|---------------|---------------------------------------------------------|------------------|---------------|-----------------------------------------|------------------|----------|--------|--|
|               | —                                                       | —                | —             | _                                       | -                | —        | —      |  |
| bit 23        |                                                         |                  |               |                                         |                  |          | bit 16 |  |
|               |                                                         |                  |               |                                         |                  |          |        |  |
| U-1           | U-1                                                     | U-1              | U-1           | U-1                                     | U-1              | U-1      | U-1    |  |
|               | —                                                       | _                | _             |                                         |                  | _        |        |  |
| bit 15        |                                                         |                  |               |                                         |                  |          | bit 8  |  |
|               |                                                         |                  |               |                                         |                  |          |        |  |
| U-1           | U-1                                                     | U-1              | U-1           | R/PO-1                                  | R/PO-1           | R/PO-1   | R/PO-1 |  |
| _             | —                                                       | —                | —             | DNVPEN                                  | LPCFG            | BOREN1   | BOREN0 |  |
| bit 7         |                                                         |                  |               |                                         |                  |          | bit 0  |  |
|               |                                                         |                  |               |                                         |                  |          |        |  |
| Legend:       |                                                         | PO = Progran     | n Once bit    |                                         |                  |          |        |  |
| R = Readable  | e bit                                                   | W = Writable     | bit           | U = Unimplem                            | nented bit, read | l as '0' |        |  |
| -n = Value at | POR                                                     | '1' = Bit is set |               | '0' = Bit is cleared x = Bit is unknown |                  |          |        |  |
|               |                                                         |                  |               |                                         |                  |          |        |  |
| bit 23-4      | Unimplement                                             | ted: Read as 'i  | L'            |                                         |                  |          |        |  |
| bit 3         | DNVPEN: Do                                              | wnside Voltage   | Protection En | able bit                                |                  |          |        |  |
|               | 1 = Downside protection is enabled when BOR is inactive |                  |               |                                         |                  |          |        |  |

0 = Downside protection is disabled when BOR is inactive

0 = Retention feature is available and controlled by RETEN during Sleep

11 = Brown-out Reset is enabled in hardware; SBOREN bit is disabled

01 = Brown-out Reset is controlled with the SBOREN bit setting00 = Brown-out Reset is disabled in hardware; SBOREN bit is disabled

10 = Brown-out Reset is enabled only while device is active and is disabled in Sleep; SBOREN bit is

**LPCFG:** Low-Power Regulator Control bit

BOREN<1:0>: Brown-out Reset Enable bits

1 = Retention feature is not available

disabled

bit 2

bit 1-0

#### **REGISTER 29-7: FPOR CONFIGURATION REGISTER**

| U-1               | U-1   | U-1              | U-1        | U-1                                | U-1  | U-1                | U-1    |  |
|-------------------|-------|------------------|------------|------------------------------------|------|--------------------|--------|--|
| —                 | _     | —                | —          | —                                  | —    | _                  | _      |  |
| bit 23            |       |                  |            |                                    |      |                    | bit 16 |  |
|                   |       |                  |            |                                    |      |                    |        |  |
| U-1               | U-1   | U-1              | U-1        | U-1                                | U-1  | U-1                | U-1    |  |
| —                 | —     | —                | —          | —                                  | —    | _                  | _      |  |
| bit 15            |       |                  |            |                                    |      |                    | bit 8  |  |
|                   |       |                  |            |                                    |      |                    |        |  |
| r-1               | U-1   | R/PO-1           | U-1        | U-1                                | U-1  | R/PO-1             | R/PO-1 |  |
| —                 | —     | JTAGEN           | —          | —                                  | —    | ICS1               | ICS0   |  |
| bit 7             |       |                  |            |                                    |      |                    | bit 0  |  |
|                   |       |                  |            |                                    |      |                    |        |  |
| Legend:           |       | PO = Progran     | n Once bit | r = Reserved                       | bit  |                    |        |  |
| R = Readable      | e bit | W = Writable     | bit        | U = Unimplemented bit, read as '0' |      |                    |        |  |
| -n = Value at POR |       | '1' = Bit is set |            | '0' = Bit is clea                  | ared | x = Bit is unknown |        |  |
|                   |       |                  |            |                                    |      |                    |        |  |

## **REGISTER 29-8: FICD CONFIGURATION REGISTER**

| bit 5 | JTAGEN: JTAG Port Enable bit    |  |
|-------|---------------------------------|--|
|       | 1 = JTAG port is enabled        |  |
|       | $\circ - ITAC$ part is disabled |  |

Unimplemented: Read as '1'

Unimplemented: Read as '1'

Reserved: Maintain as '1'

- 0 = JTAG port is disabled
- bit 4-2 Unimplemented: Read as '1'

bit 23-8

bit 7

bit 6

- bit 1-0 ICS<1:0>: ICD Communication Channel Select bits
  - 11 = Communicates on PGC1/PGD1
  - 10 = Communicates on PGC2/PGD2
  - 01 = Communicates on PGC3/PGD3
  - 00 = Reserved; do not use

| REGISTER 29-9: FDE | VOPT1 CONFIGURATION REGISTER |
|--------------------|------------------------------|
|--------------------|------------------------------|

| REGISTER     | (29-9: FDE)  | OPT1 CONF                                                                                                             | GURATION         | REGISTER                           |             |                  |              |  |
|--------------|--------------|-----------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------|-------------|------------------|--------------|--|
| U-1          | U-1          | U-1                                                                                                                   | U-1              | U-1                                | U-1         | U-1              | U-1          |  |
| —            | —            | —                                                                                                                     | —                | —                                  | —           | —                | —            |  |
| bit 23       |              |                                                                                                                       |                  |                                    |             |                  | bit 16       |  |
| U-1          | U-1          | U-1                                                                                                                   | U-1              | U-1                                | U-1         | U-1              | U-1          |  |
| _            |              | _                                                                                                                     | _                | _                                  | _           |                  | _            |  |
| bit 15       |              |                                                                                                                       |                  |                                    |             |                  | bit 8        |  |
| U-1          | U-1          | U-1                                                                                                                   | R/PO-1           | R/PO-1                             | R/PO-1      | R/PO-1           | U-1          |  |
| _            | _            | _                                                                                                                     | ALTI2C1          | SOSCHP                             | TMPRPIN     | ALTCMPI          |              |  |
| bit 7        |              |                                                                                                                       |                  | •                                  |             |                  | bit C        |  |
|              |              |                                                                                                                       |                  |                                    |             |                  |              |  |
| Legend:      |              | PO = Prograi                                                                                                          |                  |                                    |             |                  |              |  |
| R = Readat   |              | W = Writable bit                                                                                                      |                  | U = Unimplemented bit, read as '0' |             |                  |              |  |
| -n = Value a | at POR       | '1' = Bit is set                                                                                                      | t                | '0' = Bit is clea                  | ared        | x = Bit is unkno | own          |  |
| bit 23-5     | Unimplemer   | ted: Read as '                                                                                                        | 1'               |                                    |             |                  |              |  |
| bit 4        | ALTI2C1: Alt | ALTI2C1: Alternate I2C1 bit                                                                                           |                  |                                    |             |                  |              |  |
|              |              | 1 = SDA1 and SCL1 on RB9 and RB8<br>0 = ASDA1 and ASCL1 on RB5 and RB6                                                |                  |                                    |             |                  |              |  |
| bit 3        | SOSCHP: SO   | OSC High-Pow                                                                                                          | er Enable bit (v | alid only when                     | SOSCSEL = 1 | )                |              |  |
|              |              |                                                                                                                       |                  | ee Section 9.7.                    | 3 "Low-Powe | r SOSC Operati   | on" for more |  |
| bit 2        | TMPRPIN: T   | TMPRPIN: Tamper Pin Enable bit                                                                                        |                  |                                    |             |                  |              |  |
|              |              | 1 = $\overline{\text{TMPRN}}$ pin function is disabled (RB9)<br>0 = $\overline{\text{TMPRN}}$ pin function is enabled |                  |                                    |             |                  |              |  |
| bit 1        | ALTCMPI: A   | ternate Compa                                                                                                         | arator Input Ena | able bit                           |             |                  |              |  |
|              |              |                                                                                                                       |                  |                                    |             |                  |              |  |

- 1 = C1INC, C2INC and C3INC are on their standard pin locations 0 = C1INC, C2INC and C3INC are on RB9<sup>(1)</sup>
- bit 0 Unimplemented: Read as '1'
- **Note 1:** RB9 is used for multiple functions, but only one use case is allowable.

| Address | Name   |    |                     |    |    |    |    |   | В | it |   |   | _ |   |     |       |   |
|---------|--------|----|---------------------|----|----|----|----|---|---|----|---|---|---|---|-----|-------|---|
| Address | Name   | 15 | 14                  | 13 | 12 | 11 | 10 | 9 | 8 | 7  | 6 | 5 | 4 | 3 | 2   | 1     | 0 |
| FF0000h | DEVID  |    | FAMID<7:0> DEV<7:0> |    |    |    |    |   |   |    |   |   |   |   |     |       |   |
| FF0002h | DEVREV |    |                     |    |    |    | _  | _ |   |    |   |   |   |   | REV | <3:0> |   |

#### TABLE 29-2: PIC24FJ CORE DEVICE ID REGISTERS

#### TABLE 29-3: DEVICE ID BIT FIELD DESCRIPTIONS

| Bit Field  | Register | Description                                                                 |
|------------|----------|-----------------------------------------------------------------------------|
| FAMID<7:0> | DEVID    | Encodes the family ID of the device; FAMID = 0x75.                          |
| DEV<7:0>   | DEVID    | Encodes the individual ID of the device.                                    |
| REV<3:0>   | DEVREV   | Encodes the sequential<br>(numerical) revision<br>identifier of the device. |

#### TABLE 29-4: PIC24FJ256GA705 FAMILY DEVICE IDs

| Device          | DEVID |
|-----------------|-------|
| PIC24FJ64GA705  | 07    |
| PIC24FJ128GA705 | 0B    |
| PIC24FJ256GA705 | 0F    |
| PIC24FJ64GA704  | 05    |
| PIC24FJ128GA704 | 09    |
| PIC24FJ256GA704 | 0D    |
| PIC24FJ64GA702  | 06    |
| PIC24FJ128GA702 | 0A    |
| PIC24FJ256GA702 | 0E    |

## 29.2 Unique Device Identifier (UDID)

All PIC24FJ256GA705 family devices are individually encoded during final manufacturing with a Unique Device Identifier, or UDID. The UDID cannot be erased by a bulk erase command or any other user-accessible means. This feature allows for manufacturing traceability of Microchip Technology devices in applications where this is a requirement. It may also be used by the application manufacturer for any number of things that may require unique identification, such as:

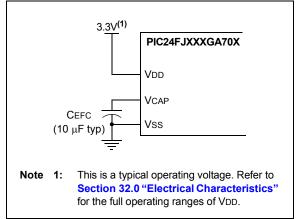
- · Tracking the device
- · Unique serial number
- Unique security key

The UDID comprises five 24-bit program words. When taken together, these fields form a unique 120-bit identifier.

The UDID is stored in five read-only locations, located between 0x801600 and 0x801608 in the device Configuration space. Table 29-5 lists the addresses of the identifier words and shows their contents.

| UDID  | Address  | Description |
|-------|----------|-------------|
| UDID1 | 0x801600 | UDID Word 1 |
| UDID2 | 0x801602 | UDID Word 2 |
| UDID3 | 0x801604 | UDID Word 3 |
| UDID4 | 0x801606 | UDID Word 4 |
| UDID5 | 0x801608 | UDID Word 5 |

TABLE 29-5: UDID ADDRESSES


## 29.3 On-Chip Voltage Regulator

All PIC24FJ256GA705 family devices power their core digital logic at a nominal 1.8V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the PIC24FJ256GA705 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

This regulator is always enabled. It provides a constant voltage (1.8V nominal) to the digital core logic, from a VDD of about 2.1V, all the way up to the device's VDDMAX. It does not have the capability to boost VDD levels. In order to prevent "brown-out" conditions when the voltage drops too low for the regulator, the Brown-out Reset occurs. Then, the regulator output follows VDD with a typical voltage drop of 300 mV.

A low-ESR capacitor (such as ceramic) must be connected to the VCAP pin (Figure 29-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor (CEFC) is provided in Section 32.1 "DC Characteristics".

# FIGURE 29-1: CONNECTIONS FOR THE ON-CHIP REGULATOR



#### 29.3.1 ON-CHIP REGULATOR AND POR

The voltage regulator takes approximately 10  $\mu$ s for it to generate output. During this time, designated as TVREG, code execution is disabled. TVREG is applied every time the device resumes operation after any power-down, including Sleep mode. TVREG is determined by the status of the VREGS bit (RCON<8>) and the WDTWIN<1:0> Configuration bits (FWDT<9:8>). Refer to Section 32.0 "Electrical Characteristics" for more information on TVREG.

| Note: | For more information, see <b>Section 32.0</b><br>"Electrical Characteristics". The informa- |
|-------|---------------------------------------------------------------------------------------------|
|       | tion in this data sheet supersedes the information in the FRM.                              |

#### 29.3.2 VOLTAGE REGULATOR STANDBY MODE

The on-chip regulator always consumes a small incremental amount of current over IDD/IPD, including when the device is in Sleep mode, even though the core digital logic does not require power. To provide additional savings in applications where power resources are critical, the regulator can be made to enter Standby mode, on its own, whenever the device goes into Sleep mode. This feature is controlled by the VREGS bit (RCON<8>). Clearing the VREGS bit enables the Standby mode. When waking up from Standby mode, the regulator needs to wait for TVREG to expire before wake-up.

#### 29.3.3 LOW-VOLTAGE RETENTION REGULATOR

When in Sleep mode, PIC24FJ256GA705 family devices may use a separate low-power, low-voltage retention regulator to power critical circuits. This regulator, which operates at 1.2V nominal, maintains power to data RAM and the RTCC while all other core digital logic is powered down. The low-voltage retention regulator is described in more detail in Section 10.2.4 "Low-Voltage Retention Regulator".

## 29.4 Watchdog Timer (WDT)

For PIC24FJ256GA705 family devices, the WDT is driven by the LPRC Oscillator, the Secondary Oscillator (SOSC) or the system timer. When the device is in Sleep mode, the LPRC Oscillator will be used. When the WDT is enabled, the clock source is also enabled.

The nominal WDT clock source from LPRC is 31 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the FWPSA Configuration bit. With a 31 kHz input, the prescaler yields a nominal WDT Time-out (TWDT) period of 1 ms in 5-bit mode or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPS<3:0> Configuration bits (FWDT<3:0>), which allows the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler time-out periods, ranges from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

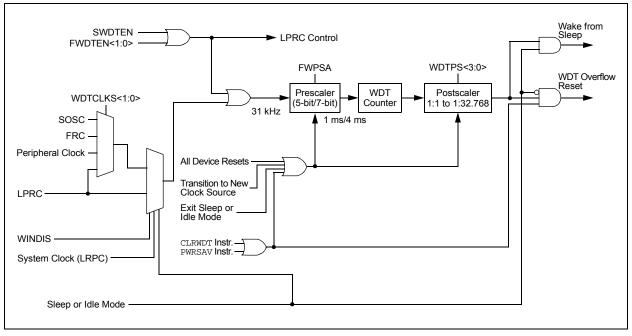
- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE (RCON<3:2>) bits will need to be cleared in software after the device wakes up. The WDT Flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

| Note: | The CLRWDT and PWRSAV instructions        |
|-------|-------------------------------------------|
|       | clear the prescaler and postscaler counts |
|       | when executed.                            |

#### 29.4.1 WINDOWED OPERATION

The Watchdog Timer has an optional Fixed Window mode of operation. In this Windowed mode, CLRWDT instructions can only reset the WDT during the last 1/4 of the programmed WDT period. A CLRWDT instruction executed before that window causes a WDT Reset, similar to a WDT time-out.


Windowed WDT mode is enabled by programming the WINDIS Configuration bit (FWDT<7>) to '0'.

#### 29.4.2 CONTROL REGISTER

The WDT is enabled or disabled by the FWDTEN<1:0> Configuration bits (FWDT<6:5>). When the Configuration bits, FWDTEN<1:0> = 11, the WDT is always enabled.

The WDT can be optionally controlled in software when the Configuration bits, FWDTEN<1:0> = 10. When FWDTEN<1:0> = 00, the Watchdog Timer is always disabled. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments and disable the WDT during non-critical code segments for maximum power savings.





#### 29.5 Program Verification and Code Protection

PIC24FJ256GA705 family devices offer basic implementation of CodeGuard<sup>™</sup> Security that supports General Segment (GS) security and Boot Segment (BS) security. This feature helps protect individual intellectual property.

| Note: | For more information on usage, configura-  |  |  |  |  |  |
|-------|--------------------------------------------|--|--|--|--|--|
|       | tion and operation, refer to the "dsPIC33/ |  |  |  |  |  |
|       | PIC24 Family Reference Manual",            |  |  |  |  |  |
|       | "CodeGuard™ Intermediate Security"         |  |  |  |  |  |
|       | (DS70005182).                              |  |  |  |  |  |

#### 29.6 JTAG Interface

PIC24FJ256GA705 family devices implement a JTAG interface, which supports boundary scan device testing.

## 29.7 In-Circuit Serial Programming

PIC24FJ256GA705 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock (PGCx) and data (PGDx), and three other lines for power (VDD), ground (Vss) and MCLR. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

## 29.8 Customer OTP Memory

PIC24FJ256GA705 family devices provide 256 bytes of One-Time-Programmable (OTP) memory, located at addresses, 801700h through 8017FEh. This memory can be used for persistent storage of application-specific information that will not be erased by reprogramming the device. This includes many types of information, such as (but not limited to):

- Application checksums
- Code revision information
- Product information
- Serial numbers
- System manufacturing dates
- Manufacturing lot numbers

PIC24FJ256GA705 family devices provide 256 bytes of One-Time-Programmable (OTP) memory, and this OTP memory can be written by program execution(i.e., TBLWT instructions) and during device programming. Data is not cleared by a chip erase.

Note: Data in the OTP memory section MUST NOT be programmed more than once.

## 29.9 In-Circuit Debugger

This function allows simple debugging functions when used with MPLAB<sup>®</sup> IDE. Debugging functionality is controlled through the PGCx (Emulation/Debug Clock) and PGDx (Emulation/Debug Data) pins.

To use the in-circuit debugger function of the device, the design must implement ICSP™ connections to MCLR, VDD, Vss and the PGCx/PGDx pin pair, designated by the ICS<1:0> Configuration bits. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

# 30.0 DEVELOPMENT SUPPORT

The PIC<sup>®</sup> microcontrollers (MCU) and dsPIC<sup>®</sup> digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- · Integrated Development Environment
- MPLAB<sup>®</sup> X IDE Software
- Compilers/Assemblers/Linkers
  - MPLAB XC Compiler
  - MPASM<sup>™</sup> Assembler
  - MPLINK<sup>™</sup> Object Linker/ MPLIB<sup>™</sup> Object Librarian
  - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
  - MPLAB X SIM Software Simulator
- · Emulators
  - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
  - MPLAB ICD 3
  - PICkit™ 3
- Device Programmers
  - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

#### 30.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows<sup>®</sup>, Linux and Mac  $OS^{®}$  X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- · Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

## 30.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

#### 30.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel<sup>®</sup> standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

#### 30.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

## 30.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

## 30.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

#### 30.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

#### 30.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

## 30.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>).

## 30.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

## 30.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM<sup>™</sup> and dsPICDEM<sup>™</sup> demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ<sup>®</sup> security ICs, CAN, IrDA<sup>®</sup>, PowerSmart battery management, SEEVAL<sup>®</sup> evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

## 30.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent<sup>®</sup> and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika<sup>®</sup>

## 31.0 INSTRUCTION SET SUMMARY

**Note:** This chapter is a brief summary of the PIC24F Instruction Set Architecture (ISA) and is not intended to be a comprehensive reference source.

The PIC24F instruction set adds many enhancements to the previous PIC<sup>®</sup> MCU instruction sets, while maintaining an easy migration from previous PIC MCU instruction sets. Most instructions are a single program memory word. Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The instruction set is highly orthogonal and is grouped into four basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- · Literal operations
- Control operations

Table 31-1 shows the general symbols used in describing the instructions. The PIC24F instruction set summary in Table 31-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register, 'Wb', without any address modifier
- The second source operand, which is typically a register, 'Ws', with or without an address modifier
- The destination of the result, which is typically a register, 'Wd', with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value, 'f'
- The destination, which could either be the file register, 'f', or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register, 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by the value of 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register, 'Wb', without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register, 'Wd', with or without an address modifier

The control instructions may use some of the following operands:

- · A program memory address
- The mode of the Table Read and Table Write instructions

All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all Table Reads and Table Writes, and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles.

Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

#### TABLE 31-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

| Field           | Description                                                                          |
|-----------------|--------------------------------------------------------------------------------------|
| #text           | Means literal defined by "text"                                                      |
| (text)          | Means "content of text"                                                              |
| [text]          | Means "the location addressed by text"                                               |
| { }             | Optional field or operation                                                          |
| <n:m></n:m>     | Register bit field                                                                   |
| .b              | Byte mode selection                                                                  |
| .d              | Double-Word mode selection                                                           |
| .S              | Shadow register select                                                               |
| .W              | Word mode selection (default)                                                        |
| bit4            | 4-bit Bit Selection field (used in word addressed instructions) $\in \{015\}$        |
| C, DC, N, OV, Z | MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero                 |
| Expr            | Absolute address, label or expression (resolved by the linker)                       |
| f               | File register address ∈ {0000h1FFFh}                                                 |
| lit1            | 1-bit unsigned literal $\in \{0,1\}$                                                 |
| lit4            | 4-bit unsigned literal ∈ {015}                                                       |
| lit5            | 5-bit unsigned literal ∈ {031}                                                       |
| lit8            | 8-bit unsigned literal ∈ {0255}                                                      |
| lit10           | 10-bit unsigned literal ∈ {0255} for Byte mode, {01023} for Word mode                |
| lit14           | 14-bit unsigned literal ∈ {016383}                                                   |
| lit16           | 16-bit unsigned literal ∈ {065535}                                                   |
| lit23           | 23-bit unsigned literal ∈ {08388607}; LSb must be '0'                                |
| None            | Field does not require an entry, may be blank                                        |
| PC              | Program Counter                                                                      |
| Slit10          | 10-bit signed literal ∈ {-512511}                                                    |
| Slit16          | 16-bit signed literal ∈ {-3276832767}                                                |
| Slit6           | 6-bit signed literal ∈ {-1616}                                                       |
| Wb              | Base W register ∈ {W0W15}                                                            |
| Wd              | Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }                    |
| Wdo             | Destination W register ∈<br>{ Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] } |
| Wm,Wn           | Dividend, Divisor Working register pair (direct addressing)                          |
| Wn              | One of 16 Working registers ∈ {W0W15}                                                |
| Wnd             | One of 16 destination Working registers ∈ {W0W15}                                    |
| Wns             | One of 16 source Working registers ∈ {W0W15}                                         |
| WREG            | W0 (Working register used in file register instructions)                             |
| Ws              | Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }                         |
| Wso             | Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }         |

| Assembly<br>Mnemonic |       | Assembly Syntax | Description                              | # of<br>Words | # of<br>Cycles | Status Flags<br>Affected |
|----------------------|-------|-----------------|------------------------------------------|---------------|----------------|--------------------------|
| ADD                  | ADD   | f               | f = f + WREG                             | 1             | 1              | C, DC, N, OV, Z          |
|                      | ADD   | f,WREG          | WREG = f + WREG                          | 1             | 1              | C, DC, N, OV, Z          |
|                      | ADD   | #lit10,Wn       | Wd = lit10 + Wd                          | 1             | 1              | C, DC, N, OV, Z          |
|                      | ADD   | Wb,Ws,Wd        | Wd = Wb + Ws                             | 1             | 1              | C, DC, N, OV, Z          |
|                      | ADD   | Wb,#lit5,Wd     | Wd = Wb + lit5                           | 1             | 1              | C, DC, N, OV, Z          |
| ADDC                 | ADDC  | f               | f = f + WREG + (C)                       | 1             | 1              | C, DC, N, OV, Z          |
|                      | ADDC  | f,WREG          | WREG = f + WREG + (C)                    | 1             | 1              | C, DC, N, OV, Z          |
|                      | ADDC  | #lit10,Wn       | Wd = lit10 + Wd + (C)                    | 1             | 1              | C, DC, N, OV, Z          |
|                      | ADDC  | Wb,Ws,Wd        | Wd = Wb + Ws + (C)                       | 1             | 1              | C, DC, N, OV, Z          |
|                      | ADDC  | Wb,#lit5,Wd     | Wd = Wb + lit5 + (C)                     | 1             | 1              | C, DC, N, OV, Z          |
| AND                  | AND   | f               | f = f .AND. WREG                         | 1             | 1              | N, Z                     |
|                      | AND   | f,WREG          | WREG = f .AND. WREG                      | 1             | 1              | N, Z                     |
|                      | AND   | #lit10,Wn       | Wd = lit10 .AND. Wd                      | 1             | 1              | N, Z                     |
|                      | AND   | Wb,Ws,Wd        | Wd = Wb .AND. Ws                         | 1             | 1              | N, Z                     |
|                      | AND   | Wb,#lit5,Wd     | Wd = Wb .AND. lit5                       | 1             | 1              | N, Z                     |
| ASR                  | ASR   | f               | f = Arithmetic Right Shift f             | 1             | 1              | C, N, OV, Z              |
|                      | ASR   | f,WREG          | WREG = Arithmetic Right Shift f          | 1             | 1              | C, N, OV, Z              |
|                      | ASR   | Ws,Wd           | Wd = Arithmetic Right Shift Ws           | 1             | 1              | C, N, OV, Z              |
|                      | ASR   | Wb,Wns,Wnd      | Wnd = Arithmetic Right Shift Wb by Wns   | 1             | 1              | N, Z                     |
|                      | ASR   | Wb,#lit5,Wnd    | Wnd = Arithmetic Right Shift Wb by lit5  | 1             | 1              | N, Z                     |
| BCLR                 | BCLR  | f,#bit4         | Bit Clear f                              | 1             | 1              | None                     |
|                      | BCLR  | Ws,#bit4        | Bit Clear Ws                             | 1             | 1              | None                     |
| BRA                  | BRA   | C,Expr          | Branch if Carry                          | 1             | 1 (2)          | None                     |
|                      | BRA   | GE,Expr         | Branch if Greater than or Equal          | 1             | 1 (2)          | None                     |
|                      | BRA   | GEU, Expr       | Branch if Unsigned Greater than or Equal | 1             | 1 (2)          | None                     |
|                      | BRA   | GT,Expr         | Branch if Greater than                   | 1             | 1 (2)          | None                     |
|                      | BRA   | GTU, Expr       | Branch if Unsigned Greater than          | 1             | 1 (2)          | None                     |
|                      | BRA   | LE, Expr        | Branch if Less than or Equal             | 1             | 1 (2)          | None                     |
|                      | BRA   | LEU, Expr       | Branch if Unsigned Less than or Equal    | 1             | 1 (2)          | None                     |
|                      | BRA   | LT, Expr        | Branch if Less than                      | 1             | 1 (2)          | None                     |
|                      | BRA   | LTU, Expr       | Branch if Unsigned Less than             | 1             | 1 (2)          | None                     |
|                      | BRA   | N,Expr          | Branch if Negative                       | 1             | 1 (2)          | None                     |
|                      | BRA   | NC, Expr        | Branch if Not Carry                      | 1             | 1 (2)          | None                     |
|                      | BRA   | NN, Expr        | Branch if Not Negative                   | 1             | 1 (2)          | None                     |
|                      | BRA   | NOV, Expr       | Branch if Not Overflow                   | 1             | 1 (2)          | None                     |
|                      | BRA   | NZ, Expr        | Branch if Not Zero                       | 1             | 1 (2)          | None                     |
|                      |       | OV, Expr        | Branch if Overflow                       | 1             | 1 (2)          | None                     |
|                      | BRA   |                 | Branch Unconditionally                   | 1             | 2              | None                     |
|                      | BRA   | Expr            |                                          | 1             |                |                          |
|                      | BRA   | Z,Expr          | Branch if Zero                           |               | 1 (2)          | None                     |
|                      | BRA   | Wn              | Computed Branch                          | 1             | 2              | None                     |
| BSET                 | BSET  | f,#bit4         | Bit Set f                                | 1             | 1              | None                     |
| DGW                  | BSET  | Ws,#bit4        | Bit Set Ws                               | 1             | 1              | None                     |
| BSW                  | BSW.C | Ws,Wb           | Write C bit to Ws <wb></wb>              | 1             | 1              | None                     |
| DEG                  | BSW.Z | Ws,Wb           | Write Z bit to Ws <wb></wb>              | 1             | 1              | None                     |
| BTG                  | BTG   | f,#bit4         | Bit Toggle f                             | 1             | 1              | None                     |
|                      | BTG   | Ws,#bit4        | Bit Toggle Ws                            | 1             | 1              | None                     |
| BTSC                 | BTSC  | f,#bit4         | Bit Test f, Skip if Clear                | 1             | 1<br>(2 or 3)  | None                     |
|                      | BTSC  | Ws,#bit4        | Bit Test Ws, Skip if Clear               | 1             | 1<br>(2 or 3)  | None                     |

