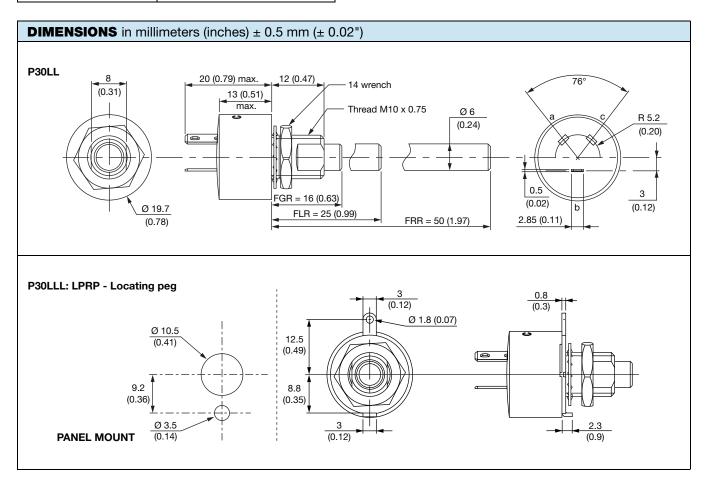
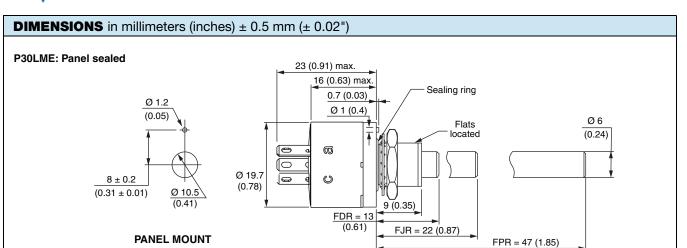


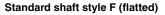
# Long Life Potentiometer - 2 Million Cycles, Heavy Duty - Cermet, Fully Sealed

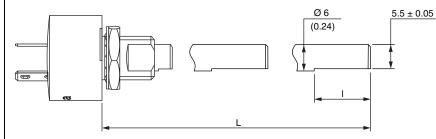



| QUICK REFERENCE DATA    |                                                      |  |  |  |
|-------------------------|------------------------------------------------------|--|--|--|
| Multiple module No      |                                                      |  |  |  |
| Switch module n/a       |                                                      |  |  |  |
| Detent module           | n/a                                                  |  |  |  |
| Special electrical laws | A: linear, L: logarithmic,<br>F: reverse logarithmic |  |  |  |
| Sealing level           | IP 67                                                |  |  |  |
| Lifespan                | 2M cycles                                            |  |  |  |

### **FEATURES**


- 2 million cycles
- High power rating 3 W at 70 °C



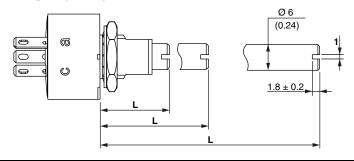


- · Cermet element
- Low temperature coefficient (± 150 ppm/°C typical)
- · Custom designs on request
- Tests according to CECC 41000 or IEC 60393-1
- Material categorization: for definitions of compliance please see <a href="https://www.vishay.com/doc?99912"><u>www.vishay.com/doc?99912</u></a>












| MODEL | SHAFT CONDIFICATION | L<br>(mm) | l<br>(mm) |
|-------|---------------------|-----------|-----------|
|       | FGF                 | 16        | 3.17      |
| P30LL | FLF                 | 25        | 12        |
|       | FRF                 | 30        | 12        |
|       | FDF                 | 13        | 3.17      |
| P30LM | FJF                 | 22        | 12        |
|       | FPF                 | 47        | 12        |

### Note

Shaft shown at center position.
 Flat opposite to the wiper

### Standard shaft style S (slotted)



| MODEL | SHAFT CONDIFICATION | L<br>(mm) |
|-------|---------------------|-----------|
|       | FGS                 | 16        |
| P30LL | FLS                 | 25        |
|       | FRS                 | 50        |
|       | FDS                 | 13        |
| P30LM | FJS                 | 22        |
|       | FPS                 | 47        |

### Note

• Slot aligned to the wiper at ± 10°



| Power rating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>ELECTRICAL SPECIFICATIONS</b>     |                      |                                |                              |                        |                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------|--------------------------------|------------------------------|------------------------|-------------------------|
| Electrical travel   270° ± 10°     Standard resistance values   1 kΩ - 5 kΩ - 10 kΩ - 50 kΩ     Tolerance   20 %     Taper   1 kΩ - 5 kΩ - 10 kΩ - 50 kΩ     Tolerance   20 %     Tolerance   20 %    |                                      |                      |                                | Cermet                       |                        |                         |
| Standard resistance values   1 kΩ - 5 kΩ - 10 kΩ - 50 kΩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |                      |                                |                              |                        |                         |
| Taper   Non-linear taper   No   |                                      |                      |                                |                              |                        |                         |
| Taper    Standard resistance element data   Standa | Tolerance                            |                      |                                | 20 %                         |                        |                         |
| Power rating         Linear Non-linear taper         3 W at 70 °C 1.5 W at 70 °C 1.5 W at 70 °C         Non-linear taper 1.5 W at 70 °C 1.5 W at 70 °C         Non-linear taper 1.5 W at 70 °C 1.5 W at 70 °C         Non-linear taper 1.5 W at 70 °C (3) (3) (3) (3) (3) (2) 140           Standard resistance element data         RESISTANCE VALUE (MΩ)         INDEAR TAPER MAX. WORKING MAX. POWER AT 70 °C (W) (V) (V) (V) (V) (V) (V) (V) (V) (V) (V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Taper                                | Total Resistance (%) | 80<br>60<br>40<br>20<br>0 0 20 | A L L 40 60                  |                        |                         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |                      | Power (W)                      | Non-linear taper  20 40 60 7 |                        | ) 140                   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Circuit diagram                      | b Ó→ cw              |                                |                              |                        |                         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |                      | IINEA                          | R TAPER                      | NON-LIN                | FAR TAPER               |
| 1   3   54.8   1.5   38.7   5   3   122   1.5   86.6   10   3   173   1.5   122   50   1.8   300   1.5   274   150 ppm/°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      | VALUE                | MAX. POWER<br>AT 70 °C         | MAX. WORKING<br>VOLTAGE      | MAX. POWER<br>AT 70 °C | MAX. WORKING<br>VOLTAGE |
| 10   3   173   1.5   122   50   1.8   300   1.5   274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Standard resistance element data     | 1                    |                                |                              |                        | 38.7                    |
| 50   1.8   300   1.5   274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      | 5                    | 3                              | 122                          | 1.5                    | 86.6                    |
| Temperature coefficient (typical) $\pm$ 150 ppm/°C  Limiting element voltage 300 V  End resistance (typical) $1 \Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      | 10                   | 3                              | 173                          | 1.5                    | 122                     |
| Limiting element voltage300 VEnd resistance (typical)1 $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      | 50                   | 1.8                            | 300                          | 1.5                    | 274                     |
| Limiting element voltage300 VEnd resistance (typical)1 $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tanananat was a sefficient (tomical) | 450 00               |                                |                              |                        |                         |
| End resistance (typical) 1 $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |                      |                                |                              |                        |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                      |                                |                              |                        |                         |
| Dielectric strength (RMS)   2500 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                      |                                |                              |                        |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                      |                                |                              |                        |                         |
| Insulation resistance (300 $V_{DC}$ )105 MΩIndependent linearity (typical)± 5 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      | 10 <sup>5</sup> MΩ   |                                |                              |                        |                         |

# Vishay Sfernice

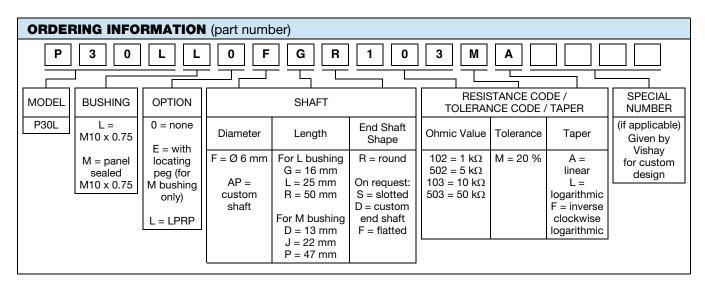
| MECHANICAL SPECIFICATIONS         |                                       |                |  |
|-----------------------------------|---------------------------------------|----------------|--|
| Mechanical travel                 | 300                                   | )° ± 5°        |  |
| Operating torque / typical value  | 3 Ncm                                 | 4.25 ozinch    |  |
| End stop torque                   | 70 Ncm max.                           | 99 ozinch max. |  |
| Tightening torque of mounting nut | 250 Ncm max. 22.13 lb-inch max.       |                |  |
| Unit weight                       | 23 g to 32 g max. 0.8 oz. to 1.13 oz. |                |  |
| Terminals                         | e3: pure Sn                           |                |  |

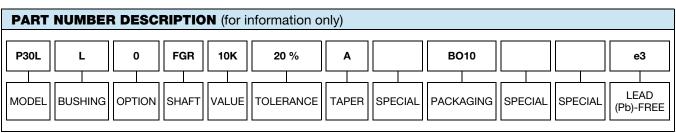
| ENVIRONMENTAL SPECIFICATIONS |                               |  |  |  |
|------------------------------|-------------------------------|--|--|--|
| Temperature range            | -55 °C to +125 °C             |  |  |  |
| Climatic category            | 55/125/56                     |  |  |  |
| Sealing                      | Fully sealed - container IP67 |  |  |  |

| OPTIONS                       |                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Special feature command shaft | Length is measured from the mounting surface to the free end of the shaft. The screwdriver slot is aligned with the wiper within $\pm$ 10°. Special shafts are available, in accordance to drawings supplied by customers. We recommend that customers should not machine tool shafts, in order to avoid damage. Bending or torsion of terminals should also be avoided. |
| Panel sealing                 | The panel sealing device consists of a ring located in a groove on the potentiometer face. Sealing is obtained by tightening the ring against the panel when mounting the potentiometer.                                                                                                                                                                                 |
| Locating peg                  | Location is obtained by fitting a special washer on the mounting face of the potentiometer.                                                                                                                                                                                                                                                                              |

### **MARKING**

- Vishay trademark
- Full ordering information (see Ordering Information table)
- Manufacturing date code
- Marking of terminals 3, and a, b, c


| APPLICATION NOTE                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The potentiometer shall be used in voltage divider with an impedance load at least 100 times higher than the total potentiometer nominal resistance value.<br>Advised load impedance: $1~M\Omega~min.~for~resistance~range~of~1k\Omega~to~50~k\Omega$ | C (3)  C (4)  C (4)  C (5)  C (7)  C (7)  C (8)  C (8)  C (9)  C (1)  C |




| PERFORMANCE             |                                                                                                   |                                     |                              |                                                |
|-------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------|------------------------------------------------|
|                         | CONDITIONS                                                                                        | TYPICAL VALUES AND DRIFTS           |                              |                                                |
| TESTS                   | CONDITIONS                                                                                        | ∆R <sub>T</sub> /R <sub>T</sub> (%) | $\Delta R_{1-2}/R_{1-2}$ (%) | OTHER                                          |
| Electrical endurance    | 1000 h at rated power 90'/30' - ambient temp. 70 °C                                               | ± 20 %                              | ± 20 %                       | -                                              |
| Climatic sequence       | Phase A dry heat 125 °C<br>Phase B damp heat<br>Phase C cold -55 °C<br>Phase D damp heat 5 cycles | ± 0.5 %                             | ± 1 %                        | -                                              |
| Damp heat, steady state | 56 days<br>40 °C 93 % HR                                                                          | ± 0.5 %                             | ± 1 %                        | Insulation resistance: $> 100 \text{ M}\Omega$ |
| Change of temperature   | 5 cycles<br>-55 °C at +125 °C                                                                     | ± 0.5 %                             | -                            | -                                              |
| Mechanical endurance    | 2 000 000 cycles at rated power<br>Turn angle: ± 60°<br>Temperature: 20 °C                        | ± 20 %                              | -                            | Independent linearity:<br>± 10 %               |
| Shock                   | 50 g's at 11 ms<br>3 successive shocks<br>in 3 directions                                         | ± 0.1 %                             | ± 0.2 %                      | -                                              |
| Vibration               | 10 Hz to 55 Hz<br>0.75 mm or 10 <i>g</i> 's<br>during 6 h                                         | ± 0.1 %                             | ± 0.2 %                      | -                                              |

#### Note

· Nothing stated herein shall be construed as a guarantee of quality or durability





| RELATED DOCUMENTS                                                 |                          |  |
|-------------------------------------------------------------------|--------------------------|--|
| APPLICATION NOTES                                                 |                          |  |
| Potentiometers and Trimmers                                       | www.vishay.com/doc?51001 |  |
| Guidelines for Vishay Sfernice Resistive and Inductive Components | www.vishay.com/doc?52029 |  |



## **Legal Disclaimer Notice**

Vishay

### **Disclaimer**

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.