

Automotive 600 V, 1 A, turbo 2 ultrafast rectifier

Features

- Ultrafast recovery
- V_{RRM} 600 V up to -40 °C
- · Low power losses
- · High surge capability
- · Low leakage current
- · High junction temperature
- PPAP capable
- ECOPACK®2 compliant component

Applications

- · Reverse polarity protection
- · Clamping function
- · Boost diode
- PFC

Description

The STTH1R06AFY is an ultrafast recovery power rectifier dedicated to energy recovery in automotive application housed in SOD128Flat to improve space saving.

It is especially designed for clamping function in energy recovery block.

The compromise between forward voltage drop and recovery time offers optimized performance.

Product status STTH1R06AFY

Product summary				
I _{F(AV)}	1 A			
V _{RRM}	600 V			
t _{rr}	30 ns			
T _j 175 °C				
V _{F(typ.)}	1.08 V			

1 Characteristics

Table 1. Absolute ratings (limiting values at 25 °C, unless otherwise specified)

Symbol	Parameter	Value	Unit
V _{RRM}	Repetitive peak reverse voltage (T _j = -40 °C to +175 °C)	600	V
I _{F(AV)}	Average forward current	1	Α
I _{FSM}	Surge non repetitive forward current	20	Α
T _{stg}	Storage temperature range	-65 to +175	°C
T _j	Operating junction temperature range	-40 to +175	°C

Table 2. Thermal parameters

Symbol	Parameter	Тур.	Max.	Unit
R _{th(j-l)}	Junction to lead	16	24	°C/W

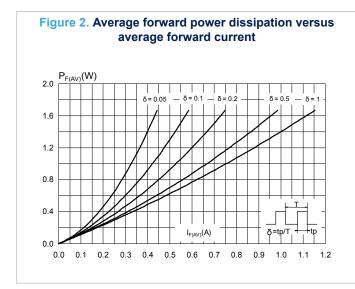
Table 3. Static electrical characteristics

Symbol	Parameter	Test co	Min.	Тур.	Max.	Unit	
L. Doverno lookaga ourrent		T _j = 25 °C	V _R = 600 V	-		1	μA
'R	I _R Reverse leakage current	T _j = 150 °C	VR - 000 V	-	10	75	μΑ
V _F Forward voltage drop		T _j = 25 °C	I _F = 1 A	-		1.9	V
VF	Torward voltage drop	T _j = 150 °C	IF - IA	-	1.08	1.4	V

To evaluate the conduction losses, use the following equation:

$$P = 1.1 \times I_{F(AV)} + 0.30 \times I_{F}^{2}_{(RMS)}$$

Table 4. Dynamic electrical characteristics


Symbol	Parameter	Test conditions			Тур.	Max.	Unit
t _{rr}	Reverse recovery time	T _j = 25 °C	$I_F = 1 \text{ A}, V_R = 30 \text{ V}, dI_F/dt = -50 \text{ A/}\mu\text{s}$	-	30	45	ns
I _{RM}	Reverse recovery current		$I_F = 1 \text{ A}, V_R = 400 \text{ V}, dI_F/dt = -200 \text{ A}/\mu\text{s}$	-	3		Α
Q _{RR}	Reverse recovery charge	T _j = 125 °C		-	90		nC
t _{rr}	Reverse recovery time			-	65		ns

DS12434 - Rev 2 page 2/10

1.1 Characteristics (curves)

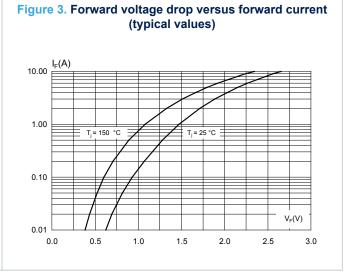


Figure 4. Forward voltage drop versus forward current (maximum values)

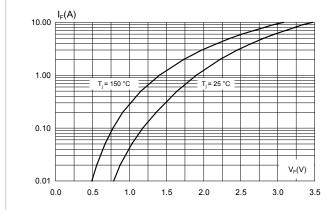
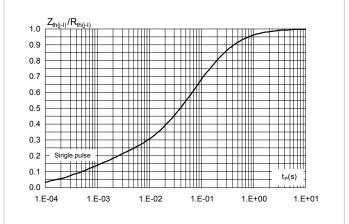



Figure 5. Relative variation of thermal impedance junction to lead versus pulse duration

DS12434 - Rev 2 page 3/10

Figure 6. Peak reverse recovery current versus dl_F/dt (typical values)

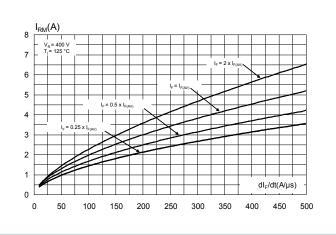


Figure 7. Reverse recovery time versus dl_F/dt (typical values)