| TABLE 31-2: | <b>INSTRUCTION SET OVERVIEW</b> |
|-------------|---------------------------------|
|             |                                 |

| Assembly<br>Mnemonic |         | Assembly Syntax | Description                                                 | # of<br>Words | # of<br>Cycles | Status Flags<br>Affected |
|----------------------|---------|-----------------|-------------------------------------------------------------|---------------|----------------|--------------------------|
| BTSS                 | BTSS    | f,#bit4         | Bit Test f, Skip if Set                                     | 1             | 1<br>(2 or 3)  | None                     |
|                      | BTSS    | Ws,#bit4        | Bit Test Ws, Skip if Set                                    | 1             | 1<br>(2 or 3)  | None                     |
| BTST                 | BTST    | f,#bit4         | Bit Test f                                                  | 1             | 1              | Z                        |
|                      | BTST.C  | Ws,#bit4        | Bit Test Ws to C                                            | 1             | 1              | С                        |
|                      | BTST.Z  | Ws,#bit4        | Bit Test Ws to Z                                            | 1             | 1              | Z                        |
|                      | BTST.C  | Ws,Wb           | Bit Test Ws <wb> to C</wb>                                  | 1             | 1              | С                        |
|                      | BTST.Z  | Ws,Wb           | Bit Test Ws <wb> to Z</wb>                                  | 1             | 1              | Z                        |
| BTSTS                | BTSTS   | f,#bit4         | Bit Test then Set f                                         | 1             | 1              | Z                        |
|                      | BTSTS.C | Ws,#bit4        | Bit Test Ws to C, then Set                                  | 1             | 1              | С                        |
|                      | BTSTS.Z | Ws,#bit4        | Bit Test Ws to Z, then Set                                  | 1             | 1              | Z                        |
| CALL                 | CALL    | lit23           | Call Subroutine                                             | 2             | 2              | None                     |
|                      | CALL    | Wn              | Call Indirect Subroutine                                    | 1             | 2              | None                     |
| CLR                  | CLR     | f               | f = 0x0000                                                  | 1             | 1              | None                     |
|                      | CLR     | WREG            | WREG = 0x0000                                               | 1             | 1              | None                     |
|                      | CLR     | Ws              | Ws = 0x0000                                                 | 1             | 1              | None                     |
| CLRWDT               | CLRWDT  |                 | Clear Watchdog Timer                                        | 1             | 1              | WDTO, Sleep              |
| СОМ                  | СОМ     | f               | $f = \overline{f}$                                          | 1             | 1              | N, Z                     |
|                      | СОМ     | f,WREG          | WREG = f                                                    | 1             | 1              | N, Z                     |
|                      |         |                 | $Wd = \overline{Ws}$                                        | 1             | 1              | N, Z                     |
| <b>G</b> D           | COM     | Ws,Wd           |                                                             | 1             | 1              |                          |
| CP                   | CP      | f               | Compare f with WREG                                         |               | 1              | C, DC, N, OV, Z          |
|                      | CP      | Wb,#lit5        | Compare Wb with lit5                                        | 1             |                | C, DC, N, OV, Z          |
| ~~ ^                 | CP      | Wb,Ws           | Compare Wb with Ws (Wb – Ws)                                | 1             | 1              | C, DC, N, OV, Z          |
| CP0                  | CP0     | f               | Compare f with 0x0000                                       | 1             | 1              | C, DC, N, OV, Z          |
|                      | CP0     | Ws              | Compare Ws with 0x0000                                      | 1             | 1              | C, DC, N, OV, Z          |
| CPB                  | CPB     | f               | Compare f with WREG, with Borrow                            | 1             | 1              | C, DC, N, OV, Z          |
|                      | CPB     | Wb,#lit5        | Compare Wb with lit5, with Borrow                           | 1             | 1              | C, DC, N, OV, Z          |
|                      | CPB     | Wb,Ws           | Compare Wb with Ws, with Borrow (Wb – Ws – $\overline{C}$ ) | 1             | 1              | C, DC, N, OV, Z          |
| CPSEQ                | CPSEQ   | Wb,Wn           | Compare Wb with Wn, Skip if =                               | 1             | 1<br>(2 or 3)  | None                     |
| CPSGT                | CPSGT   | Wb,Wn           | Compare Wb with Wn, Skip if >                               | 1             | 1<br>(2 or 3)  | None                     |
| CPSLT                | CPSLT   | Wb,Wn           | Compare Wb with Wn, Skip if <                               | 1             | 1<br>(2 or 3)  | None                     |
| CPSNE                | CPSNE   | Wb,Wn           | Compare Wb with Wn, Skip if ≠                               | 1             | 1<br>(2 or 3)  | None                     |
| DAW                  | DAW.B   | Wn              | Wn = Decimal Adjust Wn                                      | 1             | 1              | С                        |
| DEC                  | DEC     | f               | f = f - 1                                                   | 1             | 1              | C, DC, N, OV, Z          |
|                      | DEC     | f,WREG          | WREG = f-1                                                  | 1             | 1              | C, DC, N, OV, Z          |
|                      | DEC     | Ws,Wd           | Wd = Ws – 1                                                 | 1             | 1              | C, DC, N, OV, Z          |
| DEC2                 | DEC2    | f               | f = f - 2                                                   | 1             | 1              | C, DC, N, OV, Z          |
|                      | DEC2    | f,WREG          | WREG = f - 2                                                | 1             | 1              | C, DC, N, OV, Z          |
|                      | DEC2    | Ws,Wd           | Wd = Ws - 2                                                 | 1             | 1              | C, DC, N, OV, Z          |
| DISI                 | DISI    | #lit14          | Disable Interrupts for k Instruction Cycles                 | 1             | 1              | None                     |
| DIV                  | DIV.SW  | Wm,Wn           | Signed 16/16-bit Integer Divide                             | 1             | 18             | N, Z, C, OV              |
|                      | DIV.SD  | Wm,Wn           | Signed 32/16-bit Integer Divide                             | 1             | 18             | N, Z, C, OV              |
|                      | DIV.UW  | Wm,Wn           | Unsigned 16/16-bit Integer Divide                           | 1             | 18             | N, Z, C, OV              |
|                      | DIV.UD  | Wm,Wn           | Unsigned 32/16-bit Integer Divide                           | 1             | 18             | N, Z, C, OV              |
| EXCH                 | EXCH    | Wns,Wnd         | Swap Wns with Wnd                                           | 1             | 1              | None                     |
| FF1L                 | FF1L    | Ws,Wnd          | Find First One from Left (MSb) Side                         | 1             | 1              | С                        |
| FF1R                 | FF1R    | Ws,Wnd          | Find First One from Right (LSb) Side                        | 1             | 1              | С                        |

#### TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

| Assembly<br>Mnemonic |        | Assembly Syntax  | Description                                  | # of<br>Words | # of<br>Cycles | Status Flags<br>Affected |
|----------------------|--------|------------------|----------------------------------------------|---------------|----------------|--------------------------|
| GOTO                 | GOTO   | Expr             | Go to Address                                | 2             | 2              | None                     |
|                      | GOTO   | Wn               | Go to Indirect                               | 1             | 2              | None                     |
| INC                  | INC    | f                | f = f + 1                                    | 1             | 1              | C, DC, N, OV, Z          |
|                      | INC    | f,WREG           | WREG = f + 1                                 | 1             | 1              | C, DC, N, OV, Z          |
|                      | INC    | Ws,Wd            | Wd = Ws + 1                                  | 1             | 1              | C, DC, N, OV, Z          |
| INC2                 | INC2   | f                | f = f + 2                                    | 1             | 1              | C, DC, N, OV, Z          |
|                      | INC2   | f,WREG           | WREG = f + 2                                 | 1             | 1              | C, DC, N, OV, Z          |
|                      | INC2   | Ws,Wd            | Wd = Ws + 2                                  | 1             | 1              | C, DC, N, OV, Z          |
| IOR                  | IOR    | f                | f = f .IOR. WREG                             | 1             | 1              | N, Z                     |
|                      | IOR    | f,WREG           | WREG = f .IOR. WREG                          | 1             | 1              | N, Z                     |
|                      | IOR    | #lit10,Wn        | Wd = lit10 .IOR. Wd                          | 1             | 1              | N, Z                     |
|                      | IOR    | Wb,Ws,Wd         | Wd = Wb .IOR. Ws                             | 1             | 1              | N, Z                     |
|                      | IOR    | Wb,#lit5,Wd      | Wd = Wb .IOR. lit5                           | 1             | 1              | N, Z                     |
| LNK                  | LNK    | #lit14           | Link Frame Pointer                           | 1             | 1              | None                     |
| LSR                  | LSR    | f                | f = Logical Right Shift f                    | 1             | 1              | C, N, OV, Z              |
|                      | LSR    | f,WREG           | WREG = Logical Right Shift f                 | 1             | 1              | C, N, OV, Z              |
|                      | LSR    | Ws,Wd            | Wd = Logical Right Shift Ws                  | 1             | 1              | C, N, OV, Z              |
|                      | LSR    | Wb,Wns,Wnd       | Wnd = Logical Right Shift Wb by Wns          | 1             | 1              | N, Z                     |
|                      | LSR    | Wb,#lit5,Wnd     | Wnd = Logical Right Shift Wb by lit5         | 1             | 1              | N, Z                     |
| MOV                  | MOV    | f,Wn             | Move f to Wn                                 | 1             | 1              | None                     |
| 110 V                | MOV    | [Wns+Slit10],Wnd | Move [Wns+Slit10] to Wnd                     | 1             | 1              | None                     |
|                      | MOV    | f                | Move (Wisi Shirle) to Wild                   | 1             | 1              | N, Z                     |
|                      |        |                  | Move f to WREG                               | 1             | 1              | N, Z                     |
|                      | MOV    | f,WREG           |                                              |               | 1              | ,                        |
|                      | MOV    | #lit16,Wn        | Move 16-bit Literal to Wn                    | 1             |                | None                     |
|                      | MOV.b  | #lit8,Wn         | Move 8-bit Literal to Wn                     | 1             | 1              | None                     |
|                      | MOV    | Wn,f             | Move Wn to f                                 | 1             | 1              | None                     |
|                      | MOV    | Wns,[Wns+Slit10] | Move Wns to [Wns+Slit10]                     | 1             | 1              | None                     |
|                      | MOV    | Wso,Wdo          | Move Ws to Wd                                | 1             | 1              | None                     |
|                      | MOV    | WREG, f          | Move WREG to f                               | 1             | 1              | N, Z                     |
|                      | MOV.D  | Wns,Wd           | Move Double from W(ns):W(ns+1) to Wd         | 1             | 2              | None                     |
|                      | MOV.D  | Ws,Wnd           | Move Double from Ws to W(nd+1):W(nd)         | 1             | 2              | None                     |
| MUL                  | MUL.SS | Wb,Ws,Wnd        | {Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)       | 1             | 1              | None                     |
|                      | MUL.SU | Wb,Ws,Wnd        | {Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws)     | 1             | 1              | None                     |
|                      | MUL.US | Wb,Ws,Wnd        | {Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws)     | 1             | 1              | None                     |
|                      | MUL.UU | Wb,Ws,Wnd        | {Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws)   | 1             | 1              | None                     |
|                      | MUL.SU | Wb,#lit5,Wnd     | {Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5)   | 1             | 1              | None                     |
|                      | MUL.UU | Wb,#lit5,Wnd     | {Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5) | 1             | 1              | None                     |
|                      | MUL    | f                | W3:W2 = f * WREG                             | 1             | 1              | None                     |
| NEG                  | NEG    | f                | $f = \overline{f} + 1$                       | 1             | 1              | C, DC, N, OV, Z          |
|                      | NEG    | f,WREG           | WREG = $\overline{f}$ + 1                    | 1             | 1              | C, DC, N, OV, Z          |
|                      | NEG    | Ws,Wd            | Wd = Ws + 1                                  | 1             | 1              | C, DC, N, OV, Z          |
| NOP                  | NOP    |                  | No Operation                                 | 1             | 1              | None                     |
|                      | NOPR   |                  | No Operation                                 | 1             | 1              | None                     |
| POP                  | POP    | f                | Pop f from Top-of-Stack (TOS)                | 1             | 1              | None                     |
|                      | POP    | Wdo              | Pop from Top-of-Stack (TOS) to Wdo           | 1             | 1              | None                     |
|                      | POP.D  | Wnd              | Pop from Top-of-Stack (TOS) to W(nd):W(nd+1) | 1             | 2              | None                     |
|                      | POP.S  |                  | Pop Shadow Registers                         | 1             | 1              | All                      |
| PUSH                 | PUSH   | f                | Push f to Top-of-Stack (TOS)                 | 1             | 1              | None                     |
|                      | PUSH   | Wso              | Push Wso to Top-of-Stack (TOS)               | 1             | 1              | None                     |
|                      | PUSH.D | Wns              | Push W(ns):W(ns+1) to Top-of-Stack (TOS)     | 1             | 2              | None                     |
|                      | PUSH.S |                  | Push Shadow Registers                        | 1             | 1              | None                     |

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

| Assembly<br>Mnemonic | Assembly Syntax PWRSAV #lit1 |              | Description                             | # of<br>Words | # of<br>Cycles | Status Flags<br>Affected |
|----------------------|------------------------------|--------------|-----------------------------------------|---------------|----------------|--------------------------|
| PWRSAV               |                              |              | Go into Sleep or Idle mode              | 1             | 1              | WDTO, Sleep              |
| RCALL                | RCALL                        | Expr         | Relative Call                           | 1             | 2              | None                     |
|                      | RCALL                        | Wn           | Computed Call                           | 1             | 2              | None                     |
| REPEAT               | REPEAT                       | #lit14       | Repeat Next Instruction lit14 + 1 times | 1             | 1              | None                     |
|                      | REPEAT                       | Wn           | Repeat Next Instruction (Wn) + 1 times  | 1             | 1              | None                     |
| RESET                | RESET                        |              | Software Device Reset                   | 1             | 1              | None                     |
| RETFIE               | RETFIE                       |              | Return from Interrupt                   | 1             | 3 (2)          | None                     |
| RETLW                | RETLW                        | #lit10,Wn    | Return with Literal in Wn               | 1             | 3 (2)          | None                     |
| RETURN               | RETURN                       |              | Return from Subroutine                  | 1             | 3 (2)          | None                     |
| RLC                  | RLC                          | f            | f = Rotate Left through Carry f         | 1             | 1              | C, N, Z                  |
|                      | RLC                          | f,WREG       | WREG = Rotate Left through Carry f      | 1             | 1              | C, N, Z                  |
|                      | RLC                          | Ws,Wd        | Wd = Rotate Left through Carry Ws       | 1             | 1              | C, N, Z                  |
| RLNC                 | RLNC                         | f            | f = Rotate Left (No Carry) f            | 1             | 1              | N, Z                     |
|                      | RLNC                         | f,WREG       | WREG = Rotate Left (No Carry) f         | 1             | 1              | N, Z                     |
|                      | RLNC                         | Ws,Wd        | Wd = Rotate Left (No Carry) Ws          | 1             | 1              | N, Z                     |
| RRC                  | RRC                          | f            | f = Rotate Right through Carry f        | 1             | 1              | C, N, Z                  |
|                      | RRC                          | f,WREG       | WREG = Rotate Right through Carry f     | 1             | 1              | C, N, Z                  |
|                      | RRC                          | Ws,Wd        | Wd = Rotate Right through Carry Ws      | 1             | 1              | C, N, Z                  |
| RRNC                 | RRNC                         | f            | f = Rotate Right (No Carry) f           | 1             | 1              | N, Z                     |
|                      | RRNC                         | f,WREG       | WREG = Rotate Right (No Carry) f        | 1             | 1              | N, Z                     |
|                      | RRNC                         | Ws,Wd        | Wd = Rotate Right (No Carry) Ws         | 1             | 1              | N, Z                     |
| SE                   | SE                           | Ws,Wnd       | Wnd = Sign-Extended Ws                  | 1             | 1              | C, N, Z                  |
| SETM                 | SETM                         | f            | f = FFFFh                               | 1             | 1              | None                     |
|                      | SETM                         | WREG         | WREG = FFFFh                            | 1             | 1              | None                     |
|                      | SETM                         | Ws           | Ws = FFFFh                              | 1             | 1              | None                     |
| SL                   | SL                           | f            | f = Left Shift f                        | 1             | 1              | C, N, OV, Z              |
|                      | SL                           | f,WREG       | WREG = Left Shift f                     | 1             | 1              | C, N, OV, Z              |
|                      | SL                           | Ws,Wd        | Wd = Left Shift Ws                      | 1             | 1              | C, N, OV, Z              |
|                      | SL                           | Wb,Wns,Wnd   | Wnd = Left Shift Wb by Wns              | 1             | 1              | N, Z                     |
|                      | SL                           | Wb,#lit5,Wnd | Wnd = Left Shift Wb by lit5             | 1             | 1              | N, Z                     |
| SUB                  | SUB                          | f            | f = f – WREG                            | 1             | 1              | C, DC, N, OV, Z          |
|                      | SUB                          | f,WREG       | WREG = f – WREG                         | 1             | 1              | C, DC, N, OV, Z          |
|                      | SUB                          | #lit10,Wn    | Wn = Wn – lit10                         | 1             | 1              | C, DC, N, OV, Z          |
|                      | SUB                          | Wb,Ws,Wd     | Wd = Wb – Ws                            | 1             | 1              | C, DC, N, OV, Z          |
|                      | SUB                          | Wb,#lit5,Wd  | Wd = Wb - lit5                          | 1             | 1              | C, DC, N, OV, Z          |
| SUBB                 | SUBB                         | f            | $f = f - WREG - (\overline{C})$         | 1             | 1              | C, DC, N, OV, Z          |
|                      | SUBB                         | f,WREG       | WREG = f – WREG – $(\overline{C})$      | 1             | 1              | C, DC, N, OV, Z          |
|                      | SUBB                         | #lit10,Wn    | $Wn = Wn - lit10 - (\overline{C})$      | 1             | 1              | C, DC, N, OV, Z          |
|                      |                              |              | $Wd = Wb - Ws - (\overline{C})$         | 1             | 1              |                          |
|                      | SUBB                         | Wb,Ws,Wd     |                                         |               |                | C, DC, N, OV, Z          |
| QUIDE                | SUBB                         | Wb,#lit5,Wd  | Wd = Wb - lit5 - (C)                    | 1             | 1              | C, DC, N, OV, Z          |
| SUBR                 | SUBR                         | f wppg       | f = WREG - f                            | 1             | 1              | C, DC, N, OV, Z          |
|                      | SUBR                         | f,WREG       | WREG = WREG - f                         | 1             | 1              | C, DC, N, OV, Z          |
|                      | SUBR                         | Wb,Ws,Wd     | Wd = Ws - Wb                            | 1             | 1              | C, DC, N, OV, Z          |
|                      | SUBR                         | Wb,#lit5,Wd  | Wd = lit5 - Wb                          | 1             | 1              | C, DC, N, OV, Z          |
| SUBBR                | SUBBR                        | f            | $f = WREG - f - (\overline{C})$         | 1             | 1              | C, DC, N, OV, Z          |
|                      | SUBBR                        | f,WREG       | WREG = WREG - $f - (\overline{C})$      | 1             | 1              | C, DC, N, OV, Z          |
|                      | SUBBR                        | Wb,Ws,Wd     | $Wd = Ws - Wb - (\overline{C})$         | 1             | 1              | C, DC, N, OV, Z          |
|                      | SUBBR                        | Wb,#lit5,Wd  | $Wd = lit5 - Wb - (\overline{C})$       | 1             | 1              | C, DC, N, OV, Z          |
| SWAP                 | SWAP.b                       | Wn           | Wn = Nibble Swap Wn                     | 1             | 1              | None                     |
|                      | SWAP                         | Wn           | Wn = Byte Swap Wn                       | 1             | 1              | None                     |

#### TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

| Assembly<br>Mnemonic | Assembly Syntax |             | Description                  | # of<br>Words | # of<br>Cycles | Status Flags<br>Affected |
|----------------------|-----------------|-------------|------------------------------|---------------|----------------|--------------------------|
| TBLRDH               | TBLRDH          | Ws,Wd       | Read Prog<23:16> to Wd<7:0>  | 1             | 2              | None                     |
| TBLRDL               | TBLRDL          | Ws,Wd       | Read Prog<15:0> to Wd        | 1             | 2              | None                     |
| TBLWTH               | TBLWTH          | Ws,Wd       | Write Ws<7:0> to Prog<23:16> | 1             | 2              | None                     |
| TBLWTL               | TBLWTL          | Ws,Wd       | Write Ws to Prog<15:0>       | 1             | 2              | None                     |
| ULNK                 | ULNK            |             | Unlink Frame Pointer         | 1             | 1              | None                     |
| XOR                  | XOR             | f           | f = f .XOR. WREG             | 1             | 1              | N, Z                     |
|                      | XOR             | f,WREG      | WREG = f .XOR. WREG          | 1             | 1              | N, Z                     |
|                      | XOR             | #lit10,Wn   | Wd = lit10 .XOR. Wd          | 1             | 1              | N, Z                     |
|                      | XOR             | Wb,Ws,Wd    | Wd = Wb .XOR. Ws             | 1             | 1              | N, Z                     |
|                      | XOR             | Wb,#lit5,Wd | Wd = Wb .XOR. lit5           | 1             | 1              | N, Z                     |
| ZE                   | ZE              | Ws,Wnd      | Wnd = Zero-Extend Ws         | 1             | 1              | C, Z, N                  |

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

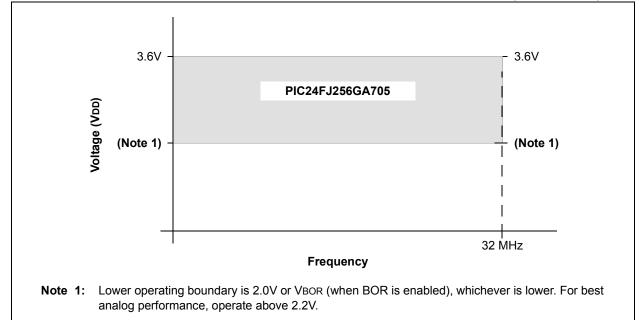
NOTES:

# 32.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC24FJ256GA705 family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC24FJ256GA705 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

## Absolute Maximum Ratings<sup>(†)</sup>


t

| Ambient temperature under bias<br>Storage temperature                | -65°C to +150°C                                   |
|----------------------------------------------------------------------|---------------------------------------------------|
| Voltage on VDD with respect to Vss                                   | -0.3V to +4.0V                                    |
| Voltage on any general purpose digital or analog pin (not 5.5V toler | ant) with respect to Vss0.3V to (VDD + 0.3V)      |
| Voltage on any general purpose digital or analog pin (5.5V tolerant, | including MCLR) with respect to Vss:              |
| When VDD = 0V:                                                       | -0.3V to +4.0V                                    |
| When $V_{DD} \ge 2.0V$ :                                             | -0.3V to +6.0V                                    |
| Voltage on AVDD with respect to Vss                                  | (VDD – 0.3V) to (lesser of: 4.0V or (VDD + 0.3V)) |
| Voltage on AVss with respect to Vss                                  | -0.3V to +0.3V                                    |
| Maximum current out of Vss pin                                       |                                                   |
| Maximum current into VDD pin (Note 1)                                |                                                   |
| Maximum output current sunk by any I/O pin                           |                                                   |
| Maximum output current sourced by any I/O pin                        |                                                   |
| Maximum current sunk by all ports                                    |                                                   |
| Maximum current sourced by all ports (Note 1)                        |                                                   |

Note 1: Maximum allowable current is a function of device maximum power dissipation (see Table 32-1).

