## 4N25

## Data Sheet

Lead (Pb) Free<br>RoHS 6 fully compliant

RoHS 6 fully compliant options available; -xxxE denotes a lead-free product

## Description

The 4N25 is an optocoupler for general purpose applications. It contains a light emitting diode optically coupled to a photo-transistor. It is packaged in a 6-pin DIP package and available in wide-lead spacing option and lead bend SMD option. Response time, $t_{r}$, is typically $3 \mu \mathrm{~s}$ and minimum CTR is $20 \%$ at input current of 10 mA .

## Applications

- I/O interfaces for computers
- System appliances, measuring instruments
- Signal transmission between circuits of different potentials and impedances


## Features

- Response time
( $\mathrm{t}_{\mathrm{r}}$ : typ., $3 \mu \mathrm{~s}$ at $\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ )
- Current Transfer Ratio
(CTR: min. $20 \%$ at $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$ )
- Input-output isolation voltage $\left(\mathrm{V}_{\text {iso }}=2500 \mathrm{Vrms}\right)$
- Dual-in-line package
- UL approved
- CSA approved
- IEC/EN/DIN EN 60747-5-2 approved
- Options available:
- Leads with 0.4" ( 10.16 mm ) spacing (W00)
- Leads bends for surface mounting (300)
- Tape and reel for SMD (500)
- IEC/EN/DIN EN 60747-5-2 approvals (060)

4N25 is UL Recognized with 2500 Vrms for 1 minute per UL1577 and is approved under CSA Component Acceptance Notice \#5, File CA 88324.

|  | RoHS Compliant Option |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Part <br> Number | $\begin{gathered} \text { Rank '0' } \\ 20 \%<\text { CTR } \end{gathered}$ | Package | Surface <br> Mount | Gull <br> Wing | Tape \& Reel | $\begin{gathered} \text { IEC/EN/DIN EN } \\ 60747-5-2 \end{gathered}$ | Quantity |
| 4N25 | -000E | 300 mil DIP-6 |  |  |  |  | 65 pcs per tube |
|  | -300E | 300 mil DIP-6 | X | X |  |  | 65 pcs per tube |
|  | -500E | 300 mil DIP-6 | X | X | X |  | 1000 pcs per reel |
|  | -060E | 300 mil DIP-6 |  |  |  | X | 65 pcs per tube |
|  | -360E | 300 mil DIP-6 | X | X |  | X | 65 pcs per tube |
|  | -560E | 300 mil DIP-6 | X | X | X | X | 1000 pcs per reel |
|  | -W00E | 400 mil DIP-6 |  |  |  |  | 65 pcs per tube |
|  | -W60E | 400 mil DIP-6 |  |  |  | X | 65 pcs per tube |

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:
4N25-360E to order product of 300 mil DIP-6 DC Gull Wing Surface Mount package in Tube packaging with $20 \%<$ CTR, IEC/EN/DIN EN 60767-5-2 Safety Approval and RoHS compliant.

Example 2:
4N25-W00E to order product of 400 mil DIP-6 DC package in Tube packaging with $20 \%<$ CTR and RoHS compliant. Option data sheets are available. Contact your Avago sales representative or authorized distributor for information.

| 1. ANODE | 4. EMITTER |
| :--- | :--- |
| 2. CATHODE | 5. COLLECTOR |
| 3. NC | 6. BASE |

## Schematic




DIMENSIONS IN MILLIMETERS AND (INCHES)

(0.1)


4N25-W00E

dimensions in milumeters and (inches)
4N25-300E

dIMENSIONS IN MILLIMETERS AND (INCHES)

