STB30N80K5

N-channel 800 V, 0.15 Ω typ., 24 A, MDmesh™ K5 Power MOSFET in a D²PAK package

Datasheet - production data

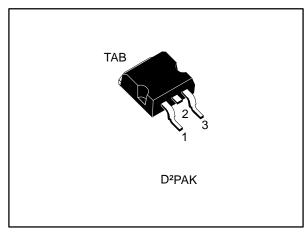
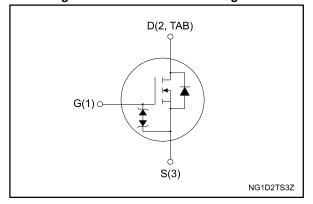



Figure 1: Internal schematic diagram

Features

Order code	V _{DS} R _{DS(on)} max.		ΙD
STB30N80K5	800 V	0.18 Ω	24 A

- Industry's lowest R_{DS(on)} x area
- Industry's best FoM (figure of merit)
- Ultra-low gate charge
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

This very high voltage N-channel Power MOSFET is designed using MDmesh™ K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Table 1: Device summary

Order code	Marking	Package	Packaging
STB30N80K5	30N80K5	D²PAK	Tape and reel

Contents STB30N80K5

Contents

1	Electric	al ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	·cuits	9
4	Packag	e information	10
	4.1	D2PAK package information	10
	4.2	D2PAK packaging information	13
5	Revisio	n history	15

STB30N80K5 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	800	V
V_{GS}	Gate-source voltage	±30	V
ID	Drain current (continuous) at T _C = 25 °C	24	Α
ID	Drain current (continuous) at T _C = 100 °C	15	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	96	Α
Ртот	Total dissipation at T _C = 25 °C	250	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	4.5	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	
T _{stg}	Storage temperature range	55 to 150	°C
Tj	Operating junction temperature range	- 55 to 150	

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.5	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	30	°C/W

Notes:

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T_{jmax} .)	8	А
Eas	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	440	mJ

 $[\]ensuremath{^{(1)}}\mbox{Pulse}$ width limited by safe operating area.

 $^{^{(2)}}I_{SD}{<}~24$ A, di/dt ${<}~100$ A/ μ s, VDSpeak ${<}~V$ (BR)DSS, VDD= 80% V(BR)DSS

⁽³⁾V_{DS}= 640 V

 $^{^{(1)}}$ When mounted on FR-4 board of 1 inch², 2 oz Cu

Electrical characteristics STB30N80K5

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 5: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0 V	800			V
	Zero gate voltage	V _G S= 0 V, V _D S = 800 V			1	μΑ
I _{DSS}	drain current	V _{GS} = 0 V, V _{DS} = 800 V, T _C = 125 °C ⁽¹⁾			50	μΑ
Igss	Gate source leakage current	V _{DS} = 0 V, V _{GS} = ± 20 V			±10	μΑ
$V_{GS(th)}$	Gate threshold voltage	$V_{DD} = V_{GS}$, $I_D = 100 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 12 A		0.15	0.18	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	1530	-	pF
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$	-	145	-	pF
Crss	Reverse transfer capacitance	V _{GS} = 0 V	-	1.2	-	pF
C _{o(er)} ⁽¹⁾	Equivalent capacitance energy related	V _{GS} = 0 V,	-	91	-	pF
C _{o(tr)} ⁽²⁾	Equivalent capacitance time related	$V_{DS} = 0 \text{ to } 640 \text{ V}$	-	244	-	pF
Qg	Total gate charge	$V_{DD} = 640 \text{ V}, I_D = 24 \text{ A},$	-	43	-	nC
Qgs	Gate-source charge	$V_{GS} = 10 \text{ V}$	-	12.8	-	nC
Q _{gd}	Gate-drain charge	(see Figure 16: "Test circuit for gate charge behavior")	-	24.2	-	nC
Rg	Gate input resistance	f =1 MHz, I _D = 0 A	-	3.5	-	Ω

Notes:

⁽¹⁾Defined by design, not subject to production test.

 $^{^{(1)}}$ Energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

 $^{^{(2)}}$ Time related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DS} = 400 \text{ V}, I_{D} = 12 \text{ A},$	-	21	-	ns
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 \text{ V}$	-	15	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 15: "Test circuit for	-	100	1	ns
t _f	Fall time	resistive load switching times")	-	13.5	-	ns

Table 8: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		ı		24	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		ı		96	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 24 A, V _{GS} = 0 V	ı		1.5	V
t _{rr}	Reverse recovery time	$I_{SD} = 24 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	ı	555		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}$	-	9.95		μC
I _{RRM}	Reverse recovery current	(see Figure 17: "Test circuit for inductive load switching and diode recovery times")	1	36		А
t _{rr}	Reverse recovery time	I _{SD} = 24 A, di/dt = 100 A/µs	-	765		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, T_j = 150 ^{\circ}\text{C}$		13.2		μC
I _{RRM}	Reverse recovery current	(see Figure 17: "Test circuit for inductive load switching and diode recovery times")	-	34.5		А

Notes:

Table 9: Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)GSO} \\$	Gate-source breakdown voltage	I_{GS} = ±1 mA, I_D = 0 A	30	•	-	V

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

⁽¹⁾Pulse width limited by safe operating area.