**NOTICE:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

## 32.1 DC Characteristics



#### FIGURE 32-1: PIC24FJ256GA705 FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)

#### TABLE 32-1: THERMAL OPERATING CONDITIONS

| Rating                                                                                                                                                                                  | Symbol                     | Min           | Тур | Max | Unit |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------|-----|-----|------|
| PIC24FJ256GA705:                                                                                                                                                                        |                            |               |     |     |      |
| Operating Junction Temperature Range                                                                                                                                                    | TJ                         | -40           | —   | +85 | °C   |
| Operating Ambient Temperature Range                                                                                                                                                     | erature Range TA -40 — +85 |               |     |     | °C   |
| Power Dissipation:<br>Internal Chip Power Dissipation:<br>$PINT = VDD x (IDD - \Sigma IOH)$<br>I/O Pin Power Dissipation:<br>$PI/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$ | PD                         | PINT + PI/O   |     |     | W    |
| Maximum Allowed Power Dissipation                                                                                                                                                       | PDMAX                      | (Tj – Ta)/θja |     |     | W    |

#### TABLE 32-2: THERMAL PACKAGING CHARACTERISTICS

| Characteristic                                     | Symbol | Тур  | Мах | Unit | Notes    |
|----------------------------------------------------|--------|------|-----|------|----------|
| Package Thermal Resistance, 6x6 mm 28-Pin QFN      | θJA    |      |     | °C/W | (Note 1) |
| Package Thermal Resistance, 4x4x0.6 mm 28-Pin UQFN | θJA    |      | -   | °C/W | (Note 1) |
| Package Thermal Resistance, 7.50 mm 28-Pin SOIC    | θJA    |      | _   | °C/W | (Note 1) |
| Package Thermal Resistance, 5.30 mm 28-Pin SSOP    | θJA    |      | _   | °C/W | (Note 1) |
| Package Thermal Resistance, 300 mil 28-Pin SPDIP   | θJA    |      | _   | °C/W | (Note 1) |
| Package Thermal Resistance, 6x6x0.5 mm 48-Pin UQFN | θJA    | 33.7 | _   | °C/W | (Note 1) |
| Package Thermal Resistance, 10x10x1 mm 44-Pin TQFP | θJA    | 28   | _   | °C/W | (Note 1) |
| Package Thermal Resistance, 7x7x1 mm 48-Pin TQFP   | θJA    | 39.3 | —   | °C/W | (Note 1) |

**Note 1:** Junction to ambient thermal resistance; Theta-JA ( $\theta$ JA) numbers are achieved by package simulations.

#### TABLE 32-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS

| DC CH4            | ARACTE | RISTICS                                                                     | Standard Opera<br>Operating temp  |     | (unless otherwise stated)<br>+85°C for Industrial |       |                                                    |  |  |  |
|-------------------|--------|-----------------------------------------------------------------------------|-----------------------------------|-----|---------------------------------------------------|-------|----------------------------------------------------|--|--|--|
| Param<br>No.      | Symbol | Characteristic                                                              | Min                               | Тур | Мах                                               | Units | Conditions                                         |  |  |  |
| Operating Voltage |        |                                                                             |                                   |     |                                                   |       |                                                    |  |  |  |
| DC10              | Vdd    | Supply Voltage                                                              | 2.0                               | —   | 3.6                                               | V     | BOR is disabled                                    |  |  |  |
|                   |        |                                                                             | VBOR                              | _   | 3.6                                               | V     | BOR is enabled                                     |  |  |  |
| DC12              | Vdr    | RAM Data Retention<br>Voltage <sup>(1)</sup>                                | Greater of:<br>VPORREL or<br>VBOR | _   | _                                                 | V     | VBOR is used only if BOR<br>is enabled (BOREN = 1) |  |  |  |
| DC16              | VPOR   | <b>VDD Start Voltage</b><br>to Ensure Internal<br>Power-on Reset Signal     | Vss                               | _   | _                                                 | V     | (Note 2)                                           |  |  |  |
| DC17A             | SVDD   | Recommended<br>VDD Rise Rate<br>to Ensure Internal<br>Power-on Reset Signal | 1V/20 ms                          | _   | 1V/10 µS                                          | sec   | (Note 2, Note 4)                                   |  |  |  |
| DC17B             | VBOR   | <b>Brown-out Reset</b><br><b>Voltage</b> on VDD<br>Transition, High-to-Low  | 2.0                               | 2.1 | 2.2                                               | V     | (Note 3)                                           |  |  |  |

**Note 1:** This is the limit to which VDD may be lowered and the RAM contents will always be retained.

**2:** If the VPOR or SVDD parameters are not met, or the application experiences slow power-down VDD ramp rates, it is recommended to enable and use BOR.

**3:** On a rising VDD power-up sequence, application firmware execution begins at the higher of the VPORREL or VBOR level (when BOREN = 1).

4: VDD rise times outside this window may not internally reset the processor and are not parametrically tested.

| DC CHARAG        | CTERISTICS                             |     |       | Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial |      |                   |  |  |  |  |
|------------------|----------------------------------------|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------|--|--|--|--|
| Parameter<br>No. | Typical <sup>(1)</sup>                 | Мах | Units | Operating<br>Temperature                                                                                                                        | VDD  | Conditions        |  |  |  |  |
| Operating C      | Operating Current (IDD) <sup>(2)</sup> |     |       |                                                                                                                                                 |      |                   |  |  |  |  |
| DC19             | 230                                    | 365 | μA    | -40°C to +85°C                                                                                                                                  | 2.0V | 0.5 MIPS,         |  |  |  |  |
|                  | 250                                    | 365 | μΑ    | -40°C to +85°C                                                                                                                                  | 3.3V | Fosc = 1 MHz      |  |  |  |  |
| DC20             | 430                                    | 640 | μA    | -40°C to +85°C                                                                                                                                  | 2.0V | 1 MIPS,           |  |  |  |  |
|                  | 440                                    | 640 | μΑ    | -40°C to +85°C                                                                                                                                  | 3.3V | Fosc = 2 MHz      |  |  |  |  |
| DC23             | 1.5                                    | 2.4 | mA    | -40°C to +85°C                                                                                                                                  | 2.0V | 4 MIPS,           |  |  |  |  |
|                  | 1.65                                   | 2.4 | mA    | -40°C to +85°C                                                                                                                                  | 3.3V | Fosc = 8 MHz      |  |  |  |  |
| DC24             | 6.1                                    | 7.7 | mA    | -40°C to +85°C                                                                                                                                  | 2.0V | 16 MIPS,          |  |  |  |  |
|                  | 6.3                                    | 7.7 | mA    | -40°C to +85°C                                                                                                                                  | 3.3V | Fosc = 32 MHz     |  |  |  |  |
| DC31             | 43                                     | 130 | μA    | -40°C to +85°C                                                                                                                                  | 2.0V | LPRC (15.5 KIPS), |  |  |  |  |
|                  | 46                                     | 130 | μA    | -40°C to +85°C                                                                                                                                  | 3.3V | Fosc = 31 kHz     |  |  |  |  |
| DC32             | 1.6                                    | 2.5 | mA    | -40°C to +85°C                                                                                                                                  | 2.0V | FRC (4 MIPS),     |  |  |  |  |
|                  | 1.65                                   | 2.5 | mA    | -40°C to +85°C                                                                                                                                  | 3.3V | Fosc = 8 MHz      |  |  |  |  |

#### TABLE 32-4: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

**Note 1:** Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Typical parameters are for design guidance only and are not tested.

2: The test conditions for all IDD measurements are as follows: OSC1 driven with external square wave from rail-to-rail. All I/O pins are configured as outputs and driving low. MCLR = VDD; WDT and FSCM are disabled. CPU, program memory and data memory are operational. No peripheral modules are operating or being clocked (defined PMDx bits are all '1's). JTAG interface is disabled.

| DC CHARAC        | TERISTICS             |      |       | Dperating Conditions:<br>emperature | : 2.0V to 3.6V (unless otherwise stated) -40°C $\leq$ TA $\leq$ +85°C for Industrial |                   |  |  |
|------------------|-----------------------|------|-------|-------------------------------------|--------------------------------------------------------------------------------------|-------------------|--|--|
| Parameter<br>No. |                       |      | Units | Units Operating<br>Temperature      |                                                                                      | Conditions        |  |  |
| Idle Current (   | IIDLE) <sup>(2)</sup> |      | •     | ·                                   | •                                                                                    |                   |  |  |
| DC40             | 95                    | 400  | μΑ    | -40°C to +85°C                      | 2.0V                                                                                 | 1 MIPS,           |  |  |
|                  | 105                   | 400  | μΑ    | -40°C to +85°C                      | 3.3V                                                                                 | Fosc = 2 MHz      |  |  |
| DC43             | 290                   | 1200 | μΑ    | -40°C to +85°C                      | 2.0V                                                                                 | 4 MIPS,           |  |  |
|                  | 315                   | 1200 | μΑ    | -40°C to +85°C                      | 3.3V                                                                                 | Fosc = 8 MHz      |  |  |
| DC47             | 1.05                  | 3.7  | mA    | -40°C to +85°C                      | 2.0V                                                                                 | 16 MIPS,          |  |  |
|                  | 1.16                  | 3.7  | mA    | -40°C to +85°C                      | 3.3V                                                                                 | Fosc = 32 MHz     |  |  |
| DC50             | 350                   | 1100 | μA    | -40°C to +85°C                      | 2.0V                                                                                 | FRC (4 MIPS),     |  |  |
|                  | 360                   | 1100 | μA    | -40°C to +85°C                      | 3.3V                                                                                 | Fosc = 8 MHz      |  |  |
| DC51             | 29                    | 110  | μΑ    | -40°C to +85°C                      | 2.0V                                                                                 | LPRC (15.5 KIPS), |  |  |
|                  | 33                    | 110  | μΑ    | -40°C to +85°C                      | 3.3V                                                                                 | Fosc = 31 kHz     |  |  |

| TABLE 32-5: DC CHARACTERISTICS: IDLE CURRENT (II | IDLE) |
|--------------------------------------------------|-------|
|--------------------------------------------------|-------|

**Note 1:** Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IIDLE current is measured with the core off, the clock on and all modules turned off. Peripheral Module Disable SFR registers are all '1's. All I/O pins are configured as outputs and driven low. JTAG interface is disabled.

| DC CHARA         | CTERISTIC                | s    | Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial |                          |      |                                            |  |  |  |
|------------------|--------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------|--------------------------------------------|--|--|--|
| Parameter<br>No. |                          |      |                                                                                                                                                 | Operating<br>Temperature | VDD  | Conditions                                 |  |  |  |
| Power-Dov        | vn Current <sup>(4</sup> | 4,5) | •                                                                                                                                               | •                        |      | ·                                          |  |  |  |
| DC60             | 2.5                      | 10   | μA                                                                                                                                              | -40°C                    |      |                                            |  |  |  |
|                  | 3.2                      | 10   | μΑ                                                                                                                                              | +25°C                    | 2.0V |                                            |  |  |  |
|                  | 11.5                     | 45   | μA                                                                                                                                              | +85°C                    |      | - Sleep <sup>(2)</sup>                     |  |  |  |
|                  | 3.2                      | 10   | μA                                                                                                                                              | -40°C                    | 3.3V | - Sieeh, ,                                 |  |  |  |
|                  | 4.4                      | 10   | μA                                                                                                                                              | +25°C                    |      |                                            |  |  |  |
|                  | 12.2                     | 45   | μA                                                                                                                                              | +85°C                    |      |                                            |  |  |  |
| DC61             | 165                      | _    | nA                                                                                                                                              | -40°C                    |      |                                            |  |  |  |
|                  | 190                      |      | nA                                                                                                                                              | +25°C                    | 2.0V |                                            |  |  |  |
|                  | 14.5                     | _    | μΑ                                                                                                                                              | +85°C                    |      | Low Voltage Detention Sleen <sup>(3)</sup> |  |  |  |
|                  | 220                      |      | nA                                                                                                                                              | -40°C                    |      | Low-Voltage Retention Sleep <sup>(3)</sup> |  |  |  |
|                  | 300                      | _    | nA                                                                                                                                              | +25°C                    | 3.3V |                                            |  |  |  |
|                  | 15                       | _    | μA                                                                                                                                              | +85°C                    |      |                                            |  |  |  |

#### TABLE 32-6: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

**Note 1:** Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The retention low-voltage regulator is disabled; RETEN (RCON<12>) = 0, LPCFG (FPOR<2>) = 1.

3: The retention low-voltage regulator is enabled; RETEN (RCON<12>) = 1,  $\overline{\text{LPCFG}}$  (FPOR<2>) = 0.

4: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as outputs and driven low. WDT, BOR and JTAG are all disabled.

5: These currents are measured on the device containing the most memory in this family.

| DC CHARAC                                                 | TERISTICS              |             |              | <b>Operating Condit</b><br>temperature | <b>3.6V (unless otherwise stated)</b><br>≤ TA ≤ +85°C for Industrial |                                          |  |  |  |
|-----------------------------------------------------------|------------------------|-------------|--------------|----------------------------------------|----------------------------------------------------------------------|------------------------------------------|--|--|--|
| Parameter<br>No.                                          | Typical <sup>(1)</sup> | Max         | Units        | Operating<br>Temperature               | VDD                                                                  | Conditions                               |  |  |  |
| Incremental Current Brown-out Reset (∆BOR) <sup>(2)</sup> |                        |             |              |                                        |                                                                      |                                          |  |  |  |
| DC25                                                      | 3                      | 5           | μA           | -40°C to +85°C                         | 2.0V                                                                 | 4BOR <sup>(2)</sup>                      |  |  |  |
|                                                           | 4                      | 5           | μA           | -40°C to +85°C                         | 3.3V                                                                 |                                          |  |  |  |
| Incremental Current Watchdog Timer (△WDT) <sup>(2)</sup>  |                        |             |              |                                        |                                                                      |                                          |  |  |  |
| DC71                                                      | 220                    | 1000        | nA           | -40°C to +85°C                         | 2.0V                                                                 | ∆WDT <sup>(2)</sup>                      |  |  |  |
|                                                           | 300                    | 1000        | nA           | -40°C to +85°C                         | 3.3V                                                                 |                                          |  |  |  |
| Incremental C                                             | Current High           | /Low-Voltag | e Detect (∆ŀ | ILVD) <sup>(2)</sup>                   |                                                                      |                                          |  |  |  |
| DC75                                                      | 1.3                    | 5           | μA           | -40°C to +85°C                         | 2.0V                                                                 | AHLVD <sup>(2)</sup>                     |  |  |  |
|                                                           | 1.9                    | 5           | μA           | -40°C to +85°C                         | 3.3V                                                                 |                                          |  |  |  |
| Incremental C                                             | Current Real           | -Time Clock | and Calend   | lar (∆RTCC) <sup>(2)</sup>             |                                                                      |                                          |  |  |  |
| DC77                                                      | 2.5                    | _           | μA           | -40°C to +85°C                         | 2.0V                                                                 | ∆RTCC (with SOSC enabled in              |  |  |  |
|                                                           | 3                      | _           | μA           | -40°C to +85°C                         | 3.3V                                                                 | Low-Power mode) <sup>(2)</sup>           |  |  |  |
| DC77A                                                     | 350                    | 1000        | nA           | -40°C to +85°C                         | 2.0V                                                                 | ∆RTCC (with LPRC enabled) <sup>(2)</sup> |  |  |  |
|                                                           | 400                    | 1000        | nA           | -40°C to +85°C                         | 3.3V                                                                 |                                          |  |  |  |

# TABLE 32-7: DC CHARACTERISTICS: △ CURRENT (BOR, WDT, HLVD, RTCC)<sup>(3)</sup>

**Note 1:** Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Incremental current while the module is enabled and running.

**3:** The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. The current includes the selected clock source enabled for WDT and RTCC.

| DC CH        | ARACTE | RISTICS                                                                          |                                  | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |            |        |                                                                                                                                 |  |  |  |  |
|--------------|--------|----------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------|------------|--------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Param<br>No. | Symbol | Characteristic                                                                   | Min                              | Typ <sup>(1)</sup>                                   | Max        | Units  | Conditions                                                                                                                      |  |  |  |  |
|              | VIL    | Input Low Voltage <sup>(3)</sup>                                                 |                                  |                                                      |            |        |                                                                                                                                 |  |  |  |  |
| DI10         |        | I/O Pins with ST Buffer                                                          | Vss                              | _                                                    | 0.2 VDD    | V      |                                                                                                                                 |  |  |  |  |
| DI11         |        | I/O Pins with TTL Buffer                                                         | Vss                              | —                                                    | 0.15 VDD   | V      |                                                                                                                                 |  |  |  |  |
| DI15         |        | MCLR                                                                             | Vss                              | _                                                    | 0.2 VDD    | V      |                                                                                                                                 |  |  |  |  |
| DI16         |        | OSCI (XT mode)                                                                   | Vss                              | —                                                    | 0.2 VDD    | V      |                                                                                                                                 |  |  |  |  |
| DI17         |        | OSCI (HS mode)                                                                   | Vss                              | —                                                    | 0.2 VDD    | V      |                                                                                                                                 |  |  |  |  |
| DI18         |        | I/O Pins with I <sup>2</sup> C Buffer                                            | Vss                              | —                                                    | 0.3 VDD    | V      |                                                                                                                                 |  |  |  |  |
| DI19         |        | I/O Pins with SMBus Buffer                                                       | Vss                              | —                                                    | 0.8        | V      | SMBus is enabled                                                                                                                |  |  |  |  |
|              | Viн    | Input High Voltage <sup>(3)</sup>                                                |                                  |                                                      |            |        |                                                                                                                                 |  |  |  |  |
| DI20         |        | I/O Pins with ST Buffer:<br>with Analog Functions,<br>Digital Only               | 0.8 Vdd<br>0.8 Vdd               | _                                                    | Vdd<br>5.5 | V<br>V |                                                                                                                                 |  |  |  |  |
| DI21         |        | I/O Pins with TTL Buffer:<br>with Analog Functions,<br>Digital Only              | 0.25 Vdd + 0.8<br>0.25 Vdd + 0.8 | _                                                    | Vdd<br>5.5 | V<br>V |                                                                                                                                 |  |  |  |  |
| DI25         |        | MCLR                                                                             | 0.8 Vdd                          | —                                                    | Vdd        | V      |                                                                                                                                 |  |  |  |  |
| DI26         |        | OSCI (XT mode)                                                                   | 0.7 Vdd                          | _                                                    | Vdd        | V      |                                                                                                                                 |  |  |  |  |
| DI27         |        | OSCI (HS mode)                                                                   | 0.7 Vdd                          | —                                                    | Vdd        | V      |                                                                                                                                 |  |  |  |  |
| DI28         |        | I/O Pins with I <sup>2</sup> C Buffer:<br>with Analog Functions,<br>Digital Only | 0.7 Vdd<br>0.7 Vdd               | _                                                    | VDD<br>5.5 | V<br>V |                                                                                                                                 |  |  |  |  |
| DI29         |        | I/O Pins with SMBus Buffer:                                                      |                                  |                                                      |            |        |                                                                                                                                 |  |  |  |  |
|              |        | with Analog Functions,                                                           | 2.1                              | —                                                    | VDD        | V      | $2.5V \le VPIN \le VDD$                                                                                                         |  |  |  |  |
| D120         |        | Digital Only                                                                     | 2.1                              | _                                                    | 5.5<br>450 | V      | VDD = 3.3V, VPIN = VSS                                                                                                          |  |  |  |  |
| DI30         |        | CNx Pull-up Current<br>CNx Pull-Down Current                                     | 150<br>230                       | _                                                    | 450<br>500 | μA     | VDD = 3.3V, $VPIN = VSSVDD = 3.3V$ , $VPIN = VDD$                                                                               |  |  |  |  |
| DI30A        |        | Input Leakage Current <sup>(2)</sup>                                             | 230                              |                                                      | 500        | μA     | VDD = 3.3V, VPIN = VDD                                                                                                          |  |  |  |  |
| DI50         | lil    | I/O Ports                                                                        | _                                | —                                                    | ±1         | μΑ     | $Vss \le VPIN \le VDD,$ pin at high-impedance                                                                                   |  |  |  |  |
| DI51         |        | Analog Input Pins                                                                | _                                | —                                                    | ±1         | μA     | Vss $\leq$ VPIN $\leq$ VDD,<br>pin at high-impedance                                                                            |  |  |  |  |
| DI55         |        | MCLR                                                                             |                                  | —                                                    | ±1         | μA     | $Vss \leq V \text{PIN} \leq V \text{DD}$                                                                                        |  |  |  |  |
| DI56         |        | OSCI/CLKI                                                                        | —                                | —                                                    | ±1         | μA     | $\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &{\sf EC}, \; XT \; and \; HS \; modes \end{split}$ |  |  |  |  |

#### TABLE 32-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

**Note 1:** Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Negative current is defined as current sourced by the pin.

3: Refer to Table 1-1 for I/O pin buffer types.

| DC CHA       | RACTER | ISTICS              | Standard O<br>Operating to       |   |       | ns: 2.0V to 3.6V (unless otherwise stated)<br>-40°C $\leq$ TA $\leq$ +85°C for Industrial |                           |  |
|--------------|--------|---------------------|----------------------------------|---|-------|-------------------------------------------------------------------------------------------|---------------------------|--|
| Param<br>No. | Symbol | Characteristic      | Min Typ <sup>(1)</sup> Max Units |   | Units | Conditions                                                                                |                           |  |
|              | Vol    | Output Low Voltage  |                                  |   |       |                                                                                           |                           |  |
| DO10         |        | I/O Ports           | _                                | — | 0.4   | V                                                                                         | IOL = 6.6 mA, VDD = 3.6V  |  |
|              |        |                     | _                                | — | 0.8   | V                                                                                         | IOL = 18 mA, VDD = 3.6V   |  |
|              |        |                     | _                                | — | 0.35  | V                                                                                         | IOL = 5.0 mA, VDD = 2V    |  |
| DO16         |        | OSCO/CLKO           | _                                | — | 0.18  | V                                                                                         | IOL = 6.6 mA, VDD = 3.6V  |  |
|              |        |                     | _                                | — | 0.2   | V                                                                                         | IOL = 5.0 mA, VDD = 2V    |  |
|              | Voн    | Output High Voltage |                                  |   |       |                                                                                           |                           |  |
| DO20         |        | I/O Ports           | 3.4                              | — | —     | V                                                                                         | IOH = -3.0 mA, VDD = 3.6V |  |
|              |        |                     | 3.25                             | — | —     | V                                                                                         | IOH = -6.0 mA, VDD = 3.6V |  |
|              |        |                     | 2.8                              | — | —     | V                                                                                         | ІОН = -18 mA, VDD = 3.6V  |  |
|              |        |                     | 1.65                             | — | —     | V                                                                                         | ІОН = -1.0 mA, VDD = 2V   |  |
|              |        |                     | 1.4                              | — | —     | V                                                                                         | IOH = -3.0 mA, VDD = 2V   |  |
| DO26         |        | OSCO/CLKO           | 3.3                              | — | —     | V                                                                                         | IOH = -6.0 mA, VDD = 3.6V |  |
|              |        |                     | 1.85                             |   | _     | V                                                                                         | IOH = -1.0 mA, VDD = 2V   |  |

#### TABLE 32-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

**Note 1:** Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

#### TABLE 32-10: DC CHARACTERISTICS: PROGRAM MEMORY

| DC CHA       | DC CHARACTERISTICS |                                      |       | •                  | ating Co<br>perature |       | s: 2.0V to 3.6V (unless otherwise stated) -40°C $\leq$ TA $\leq$ +85°C for Industrial |  |  |
|--------------|--------------------|--------------------------------------|-------|--------------------|----------------------|-------|---------------------------------------------------------------------------------------|--|--|
| Param<br>No. | Symbol             | Characteristic                       | Min   | Typ <sup>(1)</sup> | Max                  | Units | Conditions                                                                            |  |  |
|              |                    | Program Flash Memory                 |       |                    |                      |       |                                                                                       |  |  |
| D130         | Eр                 | Cell Endurance                       | 10000 |                    | _                    | E/W   | -40°C to +85°C                                                                        |  |  |
| D131         | Vpr                | VDD for Read                         | VMIN  | —                  | 3.6                  | V     | VміN = Minimum operating voltage                                                      |  |  |
| D132B        |                    | VDD for Self-Timed Write             | VMIN  |                    | 3.6                  | V     | VміN = Minimum operating voltage                                                      |  |  |
| D133A        | Tiw                | Self-Timed Word Write<br>Cycle Time  | —     | 20                 | —                    | μS    |                                                                                       |  |  |
|              |                    | Self-Timed Row Write<br>Cycle Time   | —     | 1.5                | —                    | ms    |                                                                                       |  |  |
| D133B        | TIE                | Self-Timed Page Erase<br>Time        | 20    | —                  | 40                   | ms    |                                                                                       |  |  |
| D134         | TRETD              | Characteristic Retention             | 20    | —                  | _                    | Year  | If no other specifications are violated                                               |  |  |
| D135         | IDDP               | Supply Current during<br>Programming |       | 5                  |                      | mA    |                                                                                       |  |  |

**Note 1:** Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.

| TABLE 32-11: | INTERNAL VOLTAGE REGULATOR SPECIFICATIONS |
|--------------|-------------------------------------------|
|--------------|-------------------------------------------|

| Operatin     | <b>Operating Conditions:</b> -40°C < TA < +85°C (unless otherwise stated) |                                         |      |     |      |       |                                                                    |  |  |  |
|--------------|---------------------------------------------------------------------------|-----------------------------------------|------|-----|------|-------|--------------------------------------------------------------------|--|--|--|
| Param<br>No. | Symbol                                                                    | Characteristics                         | Min  | Тур | Max  | Units | Comments                                                           |  |  |  |
| DVR          | TVREG                                                                     | Voltage Regulator Start-up Time         |      | 10  | -    | μS    | VREGS = 0 with any POR or<br>BOR                                   |  |  |  |
| DVR10        | Vbg                                                                       | Internal Band Gap Reference             | 1.14 | 1.2 | 1.26 | V     |                                                                    |  |  |  |
| DVR11        | Tbg                                                                       | Band Gap Reference<br>Start-up Time     | _    | 1   | -    | ms    |                                                                    |  |  |  |
| DVR20        | Vrgout                                                                    | Regulator Output Voltage                | 1.6  | 1.8 | 2.0  | V     | Vdd > 1.9V                                                         |  |  |  |
| DVR21        | CEFC                                                                      | External Filter Capacitor Value         | 10   | —   | —    | μF    | Series resistance < $3\Omega$<br>recommended; < $5\Omega$ required |  |  |  |
| DVR30        | Vlvr                                                                      | Low-Voltage Regulator<br>Output Voltage |      | 1.2 | _    | V     | $RETEN = 1, \overline{LPCFG} = 0$                                  |  |  |  |

## TABLE 32-12: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

| <b>Operating Conditions:</b> -40°C < TA < +85°C (unless otherwise stated) |        |                                         |                                  |      |      |      |       |                           |  |  |
|---------------------------------------------------------------------------|--------|-----------------------------------------|----------------------------------|------|------|------|-------|---------------------------|--|--|
| Param<br>No.                                                              | Symbol | Charac                                  | Characteristic                   |      |      | Max  | Units | Conditions                |  |  |
| DC18 \                                                                    | VHLVD  | HLVD Voltage on VDD                     | HLVDL<3:0> = 0100 <sup>(1)</sup> | 3.45 | _    | 3.73 | V     |                           |  |  |
|                                                                           |        | Transition                              | HLVDL<3:0> = 0101                | 3.25 |      | 3.58 | V     |                           |  |  |
|                                                                           |        |                                         | HLVDL<3:0> = 0110                | 2.95 |      | 3.25 | V     |                           |  |  |
|                                                                           |        |                                         | HLVDL<3:0> = 0111                | 2.75 |      | 3.04 | V     |                           |  |  |
|                                                                           |        |                                         | HLVDL<3:0> = 1000                | 2.65 |      | 2.92 | V     |                           |  |  |
|                                                                           |        |                                         | HLVDL<3:0> = 1001                | 2.45 | —    | 2.70 | V     |                           |  |  |
|                                                                           |        |                                         | HLVDL<3:0> = 1010                | 2.35 | —    | 2.60 | V     |                           |  |  |
|                                                                           |        |                                         | HLVDL<3:0> = 1011                | 2.25 |      | 2.49 | V     |                           |  |  |
|                                                                           |        |                                         | HLVDL<3:0> = 1100                | 2.15 |      | 2.39 | V     |                           |  |  |
|                                                                           |        |                                         | HLVDL<3:0> = 1101                | 2.08 | —    | 2.28 | V     |                           |  |  |
|                                                                           |        |                                         | HLVDL<3:0> = 1110                | 2.00 |      | 2.15 | V     |                           |  |  |
| DC101                                                                     | VTHL   | HLVD Voltage on<br>LVDIN Pin Transition | HLVDL<3:0> = 1111                | _    | 1.20 | —    | V     |                           |  |  |
| DC105                                                                     | TONLVD | HLVD Module Enable Time                 |                                  |      | 5    |      | μS    | From POR or<br>HLVDEN = 1 |  |  |

Г

**Note 1:** Trip points for values of HLVD<3:0>, from '0000' to '0011', are not implemented.

#### TABLE 32-13: COMPARATOR DC SPECIFICATIONS

| Operati      | <b>Operating Conditions:</b> $2.0V < V_{DD} < 3.6V$ , $-40^{\circ}C < T_A < +85^{\circ}C$ (unless otherwise stated) |                                        |    |          |     |    |                       |  |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------|----|----------|-----|----|-----------------------|--|--|--|
| Param<br>No. | Symbol                                                                                                              | Characteristic Min Typ Max Units       |    | Comments |     |    |                       |  |  |  |
| D300         | VIOFF                                                                                                               | Input Offset Voltage                   |    | 12       | 50  | mV | (Note 1)              |  |  |  |
| D301         | VICM                                                                                                                | Input Common-Mode Voltage              | 0  | _        | Vdd | V  | (Note 1)              |  |  |  |
| D302         | CMRR                                                                                                                | Common-Mode Rejection Ratio            | 55 | _        |     | dB | (Note 1)              |  |  |  |
| D306         | IQCMP                                                                                                               | AVDD Quiescent Current per Comparator  | _  | 27       |     | μA | Comparator is enabled |  |  |  |
| D307         | TRESP                                                                                                               | Response Time                          | _  | 300      |     | ns | (Note 2)              |  |  |  |
| D308         | TMC2OV                                                                                                              | Comparator Mode Change to Valid Output | _  | _        | 10  | μs |                       |  |  |  |
| D309         | IDD                                                                                                                 | Operating Supply Current               | _  | 30       |     | μA | AVDD = 3.3V           |  |  |  |

Note 1: Parameters are characterized but not tested.