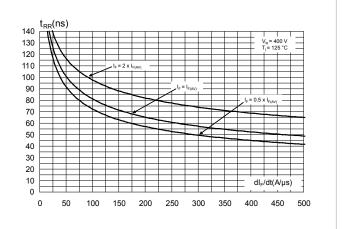


Figure 8. Reverse recovery charges versus dl_F/dt (typical values)

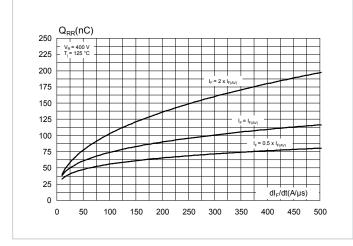


Figure 9. Softness factor versus dl_F/dt (typical values)

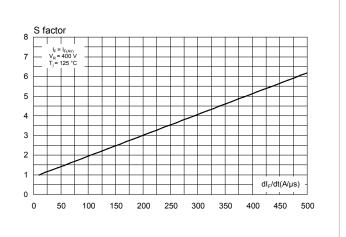
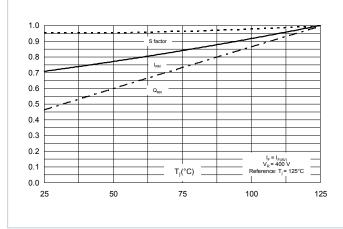
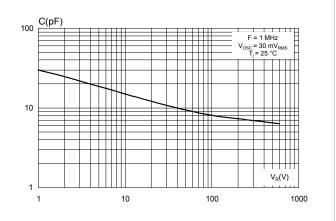
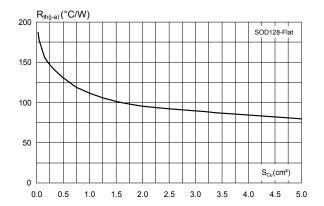


Figure 10. Relative variations of dynamic parameters versus junction temperature

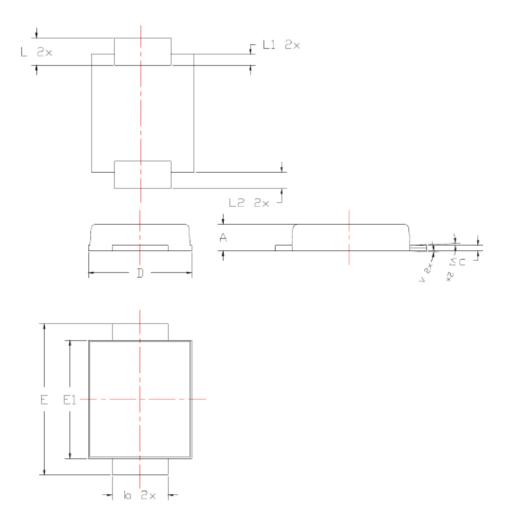




Figure 11. Junction capacitance versus reverse voltage applied (typical values)

DS12434 - Rev 2 page 4/10

Figure 12. Thermal resistance junction to ambient versus copper surface under each lead (typical values, epoxy printed board FR4, e_{Cu} = 35 μ m)

DS12434 - Rev 2 page 5/10


Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

2.1 SOD128Flat package information

- Epoxy meets UL94, V0
- Lead-free package

Figure 13. SOD128Flat package outline

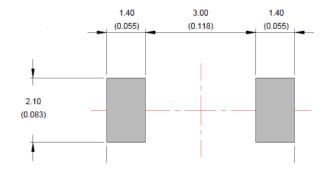

DS12434 - Rev 2 page 6/10

Table 5. SOD128Flat package mechanical data

	Dimensions				
Ref.	Millir	neters	Inc	hes	
	Min.	Max.	Min.	Max.	
А	0.93	1.03	0.037	0.041	
b	1.69	1.81	0.067	0.071	
С	0.10	0.22	0.004	0.009	
D	2.30	2.50	0.091	0.098	
E	4.60	4.80	0.181	0.189	
E1	3.70	3.90	0.146	0.154	
L	0.55	0.85	0.026	0.033	
L1	0.30 typ.		0.012	2 typ.	
L2	0.45 typ.		0.018	3 typ.	

Figure 14. SOD128Flat footprint in mm (inches)

DS12434 - Rev 2 page 7/10

3 Ordering information

Table 6. Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
STTH1R06AFY	1R6AY	SOD128Flat	26.4 mg	3000	Tape and reel

DS12434 - Rev 2 page 8/10

Revision history

Table 7. Document revision history

Date	Revision	Changes
01-Feb-2018	1	Initial release.
06-Dec-2018	2	Added Section Applications. Updated title of document.

DS12434 - Rev 2 page 9/10

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics - All rights reserved

DS12434 - Rev 2 page 10/10