 $^{^{(2)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%.

2.2 Electrical characteristics (curves)

Figure 2: Safe operating area (A) Operation in this area is limited by R_{DS(on)} GIPG091215VK8LBSOA 104 t =10 µs 10¹ t =100 µs t =1 ms t =10 ms 10⁰ T_,≤150 °C 10-T_o= 25°C single pulse 10^{-2} 10° 10¹

Figure 3: Thermal impedance

K

0.2

0.1

0.05

0.02

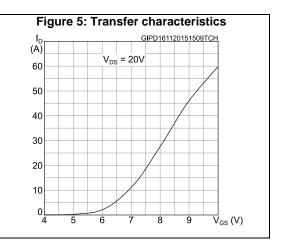
Z_{th}= K*R_{thj-c}

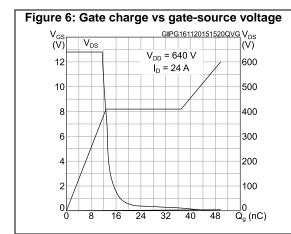
0= t_p/T

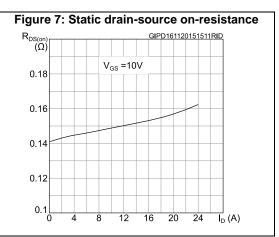
Single pulse

10⁻²

10⁻³


10⁻¹


10⁻¹


10⁻²

10⁻¹

t_p(s)

STB30N80K5 Electrical characteristics

Figure 8: Capacitance variations C (pF) GIPD161120151510CVR 10⁴ C_{ISS} 10³ 10² Coss f= 1MHz 10¹ C_{RSS} 10⁰ 10⁻¹ $\overline{V}_{DS}(V)$ 10⁻¹ 10¹

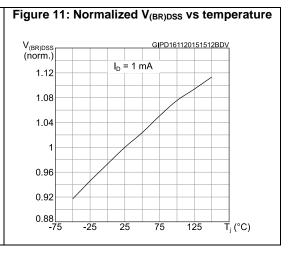
Figure 10: Normalized on-resistance vs temperature

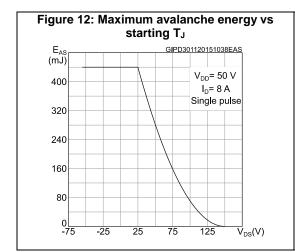
R_{DS(on)} GIPD161120151514RON
(norm.)

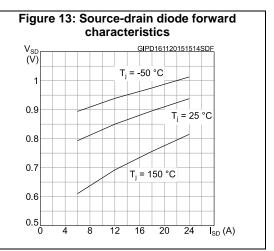
2.6

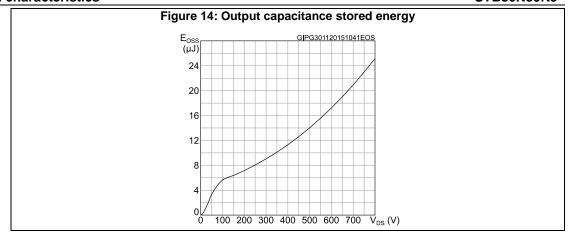
2.2

1.8


1.4


1

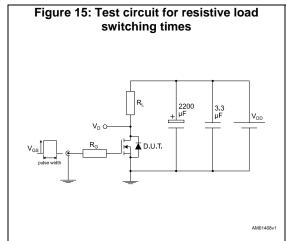

0.6

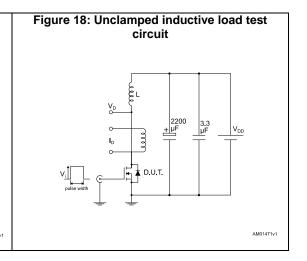

0.2

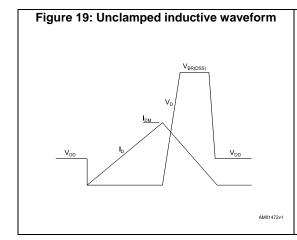
-75
-25
25
75
125
T_j (°C)

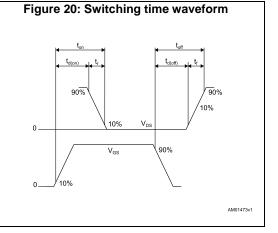
STB30N80K5 Test circuits

3 Test circuits




Figure 16: Test circuit for gate charge behavior


12 V 47 kΩ 100 nF D.U.T.


2200 PF 47 kΩ OVG

AM01466y1

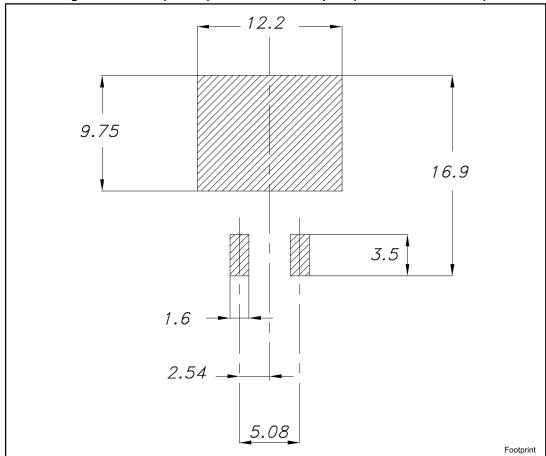
Figure 17: Test circuit for inductive load switching and diode recovery times

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 D²PAK package information

Figure 21: D²PAK (TO-263) type A package outline E1 c2-L1 THERMAL PAD SEATING PLANE COPLANARITY A 1 0.25 GAUGE PLANE


0079457_A_rev22

V2_

Table 10: D²PAK (TO-263) type A package mechanical data

Dim	mm			
Dim.	Min.	Тур.	Max.	
А	4.40		4.60	
A1	0.03		0.23	
b	0.70		0.93	
b2	1.14		1.70	
С	0.45		0.60	
c2	1.23		1.36	
D	8.95		9.35	
D1	7.50	7.75	8.00	
D2	1.10	1.30	1.50	
Е	10		10.40	
E1	8.50	8.70	8.90	
E2	6.85	7.05	7.25	
е		2.54		
e1	4.88		5.28	
Н	15		15.85	
J1	2.49		2.69	
L	2.29		2.79	
L1	1.27		1.40	
L2	1.30		1.75	
R		0.4		
V2	0°		8°	

Figure 22: D²PAK (TO-263) recommended footprint (dimensions are in mm)

STB30N80K5 Package information

D²PAK packaging information 4.2

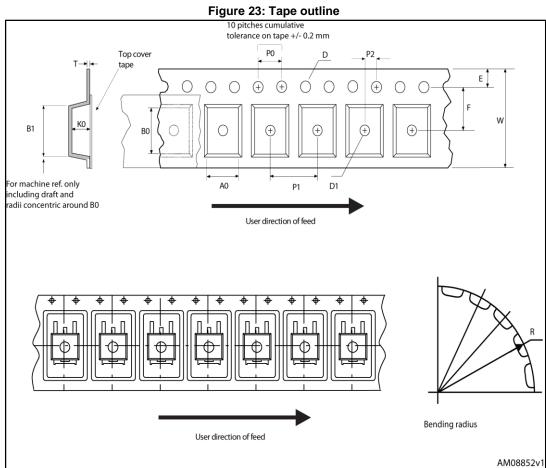


Figure 24: Reel outline

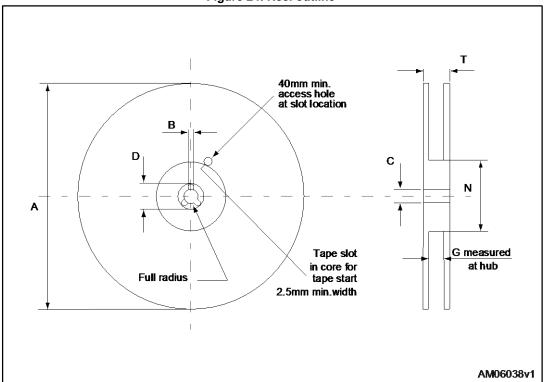


Table 11: D2PAK tape and reel mechanical data

	Tape		Reel		
Dim.	mm		Dim.	mm	
	Min.	Max.	Diiii.	Min.	Max.
A0	10.5	10.7	А		330
В0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
E	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1	Base quantity 1000		1000
P2	1.9	2.1	Bulk quantity 1000		1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

STB30N80K5 Revision history

5 Revision history

Table 12: Document revision history

Date	Revision	Changes
14-Dec-2015	1 First release.	
	2	Modified: features in cover page.
06-Jul-2016		Added: note in Table 5: "On/off states".
00-301-2010		Modified: Figure 3: "Thermal impedance".
		Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STB30N80K5