2: Measured with one input at VDD/2 and the other transitioning from Vss to VDD, 40 mV step, 15 mV overdrive.

#### TABLE 32-14: COMPARATOR VOLTAGE REFERENCE DC SPECIFICATIONS

| Operatin     | <b>Operating Conditions:</b> 2.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated) |                                      |      |     |      |    |          |  |  |  |
|--------------|----------------------------------------------------------------------------------------------|--------------------------------------|------|-----|------|----|----------|--|--|--|
| Param<br>No. | Symbol                                                                                       | Characteristic Min Typ Max Units Com |      |     |      |    |          |  |  |  |
| VR310        | TSET                                                                                         | Settling Time                        | —    | _   | 10   | μs | (Note 1) |  |  |  |
| VRD311       | CVRAA                                                                                        | Absolute Accuracy                    | -100 | —   | +100 | mV |          |  |  |  |
| VRD312       | CVRur                                                                                        | Unit Resistor Value (R)              | _    | 4.5 | _    | kΩ |          |  |  |  |

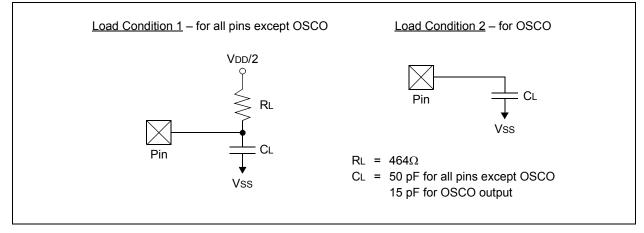
**Note 1:** Measures the interval while CVR<4:0> transitions from '11111' to '00000'.

#### TABLE 32-15: CTMU CURRENT SOURCE SPECIFICATIONS

| DC CH/       | ARACTER | RISTICS                                                   | Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial |                    |     |       |                                                   |                     |  |  |
|--------------|---------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|-------|---------------------------------------------------|---------------------|--|--|
| Param<br>No. | Sym     | Characteristic                                            | Min                                                                                                                                             | Typ <sup>(1)</sup> | Max | Units | Comments                                          | Conditions          |  |  |
| DCT10        | IOUT1   | CTMU Current Source,<br>Base Range                        | —                                                                                                                                               | 550                |     | nA    | CTMUCON1L<1:0> = 00 <sup>(2)</sup>                |                     |  |  |
| DCT11        | IOUT2   | CTMU Current Source,<br>10x Range                         | -                                                                                                                                               | 5.5                |     | μA    | CTMUCON1L<1:0> = 01                               |                     |  |  |
| DCT12        | IOUT3   | CTMU Current Source,<br>100x Range                        | -                                                                                                                                               | 55                 |     | μA    | CTMUCON1L<1:0> = 10                               | 2.5V < VDD < VDDMAX |  |  |
| DCT13        | IOUT4   | CTMU Current Source, 1000x Range                          | —                                                                                                                                               | 550                | _   | μA    | CTMUCON1L<1:0> = $11^{(2)}$ ,<br>CTMUCON1H<0> = 0 |                     |  |  |
| DCT14        | IOUT5   | CTMU Current Source,<br>High Range                        | —                                                                                                                                               | 2.2                | _   | mA    | CTMUCON1L<1:0> = 01,<br>CTMUCON1H<0> = 1          |                     |  |  |
| DCT21        | VDELTA1 | Temperature Diode<br>Voltage Change per<br>Degree Celsius | —                                                                                                                                               | -1.8               | _   | mV/°C | Current = 5.5 μA                                  |                     |  |  |
| DCT22        | VDELTA2 | Temperature Diode<br>Voltage Change per<br>Degree Celsius | —                                                                                                                                               | -1.55              | —   | mV/°C | Current = 55 µA                                   |                     |  |  |
| DCT23        | VD1     | Forward Voltage                                           | —                                                                                                                                               | 710                | _   | mV    | At 0°C, 5.5 μΑ                                    |                     |  |  |
| DCT24        | VD2     | Forward Voltage                                           | —                                                                                                                                               | 760                | —   | mV    | At 0°C, 55 μΑ                                     |                     |  |  |

Note 1: Nominal value at center point of current trim range (CTMUCON1L<7:2> = 000000).

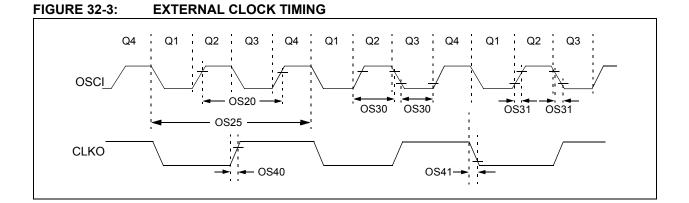
**2:** Do not use this current range with the internal temperature sensing diode.


# 32.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24FJ256GA705 family AC characteristics and timing parameters.

#### TABLE 32-16: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

|                    | Standard Operating Condition     | s: 2.0V to 3.6V (unless otherwise stated)             |
|--------------------|----------------------------------|-------------------------------------------------------|
| AC CHARACTERISTICS | Operating temperature            | $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial |
|                    | Operating voltage VDD range as o | described in Section 32.1 "DC Characteristics".       |


#### FIGURE 32-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS



#### TABLE 32-17: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

| Param<br>No. | Symbol | Characteristic        | Min | Typ <sup>(1)</sup> | Мах | Units | Conditions                                                         |
|--------------|--------|-----------------------|-----|--------------------|-----|-------|--------------------------------------------------------------------|
| DO50         | Cosco  | OSCO/CLKO Pin         | _   |                    | 15  | pF    | In XT and HS modes when<br>external clock is used to drive<br>OSCI |
| DO56         | Сю     | All I/O Pins and OSCO | _   | _                  | 50  | pF    | EC mode                                                            |
| DO58         | Св     | SCLx, SDAx            | —   |                    | 400 | pF    | In I <sup>2</sup> C mode                                           |

**Note 1:** Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.



#### TABLE 32-18: EXTERNAL CLOCK TIMING REQUIREMENTS

| AC CH        | ARACTE        | RISTICS                                                                 | Standard Op<br>Operating ter | -                  |                           | 2.0V to 3.6V (unless otherwise stated) -40°C $\leq$ TA $\leq$ +85°C for Industrial |                                      |  |
|--------------|---------------|-------------------------------------------------------------------------|------------------------------|--------------------|---------------------------|------------------------------------------------------------------------------------|--------------------------------------|--|
| Param<br>No. | Symbol        | Characteristic                                                          | Min                          | Typ <sup>(1)</sup> | Max                       | Units                                                                              | Conditions                           |  |
| OS10         | Fosc          | External CLKI Frequency<br>(External clocks allowed<br>only in EC mode) | DC<br>4                      |                    | 32<br>48                  | MHz<br>MHz                                                                         | EC<br>ECPLL (Note 2)                 |  |
|              |               | Oscillator Frequency                                                    | 3.5<br>4<br>10<br>12<br>31   |                    | 10<br>8<br>32<br>24<br>33 | MHz<br>MHz<br>MHz<br>MHz<br>kHz                                                    | XT<br>XTPLL<br>HS<br>HSPLL<br>SOSC   |  |
| OS20         | Tosc          | Tosc = 1/Fosc                                                           | _                            |                    |                           | -                                                                                  | See Parameter OS10 for<br>Fosc value |  |
| OS25         | Тсү           | Instruction Cycle Time <sup>(3)</sup>                                   | 62.5                         | _                  | DC                        | ns                                                                                 |                                      |  |
| OS30         | TosL,<br>TosH | External Clock in (OSCI)<br>High or Low Time                            | 0.45 x Tosc                  | —                  | —                         | ns                                                                                 | EC                                   |  |
| OS31         | TosR,<br>TosF | External Clock in (OSCI)<br>Rise or Fall Time                           | —                            | —                  | 20                        | ns                                                                                 | EC                                   |  |
| OS40         | TckR          | CLKO Rise Time <sup>(4)</sup>                                           | —                            | 15                 | 30                        | ns                                                                                 |                                      |  |
| OS41         | TckF          | CLKO Fall Time <sup>(4)</sup>                                           | —                            | 15                 | 30                        | ns                                                                                 |                                      |  |

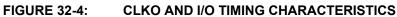
**Note 1:** Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

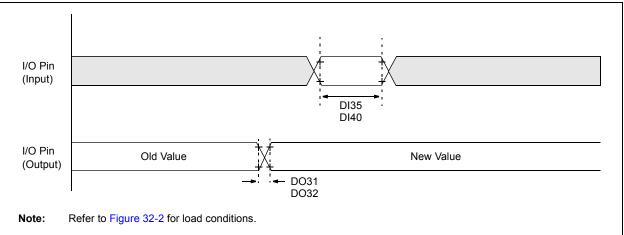
2: Represents input to the system clock prescaler. PLL dividers and postscalers must still be configured so that the system clock frequency does not exceed the maximum frequency shown in Figure 32-1.

- 3: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.
- 4: Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TcY) and high for the Q3-Q4 period (1/2 TcY).

#### TABLE 32-19: AC SPECIFICATIONS FOR PHASE-LOCKED LOOP MODE

| AC CH | ACCHARACTERISTICS                                                                                                                  |     | Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial |       |       |                                                                                                                    |  |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------------------------------------------------------------------------------------------------------------------|--|--|--|
| Sym   | Characteristic                                                                                                                     | Min | Тур                                                                                                                                             | Max   | Units | Conditions                                                                                                         |  |  |  |
| Fin   | Input Frequency Range                                                                                                              | 2   | _                                                                                                                                               | 24    | MHz   |                                                                                                                    |  |  |  |
| FMIN  | Minimum Output Frequency from the<br>Frequency Multiplier                                                                          | —   | —                                                                                                                                               | 16    | MHz   | 4 MHz FIN with 4x feedback ratio,<br>2 MHz FIN with 8x feedback ratio                                              |  |  |  |
| Fмах  | Maximum Output Frequency from the<br>Frequency Multiplier                                                                          | 96  | —                                                                                                                                               | —     | MHz   | 4 MHz FIN with 24x net multiplication ratio,<br>24 MHz FIN with 4x net multiplication ratio                        |  |  |  |
| FSLEW | Maximum Step Function of FIN at which the PLL will be Ensured to Maintain Lock                                                     | -4  | —                                                                                                                                               | +4    | %     | Full input range of FIN                                                                                            |  |  |  |
| TLOCK | Lock Time for VCO                                                                                                                  | -   | —                                                                                                                                               | 24    | μs    | With the specified minimum, TREF, and a lock timer count of one cycle, this is the maximum VCO lock time supported |  |  |  |
| JFM8  | Cumulative Jitter of Frequency Multiplier<br>Over Voltage and Temperature during Any<br>Eight Consecutive Cycles of the PLL Output | —   | —                                                                                                                                               | ±0.12 | %     | 4 MHz FIN with 4x feedback ratio                                                                                   |  |  |  |


### TABLE 32-20: INTERNAL RC ACCURACY


| АС СНА       | RACTERISTICS         |      | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |     |                    |                                                                                                  |  |  |  |
|--------------|----------------------|------|------------------------------------------------------|-----|--------------------|--------------------------------------------------------------------------------------------------|--|--|--|
| Param<br>No. | Characteristic       | Min  | Тур                                                  | Max | C Units Conditions |                                                                                                  |  |  |  |
| F20          | FRC Accuracy @ 8 MHz | -1.5 | +0.15                                                | 1.5 | %                  | $2.0V \leq VDD \leq 3.6V, \ 0^{\circ}C \leq TA \leq +85^{\circ}C$ (Note 1)                       |  |  |  |
|              |                      | -2   | —                                                    | 2   | %                  | $2.0V \leq V\text{DD} \leq 3.6V, \ \text{-40}^\circ\text{C} \leq \text{Ta} \leq 0^\circ\text{C}$ |  |  |  |
| F21          | LPRC @ 31 kHz        | -20  | _                                                    | 20  | %                  | VCAP Output Voltage = 1.8V                                                                       |  |  |  |
| F22          | OSCTUN Step-Size     |      | 0.1                                                  | _   | %/bit              |                                                                                                  |  |  |  |

**Note 1:** To achieve this accuracy, physical stress applied to the microcontroller package (ex., by flexing the PCB) must be kept to a minimum.

#### TABLE 32-21: RC OSCILLATOR START-UP TIME

| AC CH        | ARACTEI | RISTICS                                  |     | Standard Operating Conditions:2.0V to 3.6V (unless otherwise stOperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial |     |       |            |  |  |
|--------------|---------|------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|------------|--|--|
| Param<br>No. | Symbol  | Characteristic                           | Min | Тур                                                                                                                                        | Max | Units | Conditions |  |  |
| FR0          | TFRC    | FRC Oscillator Start-up<br>Time          | —   | 15                                                                                                                                         | _   | μS    |            |  |  |
| FR1          | TLPRC   | Low-Power RC Oscillator<br>Start-up Time | —   | 50                                                                                                                                         | —   | μS    |            |  |  |





#### TABLE 32-22: CLKO AND I/O TIMING REQUIREMENTS

| AC CHA       | AC CHARACTERISTICS |                                      |     | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |     |       |            |  |  |  |
|--------------|--------------------|--------------------------------------|-----|------------------------------------------------------|-----|-------|------------|--|--|--|
| Param<br>No. | Symbol             | Characteristic                       | Min | Typ <sup>(1)</sup>                                   | Мах | Units | Conditions |  |  |  |
| DO31         | TIOR               | Port Output Rise Time                | —   | 10                                                   | 25  | ns    |            |  |  |  |
| DO32         | TIOF               | Port Output Fall Time                | _   | 10                                                   | 25  | ns    |            |  |  |  |
| DI35         | TINP               | INTx Pin High or Low<br>Time (input) | 1   | —                                                    | _   | Тсү   |            |  |  |  |
| DI40         | Trbp               | CNx High or Low Time (input)         | 1   | —                                                    | —   | Тсү   |            |  |  |  |

**Note 1:** Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated.

| ас сн        | AC CHARACTERISTICS |                                                                |                                     | Standard Operating Conditions:2.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial |             |            |                                 |  |  |  |  |
|--------------|--------------------|----------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|---------------------------------|--|--|--|--|
| Param<br>No. | Symbol             | Characteristic                                                 | Characteristic Min Typ Max          |                                                                                                                                                 | Units       | Conditions |                                 |  |  |  |  |
| SY10         | TMCL               | MCLR Pulse Width (Low)                                         | 2                                   | -                                                                                                                                               | _           | μS         |                                 |  |  |  |  |
| SY12         | TPOR               | Power-on Reset Delay                                           | _                                   | 2                                                                                                                                               | _           | μS         |                                 |  |  |  |  |
| SY13         | Tioz               | I/O High-Impedance from<br>MCLR Low or Watchdog<br>Timer Reset | Lesser of:<br>(3 Tcy + 2)<br>or 700 | —                                                                                                                                               | (3 Tcy + 2) | μS         |                                 |  |  |  |  |
| SY25         | TBOR               | Brown-out Reset Pulse<br>Width                                 | 1                                   |                                                                                                                                                 | —           | μS         | $V \text{DD} \leq V \text{BOR}$ |  |  |  |  |
| SY45         | TRST               | Internal State Reset Time                                      | _                                   | 50                                                                                                                                              |             | μS         |                                 |  |  |  |  |
| SY71         | Трм                | Program Memory<br>Wake-up Time                                 | —                                   | 20                                                                                                                                              | —           | μS         | Sleep wake-up with<br>VREGS = 1 |  |  |  |  |
|              |                    |                                                                | _                                   | 1                                                                                                                                               | —           | μS         | Sleep wake-up with<br>VREGS = 0 |  |  |  |  |
| SY72         | Tlvr               | Low-Voltage Regulator<br>Wake-up Time                          | —                                   | 90                                                                                                                                              | —           | μS         | Sleep wake-up with<br>VREGS = 1 |  |  |  |  |
|              |                    |                                                                | —                                   | 70                                                                                                                                              | —           | μS         | Sleep wake-up with<br>VREGS = 0 |  |  |  |  |

#### TABLE 32-23: RESET AND BROWN-OUT RESET REQUIREMENTS

| AC CH        | ARACTER   | ISTICS                                               | Standard O<br>Operating te         |          |                                   | : 2.0V to 3.6V (unless otherwise stated) -40°C $\leq$ TA $\leq$ +85°C for Industrial |                                                                                                |  |
|--------------|-----------|------------------------------------------------------|------------------------------------|----------|-----------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|
| Param<br>No. | Symbol    | Characteristic                                       | Min.                               | Тур      | Max.                              | Units                                                                                | Conditions                                                                                     |  |
|              |           |                                                      | Devid                              | e Supp   | ly                                |                                                                                      |                                                                                                |  |
| AD01         | AVDD      | Module VDD Supply                                    | Greater of:<br>VDD – 0.3<br>or 2.2 | _        | Lesser of:<br>VDD + 0.3<br>or 3.6 | V                                                                                    |                                                                                                |  |
| AD02         | AVss      | Module Vss Supply                                    | Vss – 0.3                          |          | Vss + 0.3                         | V                                                                                    |                                                                                                |  |
|              |           |                                                      | Refere                             | nce Inp  | uts                               |                                                                                      |                                                                                                |  |
| AD05         | VREFH     | Reference Voltage High                               | AVss + 1.7                         |          | AVDD                              | V                                                                                    |                                                                                                |  |
| AD06         | VREFL     | Reference Voltage Low                                | AVss                               |          | AVDD - 1.7                        | V                                                                                    |                                                                                                |  |
| AD07         | Vref      | Absolute Reference<br>Voltage                        | AVss – 0.3                         | —        | AVDD + 0.3                        | V                                                                                    |                                                                                                |  |
|              |           |                                                      | Anal                               | og Input | ts                                |                                                                                      |                                                                                                |  |
| AD10         | VINH-VINL | Full-Scale Input Span                                | VREFL                              | _        | VREFH                             | V                                                                                    | (Note 2)                                                                                       |  |
| AD11         | VIN       | Absolute Input Voltage                               | AVss - 0.3                         | _        | AVDD + 0.3                        | V                                                                                    |                                                                                                |  |
| AD12         | Vinl      | Absolute VINL Input<br>Voltage                       | AVss – 0.3                         | _        | AVDD/3                            | V                                                                                    |                                                                                                |  |
| AD13         |           | Leakage Current                                      | —                                  | ±1.0     | ±610                              | nA                                                                                   | VINL = AVSS = VREFL = 0V,<br>AVDD = VREFH = $3V$ ,<br>Source Impedance = $2.5 \text{ k}\Omega$ |  |
| AD17         | RIN       | Recommended<br>Impedance of Analog<br>Voltage Source | —                                  | _        | 2.5k                              | Ω                                                                                    | 10-bit                                                                                         |  |
|              |           | •                                                    | A/D                                | Accurac  | y                                 |                                                                                      |                                                                                                |  |
| AD20B        | Nr        | Resolution                                           |                                    | 12       | —                                 | bits                                                                                 |                                                                                                |  |
| AD21B        | INL       | Integral Nonlinearity                                | —                                  | ±1       | < ±2                              | LSb                                                                                  | VINL = AVSS = VREFL = 0V,<br>AVDD = VREFH = 3V                                                 |  |
| AD22B        | DNL       | Differential Nonlinearity                            | —                                  | _        | < ±1                              | LSb                                                                                  | VINL = AVSS = VREFL = 0V,<br>AVDD = VREFH = 3V                                                 |  |
| AD23B        | Gerr      | Gain Error                                           | —                                  | ±1       | ±4                                | LSb                                                                                  | VINL = AVSS = VREFL = 0V,<br>AVDD = VREFH = 3V                                                 |  |
| AD24B        | EOFF      | Offset Error                                         | _                                  | ±1       | ±2                                | LSb                                                                                  | VINL = AVSS = VREFL = 0V,<br>AVDD = VREFH = 3V                                                 |  |
| AD25B        |           | Monotonicity <sup>(1)</sup>                          |                                    | —        | _                                 | _                                                                                    | Guaranteed                                                                                     |  |

# TABLE 32-24: A/D MODULE SPECIFICATIONS

Note 1: The A/D conversion result never decreases with an increase in the input voltage.

2: Measurements are taken with the external VREF+ and VREF- used as the A/D voltage reference.

| АС СН        | ARACTE                | RISTICS                                                  |      | d <b>Operati</b> i<br>g temper | -    |       | V to 3.6V (unless otherwise stated) $^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial |  |  |  |  |  |
|--------------|-----------------------|----------------------------------------------------------|------|--------------------------------|------|-------|------------------------------------------------------------------------------------------|--|--|--|--|--|
| Param<br>No. | Symbol                | Characteristic                                           | Min. | Тур                            | Max. | Units | Conditions                                                                               |  |  |  |  |  |
|              | Clock Parameters      |                                                          |      |                                |      |       |                                                                                          |  |  |  |  |  |
| AD50         | Tad                   | A/D Clock Period                                         | 278  | —                              |      | ns    |                                                                                          |  |  |  |  |  |
| AD51         | tRC                   | A/D Internal RC Oscillator<br>Period                     |      | 250                            | —    | ns    |                                                                                          |  |  |  |  |  |
|              | Conversion Rate       |                                                          |      |                                |      |       |                                                                                          |  |  |  |  |  |
| AD55         | tCONV                 | SAR Conversion Time,<br>12-Bit Mode                      | _    | 14                             | —    | Tad   |                                                                                          |  |  |  |  |  |
| AD55A        |                       | SAR Conversion Time,<br>10-Bit Mode is Typical<br>12 Tad | _    | 12                             | —    | Tad   |                                                                                          |  |  |  |  |  |
| AD56         | FCNV                  | Throughput Rate                                          |      | _                              | 200  | ksps  | AVDD > 2.7V <sup>(2)</sup>                                                               |  |  |  |  |  |
| AD57         | tSAMP                 | Sample Time                                              |      | 1                              |      | Tad   |                                                                                          |  |  |  |  |  |
|              | Clock Synchronization |                                                          |      |                                |      |       |                                                                                          |  |  |  |  |  |
| AD61         | tpss                  | Sample Start Delay from<br>Setting Sample bit (SAMP)     | 1.5  |                                | 2.5  | Tad   |                                                                                          |  |  |  |  |  |

# TABLE 32-25: A/D CONVERSION TIMING REQUIREMENTS<sup>(1)</sup>

**Note 1:** Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

2: Throughput rate is based on AD55 + AD57 + AD61 and the period of TAD.

# 33.0 PACKAGING INFORMATION

#### 33.1 **Package Marking Information**

28-Lead QFN (6x6 mm) Example 24FJ256 XXXXXXXXX GA702 XXXXXXXXX YYWWNNN 1810017 28-Lead UQFN (4x4x0.6 mm) Example Ο Ο XXXXX PIC24 XXXXXX FJ256 XXXXXX GA702 YYWWNNN 1810017 28-Lead SOIC (7.50 mm) Example **1810017 M**YYWWNNN 28-Lead SSOP (5.30 mm) Example XXXXXXXXXXXXX PIC24FJ256 XXXXXXXXXXXXX GA702 **M** YYWWNNN **1810017** Legend: XX...X Customer-specific information Year code (last digit of calendar year) Y YΥ Year code (last 2 digits of calendar year)

NNN Alphanumeric traceability code In the event the full Microchip part number cannot be marked on one line, it will Note: be carried over to the next line, thus limiting the number of available characters for customer-specific information.

