EFR32FG12 Flex Gecko Proprietary Protocol SoC Family Data Sheet

The Flex Gecko proprietary protocol family of SoCs is part of the Wireless Gecko portfolio. Flex Gecko SoCs are ideal for enabling energy-friendly proprietary protocol networking for loT devices.

The single-die solution provides industry-leading energy efficiency, ultra-fast wakeup times, a scalable power amplifier, an integrated balun and no-compromise MCU features.

Flex Gecko applications include:

- Home and Building Automation and Security
- Metering
- Electronic Shelf Labels
- Industrial Automation
- Commercial and Retail Lighting and Sensing

KEY FEATURES

- 32-bit ARM® Cortex®-M4 core with 40 MHz maximum operating frequency
- Up to 1 MB of flash and 256 kB of RAM
- Pin-compatible across EFR32FG families (exceptions apply for 5V-tolerant pins)
- 12-channel Peripheral Reflex System, Low-Energy Sensor Interface \& Multichannel Capacitive Sense Interface
- Autonomous Hardware Crypto Accelerator and True Random Number Generator
- Integrated PA with up to 19 dBm (2.4 GHz) or 20 dBm (Sub-GHz) TX power
- Integrated balun for 2.4 GHz
- Robust peripheral set and up to 65 GPIO

1. Feature List

The EFR32FG12 highlighted features are listed below.

- Low Power Wireless System-on-Chip
- High Performance 32-bit 40 MHz ARM Cortex ${ }^{\circledR}$-M4 with DSP instruction and floating-point unit for efficient signal processing
- Embedded Trace Macrocell (ETM) for advanced debugging
- Up to 1024 kB flash program memory
- Up to 256 kB RAM data memory
- 2.4 GHz and Sub-GHz radio operation
- Transmit power:
- 2.4 GHz radio: Up to 19 dBm
- Sub-GHz radio: Up to 20 dBm
- Low Energy Consumption
- 8.4 mA RX current at 38.4 kbps , GFSK, 169 MHz
- 10.0 mA RX current at 1 Mbps , GFSK, 2.4 GHz
- 11 mA RX current at 250 kbps , DSSS-OQPSK, 2.4 GHz
- 8.5 mA TX current at 0 dBm output power at 2.4 GHz
- 35.3 mA TX current at 14 dBm output power at 868 MHz
- $70 \mu \mathrm{~A} / \mathrm{MHz}$ in Active Mode (EM0)
- $1.5 \mu \mathrm{~A}$ EM2 DeepSleep current (16 kB RAM retention and RTCC running from LFRCO)

- High Receiver Performance

- -94.8 dBm sensitivity at $1 \mathrm{Mbit} / \mathrm{s}$ GFSK, 2.4 GHz
- - 102.7 dBm sensitivity at 250 kbps DSSS-OQPSK, 2.4 GHz
- -126.2 dBm sensitivity at 600 bps , GFSK, 915 MHz
- -120.6 dBm sensitivity at 2.4 kbps , GFSK, 868 MHz
- -107.4 dBm sensitivity at 4.8 kbps , OOK, 433 MHz
- -112.2 dBm sensitivity at 38.4 kbps , GFSK, 169 MHz

- Supported Modulation Formats

- 2/4 (G)FSK with fully configurable shaping
- BPSK / DBPSK TX
- OOK / ASK
- Shaped OQPSK / (G)MSK
- Configurable DSSS and FEC
- Supported Protocols
- Proprietary Protocols
- Wireless M-Bus
- Selected IEEE 802.15.4g SUN-FSK PHYs
- Low Power Wide Area Networks
- Suitable for Systems Targeting Compliance With:
- FCC Part 90.210 Mask D, FCC part 15.247, 15.231, 15.249
- ETSI Category I Operation, EN 300 220, EN 300328
- ARIB T-108, T-96
- China regulatory

