

BCR601 hot plug IC with voltage feedback to primary side

60V linear LED controller IC for dimmable LED driver with ripple suppression, overvoltage, overtemperature and hot plug protection

Features

- Supply voltage 8 V to 60 V,
- Supports use of NPN bipolar transistors and NMOSFETs,
- 100 Hz/120 Hz supply voltage ripple suppression,
- Supports an optocoupler voltage feedback loop to primary side minimizing power losses,
- 3% analog dimming of LED current by a resistor or DC voltage at the MFIO pin,
- R_{set} functionality at *MFIO* pin,
- LED current precision ±3%.

Protection features

- Hot plug protection to minimize LED inrush current,
- Overvoltage protection,
- Overtemperature protection.

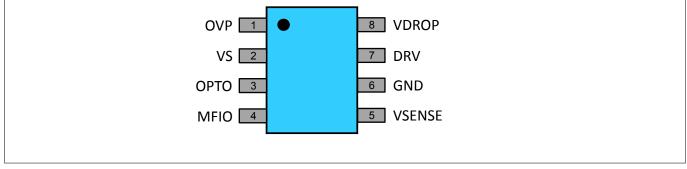
Target applications

• LED driver.

Advantages with respect to discrete solutions

- Low BOM count,
- Lower assembly cost,
- Smaller form factor,
- Higher reliability due to less parts and soldering joints.

Product validation


Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

Device information

Device information

Pin definition PG-DSO-8 pin out

Table 1Part information

Туре	Package	Configuration	Marking code
60V Linear Voltage and Current Control Chip BCR601	PG-DSO-8	n.a.	BCR601

Description

BCR601 is a linear LED controller IC regulating the LED current by means of an external driver transistor. BCR601 supports use of NPN bipolar transistors and NMOS MOSFETs to cover a wide LED current and power range.

BCR601 provides feedback to the primary side via an optocoupler to control the output voltage of the primary side converter, e.g. a flyback. The control loop minimizes the voltage overhead and power dissipation of the external driver transistor. The voltage overhead can be adjusted by external configuration according to application needs.

BCR601 suppresses the voltage ripple of the power supply driving a constant LED current for better light quality. The LED current is fully scalable by dimensioning an external current sense resistor.

The embedded hot plug protection allows plug in and plug out of the LED load during operation reducing LED current overshoots and related LED life time degradations.

The adjustable overvoltage protection will provide feedback to the primary side by the optocoupler in case the supply voltage exceeds the threshold.

The overtemperature protection will dim the LED current if the BCR601 junction temperature threshold is exceeded. In this case the LED current will be reduced to 30% of the nominal current. Once the junction temperature drops below the temperature hysteresis nominal LED current is resumed.

The BCR601 is a perfect fit for LED applications by combining small form factor with low cost. Through its higher integration, BOM savings and ensuring long lifetime of LEDs, this controller has many advantages compared to discrete solutions.

Table of contents

1

2

3

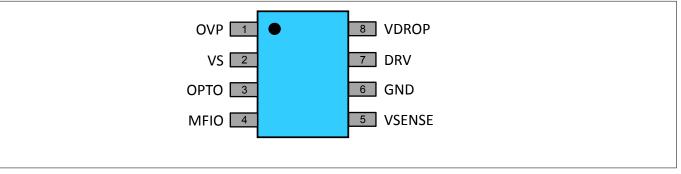
4

5

6

7

8


Table of contents

Features	1
Protection features	1
Target applications	1
Advantages with respect to discrete solutions	1
Product validation	1
Device information	2
Description	2
Table of contents	3
Pin configuration	4
Functional description	5
Thermal characteristics	8
Absolute maximum ratings	9
Operating conditions	0
Electrical characteristics	1
Package information	4
References	5
Revision history	5
Disclaimer	6

Pin configuration

1 Pin configuration

Figure 2

Pin definition PG-DSO-8 pin out

Table 2Pin configuration


Pin no.	Pin name	Pin type	Function				
1	OVP	Input	Supply voltage measurement for overvoltage protection				
2	VS	Input	Supply voltage				
3	OPTO	Output	Output to control the optocoupler current				
4	MFIO	Input	Multifunctional IO for resistive and DC voltage dimming				
5	VSENSE	Input	Measurement of V _{sense} voltage				
6	GND	GND	IC ground				
7	DRV	Output	Driver output to control base or gate of the external transis				
8	VDROP	Input	Measurement of Vdrop voltage				