Week code (week of January 1 is week '01')





© 2016-2018 Microchip Technology Inc.

ww

# 33.1 Package Marking Information (Continued)

28-Lead SPDIP (300 mil)

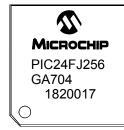
44-Lead TQFP (10x10x1 mm)

 $\langle M \rangle$ 

MICROCHIP

XXXXXXXXXXX

XXXXXXXXXXX


 $\begin{array}{c} \mathsf{XXXXXXXXXX}\\ \frown \mathsf{YYWWNNN} \end{array}$ 



# Example



#### Example



#### 48-Lead UQFN (6x6 mm)



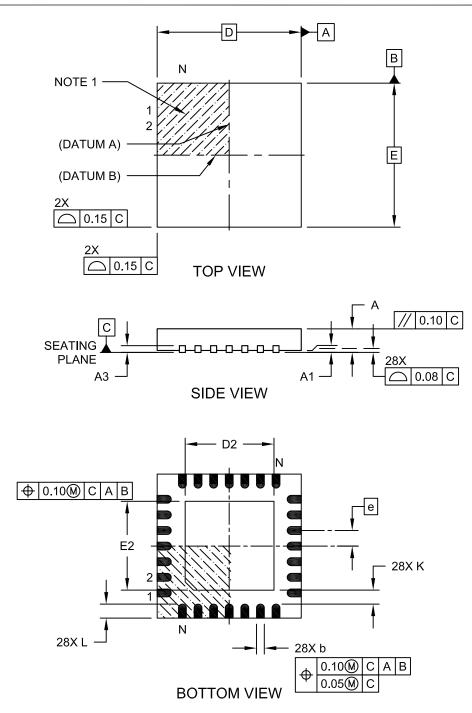
Example



48-Lead TQFP (7x7x1.0 mm)



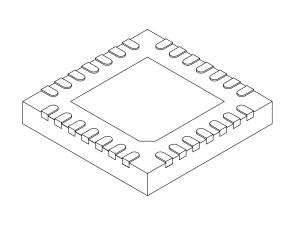
Example




# 33.2 Package Details

The following sections give the technical details of the packages.

### 28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length


**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-105C Sheet 1 of 2

### 28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

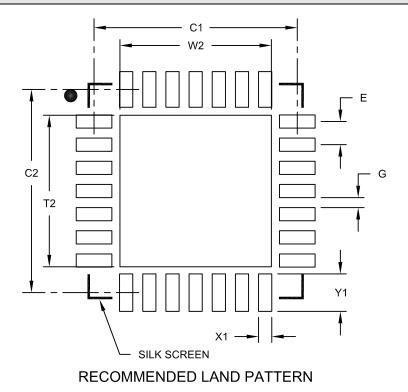


|                         | Units  | М        | LLIMETERS |      |
|-------------------------|--------|----------|-----------|------|
| Dimensior               | Limits | MIN      | NOM       | MAX  |
| Number of Pins          | Ν      |          | 28        |      |
| Pitch                   | е      |          | 0.65 BSC  |      |
| Overall Height          | Α      | 0.80     | 0.90      | 1.00 |
| Standoff                | A1     | 0.00     | 0.02      | 0.05 |
| Terminal Thickness      | A3     | 0.20 REF |           |      |
| Overall Width           | Е      |          | 6.00 BSC  |      |
| Exposed Pad Width       | E2     | 3.65     | 3.70      | 4.20 |
| Overall Length          | D      |          | 6.00 BSC  |      |
| Exposed Pad Length      | D2     | 3.65     | 3.70      | 4.20 |
| Terminal Width          | b      | 0.23     | 0.30      | 0.35 |
| Terminal Length         | L      | 0.50     | 0.55      | 0.70 |
| Terminal-to-Exposed Pad | K      | 0.20     | -         | -    |

#### Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated


3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105C Sheet 2 of 2

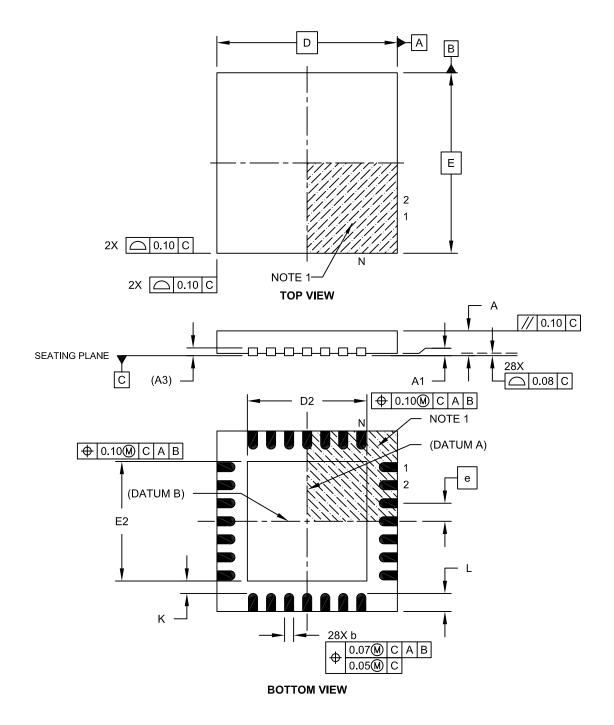
# 28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



| Units                      |    | MILLIMETERS |          |      |
|----------------------------|----|-------------|----------|------|
| Dimension Limits           |    | MIN         | NOM      | MAX  |
| Contact Pitch              | E  |             | 0.65 BSC | •    |
| Optional Center Pad Width  | W2 |             |          | 4.25 |
| Optional Center Pad Length | T2 |             |          | 4.25 |
| Contact Pad Spacing        | C1 |             | 5.70     |      |
| Contact Pad Spacing        | C2 |             | 5.70     |      |
| Contact Pad Width (X28)    | X1 |             |          | 0.37 |
| Contact Pad Length (X28)   | Y1 |             |          | 1.00 |
| Distance Between Pads      | G  | 0.20        |          |      |

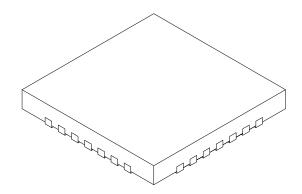
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

# 28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]


**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-152A Sheet 1 of 2

#### 28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



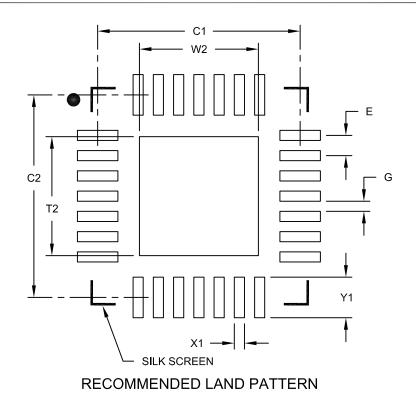
|                        | MILLIMETERS      |           |          |      |
|------------------------|------------------|-----------|----------|------|
| Dimension              | Dimension Limits |           | NOM      | MAX  |
| Number of Pins         | N                |           | 28       |      |
| Pitch                  | е                |           | 0.40 BSC |      |
| Overall Height         | А                | 0.45      | 0.55     |      |
| Standoff               | A1               | 0.00      | 0.02     | 0.05 |
| Contact Thickness      | A3               | 0.127 REF |          |      |
| Overall Width          | E                | 4.00 BSC  |          |      |
| Exposed Pad Width      | E2               | 2.55      | 2.65     | 2.75 |
| Overall Length         | D                |           | 4.00 BSC |      |
| Exposed Pad Length     | D2               | 2.55      | 2.65     | 2.75 |
| Contact Width          | b                | 0.15      | 0.20     | 0.25 |
| Contact Length         | L                | 0.30      | 0.40     | 0.50 |
| Contact-to-Exposed Pad | K                | 0.20      | -        |      |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-152A Sheet 2 of 2

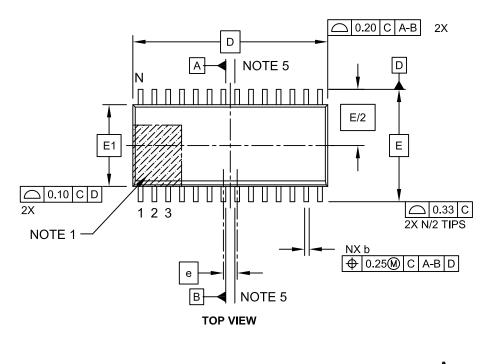
28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 4x4 mm Body [UQFN] With 0.40 mm Contact Length

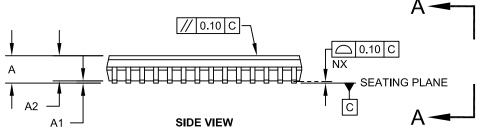
**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

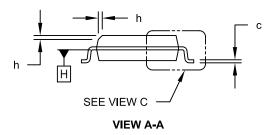


| Units                      |    | MILLIMETERS |          |      |  |
|----------------------------|----|-------------|----------|------|--|
| Dimension Limits           |    | MIN         | NOM      | MAX  |  |
| Contact Pitch              | E  |             | 0.40 BSC |      |  |
| Optional Center Pad Width  | W2 |             |          | 2.35 |  |
| Optional Center Pad Length | T2 |             |          | 2.35 |  |
| Contact Pad Spacing        | C1 |             | 4.00     |      |  |
| Contact Pad Spacing        | C2 |             | 4.00     |      |  |
| Contact Pad Width (X28)    | X1 |             |          | 0.20 |  |
| Contact Pad Length (X28)   | Y1 |             |          | 0.80 |  |
| Distance Between Pads      | G  | 0.20        |          |      |  |

#### Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

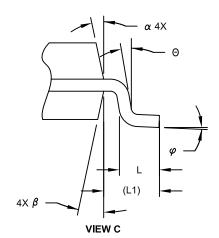

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

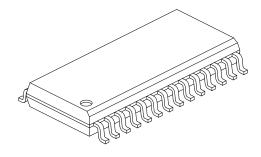

Microchip Technology Drawing No. C04-2152A

# 28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging






Microchip Technology Drawing C04-052C Sheet 1 of 2

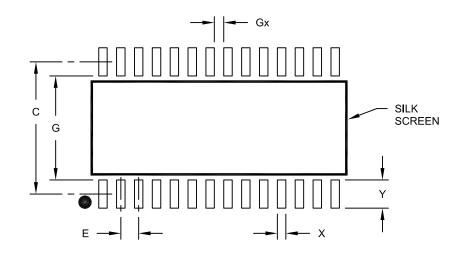
## 28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging





|                          | Units    | Ν         | MILLIMETERS |      |  |
|--------------------------|----------|-----------|-------------|------|--|
| Dimensio                 | n Limits | MIN       | NOM         | MAX  |  |
| Number of Pins           | N        |           | 28          |      |  |
| Pitch                    | е        |           | 1.27 BSC    |      |  |
| Overall Height           | Α        | -         | -           | 2.65 |  |
| Molded Package Thickness | A2       | 2.05      | -           | -    |  |
| Standoff §               | A1       | 0.10      | -           | 0.30 |  |
| Overall Width            | E        | 10.30 BSC |             |      |  |
| Molded Package Width     | E1       | 7.50 BSC  |             |      |  |
| Overall Length           | D        | 17.90 BSC |             |      |  |
| Chamfer (Optional)       | h        | 0.25      | -           | 0.75 |  |
| Foot Length              | L        | 0.40      | -           | 1.27 |  |
| Footprint                | L1       |           | 1.40 REF    |      |  |
| Lead Angle               | Θ        | 0°        | -           | -    |  |
| Foot Angle               | φ        | 0°        | -           | 8°   |  |
| Lead Thickness           | С        | 0.18      | -           | 0.33 |  |
| Lead Width               | b        | 0.31      | -           | 0.51 |  |
| Mold Draft Angle Top     | α        | 5°        | -           | 15°  |  |
| Mold Draft Angle Bottom  | β        | 5°        | -           | 15°  |  |


#### Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

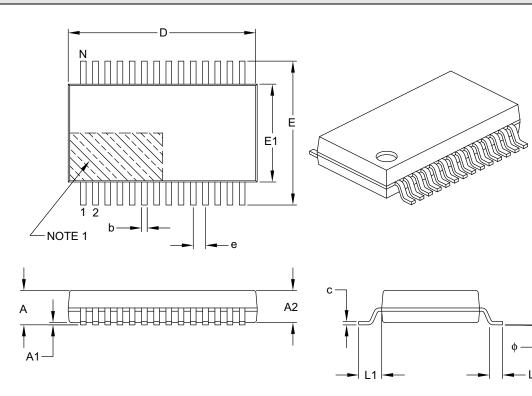
**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



# RECOMMENDED LAND PATTERN

| Units                    |    | MILLIMETERS |      |      |
|--------------------------|----|-------------|------|------|
| Dimension Limits         |    | MIN         | NOM  | MAX  |
| Contact Pitch            | E  | 1.27 BSC    |      |      |
| Contact Pad Spacing      | С  |             | 9.40 |      |
| Contact Pad Width (X28)  | X  |             |      | 0.60 |
| Contact Pad Length (X28) | Y  |             |      | 2.00 |
| Distance Between Pads    | Gx | 0.67        |      |      |
| Distance Between Pads    | G  | 7.40        |      |      |

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

# 28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

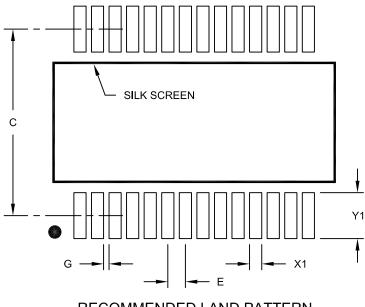


|                          | Units     |          | MILLIMETERS |       |  |
|--------------------------|-----------|----------|-------------|-------|--|
| Dimensio                 | on Limits | MIN      | NOM         | MAX   |  |
| Number of Pins           | Ν         |          | 28          |       |  |
| Pitch                    | е         |          | 0.65 BSC    |       |  |
| Overall Height           | Α         | -        | -           | 2.00  |  |
| Molded Package Thickness | A2        | 1.65     | 1.75        | 1.85  |  |
| Standoff                 | A1        | 0.05     | -           | -     |  |
| Overall Width            | Е         | 7.40     | 7.80        | 8.20  |  |
| Molded Package Width     | E1        | 5.00     | 5.30        | 5.60  |  |
| Overall Length           | D         | 9.90     | 10.20       | 10.50 |  |
| Foot Length              | L         | 0.55     | 0.75        | 0.95  |  |
| Footprint                | L1        | 1.25 REF |             |       |  |
| Lead Thickness           | С         | 0.09     | -           | 0.25  |  |
| Foot Angle               | φ         | 0°       | 4°          | 8°    |  |
| Lead Width               | b         | 0.22     | -           | 0.38  |  |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

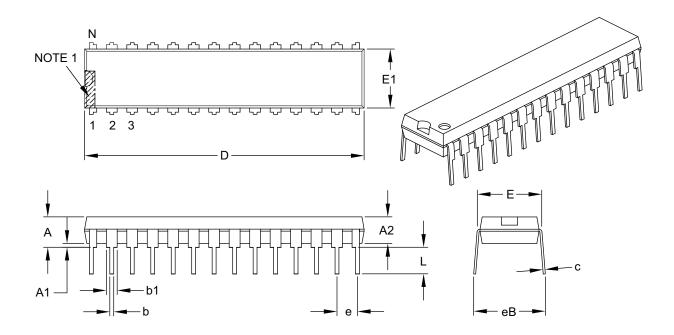
**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



RECOMMENDED LAND PATTERN

|                          | Units            |          | MILLIMETERS |      |  |  |
|--------------------------|------------------|----------|-------------|------|--|--|
| Dimension                | Dimension Limits |          | NOM         | MAX  |  |  |
| Contact Pitch            | E                | 0.65 BSC |             |      |  |  |
| Contact Pad Spacing      | С                |          | 7.20        |      |  |  |
| Contact Pad Width (X28)  | X1               |          |             | 0.45 |  |  |
| Contact Pad Length (X28) | Y1               |          |             | 1.75 |  |  |
| Distance Between Pads    | G                | 0.20     |             |      |  |  |

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

## 28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

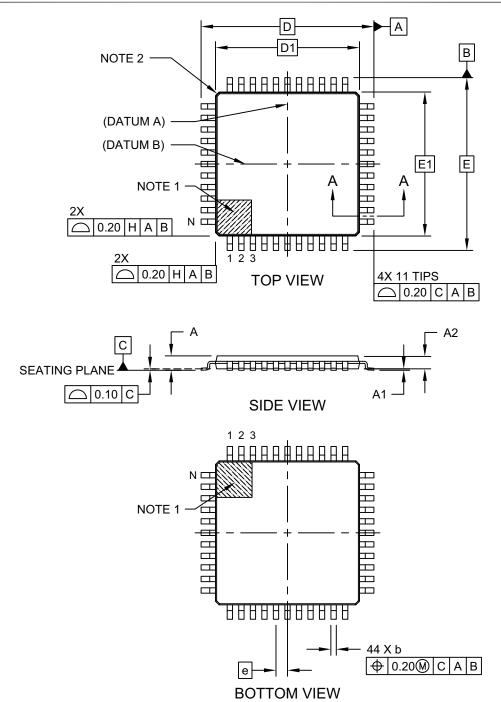
**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                            | Units            |       | INCHES      |       |  |
|----------------------------|------------------|-------|-------------|-------|--|
| Dimensi                    | Dimension Limits |       | MIN NOM MAX |       |  |
| Number of Pins             | Ν                |       | 28          |       |  |
| Pitch                      | е                |       | .100 BSC    |       |  |
| Top to Seating Plane       | А                | -     | -           | .200  |  |
| Molded Package Thickness   | A2               | .120  | .135        | .150  |  |
| Base to Seating Plane      | A1               | .015  | -           | -     |  |
| Shoulder to Shoulder Width | E                | .290  | .310        | .335  |  |
| Molded Package Width       | E1               | .240  | .285        | .295  |  |
| Overall Length             | D                | 1.345 | 1.365       | 1.400 |  |
| Tip to Seating Plane       | L                | .110  | .130        | .150  |  |
| Lead Thickness             | С                | .008  | .010        | .015  |  |
| Upper Lead Width           | b1               | .040  | .050        | .070  |  |
| Lower Lead Width           | b                | .014  | .018        | .022  |  |
| Overall Row Spacing §      | eB               | -     | -           | .430  |  |

#### Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

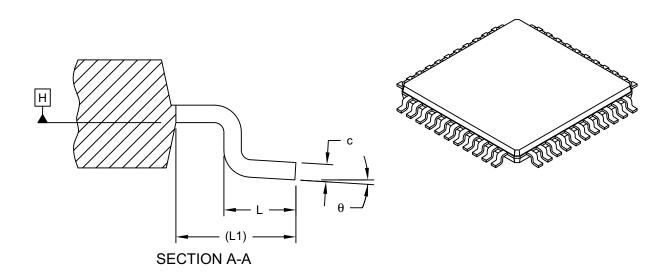
BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B



# 44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

http://www.microchip.com/packaging


Note:

For the most current package drawings, please see the Microchip Packaging Specification located at

Microchip Technology Drawing C04-076C Sheet 1 of 2

# 44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

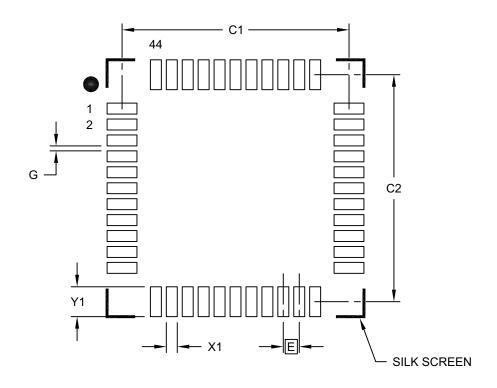


|                          | N      | MILLIMETERS |           |      |  |
|--------------------------|--------|-------------|-----------|------|--|
| Dimension                | Limits | MIN         | NOM       | MAX  |  |
| Number of Leads          | Ν      |             | 44        |      |  |
| Lead Pitch               | е      |             | 0.80 BSC  |      |  |
| Overall Height           | Α      | 1.2         |           |      |  |
| Standoff                 | A1     | 0.05        | 0.15      |      |  |
| Molded Package Thickness | A2     | 0.95        | 1.00      | 1.05 |  |
| Overall Width            | E      | 12.00 BSC   |           |      |  |
| Molded Package Width     | E1     | 10.00 BSC   |           |      |  |
| Overall Length           | D      |             | 12.00 BSC |      |  |
| Molded Package Length    | D1     |             | 10.00 BSC |      |  |
| Lead Width               | b      | 0.30        | 0.37      | 0.45 |  |
| Lead Thickness           | С      | 0.09        | -         | 0.20 |  |
| Lead Length              | L      | 0.45        | 0.60      | 0.75 |  |
| Footprint                | L1     | 1.00 REF    |           |      |  |
| Foot Angle               | θ      | 0°          | 3.5°      | 7°   |  |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.


3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2

# 44-Lead Plastic Thin Quad Flatpack (PT) - 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



# RECOMMENDED LAND PATTERN

|                          | 11.1  |          |                   |      |
|--------------------------|-------|----------|-------------------|------|
|                          | Units |          | <b>IILLIMETER</b> | S    |
| Dimension Limits         |       | MIN      | NOM               | MAX  |
| Contact Pitch            | E     | 0.80 BSC |                   |      |
| Contact Pad Spacing      | C1    |          | 11.40             |      |
| Contact Pad Spacing      | C2    |          | 11.40             |      |
| Contact Pad Width (X44)  | X1    |          |                   | 0.55 |
| Contact Pad Length (X44) | Y1    |          |                   | 1.50 |
| Distance Between Pads    | G     | 0.25     |                   |      |

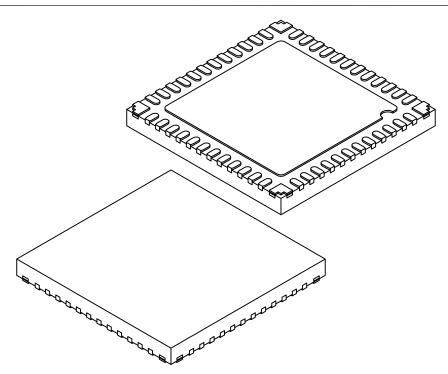
Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

# 48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M4) - 6x6 mm Body [UQFN] With Corner Anchors and 4.6x4.6 mm Exposed Pad


**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



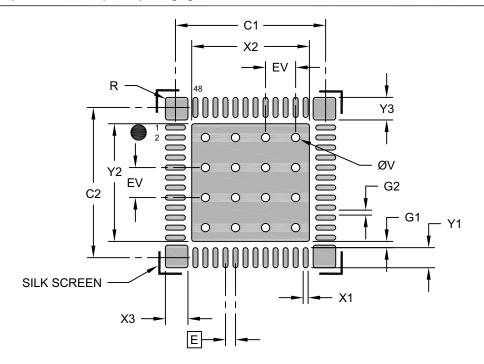
Microchip Technology Drawing C04-442A-M4 Sheet 1 of 2

# 48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M4) - 6x6 mm Body [UQFN] With Corner Anchors and 4.6x4.6 mm Exposed Pad

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                                    | MILLIMETERS |          |          |      |
|------------------------------------|-------------|----------|----------|------|
| Dimension                          | Limits      | MIN      | NOM      | MAX  |
| Number of Terminals                | Ν           | 48       |          |      |
| Pitch                              | е           |          | 0.40 BSC |      |
| Overall Height                     | А           | 0.50     | 0.55     | 0.60 |
| Standoff                           | A1          | 0.00     | 0.02     | 0.05 |
| Terminal Thickness                 | A3          | 0.15 REF |          |      |
| Overall Length                     | D           | 6.00 BSC |          |      |
| Exposed Pad Length                 | D2          | 4.50     | 4.60     | 4.70 |
| Overall Width                      | Е           |          | 6.00 BSC |      |
| Exposed Pad Width                  | E2          | 4.50     | 4.60     | 4.70 |
| Terminal Width                     | b           | 0.15     | 0.20     | 0.25 |
| Corner Anchor Pad                  | b1          | 0.45 REF |          |      |
| Corner Anchor Pad, Metal-free Zone | b2          | 0.23 REF |          |      |
| Terminal Length                    | L           | 0.35     | 0.40     | 0.45 |
| Terminal-to-Exposed-Pad            | K           |          | 0.30 REF |      |


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-442A-M4 Sheet 2 of 2

# 48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M4) - 6x6 mm Body [UQFN] With Corner Anchors and 4.6x4.6 mm Exposed Pad

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

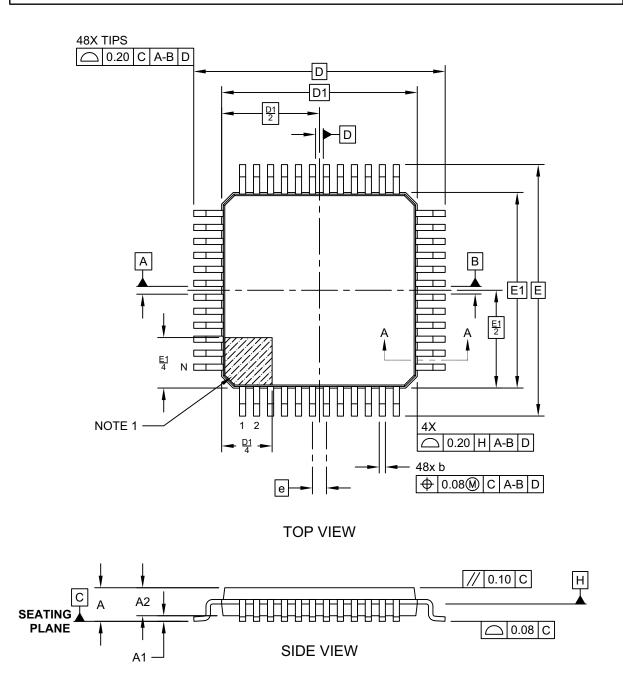


### RECOMMENDED LAND PATTERN

| Units                           |                  | MILLIMETERS |          |      |
|---------------------------------|------------------|-------------|----------|------|
| Dimension                       | Dimension Limits |             | NOM      | MAX  |
| Contact Pitch                   | E                |             | 0.40 BSC |      |
| Center Pad Width                | X2               |             |          | 4.70 |
| Center Pad Length               | Y2               |             |          | 4.70 |
| Contact Pad Spacing             | C1               |             | 6.00     |      |
| Contact Pad Spacing             | C2               |             | 6.00     |      |
| Contact Pad Width (X48)         | X1               |             |          | 0.20 |
| Contact Pad Length (X48)        | Y1               |             |          | 0.80 |
| Corner Anchor Pad Width (X4)    | X3               |             |          | 0.90 |
| Corner Anchor Pad Length (X4)   | Y3               |             |          | 0.90 |
| Pad Corner Radius (X 20)        | R                |             |          | 0.10 |
| Contact Pad to Center Pad (X48) | G1               | 0.25        |          |      |
| Contact Pad to Contact Pad      | G2               | 0.20        |          |      |
| Thermal Via Diameter            | V                |             | 0.33     |      |
| Thermal Via Pitch               | EV               |             | 1.20     |      |

Notes:

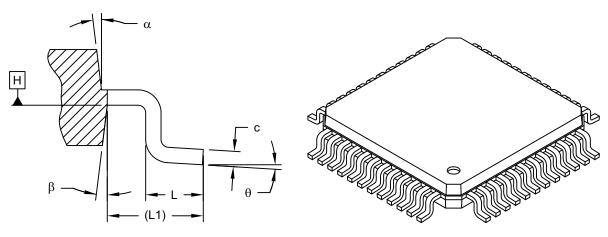
1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2442A-M4

# 48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP]


**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-300-PT Rev A Sheet 1 of 2

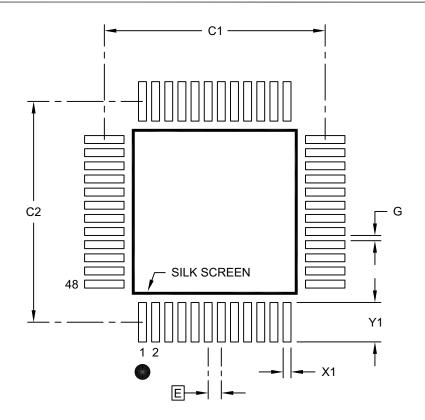
# 48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



SECTION A-A

| Units                    |    | MILLIMETERS |      |      |
|--------------------------|----|-------------|------|------|
| Dimension Limits         |    | MIN         | NOM  | MAX  |
| Number of Leads          | N  | 48          |      |      |
| Lead Pitch               | е  | 0.50 BSC    |      |      |
| Overall Height           | Α  | -           | -    | 1.20 |
| Standoff                 | A1 | 0.05        | -    | 0.15 |
| Molded Package Thickness | A2 | 0.95        | 1.00 | 1.05 |
| Foot Length              | L  | 0.45        | 0.60 | 0.75 |
| Footprint                | L1 | 1.00 REF    |      |      |
| Foot Angle               | ¢  | 0°          | 3.5° | 7°   |
| Overall Width            | E  | 9.00 BSC    |      |      |
| Overall Length           | D  | 9.00 BSC    |      |      |
| Molded Package Width     | E1 | 7.00 BSC    |      |      |
| Molded Package Length    | D1 | 7.00 BSC    |      |      |
| Lead Thickness           | С  | 0.09        | -    | 0.16 |
| Lead Width               | b  | 0.17        | 0.22 | 0.27 |
| Mold Draft Angle Top     | α  | 11°         | 12°  | 13°  |
| Mold Draft Angle Bottom  | β  | 11°         | 12°  | 13°  |


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.
- Dimensioning and tolerancing per ASME Y14.5M
   BSC: Basic Dimension. Theoretically exact value shown without tolerances.
   REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A-B and D to be determined at center line between leads where leads exit plastic body at datum plane H

Microchip Technology Drawing C04-300-PT Rev A Sheet 2 of 2

#### 48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



#### RECOMMENDED LAND PATTERN

|                          | Units | MILLIMETERS |      | S    |
|--------------------------|-------|-------------|------|------|
| Dimension Limits         |       | MIN         | NOM  | MAX  |
| Contact Pitch            | E     | 0.50 BSC    |      |      |
| Contact Pad Spacing      | C1    |             | 8.40 |      |
| Contact Pad Spacing      | C2    |             | 8.40 |      |
| Contact Pad Width (X48)  | X1    |             |      | 0.30 |
| Contact Pad Length (X48) | Y1    |             |      | 1.50 |
| Distance Between Pads    | G     | 0.20        |      |      |

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2300-PT Rev A

#### APPENDIX A: REVISION HISTORY

#### **Revision A (March 2016)**

Original data sheet for the PIC24FJ256GA705 family of devices.