- Wide selection of MCU peripherals

- 12-bit 1 Msps SAR Analog to Digital Converter (ADC)
- $2 \times$ Analog Comparator (ACMP)
- $2 \times$ Digital to Analog Converter (VDAC)
- $3 \times$ Operational Amplifier (Opamp)
- Digital to Analog Current Converter (IDAC)
- Low-Energy Sensor Interface (LESENSE)
- Multi-channel Capacitive Sense Interface (CSEN)
- Up to 54 pins connected to analog channels (APORT) shared between analog peripherals
- Up to 65 General Purpose I/O pins with output state retention and asynchronous interrupts
- 8 Channel DMA Controller
- 12 Channel Peripheral Reflex System (PRS)
- 2×16-bit Timer/Counter
- 3 or 4 Compare/Capture/PWM channels
- 2×32-bit Timer/Counter
- 3 or 4 Compare/Capture/PWM channels
- 32-bit Real Time Counter and Calendar
- 16-bit Low Energy Timer for waveform generation
- 32-bit Ultra Low Energy Timer/Counter for periodic wake-up from any Energy Mode
- 3×16-bit Pulse Counter with asynchronous operation
- $2 \times$ Watchdog Timer with dedicated RC oscillator
- $4 \times$ Universal Synchronous/Asynchronous Receiver/Transmitter (UART/SPI/SmartCard (ISO 7816)/IrDA/I²S)
- Low Energy UART (LEUART ${ }^{\text {TM }}$)
- $2 \times I^{2} \mathrm{C}$ interface with SMBus support and address recognition in EM3 Stop
- Wide Operating Range
- 1.8 V to 3.8 V single power supply
- Integrated DC-DC, down to 1.8 V output with up to 200 mA load current for system
- Standard ($-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$) and Extended ($-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$) temperature grades available
- Support for Internet Security
- General Purpose CRC
- True Random Number Generator
- $2 \times$ Hardware Cryptographic Acceleration for AES 128/256, SHA-1, SHA-2 (SHA-224 and SHA-256) and ECC
QFN48 7x7 mm Package
QFN68 8x8 mm Package
- BGA125 7x7 mm Package

2. Ordering Information

Table 2.1. Ordering Information

Ordering Code	Protocol Stack	Frequency Band Max TX Power	Flash (kB)	$\begin{aligned} & \text { RAM } \\ & \text { (kB) } \end{aligned}$	GPIO	Package	Temp Range
EFR32FG12P433F1024GL125-C	Proprietary	2.4 GHz @ 19 dBm Sub-GHz @ 20 dBm	1024	256	65	BGA125	-40 to $+85^{\circ} \mathrm{C}$
EFR32FG12P433F1024GM68-C	Proprietary	2.4 GHz @ 19 dBm Sub-GHz @ 20 dBm	1024	256	46	QFN68	-40 to $+85^{\circ} \mathrm{C}$
EFR32FG12P433F1024GM48-C	Proprietary	2.4 GHz @ 19 dBm Sub-GHz @ 20 dBm	1024	256	28	QFN48	-40 to $+85^{\circ} \mathrm{C}$
EFR32FG12P432F1024GL125-C	Proprietary	2.4 GHz @ 19 dBm	1024	256	65	BGA125	-40 to $+85^{\circ} \mathrm{C}$
EFR32FG12P432F1024GM48-C	Proprietary	2.4 GHz @ 19 dBm	1024	256	31	QFN48	-40 to $+85^{\circ} \mathrm{C}$
EFR32FG12P431F1024GL125-C	Proprietary	Sub-GHz @ 20 dBm	1024	256	65	BGA125	-40 to $+85^{\circ} \mathrm{C}$
EFR32FG12P431F1024GM68-C	Proprietary	Sub-GHz @ 20 dBm	1024	256	46	QFN68	-40 to $+85^{\circ} \mathrm{C}$
EFR32FG12P431F512GM68-C	Proprietary	Sub-GHz @ 20 dBm	512	128	46	QFN68	-40 to $+85^{\circ} \mathrm{C}$
EFR32FG12P431F1024GM48-C	Proprietary	Sub-GHz @ 20 dBm	1024	256	31	QFN48	-40 to $+85^{\circ} \mathrm{C}$
EFR32FG12P431F1024IM48-C	Proprietary	Sub-GHz @ 20 dBm	1024	256	31	QFN48	-40 to $+125^{\circ} \mathrm{C}$
EFR32FG12P232F1024GL125-C	Proprietary	2.4 GHz @ 19 dBm	1024	128	65	BGA125	-40 to $+85^{\circ} \mathrm{C}$
EFR32FG12P232F1024GM48-C	Proprietary	2.4 GHz @ 19 dBm	1024	128	31	QFN48	-40 to $+85^{\circ} \mathrm{C}$
EFR32FG12P231F1024GL125-C	Proprietary	Sub-GHz @ 20 dBm	1024	128	65	BGA125	-40 to $+85^{\circ} \mathrm{C}$
EFR32FG12P231F1024GM68-C	Proprietary	Sub-GHz @ 20 dBm	1024	128	46	QFN68	-40 to $+85^{\circ} \mathrm{C}$
EFR32FG12P231F512GM68-C	Proprietary	Sub-GHz @ 20 dBm	512	64	46	QFN68	-40 to $+85^{\circ} \mathrm{C}$
EFR32FG12P231F1024GM48-C	Proprietary	Sub-GHz @ 20 dBm	1024	128	31	QFN48	-40 to $+85^{\circ} \mathrm{C}$

Figure 2.1. Ordering Code Key

Table of Contents

1. Feature List 2
2. Ordering Information 3
3. System Overview 8
3.1 Introduction 8
3.2 Radio 8
3.2.1 Antenna Interface 8
3.2.2 Fractional-N Frequency Synthesizer 9
3.2.3 Receiver Architecture 9
3.2.4 Transmitter Architecture 9
3.2.5 Wake on Radio 9
3.2.6 RFSENSE 10
3.2.7 Flexible Frame Handling 10
3.2.8 Packet and State Trace 10
3.2.9 Data Buffering 10
3.2.10 Radio Controller (RAC) 10
3.2.11 Random Number Generator 11
3.3 Power 12
3.3.1 Energy Management Unit (EMU) 12
3.3.2 DC-DC Converter 12
3.3.3 Power Domains 12
3.4 General Purpose Input/Output (GPIO) 13
3.5 Clocking 13
3.5.1 Clock Management Unit (CMU) 13
3.5.2 Internal and External Oscillators. 13
3.6 Counters/Timers and PWM. 13
3.6.1 Timer/Counter (TIMER) 13
3.6.2 Wide Timer/Counter (WTIMER) 13
3.6.3 Real Time Counter and Calendar (RTCC) 13
3.6.4 Low Energy Timer (LETIMER) 14
3.6.5 Ultra Low Power Wake-up Timer (CRYOTIMER) 14
3.6.6 Pulse Counter (PCNT) 14
3.6.7 Watchdog Timer (WDOG). 14
3.7 Communications and Other Digital Peripherals 14
3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART). 14
3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART). 14
3.7.3 Inter-Integrated Circuit Interface $\left({ }^{2} \mathrm{C}\right)$. 14
3.7.4 Peripheral Reflex System (PRS) 14
3.7.5 Low Energy Sensor Interface (LESENSE) 15
3.8 Security Features 15
3.8.1 General Purpose Cyclic Redundancy Check (GPCRC) 15
3.8.2 Crypto Accelerator (CRYPTO) 15
3.8.3 True Random Number Generator (TRNG) 15
3.8.4 Security Management Unit (SMU) 15
3.9 Analog. 15
3.9.1 Analog Port (APORT) 15
3.9.2 Analog Comparator (ACMP) 15
3.9.3 Analog to Digital Converter (ADC) 16
3.9.4 Capacitive Sense (CSEN). 16
3.9.5 Digital to Analog Current Converter (IDAC) 16
3.9.6 Digital to Analog Converter (VDAC) 16
3.9.7 Operational Amplifiers 16
3.10 Reset Management Unit (RMU) 16
3.11 Core and Memory 16
3.11.1 Processor Core 16
3.11.2 Memory System Controller (MSC) 17
3.11.3 Linked Direct Memory Access Controller (LDMA) 17
3.12 Memory Map 18
3.13 Configuration Summary 20
4. Electrical Specifications 21
4.1 Electrical Characteristics 21
4.1.1 Absolute Maximum Ratings 22
4.1.2 Operating Conditions 24
4.1.3 Thermal Characteristics 26
4.1.4 DC-DC Converter 27
4.1.5 Current Consumption 29
4.1.6 Wake Up Times 39
4.1.7 Brown Out Detector (BOD) 40
4.1.8 Frequency Synthesizer 41
4.1.9 2.4 GHz RF Transceiver Characteristics 42
4.1.10 Sub-GHz RF Transceiver Characteristics 53
4.1.11 Modem 77
4.1.12 Oscillators 78
4.1.13 Flash Memory Characteristics 82
4.1.14 General-Purpose I/O (GPIO) 83
4.1.15 Voltage Monitor (VMON). 85
4.1.16 Analog to Digital Converter (ADC) 86
4.1.17 Analog Comparator (ACMP) 88
4.1.18 Digital to Analog Converter (VDAC) 91
4.1.19 Current Digital to Analog Converter (IDAC) 94
4.1.20 Capacitive Sense (CSEN) 96
4.1.21 Operational Amplifier (OPAMP) 98
4.1.22 Pulse Counter (PCNT) 101
4.1.23 Analog Port (APORT) 101
4.1.24 I2C 102
4.1.25 USART SPI 105
4.2 Typical Performance Curves 106
4.2.1 Supply Current 107
4.2.2 DC-DC Converter 112
4.2.3 2.4 GHz Radio 114
5. Typical Connection Diagrams 116
5.1 Power 116
5.2 RF Matching Networks 118
5.3 Other Connections. 119
6. Pin Definitions 120
6.1 BGA125 2.4 GHz and Sub-GHz Device Pinout 120
6.2 BGA125 2.4 GHz Device Pinout 124
6.3 BGA125 Sub-GHz Device Pinout 127
6.4 QFN68 2.4 GHz and Sub-GHz Device Pinout 130
6.5 QFN68 Sub-GHz Device Pinout 133
6.6 QFN48 2.4 GHz and Sub-GHz Device Pinout 135
6.7 QFN48 2.4 GHz Device Pinout 137
6.8 QFN48 Sub-GHz Device Pinout 139
6.9 GPIO Functionality Table 141
6.10 Alternate Functionality Overview 184
6.11 Analog Port (APORT) Client Maps 199
7. BGA125 Package Specifications 208
7.1 BGA125 Package Dimensions 208
7.2 BGA125 PCB Land Pattern 210
7.3 BGA125 Package Marking 212
8. QFN48 Package Specifications. 213
8.1 QFN48 Package Dimensions 213
8.2 QFN48 PCB Land Pattern 215
8.3 QFN48 Package Marking 217
9. QFN68 Package Specifications. 218
9.1 QFN68 Package Dimensions 218
9.2 QFN68 PCB Land Pattern 220
9.3 QFN68 Package Marking 222
10. Revision History. 223

