Quad 2-Input NAND Gate

High-Performance Silicon-Gate CMOS

Features

- Output Drive Capability: ±24 mA
- Operating Voltage Range: 2 to 6 V AC00; 4.5 to 5.5 ACT00
- Low Input Current: 1.0 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance With the JEDEC Standard No. 7A Requirements
- Chip Complexity: 32 FETs
- These are Pb-Free Devices

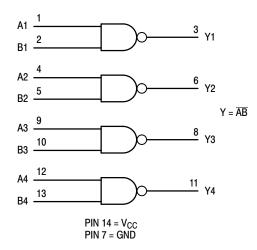


Figure 1. Logic Diagram

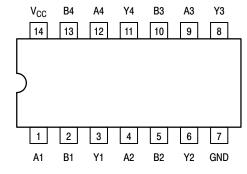
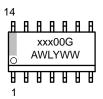
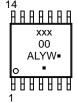


Figure 2. Pinout: 14-Lead Packages (Top View)


ON Semiconductor®

www.onsemi.com

MARKING DIAGRAMS



SOIC-14 D SUFFIX CASE 751A

TSSOP-14 DT SUFFIX CASE 948G

xxx = AC or ACT

A = Assembly Location

WL or L = Wafer Lot Y = Year WW or W = Work Week G or = Pb-Free Package

(Note: Microdot may be in either location)

FUNCTION TABLE

Inputs				
АВ	Α			
. L	L			
_ н	L			
1 L	Н			
+ н	Н			
- H	L H			

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

MAXIMUM RATINGS

Symbol	Paramet	Parameter			
V _{CC}	DC Supply Voltage		-0.5 to +7.0	V	
VI	DC Input Voltage		$-0.5 \le V_{I} \le V_{CC} + 0.5$	V	
Vo	DC Output Voltage	(Note 1)	$-0.5 \le V_{O} \le V_{CC} + 0.5$	V	
I _{IK}	DC Input Diode Current		±20	mA	
I _{OK}	DC Output Diode Current		±50	mA	
Io	DC Output Sink/Source Current	±50	mA		
I _{CC}	DC Supply Current per Output Pin	±50	mA		
I _{GND}	DC Ground Current per Output Pin	±50	mA		
T _{STG}	Storage Temperature Range	-65 to +150	°C		
TL	Lead temperature, 1 mm from Case for	r 10 Seconds	260	°C	
TJ	Junction temperature under Bias		+150	°C	
$\theta_{\sf JA}$	Thermal Resistance (Note 2)	SOIC TSSOP	125 170	°C/W	
P _D	Power Dissipation in Still Air at 85°C	SOIC TSSOP	125 170	mW	
MSL	Moisture Sensitivity		Level 1		
F _R	Flammability Rating	Oxygen Index: 30% – 35%	UL 94 V-0 @ 0.125 in		
V _{ESD}	ESD Withstand Voltage	Human Body Model (Note 3) Machine Model (Note 4) Charged Device Model (Note 5)	> 2000 > 200 > 1000	V	
I _{Latch-Up}	Latch-Up Performance Above V _{CC} a	and Below GND at 85°C (Note 6)	±100	mA	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. I_O absolute maximum rating must be observed.
- 2. The package thermal impedance is calculated in accordance with JESD51–7.
- 3. Tested to EIA/JESD22-A114-A.
- 4. Tested to EIA/JESD22-A115-A.
- 5. Tested to JESD22-C101-A.
- 6. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Тур	Max	Unit
V _{CC}	Supply Voltage	MC74AC00 MC74ACT00	2.0 4.5	5.0 5.0	6.0 5.5	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Ref. to GND)		0	-	V _{CC}	V
t _r , t _f	Input Rise and Fall Time (Note 7) MC74AC00	V _{CC} @ 3.0 V V _{CC} @ 4.5 V V _{CC} @ 5.5 V	- - -	150 40 25	- - -	ns/V
t _r , t _f	Input Rise and Fall Time (Note 8) MC74ACT00	V _{CC} @ 4.5 V V _{CC} @ 5.5 V	<u> </u>	10 8.0	- -	ns/V
TJ	Junction Temperature		-	-	150	°C
T _A	Operating Ambient Temperature Range		-55	25	125	°C
I _{OH}	Output Current – High		-	-	-24	mA
I _{OL}	Output Current – Low		-	-	24	mA

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

- 7. V_{in} from 30% to 70% V_{CC}. 8. V_{in} from 0.8 V to 2.0 V.