#### **Revision B (October 2016)**

This revision incorporates the following updates:

- Sections:
  - Removes Section 9.5 "FRC Active Clock Tuning".
  - Updates the Absolute Maximum Ratings in Section 32.0 "Electrical Characteristics".
  - Changes the 48-Lead QFN (7x7 mm) to 48-Lead UQFN (6x6 mm) in Section 33.0 "Packaging Information".
- Registers:
  - Updates Register 9-1, Register 9-3, Register 9-6, Register 16-5 and Register 16-6
- Tables:
  - Adds Table 11-3, Table 11-4 and Table 11-5.
  - Updates the GPIO column in the Peripheral Features table on Page 2.
  - Updates Table 2, Table 3, Table 4, Table 5, Table 6, Table 32-4, Table 32-5, Table 32-6, Table 32-7 and Table 32-25.
- Figures
  - Updates Figure 9-1.
- Changes to text and formatting were incorporated throughout the document.

#### **Revision C (March 2018)**

This revision incorporates the following updates which also includes "**Data Sheet Clarifications**" listed in *PIC24FJ256GA705 Family Silicon Errata and Data Sheet Clarification* (DS80000718):

- Sections:
  - Updates "Referenced Sources", Section 5.0 "Direct Memory Access Controller (DMA)", Section 5.4 "DMA Registers", Section 9.7.2 "Crystal Selection", Section 10.2.4 "Low-Voltage Retention Regulator", Section 21.0 "Real-Time Clock and Calendar (RTCC) with Timestamp", Section 29.2 "Unique Device Identifier (UDID)" and Section 29.8 "Customer OTP Memory".
  - Replaces the 28-Pin UQFN M6 drawings with 28-Pin UQFN MV drawings in Section 33.0 "Packaging Information"; therefore, "Product Identification System" is also updated.
- Tables:
  - Updates Table 1, Table 1-3, Table 8-2, Table 10-1, Table 16-2, Table 29-5, Table 31-1, Table 32-12 and Table 32-24.
- · Registers:
  - Updates Register 8-6, Register 10-2, Register 14-1, Register 16-1, Register 17-1, Register 17-5, Register 19-2, Register 22-3, Register 22-4, Register 26-1, Register 27-3 and Register 28-1
- Figures:
  - Updates Figure 17-1, Figure 18-1, Figure 26-1 and Figure 28-1.
- · Example:
  - Updates Example 19-1.

## INDEX

Α

| A/D   |                                                 |    |
|-------|-------------------------------------------------|----|
|       | Achieving Maximum Performance29                 | 91 |
|       | Control Registers                               |    |
|       | Extended DMA Operations                         | 39 |
|       | Operation                                       | 37 |
|       | Transfer Functions                              |    |
|       | 10-Bit                                          | 70 |
|       | 12-Bit                                          | 06 |
| AC C  | Characteristics                                 |    |
|       | A/D Conversion Timing Requirements              | 74 |
|       | A/D Specifications                              |    |
|       | and Timing Parameters                           |    |
|       | Capacitive Loading on Output Pins               |    |
|       | CLKO and I/O Timing Requirements                |    |
|       | External Clock Timing Requirements              |    |
|       | Internal RC Accuracy                            |    |
|       | Load Conditions for Device Timing               | 68 |
|       | Phase-Locked Loop Mode Specifications           |    |
|       | RC Oscillator Start-up Time                     |    |
|       | Reset and Brown-out Reset Requirements          |    |
|       | og/Digital Pins Configuration During ICSP       |    |
|       | mbler                                           |    |
|       | MPASM Assembler                                 | 46 |
| _     |                                                 |    |
| В     |                                                 |    |
| Block | <pre>C Diagrams</pre>                           |    |
|       | 12-Bit A/D Converter                            | 38 |
|       | 12-Bit A/D Converter Analog Input Model         |    |
|       | 16-Bit Asynchronous Timer316                    |    |
|       | 16-Bit Synchronous Timer216                     |    |
|       | 16-Bit Timer1 Module1                           |    |
|       | 32-Bit Timer Mode18                             | 36 |
|       | Access Program Memory Using                     |    |
|       | Table Instructions                              | 60 |
|       | Addressing for Table Registers                  | 71 |
|       | Buffer Address Generation in PIA Mode           |    |
|       | CALL Stack Frame                                | 57 |
|       | CLCx Input Source Selection                     | 79 |
|       | CLCx Logic Function Combinatorial Options       | 78 |
|       | CLCx Module                                     |    |
|       | Comparator Voltage Reference                    | 15 |
|       | Conceptual MCCPx Module18                       | 33 |
|       | CPU Programmer's Model                          |    |
|       | CRC Module                                      | 71 |
|       | CRC Shift Engine Detail2                        | 71 |
|       | CTMU Connections and Internal Configuration for |    |
|       | Capacitance Measurement                         | 18 |
|       | CTMU Typical Connections and Internal           |    |
|       | Configuration for Pulse Delay Generation 3      | 19 |
|       | CTMU Typical Connections and Internal           |    |
|       | Configuration for Time Measurement              | 19 |
|       | Data Access from Program Space                  |    |
|       | Address Generation                              | 59 |
|       | DMA Module                                      |    |
|       | Dual 16-Bit Timer Mode                          |    |
|       | EDS Address Generation for Read Operations      |    |
|       | EDS Address Generation for Write Operations     |    |
|       | High/Low-Voltage Detect (HLVD)                  |    |
|       | I2Cx Module                                     |    |
|       | Individual Comparator Configurations, CREF = 03 |    |
|       | Individual Comparator Configurations,           |    |
|       | CREF = 1, CVREFP = 0                            | 10 |
|       | -                                               |    |

|    | Individual Comparator Configurations, |          |
|----|---------------------------------------|----------|
|    | CREF = 1, CVREFP = 1                  | 311      |
|    | Input Capture x Module                | 167, 188 |
|    | MCLR Pin Connection Example           | 30       |
|    | On-Chip Regulator Connections         |          |
|    | Oscillator Circuit Placement          |          |
|    | Output Compare x (16-Bit Mode)        | 174      |
|    | Output Compare x (Double-Buffered,    | 176      |
|    | Output Compare x Module               | 187      |
|    | PIC24F CPU Core                       |          |
|    | PIC24FJ256GA705 Family (General)      | 19       |
|    | PLL Module                            | 108      |
|    | PSV Operation (Lower Word)            | 62       |
|    | PSV Operation (Upper Word)            |          |
|    | Recommended Minimum Connections       | 29       |
|    | Reset System                          |          |
|    | RTCC Module                           | 252      |
|    | Shared I/O Port Structure             | 125      |
|    | SPIx Master, Frame Master Connection  |          |
|    | SPIx Master, Frame Slave Connection   | 220      |
|    | SPIx Master/Slave Connection          |          |
|    | (Enhanced Buffer Modes)               |          |
|    | SPIx Master/Slave Connection          |          |
|    | (Standard Mode)                       | 217      |
|    | SPIx Module (Enhanced Mode)           |          |
|    | SPIx Slave, Frame Master Connection   | 220      |
|    | SPIx Slave, Frame Slave Connection    | 220      |
|    | System Clock                          | 97       |
|    | Timer Clock Generator                 | 184      |
|    | Timer2/3 (32-Bit)                     | 162      |
|    | Triple Comparator Module              | 309      |
|    | UARTx (Simplified)                    | 230      |
|    | Watchdog Timer (WDT)                  | 343      |
| С  |                                       |          |
| СС | compilers                             |          |
|    | MPLAB C18                             | 346      |
|    |                                       |          |

| MPLAB C18                                   | 346 |
|---------------------------------------------|-----|
| Capture/Compare/PWM/Timer                   |     |
| Auxiliary Output                            | 189 |
| General Purpose Timer                       | 185 |
| Input Capture Mode                          | 188 |
| Output Compare Mode                         | 186 |
| Synchronization Sources                     | 193 |
| Time Base Generator                         |     |
| Capture/Compare/PWM/Timer (MCCP)            | 183 |
| Charge Time Measurement Unit. See CTMU.     |     |
| CLC                                         |     |
| Control Registers                           | 280 |
| Module-Specific Input Sources               | 283 |
| Code Examples                               |     |
| Basic Clock Switching                       | 107 |
| Configuring UART1 Input/Output Functions    | 140 |
| Double-Word Flash Programming (C Language)  | 78  |
| EDS Read from Program Memory in Assembly    | 61  |
| EDS Read in Assembly                        | 55  |
| EDS Write in Assembly                       |     |
| Erasing a Program Memory Block (C Language) |     |
| Initiating a Programming Sequence           | 76  |
| IOC Status Read/Clear in Assembly           | 128 |
| Port Read/Write in Assembly                 |     |
| Port Read/Write in C                        | 128 |
| PWRSAV Instruction Syntax                   | 113 |
| Setting the WRLOCK Bit                      | 253 |
|                                             |     |

С

| Code Memory Programming Example                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Double-Word Programming77                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Page Erase74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Row Writes75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Code Protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Comparator Voltage Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Configuring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Configurable Logic Cell (CLC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Configurable Logic Cell. See CLC.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Configuration Bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Core Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CPU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Arithmetic Logic Unit (ALU)40                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Clocking Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Control Registers                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Core Registers                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Programmer's Model35                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Data Shift Direction273                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Data Shift Direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Interrupt Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Interrupt Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Interrupt Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Interrupt Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Interrupt Operation273Polynomials272Setup Examples for 16 and 32-Bit Polynomials272Typical Operation273                                                                                                                                                                                                                                                                                                                                                                                      |
| Interrupt Operation273Polynomials272Setup Examples for 16 and 32-Bit Polynomials272Typical Operation273User Interface272                                                                                                                                                                                                                                                                                                                                                                     |
| Interrupt Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Interrupt Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Interrupt Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Interrupt Operation       273         Polynomials       272         Setup Examples for 16 and 32-Bit Polynomials       272         Typical Operation       273         User Interface       272         CTMU       Measuring Capacitance       317         Measuring Die Temperature       320         Measuring Time/Routing Current to       320                                                                                                                                           |
| Interrupt Operation       273         Polynomials       272         Setup Examples for 16 and 32-Bit Polynomials       272         Typical Operation       273         User Interface       272         CTMU       Measuring Capacitance       317         Measuring Die Temperature       320         Measuring Time/Routing Current to       A/D Input Pin       318                                                                                                                       |
| Interrupt Operation       273         Polynomials       272         Setup Examples for 16 and 32-Bit Polynomials       272         Typical Operation       273         User Interface       272         CTMU       Measuring Capacitance       317         Measuring Die Temperature       320         Measuring Time/Routing Current to       318         Pulse Generation and Delay       318                                                                                              |
| Interrupt Operation       273         Polynomials       272         Setup Examples for 16 and 32-Bit Polynomials       272         Typical Operation       273         User Interface       272         CTMU       Measuring Capacitance       317         Measuring Die Temperature       320         Measuring Time/Routing Current to       318         Pulse Generation and Delay       318         Customer Change Notification Service       407         Customer OTP Memory       344 |
| Interrupt Operation       273         Polynomials       272         Setup Examples for 16 and 32-Bit Polynomials       272         Typical Operation       273         User Interface       272         CTMU       Measuring Capacitance       317         Measuring Die Temperature       320         Measuring Time/Routing Current to       318         Pulse Generation and Delay       318         Customer Change Notification Service       407                                       |

## D

| Data Memory Space                           |     |
|---------------------------------------------|-----|
| Extended Data Space (EDS)                   | 54  |
| Memory Map                                  |     |
| Near Data Space                             |     |
| Organization, Alignment                     |     |
| SFR Space                                   |     |
| Implemented Regions                         |     |
| Map, 0000h Block                            | 47  |
| Map, 0100h Block                            |     |
| Map, 0200h Block                            |     |
| Map, 0300h Block                            | 50  |
| Map, 0400h Block                            | 51  |
| Map, 0500h Block                            | 52  |
| Map, 0600h Block                            | 52  |
| Map, 0700h Block                            |     |
| Software Stack                              | 57  |
| DC Characteristics                          |     |
| Comparator Specifications                   | 367 |
| Comparator Voltage Reference Specifications |     |
| CTMU Current Source                         | 367 |
| $\Delta$ Current (BOR, WDT, HLVD, RTCC)     | 363 |
| High/Low-Voltage Detect                     | 366 |
| I/O Pin Input Specifications                | 364 |
| I/O Pin Output Specifications               | 365 |
| Idle Current (IIDLE)                        | 361 |
| Internal Voltage Regulator Specifications   | 366 |
| Operating Current (IDD)                     | 360 |

| Power-Down Current (IPD)                         | 362 |
|--------------------------------------------------|-----|
| Program Memory                                   |     |
| Temperature and Voltage Specifications           |     |
| Thermal Operating Conditions                     |     |
| Thermal Packaging                                | 358 |
| Development Support                              |     |
| Device Features                                  |     |
| 28-Pin Devices                                   | 17  |
| 44/48-Pin Devices                                |     |
| Direct Memory Access Controller. See DMA.        |     |
| DMA                                              |     |
| Channel Trigger Sources                          | 70  |
| Control Registers                                |     |
| Peripheral Module Disable (PMD) Registers        |     |
|                                                  |     |
| Summary of Operations                            |     |
| Types of Data Transfers                          |     |
| Typical Setup                                    |     |
| DMA Controller                                   |     |
| E                                                |     |
| Electrical Characteristics                       | 257 |
|                                                  |     |
| Absolute Maximum Ratings                         |     |
| V/F Graph (Industrial)                           |     |
| Enhanced Parallel Master Port (EPMP)             | 239 |
| Enhanced Parallel Master Port. See EPMP.<br>EPMP |     |
| Key Features                                     | 239 |
| Memory Addressable in Different Modes            |     |
| Pin Descriptions                                 |     |
| PMDIN1 and PMDIN2 Registers                      |     |
| PMDOUT1 and PMDOUT2 Registers                    |     |
| Equations                                        |     |
| 16-Bit, 32-Bit CRC Polynomials                   | 272 |
| A/D Conversion Clock Period                      |     |
| Baud Rate Reload Calculation                     |     |
| Calculating the PWM Period                       |     |
| Calculating the P WM Period                      |     |
| Relationship Between Device and                  | 177 |
|                                                  | 220 |
| SPIx Clock Speed                                 |     |
| UARTx Baud Rate with BRGH = 0                    |     |
| UARTx Baud Rate with BRGH = 1                    |     |
| Errata                                           |     |
| Extended Data Space (EDS)                        |     |
| External Oscillator Pins                         | 33  |
| F                                                |     |
| Flash Program Memory                             | 71  |
|                                                  |     |

| Flash Program Memory 7                            | 71 |
|---------------------------------------------------|----|
| and Table Instructions7                           | 71 |
| Control Registers 7                               | /2 |
| Double-Word Programming7                          | 77 |
| Enhanced ICSP Operation 7                         | /2 |
| JTAG Operation7                                   | /2 |
| Operations                                        | /2 |
| Programming Algorithm 7                           | 74 |
| RTSP Operation7                                   | /2 |
| G                                                 |    |
| Guidelines for Getting Started with 16-Bit MCUs 2 | 29 |

#### ∐iah/I Detect (HLVD) 327

Н

| High/Low-Voltage De | tect (HLVD)     |  |
|---------------------|-----------------|--|
| High/Low-Voltage De | tect. See HLVD. |  |

#### I

| I/O Ports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 125                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analog Port Pins Configuration (ANSx)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 126                                                                                                                                                                                                                                                                                                                                                                                               |
| Configuring Analog/Digital Function of I/O Pins                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 126                                                                                                                                                                                                                                                                                                                                                                                               |
| Control Registers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                   |
| Input Voltage Levels for Port/Pin Tolerated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                   |
| Description Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 126                                                                                                                                                                                                                                                                                                                                                                                               |
| Open-Drain Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                   |
| Parallel (PIO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                   |
| Peripheral Pin Select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                   |
| PORTA Pin and ANSELx Availability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                   |
| PORTB Pin and ANSELx Availability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                   |
| PORTC Pin and ANSELx Availability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                   |
| Write/Read Timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 126                                                                                                                                                                                                                                                                                                                                                                                               |
| I <sup>2</sup> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                   |
| Clock Rates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 223                                                                                                                                                                                                                                                                                                                                                                                               |
| Communicating as Master in Single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                   |
| Master Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 221                                                                                                                                                                                                                                                                                                                                                                                               |
| Reserved Addresses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                   |
| Setting Baud Rate as Bus Master                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                   |
| Slave Address Masking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                   |
| ICSP Pins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                   |
| In-Circuit Debugger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 344                                                                                                                                                                                                                                                                                                                                                                                               |
| Input Capture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 400                                                                                                                                                                                                                                                                                                                                                                                               |
| 32-Bit Cascaded Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                   |
| Operations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                   |
| Synchronous and Trigger Modes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                   |
| Input Capture with Dedicated Timers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 167                                                                                                                                                                                                                                                                                                                                                                                               |
| Instruction Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                   |
| Overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 351                                                                                                                                                                                                                                                                                                                                                                                               |
| Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 349                                                                                                                                                                                                                                                                                                                                                                                               |
| Symbols Used in Opcode Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                   |
| Interfacing Program and Data Memory Spaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                   |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.                                                                                                                                                                                                                                                                                                                                                                                                                                 | 58                                                                                                                                                                                                                                                                                                                                                                                                |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.<br>Internet Address                                                                                                                                                                                                                                                                                                                                                                                                             | 58<br>407                                                                                                                                                                                                                                                                                                                                                                                         |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.<br>Internet Address<br>Interrupt Controller                                                                                                                                                                                                                                                                                                                                                                                     | 58<br>407<br>85                                                                                                                                                                                                                                                                                                                                                                                   |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.<br>Internet Address<br>Interrupt Controller<br>Alternate Interrupt Vector Table (AIVT)                                                                                                                                                                                                                                                                                                                                          | 58<br>407<br>85<br>85                                                                                                                                                                                                                                                                                                                                                                             |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.<br>Internet Address<br>Interrupt Controller<br>Alternate Interrupt Vector Table (AIVT)<br>Control and Status Registers                                                                                                                                                                                                                                                                                                          | 58<br>407<br>85<br>85<br>90                                                                                                                                                                                                                                                                                                                                                                       |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.<br>Internet Address<br>Interrupt Controller<br>Alternate Interrupt Vector Table (AIVT)<br>Control and Status Registers<br>IEC0-IEC7                                                                                                                                                                                                                                                                                             | 58<br>407<br>85<br>90<br>90                                                                                                                                                                                                                                                                                                                                                                       |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.<br>Internet Address<br>Interrupt Controller<br>Alternate Interrupt Vector Table (AIVT)<br>Control and Status Registers<br>IEC0-IEC7<br>IFS0-IFS7                                                                                                                                                                                                                                                                                | 58<br>85<br>85<br>90<br>90<br>90                                                                                                                                                                                                                                                                                                                                                                  |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.<br>Internet Address<br>Interrupt Controller<br>Alternate Interrupt Vector Table (AIVT)<br>Control and Status Registers<br>IEC0-IEC7<br>IFS0-IFS7<br>INTCON1                                                                                                                                                                                                                                                                     | 58<br>807<br>85<br>90<br>90<br>90<br>90<br>90                                                                                                                                                                                                                                                                                                                                                     |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.<br>Internet Address<br>Interrupt Controller<br>Alternate Interrupt Vector Table (AIVT)<br>Control and Status Registers<br>IEC0-IEC7<br>IFS0-IFS7<br>INTCON1<br>INTCON2                                                                                                                                                                                                                                                          | 58<br>407<br>85<br>90<br>90<br>90<br>90<br>90                                                                                                                                                                                                                                                                                                                                                     |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.<br>Internet Address<br>Interrupt Controller<br>Alternate Interrupt Vector Table (AIVT)<br>Control and Status Registers<br>IEC0-IEC7<br>IFS0-IFS7<br>INTCON1                                                                                                                                                                                                                                                                     | 58<br>407<br>85<br>90<br>90<br>90<br>90<br>90                                                                                                                                                                                                                                                                                                                                                     |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.<br>Internet Address<br>Interrupt Controller<br>Alternate Interrupt Vector Table (AIVT)<br>Control and Status Registers<br>IEC0-IEC7<br>IFS0-IFS7<br>INTCON1<br>INTCON2                                                                                                                                                                                                                                                          | 58<br>407<br>85<br>90<br>90<br>90<br>90<br>90<br>90                                                                                                                                                                                                                                                                                                                                               |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.<br>Internet Address<br>Interrupt Controller<br>Alternate Interrupt Vector Table (AIVT)<br>Control and Status Registers<br>IEC0-IEC7<br>IFS0-IFS7<br>INTCON1<br>INTCON1<br>INTCON2<br>INTCON4<br>INTCON4<br>INTTREG<br>IPC0-IPC29                                                                                                                                                                                                | 58<br>407<br>85<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90                                                                                                                                                                                                                                                                                                                             |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.<br>Internet Address<br>Interrupt Controller<br>Alternate Interrupt Vector Table (AIVT)<br>Control and Status Registers<br>IEC0-IEC7<br>IFS0-IFS7<br>INTCON1<br>INTCON1<br>INTCON2<br>INTCON4<br>INTCON4<br>INTTREG<br>IPC0-IPC29                                                                                                                                                                                                | 58<br>407<br>85<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90                                                                                                                                                                                                                                                                                                                             |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.<br>Internet Address<br>Interrupt Controller<br>Alternate Interrupt Vector Table (AIVT)<br>Control and Status Registers<br>IEC0-IEC7<br>IFS0-IFS7<br>INTCON1<br>INTCON1<br>INTCON2<br>INTCON4<br>INTCON4<br>INTTREG<br>IPC0-IPC29<br>Interrupt Vector Details                                                                                                                                                                    | 58<br>407<br>85<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>                   |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.<br>Internet Address<br>Interrupt Controller<br>Alternate Interrupt Vector Table (AIVT)<br>Control and Status Registers<br>IEC0-IEC7<br>IFS0-IFS7<br>INTCON1<br>INTCON1<br>INTCON2<br>INTCON4<br>INTCON4<br>INTTREG<br>IPC0-IPC29<br>Interrupt Vector Details<br>Interrupt Vector Table (IVT)                                                                                                                                    | 58<br>407<br>85<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>             |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.<br>Internet Address<br>Interrupt Controller<br>Alternate Interrupt Vector Table (AIVT)<br>Control and Status Registers<br>IEC0-IEC7<br>IFS0-IFS7<br>INTCON1<br>INTCON1<br>INTCON2<br>INTCON4<br>INTTREG<br>IPC0-IPC29<br>Interrupt Vector Details<br>Interrupt Vector Table (IVT)<br>Reset Sequence                                                                                                                             | 58<br>407<br>85<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>                   |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.<br>Internet Address<br>Interrupt Controller<br>Alternate Interrupt Vector Table (AIVT)<br>Control and Status Registers<br>IEC0-IEC7<br>IFS0-IFS7<br>INTCON1<br>INTCON1<br>INTCON2<br>INTCON4<br>INTCON4<br>INTTREG<br>IPC0-IPC29<br>Interrupt Vector Details<br>Interrupt Vector Table (IVT)<br>Reset Sequence<br>Resources                                                                                                     | 58<br>407<br>85<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>85<br>85<br>90                                                                                                                                                                                                                                                                                                                 |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.<br>Internet Address<br>Interrupt Controller<br>Alternate Interrupt Vector Table (AIVT)<br>Control and Status Registers<br>IEC0-IEC7<br>IFS0-IFS7<br>INTCON1<br>INTCON1<br>INTCON2<br>INTCON4<br>INTTREG<br>IPC0-IPC29<br>Interrupt Vector Details<br>Interrupt Vector Table (IVT)<br>Reset Sequence<br>Resources<br>Interrupt-on-Change (IOC)                                                                                   | 58<br>407<br>85<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>85<br>85<br>90                                                                                                                                                                                                                                                                                                                 |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.<br>Internet Address<br>Interrupt Controller<br>Alternate Interrupt Vector Table (AIVT)<br>Control and Status Registers<br>IEC0-IEC7<br>IFS0-IFS7<br>INTCON1<br>INTCON1<br>INTCON2<br>INTCON4<br>INTCON4<br>INTTREG<br>IPC0-IPC29<br>Interrupt Vector Details<br>Interrupt Vector Table (IVT)<br>Reset Sequence<br>Resources<br>Interrupt-on-Change (IOC)<br>Interrupts                                                          | 58<br>407<br>85<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>                         |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.<br>Internet Address<br>Interrupt Controller<br>Alternate Interrupt Vector Table (AIVT)<br>Control and Status Registers<br>IEC0-IEC7<br>IFS0-IFS7<br>INTCON1<br>INTCON1<br>INTCON2<br>INTCON4<br>INTCON4<br>INTTREG<br>IPC0-IPC29<br>Interrupt Vector Details<br>Interrupt Vector Table (IVT)<br>Reset Sequence<br>Resources<br>Interrupt-on-Change (IOC)<br>Interrupts<br>Trap Vectors                                          | 58<br>407<br>85<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>                                                 |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.<br>Internet Address<br>Interrupt Controller<br>Alternate Interrupt Vector Table (AIVT)<br>Control and Status Registers<br>IEC0-IEC7<br>IFS0-IFS7<br>INTCON1<br>INTCON1<br>INTCON2<br>INTCON4<br>INTCON4<br>INTTREG<br>IPC0-IPC29<br>Interrupt Vector Details<br>Interrupt Vector Table (IVT)<br>Reset Sequence<br>Resources<br>Interrupt-on-Change (IOC)<br>Interrupts                                                          | 58<br>407<br>85<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>                                                 |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.<br>Internet Address<br>Interrupt Controller<br>Alternate Interrupt Vector Table (AIVT)<br>Control and Status Registers<br>IEC0-IEC7<br>IFS0-IFS7<br>INTCON1<br>INTCON2<br>INTCON4<br>INTTREG<br>IPC0-IPC29<br>Interrupt Vector Details<br>Interrupt Vector Table (IVT)<br>Reset Sequence<br>Resources<br>Interrupts<br>Trap Vectors                                                                                             | 58<br>407<br>85<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>                                                 |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.<br>Internet Address<br>Interrupt Controller                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                   |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.<br>Internet Address<br>Interrupt Controller<br>Alternate Interrupt Vector Table (AIVT)<br>Control and Status Registers<br>IEC0-IEC7<br>IFS0-IFS7<br>INTCON1<br>INTCON2<br>INTCON4<br>INTTREG<br>IPC0-IPC29<br>Interrupt Vector Details<br>Interrupt Vector Table (IVT)<br>Reset Sequence<br>Resources<br>Interrupts<br>Trap Vectors                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                   |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.<br>Internet Address<br>Interrupt Controller                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                   |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.<br>Internet Address<br>Interrupt Controller                                                                                                                                                                                                                                                                                                                                                                                     | 58<br>407<br>85<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>85<br>85<br>86<br>86<br>86<br>344                                                                                                                                                                                                                                                                                              |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.<br>Internet Address<br>Interrupt Controller                                                                                                                                                                                                                                                                                                                                                                                     | 58<br>407<br>85<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>85<br>85<br>86<br>86<br>86<br>344                                                                                                                                                                                                                                                                                              |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.<br>Internet Address<br>Interrupt Controller<br>Alternate Interrupt Vector Table (AIVT)<br>Control and Status Registers<br>IEC0-IEC7<br>IFS0-IFS7<br>INTCON1<br>INTCON1<br>INTCON2<br>INTCON4<br>INTCON4<br>INTTREG<br>IPC0-IPC29<br>Interrupt Vector Details<br>Interrupt Vector Table (IVT)<br>Reset Sequence<br>Resources.<br>Interrupt-on-Change (IOC)<br>Interrupts<br>Trap Vectors<br>Vector Tables<br>J<br>JTAG Interface | 58<br>407<br>85<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>85<br>85<br>86<br>86<br>86<br>344                                                                                                                                                                                                                                                                                              |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.<br>Internet Address<br>Interrupt Controller                                                                                                                                                                                                                                                                                                                                                                                     | 58<br>407<br>85<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br> |
| Interfacing Program and Data Memory Spaces<br>Inter-Integrated Circuit. See I <sup>2</sup> C.<br>Internet Address<br>Interrupt Controller<br>Alternate Interrupt Vector Table (AIVT)<br>Control and Status Registers<br>IEC0-IEC7<br>IFS0-IFS7<br>INTCON1<br>INTCON1<br>INTCON2<br>INTCON4<br>INTCON4<br>INTTREG<br>IPC0-IPC29<br>Interrupt Vector Details<br>Interrupt Vector Table (IVT)<br>Reset Sequence<br>Resources.<br>Interrupt-on-Change (IOC)<br>Interrupts<br>Trap Vectors<br>Vector Tables<br>J<br>JTAG Interface | 58<br>407<br>85<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br> |

#### Μ

| Mamon Organization                          |     |
|---------------------------------------------|-----|
| Memory Organization                         |     |
| Program Memory Space                        | 41  |
| Microchip Internet Web Site                 | 407 |
| MPLAB ASM30 Assembler, Linker, Librarian    | 346 |
| MPLAB Integrated Development                |     |
| Environment Software                        | 345 |
| MPLAB PM3 Device Programmer                 | 347 |
| MPLAB REAL ICE In-Circuit Emulator System   | 347 |
| MPLINK Object Linker/MPLIB Object Librarian | 346 |
| Ν                                           |     |
| Near Data Space                             | 46  |
| 0                                           |     |
| On-Chip Voltage Regulator                   | 341 |
| POR                                         |     |
| Standby Modo                                |     |

| PUR                                          |     |
|----------------------------------------------|-----|
| Standby Mode                                 | 341 |
| Oscillator Configuration                     |     |
| Clock Switching                              | 106 |
| Sequence                                     | 106 |
| Configuration Bit Values for Clock Selection |     |
| Control Registers                            |     |
| Initial Configuration on POR                 |     |
| Modes                                        | 108 |
| Output Compare with Dedicated Timers         | 173 |
| Operating Modes                              | 173 |
| 32-Bit Cascaded Mode                         | 173 |
| Synchronous and Trigger Modes                | 173 |
| Operations                                   | 174 |

#### Ρ

| Packaging                                  |     |
|--------------------------------------------|-----|
| Details                                    | 377 |
| Marking                                    | 375 |
| Peripheral Enable Bits                     | 115 |
| Peripheral Module Disable Bits             | 115 |
| Peripheral Pin Select (PPS)                | 136 |
| Available Peripherals and Pins             | 136 |
| Configuration Control                      | 139 |
| Considerations for Selection               | 140 |
| Control Registers                          | 141 |
| Input Mapping                              | 137 |
| Mapping Exceptions                         | 139 |
| Output Mapping                             | 138 |
| Peripheral Priority                        | 136 |
| Selectable Input Sources                   | 137 |
| Selectable Output Sources                  | 138 |
| PIC24FJ256GA705 Family Pinout Descriptions | 20  |
| Pin Descriptions                           |     |
| 28-Pin QFN, UQFN Devices                   |     |
| 28-Pin SOIC, SSOP, SPDIP Devices           | 4   |
| 44-Pin TQFP Devices                        | 6   |
| 48-Pin TQFP Devices                        | 10  |
| 48-Pin UQFN Devices                        | 8   |
| Power-Saving Features                      | 113 |
| Clock Frequency, Clock Switching           | 113 |
| Doze Mode                                  |     |
| Instruction-Based Modes                    | 113 |
| Idle                                       | 114 |
| Sleep                                      | 113 |
| Low-Voltage Retention Regulator            | 114 |
| Selective Peripheral Module Control        | 115 |
|                                            |     |

| Product Identification System     | 409 |
|-----------------------------------|-----|
| Program Memory Space              |     |
| Access Using Table Instructions   | 60  |
| Addressing                        | 58  |
| Configuration Bits                |     |
| Code-Protect                      | 44  |
| Overview                          | 43  |
| Configuration Word Addresses      | 43  |
| Customer OTP Memory               | 44  |
| Hard Memory Vectors               |     |
| Memory Map                        | 42  |
| Organization                      | 43  |
| Reading Data Using EDS            | 61  |
| Sizes and Boundaries              | 42  |
| Program Verification              | 344 |
| Pulse-Width Modulation (PWM) Mode | 175 |
| Pulse-Width Modulation. See PWM.  |     |
| PWM                               |     |
| Duty Cycle and Period             | 176 |

#### R

| Real-Time Clock and Calendar (RTCC)        | 251   |
|--------------------------------------------|-------|
| Reference Clock Output                     | . 109 |
| Referenced Sources                         | 13    |
| Register Summary                           |       |
| Peripheral Module Disable (PMD)            | .116  |
| Registers                                  |       |
| AD1CHITL (A/D Scan Compare Hit, Low Word   | . 302 |
| AD1CHS (A/D Sample Select)                 | . 300 |
| AD1CON1 (A/D Control 1)                    |       |
| AD1CON2 (A/D Control 2)                    | 295   |
| AD1CON3 (A/D Control 3)                    | 297   |
| AD1CON4 (A/D Control 4)                    | 298   |
| AD1CON5 (A/D Control 5)                    |       |
| AD1CSSH (A/D Input Scan Select, High Word) |       |
| AD1CSSL (A/D Input Scan Select, Low Word)  |       |
| AD1CTMENH (A/D CTMU Enable, High Word)     |       |
| AD1CTMENL (A/D CTMU Enable, Low Word)      |       |
| ALMDATEH (RTCC Alarm Date High)            |       |
| ALMDATEL (RTCC Alarm Date Low)             |       |
| ALMTIMEH (RTCC Alarm Time High)            |       |
| ALMTIMEL (RTCC Alarm Time Low)             | 262   |
| ANCFG (A/D Band Gap                        |       |
| Reference Configuration)                   |       |
| ANSELx (Analog Select for PORTx)           |       |
| CCPxCON1H (CCPx Control 1 High)            |       |
| CCPxCON1L (CCPx Control 1 Low)             |       |
| CCPxCON2H (CCPx Control 2 High)            |       |
| CCPxCON2L (CCPx Control 2 Low)             |       |
| CCPxCON3H (CCPx Control 3 High)            |       |
| CCPxCON3L (CCPx Control 3 Low)             |       |
| CCPxSTATH (CCPx Status High)               |       |
| CCPxSTATL (CCPx Status Low)                |       |
| CLCxCONH (CLCx Control High)               |       |
| CLCxCONL (CLCx Control Low)                | .280  |
| CLCxGLSH (CLCx Gate Logic Input            |       |
| Select High)                               | .285  |
| CLCxGLSL (CLCx Gate Logic Input            |       |
| Select Low)                                |       |
| CLCxSEL (CLCx Input MUX Select)            |       |
| CLKDIV (Clock Divider)                     |       |
| CMSTAT (Comparator Module Status)          | . 313 |
| CMxCON (Comparator x Control,              |       |
| Comparators 1 Through 3)                   |       |
| CORCON (CPU Core Control)                  | ), 92 |
| CRCCON1 (CRC Control 1)                    | 274   |

| CRCCON2 (CRC Control 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 275                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| CRCXORH (CRC XOR Polynomial, High Word)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 276                                                                                                                        |
| CRCXORL (CRC XOR Polynomial, Low Word)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |
| CTMUCON1H (CTMU Control 1 High)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 210                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                            |
| CTMUCON1L (CTMU Control 1 Low)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                            |
| CTMUCON2L (CTMU Control 2 Low)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 325                                                                                                                        |
| CVRCON (Comparator Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                            |
| Reference Control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            |
| DATEH (RTCC Date High)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |
| DATEL (RTCC Date Low)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |
| DMACHn (DMA Channel n Control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                            |
| DMACON (DMA Engine Control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                            |
| DMAINTn (DMA Channel n Interrupt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                            |
| FBSLIM Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                            |
| FDEVOPT1 Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |
| FICD Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            |
| FOSC Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            |
| FOSCSEL Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |
| FPOR Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            |
| FSEC Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            |
| FSIGN Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                            |
| FWDT Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            |
| HLVDCON (High/Low-Voltage Detect Control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                            |
| I2CxCONH (I2Cx Control High)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 226                                                                                                                        |
| I2CxCONL (I2Cx Control Low)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                            |
| I2CxMSK (I2Cx Slave Mode Address Mask)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 228                                                                                                                        |
| I2CxSTAT (I2Cx Status)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 227                                                                                                                        |
| ICxCON1 (Input Capture x Control 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 169                                                                                                                        |
| ICxCON2 (Input Capture x Control 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 170                                                                                                                        |
| INTCON1 (Interrupt Control 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                            |
| INTCON2 (Interrupt Control 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                            |
| INTCON4 (Interrupt Control 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                            |
| INTTREG (Interrupt Control and Status)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |
| IOCFx (Interrupt-on-Change Flag x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            |
| IOCNx (Interrupt-on-Change Negative Edge x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                            |
| IOCPDx (Interrupt-on-Change Pull-Down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |
| Enable x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 135                                                                                                                        |
| IOCPUx (Interrupt-on-Change Pull-up Enable x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                            |
| IOCPx (Interrupt-on-Change Positive Edge x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                            |
| IOCSTAT (Interrupt-on-Change Status)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                            |
| LATx (Output Data for PORTx)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                            |
| NVMCON (Flash Memory Control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                            |
| OCxCON1 (Output Compare x Control 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 178                                                                                                                        |
| OCxCON2 (Output Compare x Control 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 180                                                                                                                        |
| ODCx (Open-Drain Enable for PORTx)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 101                                                                                                                        |
| USULUN (USCIIIATOR CONTROL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                                                                        |
| OSCCON (Oscillator Control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                            |
| OSCDIV (Oscillator Divisor)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 104                                                                                                                        |
| OSCDIV (Oscillator Divisor)<br>OSCFDIV (Oscillator Fractional Divisor)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 104<br>105                                                                                                                 |
| OSCDIV (Oscillator Divisor)<br>OSCFDIV (Oscillator Fractional Divisor)<br>OSCTUN (FRC Oscillator Tune)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 104<br>105<br>103                                                                                                          |
| OSCDIV (Oscillator Divisor)<br>OSCFDIV (Oscillator Fractional Divisor)<br>OSCTUN (FRC Oscillator Tune)<br>PADCON (Pad Configuration Control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 104<br>105<br>103<br>250                                                                                                   |
| OSCDIV (Oscillator Divisor)<br>OSCFDIV (Oscillator Fractional Divisor)<br>OSCTUN (FRC Oscillator Tune)<br>PADCON (Pad Configuration Control)<br>PADCON (Port Configuration)                                                                                                                                                                                                                                                                                                                                                                                                                                          | 104<br>105<br>103<br>250<br>129                                                                                            |
| OSCDIV (Oscillator Divisor)<br>OSCFDIV (Oscillator Fractional Divisor)<br>OSCTUN (FRC Oscillator Tune)<br>PADCON (Pad Configuration Control)<br>PADCON (Port Configuration)<br>PMCON1 (EPMP Control 1)                                                                                                                                                                                                                                                                                                                                                                                                               | 104<br>105<br>103<br>250<br>129<br>242                                                                                     |
| OSCDIV (Oscillator Divisor)<br>OSCFDIV (Oscillator Fractional Divisor)<br>OSCTUN (FRC Oscillator Tune)<br>PADCON (Pad Configuration Control)<br>PADCON (Port Configuration)<br>PMCON1 (EPMP Control 1)<br>PMCON2 (EPMP Control 2)                                                                                                                                                                                                                                                                                                                                                                                    | 104<br>105<br>103<br>250<br>129<br>242<br>243                                                                              |
| OSCDIV (Oscillator Divisor)<br>OSCFDIV (Oscillator Fractional Divisor)<br>OSCTUN (FRC Oscillator Tune)<br>PADCON (Pad Configuration Control)<br>PADCON (Port Configuration)<br>PMCON1 (EPMP Control 1)<br>PMCON2 (EPMP Control 2)<br>PMCON3 (EPMP Control 3)                                                                                                                                                                                                                                                                                                                                                         | 104<br>105<br>103<br>250<br>129<br>242<br>243<br>244                                                                       |
| OSCDIV (Oscillator Divisor)<br>OSCFDIV (Oscillator Fractional Divisor)<br>OSCTUN (FRC Oscillator Tune)<br>PADCON (Pad Configuration Control)<br>PADCON (Port Configuration)<br>PMCON1 (EPMP Control 1)<br>PMCON2 (EPMP Control 2)<br>PMCON3 (EPMP Control 3)<br>PMCON4 (EPMP Control 4)                                                                                                                                                                                                                                                                                                                              | 104<br>105<br>103<br>250<br>129<br>242<br>243<br>244<br>245                                                                |
| OSCDIV (Oscillator Divisor)<br>OSCFDIV (Oscillator Fractional Divisor)<br>OSCTUN (FRC Oscillator Tune)<br>PADCON (Pad Configuration Control)<br>PADCON (Port Configuration)<br>PMCON1 (EPMP Control 1)<br>PMCON2 (EPMP Control 2)<br>PMCON3 (EPMP Control 3)<br>PMCON4 (EPMP Control 4)<br>PMCSxBS (EPMP Chip Select x Base Address)                                                                                                                                                                                                                                                                                 | 104<br>105<br>250<br>129<br>242<br>243<br>244<br>245<br>247                                                                |
| OSCDIV (Oscillator Divisor)<br>OSCFDIV (Oscillator Fractional Divisor)<br>OSCTUN (FRC Oscillator Tune)<br>PADCON (Pad Configuration Control)<br>PADCON (Port Configuration)<br>PMCON1 (EPMP Control 1)<br>PMCON2 (EPMP Control 2)<br>PMCON3 (EPMP Control 3)<br>PMCON4 (EPMP Control 4)<br>PMCSxBS (EPMP Chip Select x Base Address)<br>PMCSxCF (EPMP Chip Select x Configuration)                                                                                                                                                                                                                                   | 104<br>105<br>250<br>242<br>243<br>244<br>245<br>247<br>246                                                                |
| OSCDIV (Oscillator Divisor)<br>OSCFDIV (Oscillator Fractional Divisor)<br>OSCTUN (FRC Oscillator Tune)<br>PADCON (Pad Configuration Control)<br>PADCON (Port Configuration)<br>PMCON1 (EPMP Control 1)<br>PMCON2 (EPMP Control 2)<br>PMCON3 (EPMP Control 3)<br>PMCON4 (EPMP Control 4)<br>PMCSxBS (EPMP Chip Select x Base Address)<br>PMCSxCF (EPMP Chip Select x Configuration)<br>PMCSxMD (EPMP Chip Select x Mode)                                                                                                                                                                                              | 104<br>105<br>103<br>250<br>129<br>242<br>243<br>244<br>245<br>247<br>246<br>248                                           |
| OSCDIV (Oscillator Divisor)<br>OSCFDIV (Oscillator Fractional Divisor)<br>OSCTUN (FRC Oscillator Tune)<br>PADCON (Pad Configuration Control)<br>PADCON (Port Configuration)<br>PMCON1 (EPMP Control 1)<br>PMCON2 (EPMP Control 2)<br>PMCON3 (EPMP Control 3)<br>PMCON4 (EPMP Control 4)<br>PMCSxBS (EPMP Chip Select x Base Address)<br>PMCSxCF (EPMP Chip Select x Configuration)<br>PMCSxMD (EPMP Chip Select x Mode)<br>PMD1 (Peripheral Module Disable 1)                                                                                                                                                        | 104<br>105<br>103<br>250<br>129<br>242<br>243<br>244<br>245<br>247<br>246<br>248<br>117                                    |
| OSCDIV (Oscillator Divisor)<br>OSCFDIV (Oscillator Fractional Divisor)<br>OSCTUN (FRC Oscillator Tune)<br>PADCON (Pad Configuration Control)<br>PADCON (Port Configuration)<br>PMCON1 (EPMP Control 1)<br>PMCON2 (EPMP Control 2)<br>PMCON3 (EPMP Control 3)<br>PMCON4 (EPMP Control 4)<br>PMCSxBS (EPMP Chip Select x Base Address)<br>PMCSxCF (EPMP Chip Select x Configuration)<br>PMCSxMD (EPMP Chip Select x Mode)<br>PMD1 (Peripheral Module Disable 1)<br>PMD2 (Peripheral Module Disable 2)                                                                                                                  | 104<br>105<br>103<br>250<br>129<br>242<br>243<br>244<br>245<br>247<br>246<br>248<br>117<br>118                             |
| OSCDIV (Oscillator Divisor)<br>OSCFDIV (Oscillator Fractional Divisor)<br>OSCTUN (FRC Oscillator Tune)<br>PADCON (Pad Configuration Control)<br>PADCON (Port Configuration)<br>PMCON1 (EPMP Control 1)<br>PMCON2 (EPMP Control 2)<br>PMCON3 (EPMP Control 3)<br>PMCON4 (EPMP Control 3)<br>PMCON4 (EPMP Control 4)<br>PMCSxBS (EPMP Chip Select x Base Address)<br>PMCSxCF (EPMP Chip Select x Configuration)<br>PMCSxMD (EPMP Chip Select x Mode)<br>PMD1 (Peripheral Module Disable 1)<br>PMD2 (Peripheral Module Disable 2)<br>PMD3 (Peripheral Module Disable 3)                                                 | 104<br>105<br>103<br>250<br>129<br>242<br>243<br>244<br>245<br>247<br>246<br>248<br>117<br>118<br>119                      |
| OSCDIV (Oscillator Divisor)<br>OSCFDIV (Oscillator Fractional Divisor)<br>OSCTUN (FRC Oscillator Tune)<br>PADCON (Pad Configuration Control)<br>PADCON (Port Configuration)<br>PMCON1 (EPMP Control 1)<br>PMCON2 (EPMP Control 2)<br>PMCON3 (EPMP Control 3)<br>PMCON4 (EPMP Control 4)<br>PMCSxBS (EPMP Chip Select x Base Address)<br>PMCSxCF (EPMP Chip Select x Configuration)<br>PMCSxMD (EPMP Chip Select x Mode)<br>PMD1 (Peripheral Module Disable 1)<br>PMD2 (Peripheral Module Disable 2)<br>PMD3 (Peripheral Module Disable 3)<br>PMD4 (Peripheral Module Disable 4)                                      | 104<br>105<br>103<br>250<br>129<br>242<br>243<br>244<br>245<br>247<br>246<br>248<br>117<br>118<br>119<br>120               |
| OSCDIV (Oscillator Divisor)<br>OSCFDIV (Oscillator Fractional Divisor)<br>OSCTUN (FRC Oscillator Tune)<br>PADCON (Pad Configuration Control)<br>PADCON (Port Configuration)<br>PMCON1 (EPMP Control 1)<br>PMCON2 (EPMP Control 2)<br>PMCON3 (EPMP Control 3)<br>PMCON4 (EPMP Control 4)<br>PMCSxBS (EPMP Chip Select x Base Address)<br>PMCSxCF (EPMP Chip Select x Configuration)<br>PMCSxMD (EPMP Chip Select x Mode)<br>PMCSxMD (EPMP Chip Select x Mode)<br>PMD1 (Peripheral Module Disable 1)<br>PMD2 (Peripheral Module Disable 3)<br>PMD4 (Peripheral Module Disable 4)<br>PMD5 (Peripheral Module Disable 5) | 104<br>105<br>103<br>250<br>129<br>242<br>243<br>244<br>245<br>247<br>246<br>248<br>117<br>118<br>119<br>120<br>121        |
| OSCDIV (Oscillator Divisor)<br>OSCFDIV (Oscillator Fractional Divisor)<br>OSCTUN (FRC Oscillator Tune)<br>PADCON (Pad Configuration Control)<br>PADCON (Port Configuration)<br>PMCON1 (EPMP Control 1)<br>PMCON2 (EPMP Control 2)<br>PMCON3 (EPMP Control 3)<br>PMCON4 (EPMP Control 4)<br>PMCSxBS (EPMP Chip Select x Base Address)<br>PMCSxCF (EPMP Chip Select x Configuration)<br>PMCSxMD (EPMP Chip Select x Mode)<br>PMD1 (Peripheral Module Disable 1)<br>PMD2 (Peripheral Module Disable 2)<br>PMD3 (Peripheral Module Disable 3)<br>PMD4 (Peripheral Module Disable 4)                                      | 104<br>105<br>103<br>250<br>129<br>242<br>243<br>244<br>245<br>247<br>246<br>248<br>117<br>118<br>119<br>120<br>121<br>122 |

| PMD8 (Peripheral Module Disable 8) 123                                                 |
|----------------------------------------------------------------------------------------|
| PMSTAT (EPMP Status, Slave Mode)249                                                    |
| PORTx (Input Data for PORTx) 130                                                       |
| RCON (Reset Control)80                                                                 |
| REFOCONH (Reference Oscillator                                                         |
| Control High)111                                                                       |
| REFOCONL (Reference Oscillator                                                         |
| Control Low)                                                                           |
| REFOTRIML (Reference Oscillator Trim Low)                                              |
| RPINR0 (Peripheral Pin Select Input 0)141<br>RPINR1 (Peripheral Pin Select Input 1)141 |
| RPINR1 (Peripheral Pin Select Input 1)                                                 |
| RPINR12 (Peripheral Pin Select Input 12)                                               |
| RPINR18 (Peripheral Pin Select Input 18)                                               |
| RPINR19 (Peripheral Pin Select Input 19)                                               |
| RPINR2 (Peripheral Pin Select Input 2)142                                              |
| RPINR20 (Peripheral Pin Select Input 20) 147                                           |
| RPINR21 (Peripheral Pin Select Input 21)147                                            |
| RPINR22 (Peripheral Pin Select Input 22)148                                            |
| RPINR23 (Peripheral Pin Select Input 23)148                                            |
| RPINR25 (Peripheral Pin Select Input 25)149                                            |
| RPINR28 (Peripheral Pin Select Input 28)149                                            |
| RPINR29 (Peripheral Pin Select Input 29)                                               |
| RPINR3 (Peripheral Pin Select Input 3)                                                 |
| RPINR5 (Peripheral Pin Select Input 5)143<br>RPINR6 (Peripheral Pin Select Input 6)143 |
| RPINRO (Peripheral Pin Select Input 0)                                                 |
| RPINR8 (Peripheral Pin Select Input 8)                                                 |
| RPOR0 (Peripheral Pin Select Output 0)                                                 |
| RPOR1 (Peripheral Pin Select Output 1)                                                 |
| RPOR10 (Peripheral Pin Select Output 10)                                               |
| RPOR11 (Peripheral Pin Select Output 11)                                               |
| RPOR12 (Peripheral Pin Select Output 12)157                                            |
| RPOR13 (Peripheral Pin Select Output 13)157                                            |
| RPOR14 (Peripheral Pin Select Output 14)158                                            |
| RPOR2 (Peripheral Pin Select Output 2) 152                                             |
| RPOR3 (Peripheral Pin Select Output 3) 152                                             |
| RPOR4 (Peripheral Pin Select Output 4)                                                 |
| RPOR5 (Peripheral Pin Select Output 5)                                                 |
| RPOR6 (Peripheral Pin Select Output 6)154<br>RPOR7 (Peripheral Pin Select Output 7)154 |
| RPOR8 (Peripheral Pin Select Output 8)                                                 |
| RPOR9 (Peripheral Pin Select Output 9)                                                 |
| RTCCON1H (RTCC Control 1 High)                                                         |
| RTCCON1L (RTCC Control 1 Low)                                                          |
| RTCCON2H (RTCC Control 2 High)257                                                      |
| RTCCON2L (RTCC Control 2 Low) 256                                                      |
| RTCCON3L (RTCC Control 3 Low) 258                                                      |
| RTCSTATL (RTCC Status Low)259                                                          |
| SPIxBRGL (SPIx Baud Rate Generator Low)                                                |
| SPIxBUFH (SPIx Buffer High)                                                            |
| SPIxBUFL (SPIx Buffer Low)                                                             |
| SPIxCON1H (SPIx Control 1 High)                                                        |
| SPIxCON1L (SPIx Control 1 Low)                                                         |
| SPIXCON2L (SPIX Control 2 Low)                                                         |
| SPIXIMSKE (SPIX Interrupt Mask Fight)                                                  |
| SPIXSTATH (SPIX Status High)                                                           |
| SPIxSTATL (SPIx Status Low)                                                            |
| SPIxURDTH (SPIx Underrun Data High)                                                    |
| SPIxURDTL (SPIx Underrun Data Low)                                                     |
| SR (ALU STATUS)                                                                        |
| T1CON (Timer1 Control)                                                                 |
| TIMEH (RTCC Time High)260                                                              |
| TIMEL (RTCC Time Low)                                                                  |
|                                                                                        |