3. System Overview

3.1 Introduction

The EFR32 product family combines an energy-friendly MCU with a highly integrated radio transceiver. The devices are well suited for any battery operated application as well as other systems requiring high performance and low energy consumption. This section gives a short introduction to the full radio and MCU system. The detailed functional description can be found in the EFR32xG12 Wireless Gecko Reference Manual.

A block diagram of the EFR32FG12 family is shown in Figure 3.1 Detailed EFR32FG12 Block Diagram on page 8. The diagram shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult Ordering Information.

Figure 3.1. Detailed EFR32FG12 Block Diagram

3.2 Radio

The Flex Gecko family features a radio transceiver supporting proprietary wireless protocols.

3.2.1 Antenna Interface

The 2.4 GHz antenna interface consists of two pins (2G4RF_IOP and 2G4RF_ION) that interface directly to the on-chip BALUN. The 2G4RF_ION pin should be grounded externally.

The external components and power supply connections for the antenna interface typical applications are shown in the RF Matching Networks section.

3.2.2 Fractional-N Frequency Synthesizer

The EFR32FG12 contains a high performance, low phase noise, fully integrated fractional-N frequency synthesizer. The synthesizer is used in receive mode to generate the LO frequency used by the down-conversion mixer. It is also used in transmit mode to directly generate the modulated RF carrier.

The fractional- N architecture provides excellent phase noise performance combined with frequency resolution better than 100 Hz , with low energy consumption. The synthesizer has fast frequency settling which allows very short receiver and transmitter wake up times to optimize system energy consumption.

3.2.3 Receiver Architecture

The EFR32FG12 uses a low-IF receiver architecture, consisting of a Low-Noise Amplifier (LNA) followed by an I/Q down-conversion mixer, employing a crystal reference. The I/Q signals are further filtered and amplified before being sampled by the IF analog-to-digital converter (IFADC).

The IF frequency is configurable from 150 kHz to 1371 kHz . The IF can further be configured for high-side or low-side injection, providing flexibility with respect to known interferers at the image frequency.

The Automatic Gain Control (AGC) block adjusts the receiver gain to optimize performance and avoid saturation for excellent selectivity and blocking performance. The 2.4 GHz radio is calibrated at production to improve image rejection performance. The sub-GHz radio can be calibrated on-demand by the user for the desired frequency band.

Demodulation is performed in the digital domain. The demodulator performs configurable decimation and channel filtering to allow receive bandwidths ranging from 0.1 to 2530 kHz . High carrier frequency and baud rate offsets are tolerated by active estimation and compensation. Advanced features supporting high quality communication under adverse conditions include forward error correction by block and convolutional coding as well as Direct Sequence Spread Spectrum (DSSS) for 2.4 GHz and sub-GHz bands.