DC CHARACTERISTICS

					MC74AC00			
		V _{CC}	T _A = +	-25°C	T _A = -40°C to +85°C	T _A = -55°C + 125°C		
Symbol	Parameter	(V)	Тур		Guaranteed I	Limits	Unit	Conditions
V _{IH}	Minimum High Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	2.1 3.15 3.85	2.1 3.15 3.85	2.1 3.15 3.85	V	V _{OUT} = 0.1 V or V _{CC} - 0.1 V
V _{IL}	Maximum Low Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	0.9 1.35 1.65	0.9 1.35 1.65	0.9 1.35 1.65	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{OH}	Minimum High Level Output Voltage	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	2.9 4.4 5.4	V	I _{OUT} = -50 μA
		3.0 4.5 5.5	- - -	2.56 3.86 4.86	2.46 3.76 4.76	2.4 3.7 4.7	V	$^{*}V_{IN} = V_{IL} \text{ or } V_{IH} \\ -12 \text{ mA} \\ I_{OH} \qquad -24 \text{ mA} \\ -24 \text{ mA} \\$
V _{OL}	Maximum Low Level Output Voltage	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V	Ι _{ΟUT} = 50 μΑ
		3.0 4.5 5.5	- - -	0.36 0.36 0.36	0.44 0.44 0.44	0.5 0.5 0.5	V	$^{*}V_{IN} = V_{IL} \text{ or } V_{IH}$ 12 mA I_{OL} 24 mA 24 mA
I _{IN}	Maximum Input Leakage Current	5.5	-	±0. 1	± 1.0	±1.0	μΑ	$V_I = V_{CC}$, GND
I _{OLD}	†Minimum Dynamic	5.5	-	-	75	50	mA	V _{OLD} = 1.65 V Max
I _{OHD}	Output Current	5.5	-	-	- 75	-50	mA	V _{OHD} = 3.85 V Min
I _{CC}	Maximum Quiescent Supply Current	5.5	-	4.0	40	40	μΑ	$V_{IN} = V_{CC}$ or GND

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. *All outputs loaded; thresholds on input associated with output under test.

†Maximum test duration 2.0 ms, one output loaded at a time.

NOTE: I_{IN} and I_{CC} @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V_{CC} .

AC CHARACTERISTICS ($t_r = t_f = 3.0 \text{ nS}$; $C_L = 50 \text{ pF}$; see Figures 3 and 4 for Waveforms)

		MC74AC00								
		v _{cc} *	T,	_A = +25°	С	$T_A = -40^{\circ}$	C to +85°C	T _A = -55°C	to + 125°C	
Symbol	Parameter	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
t _{PLH}	Propagation Delay	3.3 5.0	2.0 1.5	7.0 6.0	9.5 8.0	2.0 1.5	10.0 8.5	1.0 1.0	11.0 8.5	ns
t _{PHL}	Propagation Delay	3.3 5.0	1.5 1.5	5.5 4.5	8.0 6.5	1.0 1.0	8.5 7.0	1.0 1.0	9.0 7.0	ns

^{*}Voltage Range 3.3 V is 3.3 V \pm 0.3 V. Voltage Range 5.0 V is 5.0 V \pm 0.5 V.

DC CHARACTERISTICS

				MC74ACT00				
		V _{CC}	T _A = +	-25°C	$T_A = -40$ °C to +85°C	$T_A = -55^{\circ}C \text{ to } + 125^{\circ}C$		
Symbol	Parameter	(V)	Тур		Guaranteed	l Limits	Unit	Conditions
V _{IH}	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	2.0 2.0	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{IL}	Maximum Low Level Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	0.8 0.8	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{OH}	Minimum High Level Output Voltage	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	4.4 5.4	V	I _{OUT} = -50 μA
		4.5 5.5		3.86 4.86	3.76 4.76	3.7 4.7	V	$^*V_{IN} = V_{IL} \text{ or } V_{IH}$ I_{OH} -24 mA -24 mA
V _{OL}	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	0.1 0.1	V	I _{OUT} = 50 μA
		4.5 5.5	- -	0.36 0.36	0.44 0.44	0.5 0.5	V	$^*V_{IN} = V_{IL} \text{ or } V_{IH}$ I_{OL} 24 mA 24 mA
I _{IN}	Maximum Input Leakage Current	5.5	-	± 0.1	±1.0	± 1.0	μΑ	$V_I = V_{CC}$, GND
ΔI_{CCT}	Additional Max. I _{CC} /Input	5.5	0.6	_	1.5	1.6	mA	$V_{I} = V_{CC} - 2.1 \text{ V}$
I _{OLD}	†Minimum Dynamic	5.5	-	_	75	50	mA	V _{OLD} = 1.65 V Max
I _{OHD}	Output Current	5.5	_	-	- 75	– 50	mA	V _{OHD} = 3.85 V Min
I _{CC}	Maximum Quiescent Supply Current	5.5	_	4.0	40	40	μΑ	$V_{IN} = V_{CC}$ or GND

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

*All outputs loaded; thresholds on input associated with output under test.

†Maximum test duration 2.0 ms, one output loaded at a time.

AC CHARACTERISTICS ($t_r = t_f = 3.0 \text{ nS}$; $C_L = 50 \text{ pF}$; see Figures 3 and 4 for Waveforms)

						MC74	ACT00			
		V _{CC} *	T,	₄ = +25°	С	$T_A = -40^{\circ}C$	C to +85°C	T _A = -55°C	to +125°C	
Symbol	Parameter	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
t _{PLH}	Propagation Delay	5.0	1.5	5.5	9.0	1.0	9.5	1.0	9.5	ns
t _{PHL}	Propagation Delay	5.0	1.5	4.0	7.0	1.0	8.0	1.0	8.0	ns

^{*}Voltage Range 5.0 V is 5.0 V $\pm\,0.5$ V.