## Absolute Maximum Ratings

| Storage Temperature, $\mathrm{T}_{\mathrm{S}}$ | $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| :--- | :--- |
| Operating Temperature, $\mathrm{T}_{\mathrm{A}}$ | $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ |
| Lead Solder Temperature, max. <br> $(1.6$ mm below seating plane $)$ | $260^{\circ} \mathrm{C}$ for 10 s |
| Average Forward Current, $\mathrm{I}_{\mathrm{F}}$ | 80 mA |
| Reverse Input Voltage, $\mathrm{V}_{\mathrm{R}}$ | 6 V |
| Input Power Dissipation, $\mathrm{P}_{\mathrm{I}}$ | 150 mW |
| Collector Current, $\mathrm{I}_{\mathrm{C}}$ | 100 mA |
| Collector-Emitter Voltage, $\mathrm{V}_{\mathrm{CEO}}$ | 30 V |
| Emitter-Collector Voltage, $\mathrm{V}_{\mathrm{ECO}}$ | 7 V |
| Collector-Base Voltage, $\mathrm{V}_{\mathrm{CBO}}$ | 70 V |
| Collector Power Dissipation | 150 mW |
| Total Power Dissipation | 250 mW |
| Isolation Voltage, $\mathrm{V}_{\text {iso }}$ <br> (AC for 1 minute, R.H. $=40 \sim 60 \%)$ | 2500 Vrms |

## Solder Reflow Temperature Profile

1. One-time soldering reflow is recommended within the condition of temperature and time profile shown at right.
2. When using another soldering method such as infrared ray lamp, the temperature may rise partially in the mold of the device. Keep the temperature on the package of the device within the condition of (1) above.


Note: Non-halide flux should be used.

Electrical Specifications ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )

| Parameter | Symbol | Min. | Typ. | Max. | Units | Test Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Forward Voltage | $V_{F}$ | - | 1.2 | 1.5 | V | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ |
| Reverse Current | $\mathrm{I}_{\mathrm{R}}$ | - | - | 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{R}}=4 \mathrm{~V}$ |
| Terminal Capacitance | $\mathrm{C}_{\mathrm{t}}$ | - | 50 | - | pF | $\mathrm{V}=0, \mathrm{f}=1 \mathrm{KHz}$ |
| Collector Dark Current | $\mathrm{I}_{\text {ceo }}$ | - | - | 50 | nA | $\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0$ |
| Collector-Emitter Breakdown Voltage | BVCEO | 30 | - | - | V | $\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0$ |
| Emitter-Collector Breakdown Voltage | $\mathrm{BV}_{\mathrm{ECO}}$ | 7 | - | - | V | $\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0$ |
| Collector-Base Breakdown Voltage | $\mathrm{BV}_{\mathrm{CBO}}$ | 70 | - | - | V | $\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0$ |
| Collector Current | $I_{C}$ | 2 | - | - | mA | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ |
| *Current Transfer Ratio | CTR | 20 | - | - | \% | $\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$ |
| Collector-Emitter Saturation Voltage | $\mathrm{V}_{\text {CE(sat) }}$ | - | 0.1 | 0.5 | V | $\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$ |
| Response Time (Rise) | $\mathrm{tr}_{\mathrm{r}}$ | - | 3 | - | $\mu \mathrm{s}$ | $\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$ |
| Response Time (Fall) | $\mathrm{tf}_{f}$ | - | 3 | - | $\mu \mathrm{s}$ | $\mathrm{R}_{\mathrm{L}}=100 \Omega$ |
| Isolation Resistance | $\mathrm{R}_{\text {iso }}$ | $5 \times 10^{10}$ | $1 \times 10^{11}$ | - | $\Omega$ | $\begin{aligned} & \text { DC } 500 \text { V } 40 \sim 60 \% \\ & \text { R.H. } \end{aligned}$ |
| Floating Capacitance | $C_{f}$ | - | 1 | - | pF | $V=0, f=1 \mathrm{MHz}$ |

${ }^{*}$ CTR $=\frac{I_{C}}{I_{F}^{*}} 100 \%$


Figure 1. Forward current vs. temperature.


Figure 3. Forward current vs. forward voltage.


Figure 5. Collector current vs. collector-emitter voltage.


Figure 2. Collector power dissipation vs. temperature.


Figure 4. Current transfer ratio vs. forward current.


Figure 6. Relative current transfer ratio vs. temperature.


Figure 8. Collector dark current vs. temperature.


Figure 10. Frequency response.


Figure 7. Collector-emitter saturation voltage vs. temperature.


Figure 9. Response time vs. load resistance.


Figure 11. Collector-emitter saturation voltage vs. forward current.

## Test Circuit for Response Time



## Test Circuit for Frequency Response




# Mouser Electronics 

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Broadcom Limited:
4N25-000E 4N25-060E 4N25-300E 4N25-500E 4N25-560E 4N25-W00E 4N25-W60E 4N25-360E