Functional description

2

Functional description

Figure 3 Typical application circuit

Application hints

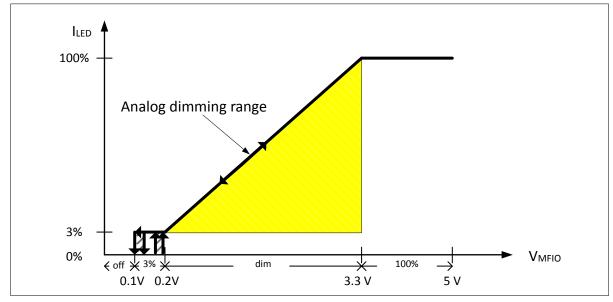
1. External driver transistors

BCR601 is able to drive NPN transistors as well as NMOSFETs. NPN transistors can be used for LED currents up to several hundred of mA while NMOSFETs are preferable for high LED currents. The smaller current using BJTs is caused by the DC current gain value h_{FE} value of the used BJT. E.g. a typical h_{FE} of 75 limits the application to a maximum below 750 mA.

2. Supply voltage of BCR601

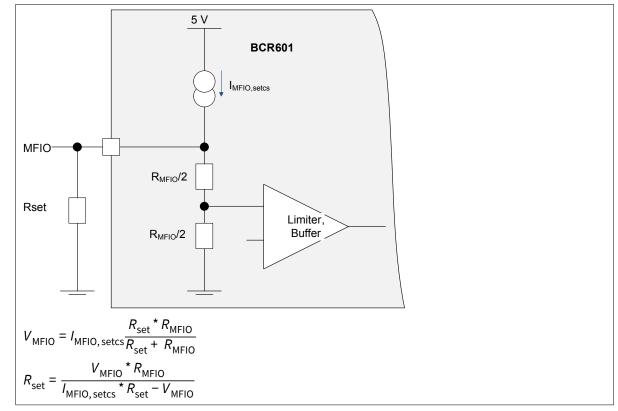
To drive higher output currents into an external NPN driver transistor it might be necessary to limit the supply voltage of BCR601 significantly below 60 V to reduce power dissipation inside the IC. This can be achieved either by adding a series resistor R_{pred} between supply voltage and VS pin of BCR601 or by operating BCR601 by an auxiliary winding of the power supply providing a lower IC supply voltage as e.g. 8 V.

Dimming mechanism


For dimming of the LED current a DC voltage is applied to the *MFIO* input signal.

 Analog dimming: input voltage V_{MFIO} at pin *MFIO*. Continuous dimming from 3% dimming level up to 100% is embedded into a 100% ceiling plateau and an hysteresis range to off. Static dimming to a fixed value can be done via the resistor R_{set}.

BCR601 hot plug IC with voltage feedback to primary side



Functional description

Figure 4 Analog dimming

2. For analog dimming using R_{set} and internal MFIO current, the internal pull-down has to be taken into account. For proper dimensioning refer to *Figure 5*.

Figure 5 R_{set} dimensioning for resistor dimming

- $R_{MFIO.typical} = 285 \text{ k}\Omega$,
- $I_{MFIO,setcs,typical} = 20 \ \mu A.$

Functional description

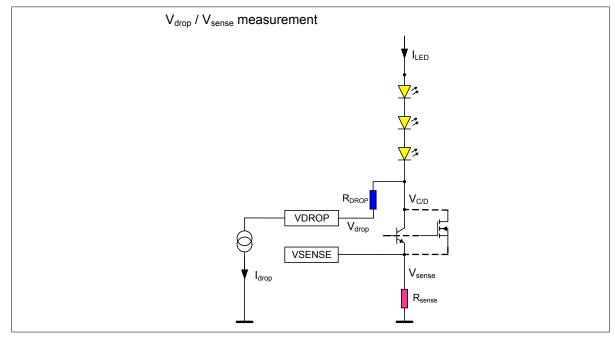


Figure 6 VDROP versus VSENSE measurement

BCR601 incorporates two control loops:

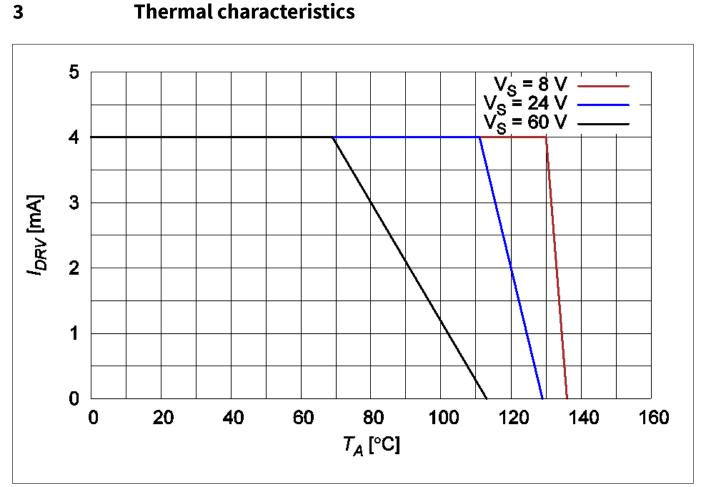
1. Fast LED current control loop

In a proper design, the converter output voltage ripple will drop across the external power transistor (drain voltage $V_{C/D}$) and "consumed" by the power transistor, so that the voltage across the LED string is constant. The LED current is sensed by the current sense resistor R_{sense} . The fast LED current control loop regulates the power transistor to keep the LED current constant. LED current is defined by the equation.

 $I_{\rm LED} = V_{\rm sense}/R_{\rm sense}$

 $V_{C/D}$ needs to be set high enough to make sure that BCR601 can regulate the power transistor to conduct a constant LED current. To enable adjustment of $V_{C/D}$ BCR601 has an integrated constant current sink I_{drop} at pin *VDROP*. By the external resistor R_{DROP} the collector/drain voltage $V_{C/D}$ with respect to V_{drop} is defined by the following equation.

$V_{C/D} = V_{drop} + I_{drop} \cdot R_{DROP}$


If $V_{C/D}$ is chosen too low, LED current will drop because either NPN h_{FE} will drop too low and BCR601 I_{DRV} reaches its maximum sourcing current, or NMOSFET drain to source resistance R_{DSon} cannot be reduced further more as V_{DRV} of BCR601 reaches its upper limit. As a result the output voltage ripple will modulate the LED current and flicker might become visible. If $V_{C/D}$ is chosen too high, power loss in the external power transistor will be high, resulting in low power efficiency and increased effort in heat dissipation of the power transistor.

2. Slow control loop for the primary side output voltage

In typical application, the primary side controller is integrated with active PFC function. The output voltage contains an unavoidable ripple of 100 Hz (at 50 Hz grid) or 120 Hz (at 60 Hz grid). The crossover frequency of the control loop must be much smaller than the ripple frequency, so that the ripple voltage is not regulated and the power factor is not deteriorated. This is realized by the RC compensation network (R_{Pl}, R_{DROP}, C_{Pl} and C_{DROP}) connected between *OPTO* pin and *VDROP* pin.

Thermal characteristics

Figure 7 Maximum permitted effective output source current out of pin *DRV* into external driver transistor for a design example of 4 mA DC driver

The maximum permitted effective driver source current shown in *Figure 7* can be calculated by following equation:

$$I_{\text{DRV}} = \frac{\frac{T_{\text{OTP, min}} - T_A}{R_{\text{thJA}}} - V_S \cdot I_S - \frac{V_S}{2} \cdot \frac{I_{\text{OPTO}}}{2}}{V_S} = \frac{T_{\text{OTP, min}} - T_A}{V_S \cdot R_{\text{thJA}}} - I_S - \frac{I_{\text{OPTO}}}{4}$$

The equation considers the power dissipation caused by current consumption of the IC itself and the optocoupler current. If driver current exceeds the calculated threshold the lower specified limit of the overtemperature protection will be exceeded and OTP might be triggered.

T_{OTP,on, min} The lower spec limit of the overtemperature protection threshold should not be exceeded to avoid triggering the OTP.

I_{OPTO} The maximum optocoupler sink current into pin *OPTO* when IC fully turns on the current sink. Besides the spec limits of BCR601 the maximum current is also limited by the optocoupler supply voltage and external pull-up resistor.

Absolute maximum ratings

4 Absolute maximum ratings

Table 3Maximum ratings

Parameter	Symbol	Values			Unit	Note or test condition
		Min.	Тур.	Max.		
Junction temperature	TJ	-40	-	160	°C	-
Supply voltage	Vs	0	-	65	V	-
Input voltage at pin VDROP	V _{DROP}	0	-	65	V	-
Input voltage at pin VSENSE	V _{sense}	0	-	3.6	V	-
Input voltage at pin OPTO	V _{OPTO}	0	-	65	V	-
Input voltage at pin OVP	V _{OVP}	0	_	3.6	V	-
Input voltage at MFIO	V _{MFIO}	0	-	5.0	V	-
Power dissipation	P _{tot}	-	-	360	mW	$V_{\rm S} = 60$ V, $I_{\rm S} = 2$ mA, $I_{\rm DRV} = -4$ mA
ESD robustness	V _{ESD,HBM}	-	-	1.5	kV	HBM acc. to JEDEC JS-001
	V _{ESD,CDM}	-	-	500	V	CDM acc. to JEDEC JS-002

Attention: Stresses above the maximum values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings. Exceeding only one of these values may cause irreversible damage to the component.

Table 4Maximum thermal resistance

Parameter	Symbol		Values		Unit	Note or test condition
		Min.	Тур.	Max.		
Thermal resistance junction to ambient	R _{thJA,0}	-	-	180	K/W	JEDEC 1s0p (JESD 51-3) footprint without extra cooling area
	R _{thJA,300}	-	-	135		JEDEC 1s0p (JESD 51-3) with 300 mm ² cooling area
	R _{thJA,600}	-	-	125		JEDEC 1s0p (JESD 51-3) with 600 mm ² cooling area

Operating conditions

5 Operating conditions

Table 5Operating conditions

Parameter	Symbol		Values	Unit	Note or test condition	
		Min.	Тур.	Max.		
Junction temperature	TJ	-40	-	160	°C	-
Supply voltage	Vs	0	-	60	V	-
Input voltage at pin VDROP	V _{DROP}	0	-	60	V	-
Input voltage at pin OPTO	V _{OPTO}	0	-	60	V	_

Electrical characteristics

6

Table 6

Electrical characteristics

DC characteristics

Note: All parameters are measured $atT_A = 25 \text{ °C}$, VS = 45 V, unless otherwise specified.

*Note: I*_{LED,target} *current is the undimmed current at a VSENSE voltage drop of 400 mV typical.*

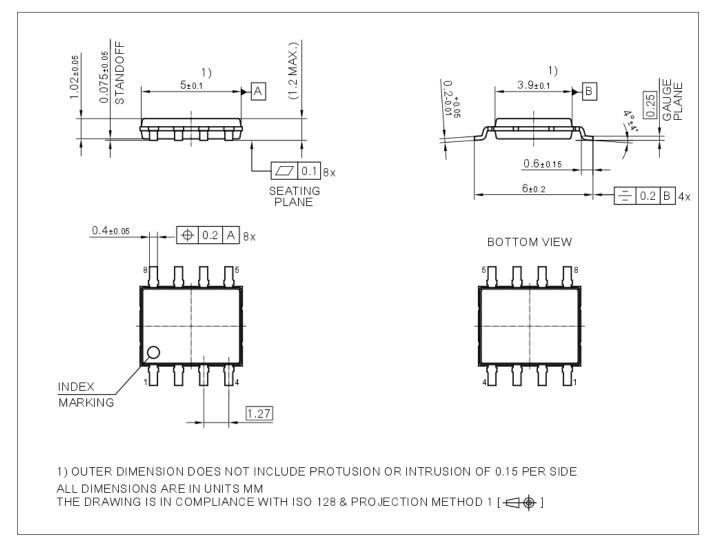
Parameter Symbol Values Unit Note or test condition Min. Тур. Max. **IC** system Supply voltage $V_{\rm S}$ 8 60 ٧ **Operational supply** _ voltage range Supply undervoltage V_{S,uvli} 8 V _ _ lock-in V Supply undervoltage V_{S.uvlo} 6.7 _ _ _ lock-out Supply current I_{S} -2.2 $I_{\text{DRV, source}} = 0 \text{ mA}$ mΑ _ _ v 3 Voltage at pin OPTO To achieve $I_{OPTO} = 2 \text{ mA}$ **V_{OPTO}** _ _ -3.6 Optocoupler sink current -2 Sink current range of mΑ I_{OPTO} _ pin OPTO if V_{OPTO,min} with $V_{OVP} = 0.2 V$ Optocoupler leakage -80 μΑ $V_{\rm OVP} = 0.8 \text{ V}, V_{\rm OPTO} = 3 \text{ V},$ I_{OPTO,leak} _ $V_{\text{DROP}} = 0.2 \text{ V}$ current age Closed loop reference Sense voltage 388 400 412 m٧ V_{SENSE} voltage of pin VSENSE, $I_{\text{LED}} = V_{\text{sense}} / R_{\text{sense}}$ at $V_{\rm MFIO} = 3.3 V$ V Voltage at pin VDROP 0.275 _ _ At I_{OPTO}= 100 μA (5 % of V_{DROP,5} full range), V_{OVP} < 1.1 V Voltage at pin VDROP V At I_{OPTO}= 1mA (50 % of VDROP 0.295 0.31 0.325 full range), V_{OVP} < 1.1 V Voltage at pin VDROP 0.345 V At I_{OPTO} = 1.95 mA V_{DROP.95} _ (95 % of full range), $V_{OVP} < 1.1 V$ Sink current at pin -6.9 -5.5 -4.1 μΑ Constant current sink **I**DROP VDROP at pin VDROP Hot plug Hot plug VSENSE 8 m٧ VSENSE level at which V_{sense, HP} _ threshold hot plug event is detected Driver 10 Driver source current mΑ Source current range of I_{DRV.} _ pin DRV to drive NPN capability source base/NMOS gate

Electrical characteristics

DC characteristics (continued) Table 6 Parameter Symbol Values Unit Note or test condition Min. Тур. Max. -10 Driver sink current mΑ Sink current range of _ I_{DRV. sink} pin DRV to discharge capability NPN base/NMOS gate V Max. output voltage of 4.5 5 5.5 Driver source voltage $V_{\rm DRV}$ pin DRV **Analog dimming** MFIO output source 18 20 22 μA For $R_{SFT} < 10 \text{ k}\Omega$, in I_{MEIO} parallel internal pullcurrent setcs down R_{MFIO} connected, refer to Figure 3 V 4.2 MFIO output voltage at MFIO output voltage V_{MFIO,} _ _ MFIO open setcs MFIO pull-down resistor kΩ Internal pull down R_{MFIO} 228 285 342 resistor at pin MFIO V 0 Threshold for analog MFIO turn-off range V_{MFIO, off} 0.1 _ dimming to off v 0.195 Threshold for analog 0.17 MFIO turn-on range V_{MFIO,on} _ dimming to on V MFIO dimming range V_{MFIO,} 0.2 3.3 Minimum to maximum _ LED current dim V 5 MFIO range always at MFIO full current range V_{MFIO}, 3.3 _ 100% /_{LED} 100% DC LED dimming 3 % Minimum dimming LED I_{LEDmin}, current level at MFIO_{dim} ana / = 0.15 V I_{LEDmin}, target LED current chip to chip -20 20 % Max variation at Δ _ variation at selected minimum MFIO I_{LED,dim} / dimming level dimming level I_{LED,dim} -10 10 Max variation for dimming level higher than minimum LED current accuracy % -3 3 Closed loop LED LED current accuracy I_{LED, acc} current accuracy without dimming $atV_{MFIO} = 3.3 V$ **Overvoltage protection OVP** Overvoltage protection 0.1 V Minimum voltage _ V_{OVP.min} minimum voltage required at pin OVP Overvoltage protection V 1.11 1.15 V_{OVP,on}, 1.19 At 10% *I*_{OPTO-OVP} range threshold, OVP on ~0.2 mA, $V_{DROP} = 0.2 V$ 10

Electrical characteristics

Table 6 DC characteristics (continued)						
Parameter	Symbol		Values	Unit	Note or test condition	
		Min.	Тур.	Max.		
Overvoltage protection threshold, OVP on	V _{OVP,on}	1.15	1.20	1.24	V	At $I_{OPTO-OVP} = 2 \text{ mA},$ $V_{DROP} = 0.2 \text{ V}$
Optocoupler sink current at OVP active	I _{OPTO,OVP}	-3.2	-	-2.1	mA	Sink current range of pin <i>OPTO</i> at V _{OPTO,min} = 3 V with V _{OVP} = 1.3 V and V _{DROP} = 0.2 V
OVP pull down resistor	R _{OVP}	100	120	140	kΩ	Internal pull-down resistor at pin OVP
Overtemperature protec	tion OTP					
Overtemperature protection threshold, turn on	T _{OTP, on}	140	-	155	°C	Junction threshold temperature to trigger overtemperature protection in standby, <i>I</i> _{DRV} = 0.1 mA and <i>VS</i> = 45 V
Overtemperature protection threshold, turn off	T _{OTP, off}	120	-	135	°C	Junction threshold temperature to exit overtemperature protection in standby, / _{DRV} = 0.1 mA and VS = 45 V
Sense voltage in OTP case	V _{sense,} OTP / V _{sense,} target	_	30	-	%	Reduction factor at pin VSENSE (nominal 400 mV) if OTP has been triggered, I _{LED, OTP} = V _{sense,OTP} / R _{sense}
Overtemperature protection hysteresis	Т _{ОТР, Нуѕ}	-	20	-	°C	-



Package information

7

Package information

Note: Dimension in mm

Figure 8 Package outline DSO-8

References

8 References

Revision history

Document version	Date of release	Description of changes			
1.0	2018-11-23	Public release			
1.1	2018-12-3	Parameter update			

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2018-12-3 Published by Infineon Technologies AG 81726 Munich, Germany

© 2018 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document? Email: erratum@infineon.com

Document reference IFX-hcb1522932461817

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon: BCR601XUMA1