| TRISx (Output Enable for PORTx) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| TSADATEH (RTCC Timestamp A Date High) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                          |
| TSADATEL (RTCC Timestamp A Date Low)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                          |
| TSATIMEH (RTCC Timestamp A Time High) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |
| TSATIMEL (RTCC Timestamp A Time Low) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 64                                                                                                       |
| TxCON (Timer2 Control) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                          |
| TyCON (Timer3 Control)1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |
| UxADMD (UARTx Address Detect and Match) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38                                                                                                       |
| UxBRG (UARTx Baud Rate Generator) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 38                                                                                                       |
| UxMODE (UARTx Mode) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00                                                                                                       |
| UxRXREG (UARTx Receive,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |
| Normally Read-Only)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37                                                                                                       |
| UxSTA (UARTx Status and Control) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35                                                                                                       |
| UxTXREG (UARTx Transmit,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                          |
| Normally Write-Only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31                                                                                                       |
| Resets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                          |
| BOR (Brown-out Reset)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 79                                                                                                       |
| Brown-out Reset (BOR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 82                                                                                                       |
| Clock Source Selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                          |
| CM (Configuration Mismatch Reset)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 79                                                                                                       |
| Delay Times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 83                                                                                                       |
| Device Times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          |
| IOPUWR (Illegal Opcode Reset)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                          |
| MCLR (Master Clear Pin Reset)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                          |
| POR (Power-on Reset)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                          |
| RCON Flags, Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 81                                                                                                       |
| SFR States                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                          |
| SWR (RESET Instruction)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |
| TRAPR (Trap Conflict Reset)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 79                                                                                                       |
| LIMP (Lipipitialized )// Desister Deset)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 79                                                                                                       |
| UWR (Uninitialized W Register Reset)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                          |
| WDT (Watchdog Timer Reset)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 79                                                                                                       |
| WDT (Watchdog Timer Reset)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 79                                                                                                       |
| WDT (Watchdog Timer Reset)<br>Revision History                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 79<br>99                                                                                                 |
| WDT (Watchdog Timer Reset)<br>Revision History                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 79<br>99                                                                                                 |
| WDT (Watchdog Timer Reset)<br>Revision History                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 79<br>99<br>68                                                                                           |
| WDT (Watchdog Timer Reset)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 79<br>99<br>68<br>69                                                                                     |
| WDT (Watchdog Timer Reset)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 79<br>99<br>68<br>69<br>62                                                                               |
| WDT (Watchdog Timer Reset)       3         Revision History       3         RTCC       2         Alarm Configuration       2         Alarm Mask Settings (figure)       2         Alarm Value Registers       2         Calibration       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 79<br>99<br>68<br>69<br>62<br>68                                                                         |
| WDT (Watchdog Timer Reset)       3         Revision History       3         RTCC       2         Alarm Configuration       2         Alarm Mask Settings (figure)       2         Alarm Value Registers       2         Calibration       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 79<br>99<br>68<br>69<br>62<br>68                                                                         |
| WDT (Watchdog Timer Reset)       3         Revision History       3         RTCC       2         Alarm Configuration       2         Alarm Mask Settings (figure)       2         Alarm Value Registers       2         Calibration       2         Clock Source Selection       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 79<br>99<br>68<br>69<br>62<br>68<br>53                                                                   |
| WDT (Watchdog Timer Reset)       3         Revision History       3         RTCC       2         Alarm Configuration       2         Alarm Mask Settings (figure)       2         Alarm Value Registers       2         Calibration       2         Clock Source Selection       2         Control Registers       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 79<br>99<br>68<br>69<br>62<br>68<br>53<br>54                                                             |
| WDT (Watchdog Timer Reset)       3         Revision History       3         RTCC       2         Alarm Configuration       2         Alarm Mask Settings (figure)       2         Alarm Value Registers       2         Calibration       2         Clock Source Selection       2         Control Registers       2         Event Timestamping       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 79<br>99<br>68<br>69<br>62<br>68<br>53<br>54<br>70                                                       |
| WDT (Watchdog Timer Reset)       3         Revision History       3         RTCC       2         Alarm Configuration       2         Alarm Mask Settings (figure)       2         Alarm Value Registers       2         Calibration       2         Clock Source Selection       2         Control Registers       2         Event Timestamping       2         Module Registers       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 79<br>99<br>68<br>69<br>62<br>68<br>53<br>54<br>70<br>53                                                 |
| WDT (Watchdog Timer Reset)       3         Revision History       3         RTCC       2         Alarm Configuration       2         Alarm Mask Settings (figure)       2         Alarm Value Registers       2         Calibration       2         Clock Source Selection       2         Control Registers       2         Event Timestamping       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 79<br>99<br>68<br>69<br>62<br>68<br>53<br>54<br>70<br>53                                                 |
| WDT (Watchdog Timer Reset)       3         Revision History       3         RTCC       2         Alarm Configuration       2         Alarm Mask Settings (figure)       2         Alarm Value Registers       2         Calibration       2         Clock Source Selection       2         Control Registers       2         Event Timestamping       2         Module Registers       2         Power Control       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 79<br>99<br>68<br>69<br>62<br>68<br>53<br>54<br>70<br>53<br>69                                           |
| WDT (Watchdog Timer Reset)       3         Revision History       3         RTCC       2         Alarm Configuration       2         Alarm Mask Settings (figure)       2         Alarm Value Registers       2         Calibration       2         Clock Source Selection       2         Control Registers       2         Event Timestamping       2         Module Registers       2         Power Control       2         Register Mapping       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 79<br>99<br>68<br>69<br>62<br>68<br>53<br>54<br>70<br>53<br>69<br>53                                     |
| WDT (Watchdog Timer Reset)       3         Revision History       3         RTCC       3         Alarm Configuration       2         Alarm Mask Settings (figure)       2         Alarm Value Registers       2         Calibration       2         Clock Source Selection       2         Control Registers       2         Event Timestamping       2         Module Registers       2         Power Control       2         Register Mapping       2         RTCVAL Register Mappings       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 79<br>99<br>68<br>69<br>62<br>68<br>53<br>54<br>70<br>53<br>69<br>53<br>57                               |
| WDT (Watchdog Timer Reset)       3         Revision History       3         RTCC       3         Alarm Configuration       2         Alarm Mask Settings (figure)       2         Alarm Value Registers       2         Calibration       2         Clock Source Selection       2         Control Registers       2         Event Timestamping       2         Module Registers       2         Power Control       2         Register Mapping       2         RTCVAL Register Mappings       2         Source Clock       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 79<br>99<br>68<br>69<br>62<br>68<br>53<br>54<br>70<br>53<br>69<br>53<br>57<br>57                         |
| WDT (Watchdog Timer Reset)       3         Revision History       3         RTCC       3         Alarm Configuration       2         Alarm Mask Settings (figure)       2         Alarm Value Registers       2         Calibration       2         Clock Source Selection       2         Control Registers       2         Event Timestamping       2         Module Registers       2         Power Control       2         Register Mapping       2         RTCVAL Register Mappings       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 79<br>99<br>68<br>69<br>62<br>68<br>53<br>54<br>70<br>53<br>69<br>53<br>57<br>57                         |
| WDT (Watchdog Timer Reset)       3         Revision History       3         RTCC       3         Alarm Configuration       2         Alarm Mask Settings (figure)       2         Alarm Value Registers       2         Calibration       2         Clock Source Selection       2         Control Registers       2         Event Timestamping       2         Module Registers       2         Power Control       2         Register Mapping       2         RTCVAL Register Mappings       2         Source Clock       2         Timestamp Registers       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 79<br>99<br>68<br>69<br>62<br>68<br>53<br>54<br>70<br>53<br>69<br>53<br>57<br>51<br>64                   |
| WDT (Watchdog Timer Reset)       3         Revision History       3         RTCC       3         Alarm Configuration       2         Alarm Mask Settings (figure)       2         Alarm Value Registers       2         Calibration       2         Clock Source Selection       2         Control Registers       2         Event Timestamping       2         Module Registers       2         Power Control       2         Register Mapping       2         RTCVAL Register Mappings       2         Source Clock       2         Timestamp Registers       2         Value Registers       2                                                                                                                                                                                                                                                                                                                                                                                                                                      | 79<br>99<br>68<br>69<br>62<br>68<br>53<br>54<br>70<br>53<br>69<br>57<br>51<br>64<br>60                   |
| WDT (Watchdog Timer Reset)       3         Revision History       3         RTCC       3         Alarm Configuration       2         Alarm Mask Settings (figure)       2         Alarm Value Registers       2         Calibration       2         Clock Source Selection       2         Control Registers       2         Event Timestamping       2         Module Registers       2         Power Control       2         Register Mapping       2         RTCVAL Register Mappings       2         Source Clock       2         Timestamp Registers       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 79<br>99<br>68<br>69<br>62<br>68<br>53<br>54<br>70<br>53<br>69<br>57<br>51<br>64<br>60                   |
| WDT (Watchdog Timer Reset)       3         Revision History       3         RTCC       3         Alarm Configuration       2         Alarm Mask Settings (figure)       2         Alarm Value Registers       2         Calibration       2         Clock Source Selection       2         Control Registers       2         Event Timestamping       2         Module Registers       2         Power Control       2         Register Mapping       2         RTCVAL Registers       2         Source Clock       2         Timestamp Registers       2         Value Registers       2              | 79<br>99<br>68<br>69<br>62<br>68<br>53<br>54<br>70<br>53<br>69<br>57<br>51<br>64<br>60                   |
| WDT (Watchdog Timer Reset)       3         Revision History       3         RTCC       Alarm Configuration       2         Alarm Mask Settings (figure)       2         Alarm Value Registers       2         Calibration       2         Clock Source Selection       2         Control Registers       2         Event Timestamping       2         Module Registers       2         Power Control       2         Register Mapping       2         RTCVAL Registers       2         Source Clock       2         Timestamp Registers       2         Value Registers       2         Value Registers       2         S       3                                                                                                                                                                                                                                                                                                                                                                                                      | 79<br>99<br>68<br>69<br>62<br>68<br>53<br>57<br>53<br>69<br>53<br>57<br>51<br>64<br>60<br>53             |
| WDT (Watchdog Timer Reset)       3         Revision History       3         RTCC       Alarm Configuration       2         Alarm Mask Settings (figure)       2         Alarm Value Registers       2         Calibration       2         Clock Source Selection       2         Control Registers       2         Event Timestamping       2         Module Registers       2         Power Control       2         Register Mapping       2         RTCVAL Registers       2         Source Clock       2         Timestamp Registers       2         Value Registers       2         Value Registers       2         S       3                                                                                                                                                                                                                                                                                                                                                                                                      | 79<br>99<br>68<br>69<br>62<br>68<br>53<br>57<br>53<br>69<br>53<br>57<br>51<br>64<br>60<br>53             |
| WDT (Watchdog Timer Reset)       3         Revision History       3         RTCC       3         Alarm Configuration       2         Alarm Mask Settings (figure)       2         Alarm Value Registers       2         Calibration       2         Clock Source Selection       2         Control Registers       2         Event Timestamping       2         Module Registers       2         Power Control       2         Register Mapping       2         RTCVAL Registers       2         Source Clock       2         Timestamp Registers       2         Value Registers       2         Value Registers       2         Source Clock       2         Timestamp Registers       2         Value Registers       2         Value Registers       2         Write Lock       2         Secondary Oscillator Operation       1                                                                                                                                                                                                   | 79<br>99<br>68<br>69<br>62<br>68<br>53<br>54<br>70<br>53<br>69<br>53<br>57<br>51<br>64<br>60<br>53<br>09 |
| WDT (Watchdog Timer Reset)       3         Revision History       3         RTCC       3         Alarm Configuration       2         Alarm Mask Settings (figure)       2         Alarm Value Registers       2         Calibration       2         Clock Source Selection       2         Control Registers       2         Event Timestamping       2         Module Registers       2         Power Control       2         Register Mapping       2         RTCVAL Registers       2         Source Clock       2         Timestamp Registers       2         Value Registers       2         Secondary Oscillator Operation       1         Serial Peripheral Interface (SPI)       2                                                                                                                                             | 79<br>99<br>68<br>69<br>62<br>68<br>53<br>54<br>70<br>53<br>69<br>53<br>57<br>51<br>64<br>60<br>53<br>09 |
| WDT (Watchdog Timer Reset)       3         Revision History       3         RTCC       3         Alarm Configuration       2         Alarm Mask Settings (figure)       2         Alarm Value Registers       2         Calibration       2         Clock Source Selection       2         Control Registers       2         Event Timestamping       2         Module Registers       2         Power Control       2         Register Mapping       2         RTCVAL Registers       2         Source Clock       2         Timestamp Registers       2         Value Registers       2         Secondary Oscillator Operation       1         Serial Peripheral Interface (SPI)       2         Serial Peripheral Interface See SPI.       2                                                                                        | 79<br>99<br>68<br>69<br>62<br>68<br>53<br>57<br>53<br>69<br>53<br>57<br>51<br>64<br>60<br>53<br>09<br>01 |
| WDT (Watchdog Timer Reset)       3         Revision History       3         RTCC       3         Alarm Configuration       2         Alarm Mask Settings (figure)       2         Alarm Value Registers       2         Calibration       2         Clock Source Selection       2         Control Registers       2         Event Timestamping       2         Module Registers       2         Power Control       2         Register Mapping       2         RTCVAL Register Mappings       2         Source Clock       2         Timestamp Registers       2         Value Registers       2         Secondary Oscillator Operation       1         Serial Peripheral Interface (SPI)       2         Serial Peripheral Interface See SPI.       2         Software Simulator (MPLAB SIM)       3 | 79<br>99<br>68<br>69<br>62<br>68<br>53<br>57<br>53<br>69<br>53<br>57<br>51<br>64<br>60<br>53<br>01<br>47 |
| WDT (Watchdog Timer Reset)       3         Revision History       3         RTCC       3         Alarm Configuration       2         Alarm Mask Settings (figure)       2         Alarm Value Registers       2         Calibration       2         Clock Source Selection       2         Control Registers       2         Event Timestamping       2         Module Registers       2         Power Control       2         Register Mapping       2         RTCVAL Registers       2         Source Clock       2         Timestamp Registers       2         Value Registers       2         Secondary Oscillator Operation       1         Serial Peripheral Interface (SPI)       2         Serial Peripheral Interface See SPI.       2                                                                                        | 79<br>99<br>68<br>69<br>62<br>68<br>53<br>57<br>53<br>69<br>53<br>57<br>51<br>64<br>60<br>53<br>01<br>47 |
| WDT (Watchdog Timer Reset)       3         Revision History       3         RTCC       3         Alarm Configuration       2         Alarm Mask Settings (figure)       2         Alarm Value Registers       2         Calibration       2         Clock Source Selection       2         Control Registers       2         Event Timestamping       2         Module Registers       2         Power Control       2         Register Mapping       2         RTCVAL Register Mappings       2         Source Clock       2         Timestamp Registers       2         Value Registers       2         Value Registers       2         Value Registers       2         Write Lock       2         Secondary Oscillator Operation       1         Serial Peripheral Interface (SPI)       2         Software Simulator (MPLAB SIM)       3         Software Stack       3                                                                                                                                                            | 79<br>99<br>68<br>69<br>62<br>68<br>53<br>57<br>53<br>63<br>57<br>51<br>64<br>60<br>53<br>00<br>47<br>57 |
| WDT (Watchdog Timer Reset)       3         Revision History       3         RTCC       3         Alarm Configuration       2         Alarm Mask Settings (figure)       2         Alarm Value Registers       2         Calibration       2         Clock Source Selection       2         Control Registers       2         Event Timestamping       2         Module Registers       2         Power Control       2         Register Mapping       2         RTCVAL Registers       2         Source Clock       2         Timestamp Registers       2         Value Registers       2         Secondary Oscillator Operation       1         Serial Peripheral Interface (SPI)       2         Software Simulator (MPLAB SIM)       3         Software Stack       36                                                              | 79<br>99<br>68<br>69<br>62<br>68<br>53<br>57<br>53<br>63<br>57<br>51<br>64<br>60<br>53<br>00<br>47<br>57 |
| WDT (Watchdog Timer Reset)       3         Revision History       3         RTCC       3         Alarm Configuration       2         Alarm Mask Settings (figure)       2         Alarm Value Registers       2         Calibration       2         Clock Source Selection       2         Control Registers       2         Event Timestamping       2         Module Registers       2         Power Control       2         Register Mapping       2         RTCVAL Register Mappings       2         Source Clock       2         Timestamp Registers       2         Value Registers       2         Value Registers       2         Value Registers       2         Write Lock       2         Secondary Oscillator Operation       1         Serial Peripheral Interface (SPI)       2         Software Simulator (MPLAB SIM)       3         Software Stack       3                                                                                                                                                            | 79<br>99<br>68<br>69<br>268<br>54<br>70<br>53<br>69<br>57<br>51<br>60<br>53<br>00<br>47<br>57<br>29      |

| Audio Mode Operation             | 203 |
|----------------------------------|-----|
| Control Registers                | 204 |
| Master Mode Operation            |     |
| Slave Mode Operation             | 202 |
| Summary of Low-Power Sleep Modes |     |
|                                  |     |

#### Т

| Timer1         159           Timer2/3         161           Timing Diagrams         161 |
|-----------------------------------------------------------------------------------------|
| CLKO and I/O Characteristics                                                            |
| External Clock                                                                          |
| Triple Comparator                                                                       |
| Triple Comparator Module                                                                |
| U                                                                                       |
| UART                                                                                    |
| Baud Rate Generator (BRG)231                                                            |
| Infrared Support                                                                        |
| Operation of UxCTS and UxRTS Pins                                                       |
| Receiving                                                                               |
| 8-Bit or 9-Bit Data Mode                                                                |
| Transmitting                                                                            |
| 8-Bit Data Mode                                                                         |
| 9-Bit Data Mode232                                                                      |
| Break and Sync Sequence                                                                 |
| Unique Device Identifier (UDID)                                                         |
| Universal Asynchronous Receiver Transmitter. See UART.                                  |
| Unused I/Os                                                                             |

### V

| 407 |
|-----|
| 12  |
|     |

### THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Micro-chip sales offices, distributors and factory representatives

# CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

#### **CUSTOMER SUPPORT**

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

#### **PRODUCT IDENTIFICATION SYSTEM**

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

|                                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                | Exa | imples:                                                                                            |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------|
| Microchip Trade<br>Architecture — |                                                                                                                                                                                                                                                                                                                                                                                                                         | a)  | PIC24FJ256GA705-I/PT:<br>PIC24F General Purpose Device, 48-Pin,<br>Industrial Temp., TQFP Package. |
| Flash Memory F                    |                                                                                                                                                                                                                                                                                                                                                                                                                         | b)  | PIC24FJ256GA702-I/ML:                                                                              |
| Program Memor                     | y Size (Kbytes)                                                                                                                                                                                                                                                                                                                                                                                                         |     | PIC24F General Purpose Device, 28-Pin,<br>Industrial Temp., QFN Package                            |
| •                                 |                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                                                                                                    |
| Pin Count —                       | lag (if applicable)                                                                                                                                                                                                                                                                                                                                                                                                     |     |                                                                                                    |
| •                                 | nge                                                                                                                                                                                                                                                                                                                                                                                                                     |     |                                                                                                    |
| Package                           |                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                                                                                                    |
| Pattern                           |                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                                                                                                    |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                                                                                                    |
| Architecture                      | 24 = 16-Bit Modified Harvard without DSP                                                                                                                                                                                                                                                                                                                                                                                |     |                                                                                                    |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                                                                                                    |
| Flash Memory Family               | FJ = Flash Program Memory                                                                                                                                                                                                                                                                                                                                                                                               |     |                                                                                                    |
| Pin Count                         | 02 = 28-pin (QFN, UQFN, SOIC, SSOP, SPDIP)<br>04 = 44-pin (TQFP)<br>05 = 48-pin (UQFN, TQFP)                                                                                                                                                                                                                                                                                                                            |     |                                                                                                    |
| Temperature Range                 | I = $-40^{\circ}$ C to $+85^{\circ}$ C (Industrial)                                                                                                                                                                                                                                                                                                                                                                     |     |                                                                                                    |
| Package                           | ML= 28-Lead (6x6 mm) QFN (Plastic Quad Flat)MV= 28-Lead (4x4x0.6 mm) UQFN (Ultra Thin Quad Flatpack)SO= 28-Lead (7.50 mm) SOIC (Plastic Small Outline)SS= 28-Lead (300 mil) SOPO (Plastic Shrink Small Outline)PP= 28-Lead (300 mil) SPDIP (Skinny Plastic Dual In-Line)PT= 44-lead (10x10x1 mm) TQFP (Thin Quad Flatpack)M4= 48-Lead (6X6 mm) UQFN (Plastic Quad Flat)PT= 48-Lead (7x7x1 mm) TQFP (Thin Quad Flatpack) |     |                                                                                                    |
| Pattern                           | QTP, SQTP, Code or Special Requirements<br>(blank otherwise)<br>ES = Engineering Sample                                                                                                                                                                                                                                                                                                                                 |     |                                                                                                    |

#### Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

## QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

#### Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELoq, KEELoq logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2016-2018, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-2825-1



## **Worldwide Sales and Service**

#### AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

**Chicago** Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

**Dallas** Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

**Detroit** Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

**San Jose, CA** Tel: 408-735-9110 Tel: 408-436-4270

**Canada - Toronto** Tel: 905-695-1980 Fax: 905-695-2078

#### ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

**China - Dongguan** Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

**China - Wuhan** Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

#### ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu

Tel: 886-3-577-8366 **Taiwan - Kaohsiung** Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Germany - Garching Tel: 49-8931-9700

**Germany - Haan** Tel: 49-2129-3766400

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4450-2828

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

**Germany - Munich** Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

**Germany - Rosenheim** Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

**Italy - Padova** Tel: 39-049-7625286

**Netherlands - Drunen** Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

**Spain - Madrid** Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

**Sweden - Stockholm** Tel: 46-8-5090-4654

**UK - Wokingham** Tel: 44-118-921-5800 Fax: 44-118-921-5820

## **Mouser Electronics**

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

### Microchip:

PIC24FJ256GA705-I/M4 PIC24FJ128GA705-I/M4 PIC24FJ64GA705-I/M4 PIC24FJ256GA702T-I/MV PIC24FJ64GA702-IML PIC24FJ64GA704T-IPT PIC24FJ128GA704-I/PT PIC24FJ128GA704T-I/PT PIC24FJ64GA704T-I/PT PIC24FJ128GA705T-IPT PIC24FJ64GA705-IPT PIC24FJ64GA702T-I/SS PIC24FJ256GA702-IML PIC24FJ64GA702-I/SS PIC24FJ256GA702T-I/SS PIC24FJ256GA702-I/SS PIC24FJ128GA702-I/ML PIC24FJ256GA702T-I/ML PIC24FJ64GA705T-I/PT PIC24FJ128GA704-IPT PIC24FJ256GA702-I/SP PIC24FJ128GA702T-I/SS PIC24FJ128GA702T-I/ML PIC24FJ256GA705T-IPT PIC24FJ128GA702-I/SS PIC24FJ256GA702-ISP PIC24FJ64GA702T-ISO PIC24FJ64GA702T-ISS PIC24FJ256GA704-IPT PIC24FJ256GA702-ISS PIC24FJ128GA702T-IMV PIC24FJ128GA702-ISO PIC24FJ256GA702-I/ML PIC24FJ64GA702T-IML PIC24FJ128GA702T-IML PIC24FJ64GA702-I/MV PIC24FJ256GA702T-IMV PIC24FJ256GA702-I/MV PIC24FJ128GA702T-ISO PIC24FJ128GA705-IPT PIC24FJ128GA702-I/MV PIC24FJ128GA702T-I/MV PIC24FJ256GA702T-IML PIC24FJ256GA702-I/SO PIC24FJ256GA705T-I/PT PIC24FJ256GA705-I/PT PIC24FJ64GA702T-I/ML PIC24FJ128GA702-IML PIC24FJ64GA702-ISS PIC24FJ64GA702-ISO PIC24FJ128GA704T-IPT PIC24FJ128GA705T-I/PT PIC24FJ64GA702-I/ML PIC24FJ64GA702-IMV PIC24FJ128GA705-I/PT PIC24FJ64GA702T-I/MV PIC24FJ128GA702T-ISS PIC24FJ256GA704T-I/PT PIC24FJ128GA702-IMV PIC24FJ64GA704-IPT PIC24FJ64GA702T-IMV PIC24FJ64GA702-I/SO PIC24FJ256GA702-ISO PIC24FJ64GA704-I/PT PIC24FJ64GA705-I/PT PIC24FJ256GA702T-I/SO PIC24FJ128GA702T-I/SO PIC24FJ256GA702-IMV PIC24FJ64GA705T-IPT PIC24FJ256GA702T-ISS PIC24FJ256GA702T-ISO PIC24FJ128GA702-I/SO PIC24FJ256GA704T-IPT PIC24FJ64GA702T-I/SO PIC24FJ128GA702-ISS PIC24FJ256GA704-I/PT PIC24FJ128GA705T-I/M4 PIC24FJ256GA705T-I/M4 PIC24FJ64GA705T-I/M4 PIC24FJ256GA702-E/SP