CAPACITANCE

Symbol	Parameter	Value Typ	Test Conditions	Unit
C _{IN}	Input Capacitance	4.5	V _{CC} = 5.0 V	pF
C _{PD}	Power Dissipation Capacitance	30	V _{CC} = 5.0 V	pF

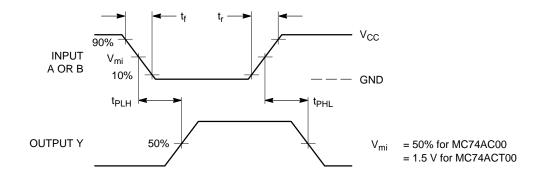
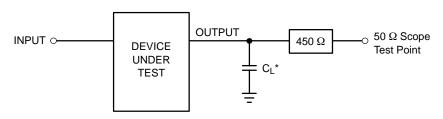



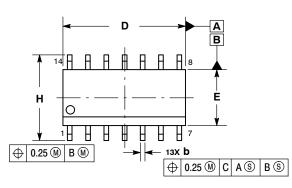
Figure 3. Switching Waveforms

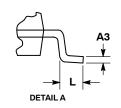
*Includes all probe and jig capacitance

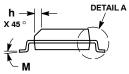
Figure 4. Test Circuit

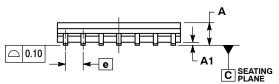
ORDER INFORMATION

Device	Package	Shipping [†]	
MC74AC00DG	SOIC-14 (Pb-Free)	55 Units / Rail	
MC74AC00DR2G	SOIC-14 (Pb-Free)	0500 /T	
MC74AC00DTR2G	TSSOP-14 (Pb-Free)	2500 / Tape and Reel	
MC74ACT00DG	SOIC-14 (Pb-Free)	55 Units / Rail	
MC74ACT00DR2G	SOIC-14 (Pb-Free)	OFOO / Tare and Deel	
MC74ACT00DTR2G	TSSOP-14 (Pb-Free)	2500 / Tape and Reel	

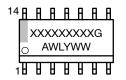

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.






SOIC-14 NB CASE 751A-03 ISSUE L

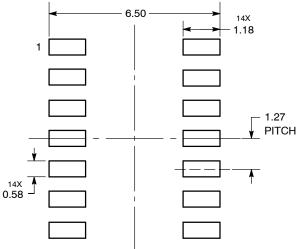
DATE 03 FEB 2016



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
 - ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT
- MAXIMUM MATERIAL CONDITION.
 DIMENSIONS D AND E DO NOT INCLUDE
 MOLD PROTRUSIONS.
- 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
АЗ	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
Е	3.80	4.00	0.150	0.157
e	1.27	BSC	0.050	BSC
Н	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
М	0 °	7°	0 °	7 °

GENERIC MARKING DIAGRAM*



XXXXX = Specific Device Code Α = Assembly Location

WL = Wafer Lot Υ = Year WW = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

SOLDERING FOOTPRINT*

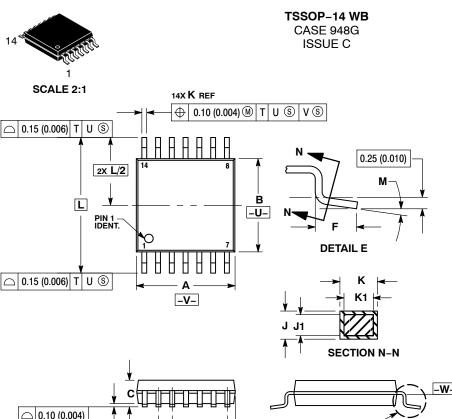
DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42565B	BASB42565B Electronic versions are uncontrolled except when accessed directly from the Printed versions are uncontrolled except when stamped "CONTROLLED COR			
DESCRIPTION:	SOIC-14 NB		PAGE 1 OF 2		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.


SOIC-14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 9. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON ANODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DATE 17 FEB 2016

- NOTES.

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A DOES NOT INCLUDE MOLD
- FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT
- EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL
- INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

 DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.

 TERMINAL NUMBERS ARE SHOWN FOR DEEEDENIC OMITY.
- REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE
- DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
Н	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
М	o o	ρ °	0 °	Q°

GENERIC MARKING DIAGRAM*

= Assembly Location

= Wafer Lot V = Year

W = Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

0.15 (0.006) T U S A	J J1 SECTION N
0.10 (0.004) —T— SEATING PLANE	H DETAIL E
SOLDERING	FOOTPRINT
7.0	06
	0.65 PITCH

DOCUMENT NUMBER:	98ASH70246A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSSOP-14 WB		PAGE 1 OF 1	

DIMENSIONS: MILLIMETERS

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

14X

1.26

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.org/www.onsemi.or

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \underline{ www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales