LDO Voltage Regulator -

Adjustable Output, Load **Dump Protection**

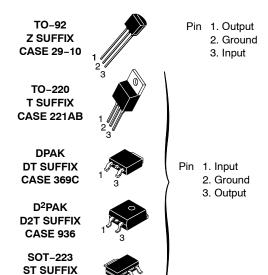
60 V, 100 mA

LM2931, NCV2931 Series

The LM2931 series consists of positive fixed and adjustable output voltage regulators that are specifically designed to maintain proper regulation with an extremely low input-to-output voltage differential. These devices are capable of supplying output currents in excess of 100 mA and feature a low bias current of 0.4 mA at 10 mA output.

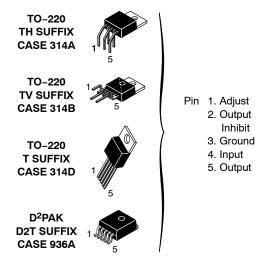
Designed primarily to survive in the harsh automotive environment, these devices will protect all external load circuitry from input fault conditions caused by reverse battery connection, two battery jump starts, and excessive line transients during load dump. This series also includes internal current limiting, thermal shutdown, and additionally, is able to withstand temporary power-up with mirror-image insertion.

Due to the low dropout voltage and bias current specifications, the LM2931 series is ideally suited for battery powered industrial and consumer equipment where an extension of useful battery life is desirable. The 'C' suffix adjustable output regulators feature an output inhibit pin which is extremely useful in microprocessor-based systems.


Features

- Input-to-Output Voltage Differential of < 0.6 V @ 100 mA
- Output Current in Excess of 100 mA
- Low Bias Current
- 60 V Load Dump Protection
- -50 V Reverse Transient Protection
- Internal Current Limiting with Thermal Shutdown
- Temporary Mirror-Image Protection
- Ideally Suited for Battery Powered Equipment
- Economical 5-Lead TO-220 Package with Two Optional Leadforms
- Available in Surface Mount SOP-8, D²PAK and DPAK Packages
- High Accuracy (±2.5%) Reference (LM2931AC) Available
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- Pb-Free Packages are Available

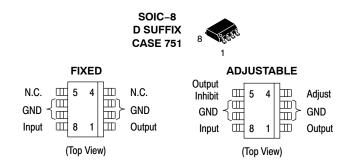
Applications


- Battery Powered Consumer Products
- Hand-held Instruments
- Camcorders and Cameras

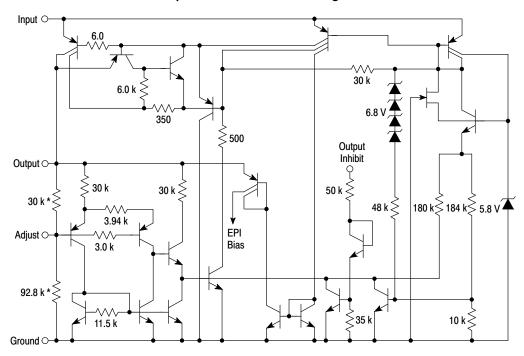
FIXED OUTPUT VOLTAGE

ADJUSTABLE OUTPUT VOLTAGE

CASE 318H


ORDERING INFORMATION

See detailed ordering and shipping information on page 12 of this data sheet.


DEVICE MARKING INFORMATION

See general marking and heatsink information in the device marking section on page 14 of this data sheet.

1

Representative Schematic Diagram

^{*}Deleted on Adjustable Regulators

This device contains 26 active transistors.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage Continuous	VI	40	Vdc
Transient Input Voltage (τ ≤ 100 ms)	V _I (τ)	60	Vpk
Transient Reverse Polarity Input Voltage 1.0% Duty Cycle, τ ≤ 100 ms	-V _I (τ)	-50	Vpk
Electrostatic Discharge Sensitivity (ESD) Human Body Model (HBM) Class 2, JESD22 A114-C Machine Model (MM) Class A, JESD22 A115-A Charged Device Model (CDM), JESD22 C101-C	-	2000	V
	-	200	V
	-	2000	V
Power Dissipation Case 29 (TO-92 Type) T _A = 25°C Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case	P _D	Internally Limited	W
	R _{θJA}	178	°C/W
	R _{θJC}	83	°C/W
Case 221A, 314A, 314B and 314D (TO-220 Type) T _A = 25°C Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case Case 318H (SOT-223)	P _D	Internally Limited	W
	R _{θJA}	65	°C/W
	R _{θJC}	5.0	°C/W
T _A = 25°C Thermal Resistance, Junction–to–Ambient Thermal Resistance, Junction–to–Case	P _D	Internally Limited	W
	R _{θJA}	242	°C/W
	R _{θJC}	21	°C/W
Case 369A (DPAK) (Note 1) T _A = 25°C Thermal Resistance, Junction–to–Ambient Thermal Resistance, Junction–to–Case	P _D	Internally Limited	W
	R _{θJA}	92	°C/W
	R _{θJC}	6.0	°C/W
Case 751 (SOP-8) (Note 2) T _A = 25°C Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case	P _D	Internally Limited	W
	R _{θJA}	160	°C/W
	R _{θJC}	25	°C/W
Case 936 and 936A (D^2PAK) (Note 3) $T_A = 25^{\circ}C$ Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case	P _D	Internally Limited	W
	R _{θJA}	70	°C/W
	R _{θJC}	5.0	°C/W
Operating Ambient Temperature Range	T _A	-40 to +125	°C
Operating Die Junction Temperature	T _J	+150	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. DPAK Junction-to-Ambient Thermal Resistance is for vertical mounting. Refer to Figure 25 for board mounted Thermal Resistance.
- 2. SOP-8 Junction-to-Ambient Thermal Resistance is for minimum recommended pad size. Refer to Figure 24 for Thermal Resistance variation versus pad size.
- 3. D²PAK Junction to-Ambient Thermal Resistance is for vertical mounting. Refer to Figure 26 for board mounted Thermal Resistance.
- 4. NCV rated devices are subjected to and meet the AECQ-100 quality standards.

$\textbf{ELECTRICAL CHARACTERISTICS} \text{ ($V_{in}=14$ V, $I_O=10$ mA, $C_O=100$ μF, $C_{O(ESR)}=0.3$ Ω, $T_A=25^{\circ}$C [Note 5]) }$

		LM2931	-5.0/NCV	2931–5.0	LM2931A	-5.0/NCV2	931A-5.0	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
FIXED OUTPUT		•		•			•	
Output Voltage	Vo							V
V _{in} = 14 V, I _O = 10 mA, T _A = 25°C		4.75	5.0	5.25	4.81	5.0	5.19	
V_{in} = 6.0 V to 26 V, $I_O \le$ 100 mA, $T_A = -40^\circ$ to +125°C		4.50	-	5.50	4.75	-	5.25	
Line Regulation	Reg _{line}							mV
V _{in} = 9.0 V to 16 V		_	2.0	10	-	2.0	10	
V _{in} = 6.0 V to 26 V		_	4.0	30	-	4.0	30	
Load Regulation (I _O = 5.0 mA to 100 mA)	Reg _{load}	_	14	50	-	14	50	mV
Output Impedance	Z _O							mΩ
I_{O} = 10 mA, ΔI_{O} = 1.0 mA, f = 100 Hz to 10 kHz		_	200	-	-	200	-	
Bias Current	Ι _Β							mA
V _{in} = 14 V, I _O = 100 mA, T _A = 25°C		_	5.8	30	-	5.8	30	
V_{in} = 6.0 V to 26 V, I_O = 10 mA, T_A = -40° to $+125^{\circ}C$		_	0.4	1.0	-	0.4	1.0	
Output Noise Voltage (f = 10 Hz to 100 kHz)	V _n	_	700	-	-	700	_	μVrms
Long Term Stability	S	_	20	-	-	20	_	mV/kHR
Ripple Rejection (f = 120 Hz)	RR	60	90	-	60	90	_	dB
Dropout Voltage	V_I – V_O							V
I _O = 10 mA		_	0.015	0.2	-	0.015	0.2	
I _O = 100 mA		-	0.16	0.6	-	0.16	0.6	
Over-Voltage Shutdown Threshold	V _{th(OV)}	26	29.5	40	26	29.5	40	V
Output Voltage with Reverse Polarity Input $(V_{in} = -15 \text{ V})$	-V _O	-0.3	0	-	-0.3	0	-	V

^{5.} Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.6. NCV devices are qualified for automotive use.

 $\textbf{ELECTRICAL CHARACTERISTICS} \ (V_{in} = 14 \ V, \ I_O = 10 \ mA, \ C_O = 100 \ \mu F, \ C_{O(ESR)} = 0.3 \ \Omega, \ T_A = 25^{\circ}C \ [Note \ 7])$

		LM29	31C/NCV	2931C	LM293	AC/NCV2	2931AC	
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
ADJUSTABLE OUTPUT	ADJUSTABLE OUTPUT							
Reference Voltage (Note 8, Figure 18) $I_O = 10 \text{ mA, } T_A = 25^{\circ}\text{C}$ $I_O \le 100 \text{ mA, } T_A = -40 \text{ to } +125^{\circ}\text{C}$	V _{ref}	1.14 1.08	1.20	1.26 1.32	1.17 1.15	1.20	1.23 1.25	V
Output Voltage Range	V _{O range}	3.0 to 24	2.7 to 29.5	-	3.0 to 24	2.7 to 29.5	-	V
Line Regulation (V _{in} = V _O + 0.6 V to 26 V)	Reg _{line}	-	0.2	1.5	-	0.2	1.5	mV/V
Load Regulation (I _O = 5.0 mA to 100 mA)	Reg _{load}	-	0.3	1.0	-	0.3	1.0	%/V
Output Impedance $I_O = 10$ mA, $\Delta I_O = 1.0$ mA, $f = 10$ Hz to 10 kHz	Z _O	-	40	_	_	40	-	mΩ/V
Bias Current $I_{O} = 100 \text{ mA}$ $I_{O} = 10 \text{ mA}$ Output Inhibited $(V_{th(OI)} = 2.5 \text{ V})$	I _B	- - -	6.0 0.4 0.2	- 1.0 1.0		6.0 0.4 0.2	- 1.0 1.0	mA
Adjustment Pin Current	I _{Adj}	-	0.2	-	_	0.2	_	μΑ
Output Noise Voltage (f = 10 Hz to 100 kHz)	V _n	_	140	-	-	140	-	μVrms/V
Long-Term Stability	S	-	0.4	-	-	0.4	-	%/kHR
Ripple Rejection (f = 120 Hz)	RR	0.10	0.003	-	0.10	0.003	-	%/V
Dropout Voltage $I_O = 10 \text{ mA}$ $I_O = 100 \text{ mA}$	V _I –V _O	- -	0.015 0.16	0.2 0.6	_ _	0.015 0.16	0.2 0.6	V
Over-Voltage Shutdown Threshold	$V_{th(OV)}$	26	29.5	40	26	29.5	40	V
Output Voltage with Reverse Polarity Input (V _{in} = -15 V)	-V _O	-0.3	0	_	-0.3	0	-	V
Output Inhibit Threshold Voltages $ \begin{array}{ll} \text{Output "On":} & T_A = 25^\circ C \\ & T_A = -40^\circ \text{ to } +125^\circ C \\ \text{Output "Off":} & T_A = 25^\circ C \\ & T_A = -40^\circ \text{ to } +125^\circ C \\ \end{array} $	V _{th(OI)}	- - 2.50 3.25	2.15 - 2.26 -	1.90 1.20 - -	- - 2.50 3.25	2.15 - 2.26 -	1.90 1.20 - -	V
Output Inhibit Threshold Current (V _{th(OI)} = 2.5 V)	I _{th(OI)}	-	30	50	-	30	50	μΑ

^{7.} Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
8. The reference voltage on the adjustable device is measured from the output to the adjust pin across R₁.

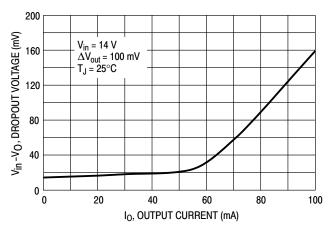


Figure 1. Dropout Voltage versus Output Current

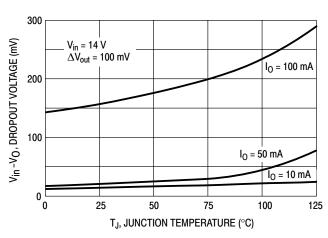


Figure 2. Dropout Voltage versus Junction Temperature

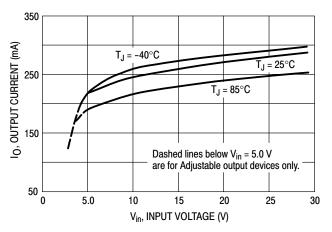


Figure 3. Peak Output Current versus Input Voltage

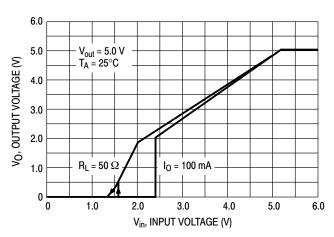


Figure 4. Output Voltage versus Input Voltage

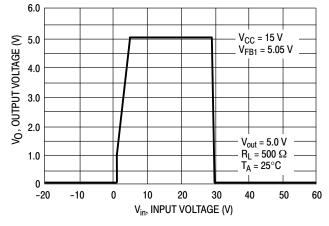


Figure 5. Output Voltage versus Input Voltage

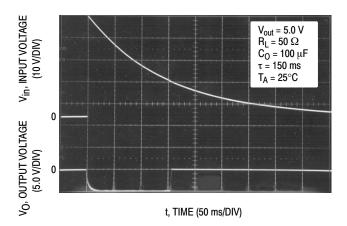


Figure 6. Load Dump Characteristics

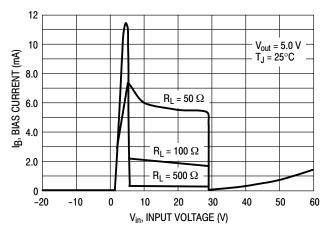


Figure 7. Bias Current versus Input Voltage

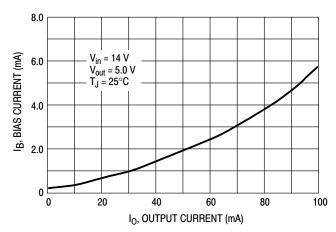


Figure 8. Bias Current versus Output Current

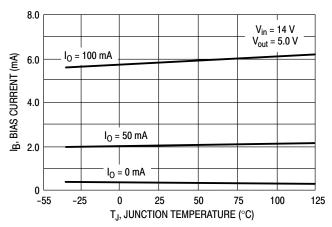


Figure 9. Bias Current versus Junction Temperature

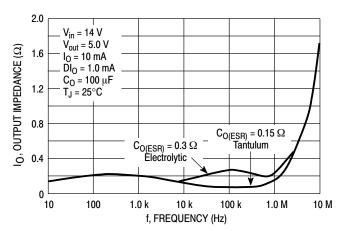


Figure 10. Output Impedance versus Frequency

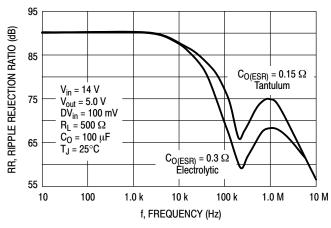


Figure 11. Ripple Rejection versus Frequency

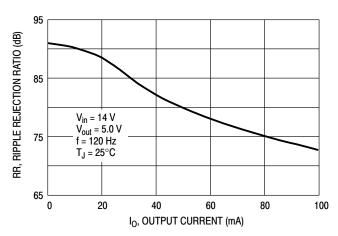


Figure 12. Ripple Rejection versus Output Current

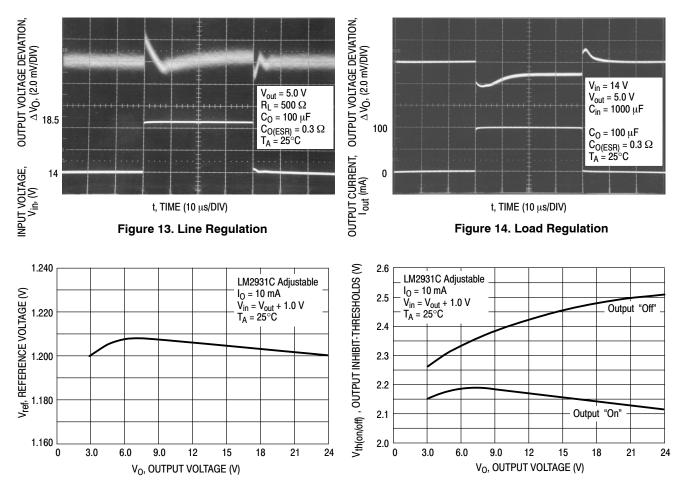


Figure 15. Reference Voltage versus Output Voltage

Figure 16. Output Inhibit-Thresholds versus Output Voltage

APPLICATIONS INFORMATION

The LM2931 series regulators are designed with many protection features making them essentially blow-out proof. These features include internal current limiting, thermal shutdown, overvoltage and reverse polarity input protection, and the capability to withstand temporary power-up with mirror-image insertion. Typical application circuits for the fixed and adjustable output device are shown in Figures 17 and 18.

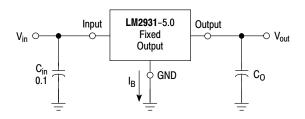
The input bypass capacitor C_{in} is recommended if the regulator is located an appreciable distance ($\geq 4''$) from the supply input filter. This will reduce the circuit's sensitivity to the input line impedance at high frequencies.

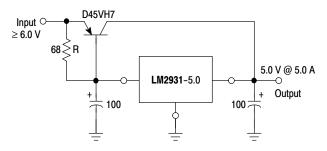
This regulator series is not internally compensated and thus requires an external output capacitor for stability. The capacitance value required is dependent upon the load current, output voltage for the adjustable regulator, and the type of capacitor selected. The least stable condition is encountered at maximum load current and minimum output voltage. Figure 22 shows that for operation in the "Stable" region, under the conditions specified, the magnitude of the output capacitor impedance $|Z_O|$ must not exceed 0.4 Ω . This

limit must be observed over the entire operating temperature range of the regulator circuit.

With economical electrolytic capacitors, cold temperature operation can pose a serious stability problem. As the electrolyte freezes, around $-30^{\circ}\mathrm{C}$, the capacitance will decrease and the equivalent series resistance (ESR) will increase drastically, causing the circuit to oscillate. Quality electrolytic capacitors with extended temperature ranges of -40° to $+85^{\circ}\mathrm{C}$ and -55° to $+105^{\circ}\mathrm{C}$ are readily available. Solid tantalum capacitors may be a better choice if small size is a requirement, however, the maximum $\left|Z_{\mathrm{O}}\right|$ limit over temperature must be observed.

Note that in the stable region, the output noise voltage is linearly proportional to $\left| Z_O \right|$. In effect, C_O dictates the high frequency roll–off point of the circuit. Operation in the area titled "Marginally Stable" will cause the output of the regulator to exhibit random bursts of oscillation that decay in an under–damped fashion. Continuous oscillation occurs when operating in the area titled "Unstable". It is suggested that oven testing of the entire circuit be performed with maximum load, minimum input voltage, and minimum ambient temperature.





Figure 17. Fixed Output Regulator

Switch Position 1 = Output "On", 2 = Output "Off"

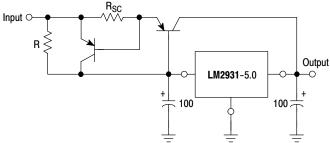

$$V_{out} \ = \ V_{ref} \left(1 \ + \ \frac{R_2}{R_1} \right) \ + \ I_{Adj} \, R_2 \qquad 22.5 \, k \ \ge \ \frac{R_1 \, R_2}{R_1 \ + \ R_2}$$

Figure 18. Adjustable Output Regulator

The LM2931 series can be current boosted with a PNP transistor. The D45VH7, on a heatsink, will provide an output current of 5.0 A with an input to output voltage differential of approximately 1.0 V. Resistor R in conjunction with the V_{BE} of the PNP determines when the pass transistor begins conducting. This circuit is not short circuit proof.

Figure 19. (5.0 A) Low Differential Voltage Regulator

The circuit of Figure 19 can be modified to provide supply protection against short circuits by adding the current sense resistor R_{SC} and an additional PNP transistor. The current sensing PNP must be capable of handling the short circuit current of the LM2931. Safe operating area of both transistors must be considered under worst case conditions.

Figure 20. Current Boost Regulator with Short Circuit Projection

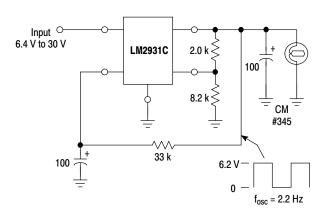
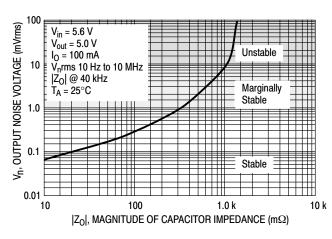



Figure 21. Constant Intensity Lamp Flasher

10 μF 22 μF 0.50 Unstable **47** μF 100 μΕ 0.40 ESR (Ohms) 0.30 Stable 0.20 Note - Optimum stability uses a 22 μ F 0.10 output capacitor. Output capacitor values below 10 µF are not recommended. 0.00 10 20 30 40 50 60 70 80 90 100 0 OUTPUT CURRENT (mA)

Figure 22. Output Noise Voltage vs.
Output Capacitor Impedance

Figure 23. Output Capacitor ESR Stability vs.
Output Load Current

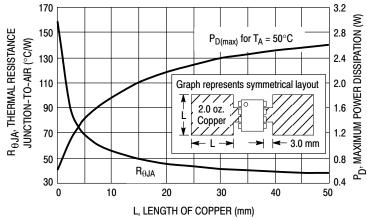


Figure 24. SOP-8 Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

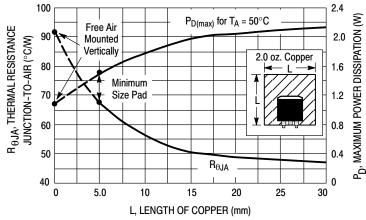


Figure 25. DPAK Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

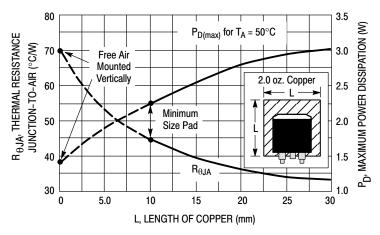


Figure 26. 3-Pin and 5-Pin D²PAK
Thermal Resistance and Maximum Power
Dissipation versus P.C.B. Copper Length

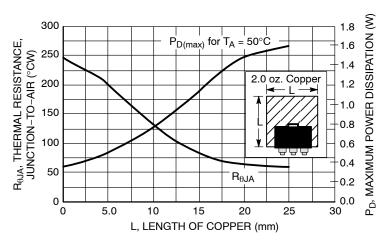


Figure 27. SOT-223 Thermal Resistance and Maximum Power Dissipation vs. P.C.B. Copper Length

DEFINITIONS

Dropout Voltage – The input/output voltage differential at which the regulator output no longer maintains regulation against further reductions in input voltage. Measured when the output decreases 100 mV from nominal value at 14 V input, dropout voltage is affected by junction temperature and load current.

Line Regulation – The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation – The change in output voltage for a change in load current at constant chip temperature.

Maximum Power Dissipation – The maximum total device dissipation for which the regulator will operate within specifications.

Bias Current – That part of the input current that is not delivered to the load.

Output Noise Voltage – The rms AC voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

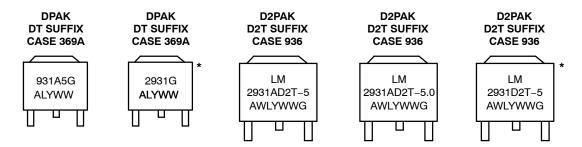
Long-Term Stability – Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices electrical characteristics and maximum power dissipation.

ORDERING INFORMATION

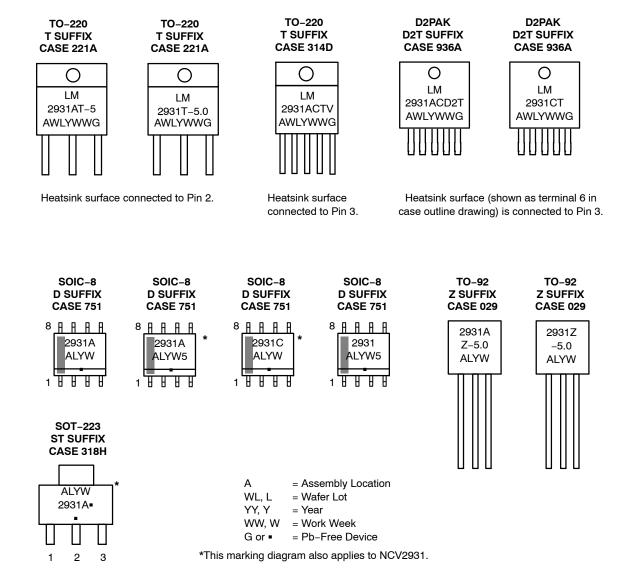
	Ou	tput			
Device	Voltage	Tolerance	Package	Shipping [†]	
LM2931AD-5.0G	5.0 V	±3.8%	SOIC-8 (Pb-Free)	98 Units / Rail	
LM2931AD-5.0R2G	5.0 V	±3.8%	SOIC-8 (Pb-Free)	2500 / Tape & Reel	
LM2931ADT-5.0RKG	5.0 V	±3.8%	DPAK (Pb-Free)	2500 / VacPk	
LM2931AD2T-5R4G	5.0 V	±3.8%	D ² PAK (Pb-Free)	800 / VacPk Reel	
LM2931AT-5.0G	5.0 V	±3.8%	TO-220 (Pb-Free)	50 Units / Rail	
LM2931AZ-5.0G	5.0 V	±3.8%	TO-92 (Pb-Free)	2000 / Inner Bag	
LM2931AZ-5.0RAG	5.0 V	±3.8%	TO-92 (Pb-Free)	2000 / Tape & Reel	
LM2931AZ-5.0RPG	5.0 V	±3.8%	TO-92 (Pb-Free)	2000 / Ammo Pack	
LM2931D-5.0R2G	5.0 V	±5.0%	SOIC-8 (Pb-Free)	2500 / Tape & Reel	
LM2931D2T-5.0R4G	5.0 V	±5.0%	D ² PAK (Pb-Free)	800 / VacPk Reel	
LM2931DT-5.0G	5.0 V	±5.0%	DPAK (Pb-Free)	75 Units / Rail	
LM2931T-5.0G	5.0 V	±5.0%	TO-220 (Pb-Free)	50 Units / Rail	
LM2931Z-5.0G	5.0 V	±5.0%	TO-92 (Pb-Free)	2000 / Inner Bag	
LM2931Z-5.0RAG	5.0 V	±5.0%	TO-92 (Pb-Free)	2000 / Tape & Reel	
LM2931Z-5.0RPG	5.0 V	±5.0%	TO-92 (Pb-Free)	2000 / Ammo Pack	
LM2931CDG	Adjustable	±5.0%	SOIC-8 (Pb-Free)	98 Units / Rail	
LM2931CDR2G	Adjustable	±5.0%	SOIC-8 (Pb-Free)	2500 / Tape & Reel	
LM2931ACDR2G	Adjustable	±2.0%	SOIC-8 (Pb-Free)	2500 / Tape & Reel	
LM2931ACD2TR4G	Adjustable	±2.0%	D ² PAK (Pb-Free)	800 / VacPk Reel	
NCV2931ACDR2G*	Adjustable	±2.5%	SOIC-8 (Pb-Free)	2500 / Tape & Reel	
NCV2931AD-5.0R2G*	5.0 V	±3.8%	SOIC-8 (Pb-Free)	2500 / Tape & Reel	
NCV2931AST-5.0T3G*	5.0 V	±3.8%	SOT-223 (Pb-Free)	4000 / Tape & Reel	
NCV2931AZ-5.0G*	5.0 V	±3.8%	TO-92 (Pb-Free)	2000 / Inner Bag	

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Spe-

cifications Brochure, BRD8011/D.
*NCV2931: T_{low} = -40°C, T_{high} = +125°C. Guaranteed by design. NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

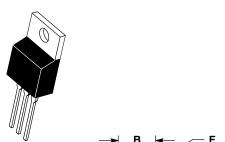

ORDERING INFORMATION (continued)

	Out	tput		
Device	Voltage	Tolerance	Package	Shipping [†]
NCV2931AZ-5.0RAG*	5.0 V	±3.8%	TO-92 (Pb-Free)	2000 / Tape & Reel
NCV2931CDR2G*	Adjustable	±5.0%	SOIC-8 (Pb-Free)	2500 / Tape & Reel
NCV2931D-5.0R2G*	5.0 V	±5.0%	SOIC-8 (Pb-Free)	2500 / Tape & Reel
NCV2931ADT5.0RKG*	5.0 V	±3.8%	DPAK (Pb-Free)	2500 / Tape & Reel
NCV2931DT-5.0RKG*	5.0 V	±5.0%	DPAK (Pb-Free)	2500 / Tape & Reel
NCV2931ACD2TR4G*	Adjustable	±2.5%	D ² PAK (Pb-Free)	800 / VacPk Reel
NCV2931D2T5.0R4G*	5.0 V	±5.0%	D ² PAK (Pb-Free)	800 / VacPk Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Spe-

cifications Brochure, BRD8011/D.
*NCV2931: T_{low} = -40°C, T_{high} = +125°C. Guaranteed by design. NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.

MARKING DIAGRAMS

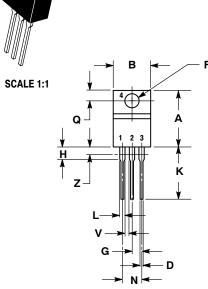

Heatsink surface (shown as terminal 4 in case outline drawing) is connected to Pin 2.

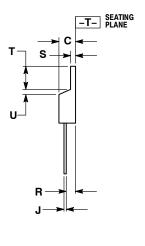
MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

TO-220, SINGLE GAUGE CASE 221AB-01 **ISSUE A**

DATE 16 NOV 2010

- NOTES:

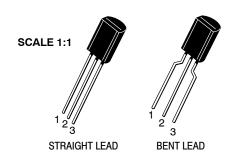

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.


 2. CONTROLLING DIMENSION: INCHES.

 3. DIMENSION 2 DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARTIES ARE ALLOWED.

 4. PRODUCT SHIPPED PRIOR TO 2008 HAD DIMENSIONS S = 0.045 0.055 INCHES (1.143 1.397 MM)

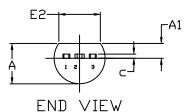
- 5.5 15 5.5555					
	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.570	0.620	14.48	15.75	
В	0.380	0.405	9.66	10.28	
С	0.160	0.190	4.07	4.82	
D	0.025	0.035	0.64	0.88	
F	0.142	0.147	3.61	3.73	
G	0.095	0.105	2.42	2.66	
Н	0.110	0.155	2.80	3.93	
J	0.018	0.025	0.46	0.64	
K	0.500	0.562	12.70	14.27	
L	0.045	0.060	1.15	1.52	
N	0.190	0.210	4.83	5.33	
Q	0.100	0.120	2.54	3.04	
R	0.080	0.110	2.04	2.79	
S	0.020	0.024	0.508	0.61	
Т	0.235	0.255	5.97	6.47	
U	0.000	0.050	0.00	1.27	
٧	0.045		1.15		
Z		0.080		2.04	

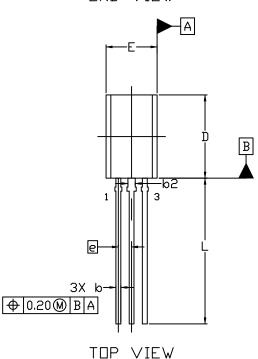


STYLE 1:		STYLE 2:		STYLE 3:	
PIN 1.	BASE	PIN 1.	BASE	PIN 1.	CATHODE
2.	COLLECTOR	2.	EMITTER	2.	ANODE
3.	EMITTER	3.	COLLECTOR	3.	GATE
4.	COLLECTOR	4.	EMITTER	4.	ANODE
STYLE 5:		STYLE 6:		STYLE 7:	
PIN 1.	GATE	PIN 1.	ANODE	PIN 1.	CATHODE
2.	DRAIN	2.	CATHODE	2.	ANODE
3.	SOURCE	3.	ANODE	3.	CATHODE
4.	DRAIN	4.	CATHODE	4.	ANODE
STYLE 9:		STYLE 10:		STYLE 11:	
PIN 1.	GATE	PIN 1.	GATE	PIN 1.	DRAIN
2.	COLLECTOR	2.	SOURCE	2.	SOURCE
3.	EMITTER	3.	DRAIN	3.	GATE
4.	COLLECTOR	4.	SOURCE	4.	SOURCE

STYLE 4: PIN 1. 2. 3. 4.	MAIN TERMINAL 1 MAIN TERMINAL 2 GATE MAIN TERMINAL 2
2. 3.	CATHODE ANODE EXTERNAL TRIP/DELAY ANODE

DOCUMENT NUMBER:	98AON23085D	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-220, SINGLE GAUGE		PAGE 1 OF 1


ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.



TO-92 (TO-226) 1 WATT CASE 29-10 ISSUE D

DATE 05 MAR 2021

STRAIGHT LEAD

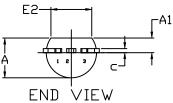
NOTES:

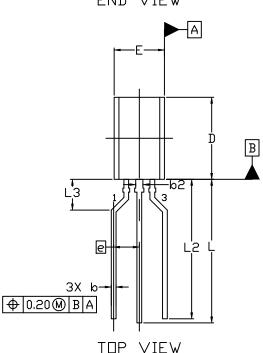
- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS.
- 4. DIMENSION 6 AND 62 DOES NOT INCLUDE DAMBAR PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 0.20. DIMENSION 62 LOCATED ABOVE THE DAMBAR PORTION OF MIDDLE LEAD.

	MILLIMETERS			
DIM	MIN.	N□M.	MAX.	
Δ	3.75	3.90	4.05	
A1	1.28	1.43	1.58	
Ø	0.38	0.465	0.55	
ρQ	0.62	0.70	0.78	
C	0.35	0.40	0.45	
D	7.85	8.00	8.15	
E	4.75	4.90	5.05	
E2	3.90			
е	1.27 BSC			
L	13.80	14.00	14.20	

STYLES AND MARKING ON PAGE 3

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 1 OF 3	


ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.



TO-92 (TO-226) 1 WATT CASE 29-10 ISSUE D

DATE 05 MAR 2021

FORMED LEAD

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS.
- 4. DIMENSION 6 AND 62 DOES NOT INCLUDE DAMBAR PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 0.20. DIMENSION 62 LOCATED ABOVE THE DAMBAR PORTION OF MIDDLE LEAD.

	MILLIMETERS			
DIM	MIN.	N□M.	MAX.	
Α	3.75	3.90	4.05	
A1	1.28	1.43	1.58	
b	0.38	0.465	0.55	
b2	0.62	0.70	0.78	
С	0.35	0.40	0.45	
D	7.85	8.00	8.15	
Е	4.75	4.90	5.05	
E2	3.90			
е		2.50 BSC		
L	13.80	14.00	14.20	
L2	13.20	13.60	14.00	
L3	·	3.00 REF		

STYLES AND MARKING ON PAGE 3

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 2 OF 3

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TO-92 (TO-226) 1 WATT

CASE 29-10 ISSUE D

DATE 05 MAR 2021

STYLE 1: PIN 1. 2. 3.	EMITTER BASE COLLECTOR	STYLE 2: PIN 1. 2. 3.	BASE EMITTER COLLECTOR	STYLE 3: PIN 1. 2. 3.	ANODE ANODE CATHODE	PIN 1. 2.	CATHODE CATHODE ANODE		DRAIN
	GATE	PIN 1.	SOURCE DRAIN			PIN 1. 2.	BASE 1 EMITTER BASE 2	2.	CATHODE GATE ANODE
2.	ANODE CATHODE & ANODE	PIN 1. 2.	GATE	PIN 1. 2.	ANODE 1	2.	EMITTER COLLECTOR BASE		
2.	ANODE	PIN 1		PIN 1	ANODE	PIN 1. 2.	GATE ANODE CATHODE	2.	NOT CONNECTED CATHODE ANODE
2.			SOURCE GATE	STYLE 23: PIN 1. 2. 3.	GATE	PIN 1. 2.		PIN 1. 2.	MT 1
	V _{CC}	PIN 1. 2.	MT	STYLE 28: PIN 1. 2. 3.	CATHODE	PIN 1. 2.	NOT CONNECTED ANODE CATHODE		
	GATE	PIN 1. 2.		STYLE 33: PIN 1. 2. 3.	RETURN	2.	INPUT GROUND LOGIC		

GENERIC MARKING DIAGRAM*

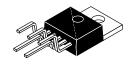
XXXX = Specific Device Code

A = Assembly Location

L = Wafer Lot Y = Year

W = Work Week

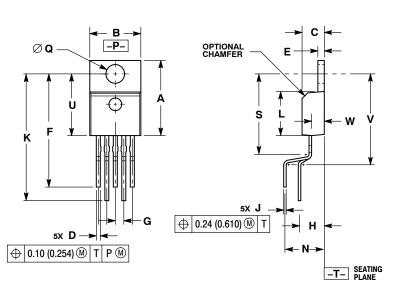
= Pb-Free Package


(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 3 OF 3

ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.



SCALE 1:1

TO-220 5 LEAD OFFSET CASE 314B-05 ISSUE L

DATE 01/07/1994

- NOTES:
 1 DIMENSIONING AND TOLERANCING PER ANSI
 Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION D DOES NOT INCLUDE
 INTERCONNECT BAR (DAMBAR) PROTRUSION.
 DIMENSION D INCLUDING PROTRUSION SHALL NOT EXCEED 0.043 (1.092) MAXIMUM.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.572	0.613	14.529	15.570	
В	0.390	0.415	9.906	10.541	
С	0.170	0.180	4.318	4.572	
D	0.025	0.038	0.635	0.965	
Е	0.048	0.055	1.219	1.397	
F	0.850	0.935	21.590	23.749	
G	0.067	BSC	1.702 BSC		
Н	0.166	BSC	4.216 BSC		
J	0.015	0.025	0.381	0.635	
K	0.900	1.100	22.860	27.940	
۲	0.320	0.365	8.128	9.271	
N	0.320	BSC	8.128	BSC	
Q	0.140	0.153	3.556	3.886	
S		0.620		15.748	
U	0.468	0.505	11.888	12.827	
٧		0.735		18.669	
W	0.090	0.110	2.286	2.794	

STYLE 1 THRU 4: CANCELLED

STYLE 5: PIN 1. GATE

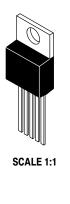
- 2. MIRROR 3. DRAIN
- 4. KELVIN 5. SOURCE

DOCUMENT NUMBER:	98ASB42218B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-220 5 LEAD OFFSET		PAGE 1 OF 1

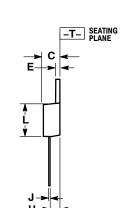
ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

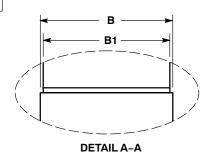
- B →

R1→


⊕ 0.356 (0.014) M T Q M

D 5 PL -> -


DETAIL A-A

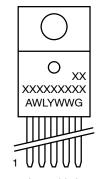

-Q-

DATE 29 JAN 2010

TO-220 5-LEAD CASE 314D-04 **ISSUE H**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
 Y14.5M. 1982.
- Y14.5M, 1982.


 2. CONTROLLING DIMENSION: INCH.

 3. DIMENSION D DOES NOT INCLUDE
 INTERCONNECT BAR (DAMBAR) PROTRUSION.
 DIMENSION D INCLUDING PROTRUSION SHALL NOT EXCEED 10.92 (0.043) MAXIMUM.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.572	0.613	14.529	15.570	
В	0.390	0.415	9.906	10.541	
B1	0.375	0.415	9.525	10.541	
С	0.170	0.180	4.318	4.572	
D	0.025	0.038	0.635	0.965	
Ε	0.048	0.055	1.219	1.397	
G	0.067	BSC	1.702 BSC		
Н	0.087	0.112	2.210	2.845	
J	0.015	0.025	0.381	0.635	
K	0.977	1.045	24.810	26.543	
L	0.320	0.365	8.128	9.271	
Q	0.140	0.153	3.556	3.886	
U	0.105	0.117	2.667	2.972	

STYLE 1 THRU 4: 1. OBSOLETE

GENERIC MARKING DIAGRAM*

= Assembly Location

WL = Wafer Lot

= Year

WW = Work Week

G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

	DOCUMENT NUMBER:	98ASB42220B Electronic versions are uncontrolled except when accessed directly from the Document Re Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
ſ	DESCRIPTION:	TO-220 5-LEAD		PAGE 1 OF 1

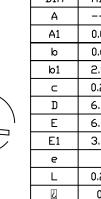
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

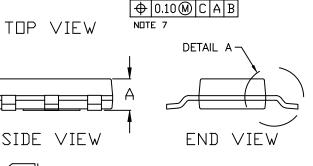
SCALE 2:1

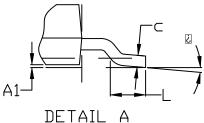
|△|0.10|C

A

В

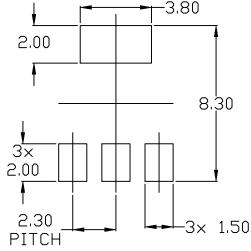

DATE 13 MAY 2020


NOTES


- DIMENSIONING AND TOLERANCING PER ASME
- DIMENSIDNING AND TOLERANCING PER ASME
 Y14.5M, 2009.
 CONTROLLING DIMENSION: MILLIMETERS
 DIMENSIONS D & E1 ARE DETERMINED AT DATUM
 H. DIMENSIONS DO NOT INCLUDE MOLD FLASH,
 PROTRUSIONS DR GATE BURRS. SHALL NOT
 EXCEED 0.23mm PER SIDE.
 LEAD DIMENSIONS & AND &1 DO NOT INCLUDE
 DAMBAR PROTRUSION. ALLOWABLE DAMBBAR
 PROTRUSION IS 0.08mm PER SIDE.
 DATUMS A AND B ARE DETERMINED AT DATUM H.
 A1 IS DEFINED AS THE VERTICAL DISTANCE
 FROM THE SEATING PLANE TO THE LOWEST
 POINT OF THE PACKAGE BODY.
 POSITIONAL TOLERANCE APPLIES TO DIMENSIONS
 & AND &1.

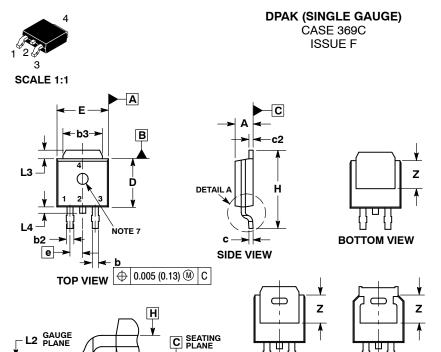
- b AND b1.

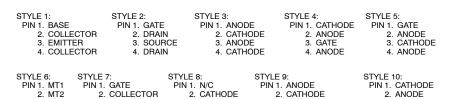
	MILLIMETERS			
DIM	MIN.	N□M.	MAX.	
Α			1.80	
A1	0.02	0.06	0.11	
b	0.60	0.74	0.88	
b1	2.90	3.00	3.10	
c	0.24		0.35	
D	6.30	6.50	6.70	
E	6.70	7.00	7.30	
E1	3.30	3.50	3.70	
е	i	2.30 BSC	,	
L	0.25			
Ż	0*		10°	



= Assembly Location **GENERIC MARKING DIAGRAM*** = Year = Work Week **W** XXXXX = Specific Device Code = Pb-Free Package AYW (Note: Microdot may be in either location) XXXXX=

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

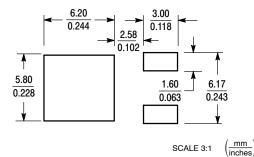

RECOMMENDED MOUNTING FOOTPRINT


For additional information on our Pb-Free strategy and soldering details, please download the IN Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98ASH70634A	98ASH70634A Electronic versions are uncontrolled except when accessed directly from the Document Re- Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOT-223		PAGE 1 OF 1

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

3. ANODE 4. CATHODE


SOLDERING FOOTPRINT*

Α1

3. EMITTER 4. COLLECTOR

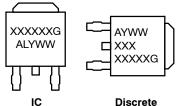
DETAIL A ROTATED 90° CW

3. GATE 4. MT2

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

onsemi

DATE 21 JUL 2015


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES.
- 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-
- MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 5. DIMENSIONS D AND E ARE DETERMINED AT THE
- OUTERMOST EXTREMES OF THE PLASTIC BODY.

 6. DATUMS A AND B ARE DETERMINED AT DATUM
- 7. OPTIONAL MOLD FEATURE.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.028	0.045	0.72	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29	BSC
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.114	REF	2.90	REF
L2	0.020	BSC	0.51	BSC
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

GENERIC MARKING DIAGRAM*

XXXXXX = Device Code = Assembly Location Α

L = Wafer Lot Υ = Year WW = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

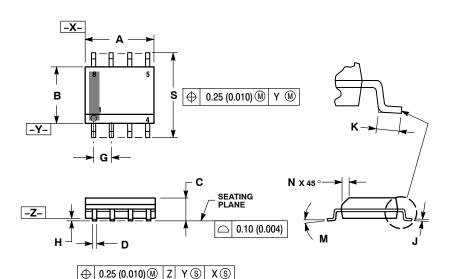
DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1

BOTTOM VIEW

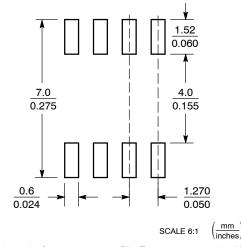
ALTERNATE CONSTRUCTIONS

3. RESISTOR ADJUST 4. CATHODE

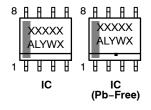
3. CATHODE 4. ANODE


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB CASE 751-07 **ISSUE AK**

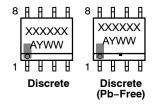

DATE 16 FEB 2011

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.


	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
C	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	7 BSC	0.050 BSC		
Н	0.10	0.25	0.004	0.010	
7	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
М	0 ° 8 °		0 °	8 °	
N	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location

= Wafer Lot = Year W

ww = Work Week = Pb-Free Package

XXXXXX = Specific Device Code = Assembly Location Α

= Year = Work Week

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

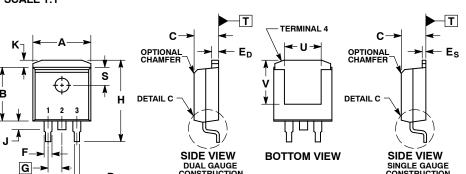
DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2	

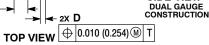
onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

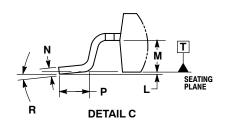
SOIC-8 NB CASE 751-07 ISSUE AK

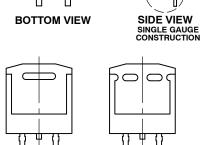
DATE 16 FEB 2011

STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. BASE 7. BASE 8. EMITTER	STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1	STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1	STYLE 4: PIN 1. ANODE 2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. ANODE 8. COMMON CATHODE
STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE	PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE	PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd	PIN 1. COLLECTOR, DIE #1 2. BASE, #1
STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON	STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. BIAS 2 7. INPUT 8. GROUND	STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1	STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 9. DRAIN
STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN	STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN	STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON	STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 7. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1
STYLE 17: PIN 1. VCC 2. V2OUT 3. V1OUT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC	STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN	STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2	STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN
3. V10UT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3. CATHODE 3 4. CATHODE 4 5. CATHODE 5 6. COMMON ANODE 7. COMMON ANODE 8. CATHODE 6	STYLE 22:	7. DRAIN 1 8. MIRROR 1 STYLE 23: PIN 1. LINE 1 IN 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT	STYLE 24: PIN 1. BASE 2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE
STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT	STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC	STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN	STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V_MON 6. VBULK 7. VBULK 8. VIN
STYLE 29: PIN 1. BASE, DIE #1 2. EMITTER, #1 3. BASE, #2 4. EMITTER, #2 5. COLLECTOR, #2 6. COLLECTOR, #2 7. COLLECTOR, #1 8. COLLECTOR, #1	STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1		

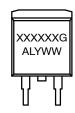

DOCUMENT NUMBER:	98ASB42564B	Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2	


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.




D²PAK CASE 936-03 ISSUE E

DATE 29 SEP 2015



BOTTOM VIEW OPTIONAL CONSTRUCTIONS

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCHES. TAB CONTOUR OPTIONAL WITHIN DIMENSIONS
- A AND K.
 DIMENSIONS U AND V ESTABLISH A MINIMUM
- MOUNTING SURFACE FOR TERMINAL 4.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS. MOLD FLASH AND GATE PROTRUSIONS NOT TO EXCEED 0.025 (0.635) MAXIMUM.
- SINGLE GAUGE DESIGN WILL BE SHIPPED AF-TER FPCN EXPIRATION IN OCTOBER 2011.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.386	0.403	9.804	10.236	
В	0.356	0.368	9.042	9.347	
С	0.170	0.180	4.318	4.572	
D	0.026	0.036	0.660	0.914	
E _D	0.045	0.055	1.143	1.397	
Es	0.018	0.026	0.457	0.660	
F	0.051 REF		1.295 REF		
G	0.100 BSC		2.540 BSC		
Н	0.539	0.579	13.691	14.707	
J	0.125 MAX		3.175 MAX		
K	0.050 REF		1.270 REF		
L	0.000	0.010	0.000	0.254	
M	0.088	0.102	2.235	2.591	
N	0.018	0.026	0.457	0.660	
P	0.058	0.078	1.473	1.981	
R	0°	8°	0°	8°	
S	0.116	0.116 REF		REF	
U	0.200	0.200 MIN		5.080 MIN	
٧	0.250 MIN		6.350 MIN		

SOLDERING FOOTPRINT* GENERIC MARKING DIAGRAM*

XXXXXX = Specific Device Code

= Assembly Location

= Wafer Lot 1 = Year Υ ww = Work Week G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

		1	
-	 	<u> </u>	- 8.380
16.155			<u> </u>
10.155			
	ф	: ф—	2X

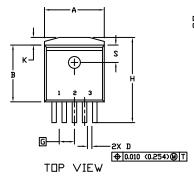
— 10.490 —

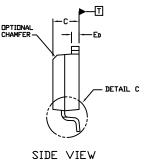
16.155		
2X 1.016	5.080 PITCH	2X 3.504

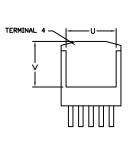
DIMENSIONS: MILLIMETERS *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98ASH01005A	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	D ² PAK		PAGE 1 OF 1	

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

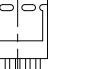

MECHANICAL CASE OUTLINE


D²PAK 5-LEAD CASE 936A-02 **ISSUE E**

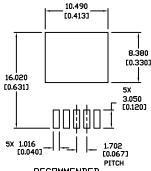

DATE 28 JUL 2021

DETAIL C TIP LEADFORM ROTATED 90° CW

OPTIONAL CHAMFER DETAIL C


BOTTOM VIEW

SIDE VIEW SINGLE GUAGE

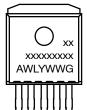

DUAL GUAGE

OPTIONAL CONSTRUCTIONS

BOTTOM VIEW

RECOMMENDED MOUNTING FOOTPRINT *

For additional information on our Pb-Free strategy and soldering details, please download the IN Seniconductor Soldering and Mounting Techniques Reference Manual, SILDERRM/D.


NOTES

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCHES
- TAB CONTOUR OPTIONAL WITHIN DIMENSIONS
- DIMENSIONS U AND V ESTABLISH A MINIMUM MOUNTING SURFACE FOR TERMINAL 4.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS. MOLD FLASH AND GATE PROTRUSIONS NOT TO EXCEED 0.025 (0.635) MAXIMUM.

	INCHES		MILLIN	ETERS	
DIM	MIN.	MAX.	MIN.	MAX.	
Α	0.396	0.403	9.804	10.236	
В	0.356	0.368	9.042	9.347	
С	0.170	0.180	4.318	4.572	
D	0.026	0.036	0.660	0.914	
ED	0.045	0.055	1.143	1.397	
Es	0.018	0.026	0.457	0.660	
G	0.067 BSC		1.702 BSC		
Н	0.539	0.579	13.691	14.707	
К	0.050 REF		1.270 REF		
L	0.000	0.010	0.000	0.254	
М	0.088	0.102	2.235	2.591	
N	0.018	0.026	0.457	0.660	
Р	0.058	0.078	1.473	1.981	
R	0*	8•	0*	8*	
S	0.116	0.116 REF		2.946 REF	
U	0.200	0.200 MIN		5.080 MIN	
V	0.250 MIN		6.350	MIN	

GENERIC MARKING DIAGRAM*

SEATING PLANE

= Device Code XXXXXX = Assembly Location Α WL = Wafer Lot

= Year WW = Work Week G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

DESCRIPTION	D2PΔK 5-I FΔD		PAGE 1 OF 1	
DOCUMENT NUMBER:	98ASH01006A	Electronic versions are uncontrolled except when accessed directly from the Document Rep Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer p

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

onsemi Website: www.onsemi.com