A Received Signal Strength Indicator (RSSI) is available for signal quality metrics, for level-based proximity detection, and for RF channel access by Collision Avoidance (CA) or Listen Before Talk (LBT) algorithms. An RSSI capture value is associated with each received frame and the dynamic RSSI measurement can be monitored throughout reception.

The EFR32FG12 features integrated support for antenna diversity to mitigate the problem of frequency-selective fading due to multipath propagation and improve link budget. Support for antenna diversity is available for specific PHY configurations in 2.4 GHz and sub- GHz bands. Internal configurable hardware controls an external switch for automatic switching between antennae during RF receive detection operations.
Note: Due to the shorter preamble of 802.15 .4 and BLE packets, RX diversity is not supported.

3.2.4 Transmitter Architecture

The EFR32FG12 uses a direct-conversion transmitter architecture. For constant envelope modulation formats, the modulator controls phase and frequency modulation in the frequency synthesizer. Transmit symbols or chips are optionally shaped by a digital shaping filter. The shaping filter is fully configurable, including the BT product, and can be used to implement Gaussian or Raised Cosine shaping.

Carrier Sense Multiple Access - Collision Avoidance (CSMA-CA) or Listen Before Talk (LBT) algorithms can be automatically timed by the EFR32FG12. These algorithms are typically defined by regulatory standards to improve inter-operability in a given bandwidth between devices that otherwise lack synchronized RF channel access.

3.2.5 Wake on Radio

The Wake on Radio feature allows flexible, autonomous RF sensing, qualification, and demodulation without required MCU activity, using a subsystem of the EFR32FG12 including the Radio Controller (RAC), Peripheral Reflex System (PRS), and Low Energy peripherals.

3.2.6 RFSENSE

The RFSENSE peripheral generates a system wakeup interrupt upon detection of wideband RF energy at the antenna interface, providing true RF wakeup capabilities from low energy modes including EM2, EM3 and EM4.

RFSENSE triggers on a relatively strong RF signal and is available in the lowest energy modes, allowing exceptionally low energy consumption. RFSENSE does not demodulate or otherwise qualify the received signal, but software may respond to the wakeup event by enabling normal RF reception.

Various strategies for optimizing power consumption and system response time in presence of false alarms may be employed using available timer peripherals.

3.2.7 Flexible Frame Handling

EFR32FG12 has an extensive and flexible frame handling support for easy implementation of even complex communication protocols. The Frame Controller (FRC) supports all low level and timing critical tasks together with the Radio Controller and Modulator/Demodulator:

- Highly adjustable preamble length
- Up to 2 simultaneous synchronization words, each up to 32 bits and providing separate interrupts
- Frame disassembly and address matching (filtering) to accept or reject frames
- Automatic ACK frame assembly and transmission
- Fully flexible CRC generation and verification:
- Multiple CRC values can be embedded in a single frame
- 8, 16, 24 or 32 -bit CRC value
- Configurable CRC bit and byte ordering
- Selectable bit-ordering (least significant or most significant bit first)
- Optional data whitening
- Optional Forward Error Correction (FEC), including convolutional encoding / decoding and block encoding / decoding
- Half rate convolutional encoder and decoder with constraint lengths from 2 to 7 and optional puncturing
- Optional symbol interleaving, typically used in combination with FEC
- Symbol coding, such as Manchester or DSSS, or biphase space encoding using FEC hardware
- UART encoding over air, with start and stop bit insertion / removal
- Test mode support, such as modulated or unmodulated carrier output
- Received frame timestamping

3.2.8 Packet and State Trace

The EFR32FG12 Frame Controller has a packet and state trace unit that provides valuable information during the development phase. It features:

- Non-intrusive trace of transmit data, receive data and state information
- Data observability on a single-pin UART data output, or on a two-pin SPI data output
- Configurable data output bitrate / baudrate
- Multiplexed transmitted data, received data and state / meta information in a single serial data stream

3.2.9 Data Buffering

The EFR32FG12 features an advanced Radio Buffer Controller (BUFC) capable of handling up to 4 buffers of adjustable size from 64 bytes to 4096 bytes. Each buffer can be used for RX, TX or both. The buffer data is located in RAM, enabling zero-copy operations.

3.2.10 Radio Controller (RAC)

The Radio Controller controls the top level state of the radio subsystem in the EFR32FG12. It performs the following tasks:

- Precisely-timed control of enabling and disabling of the receiver and transmitter circuitry
- Run-time calibration of receiver, transmitter and frequency synthesizer
- Detailed frame transmission timing, including optional LBT or CSMA-CA

3.2.11 Random Number Generator

The Frame Controller (FRC) implements a random number generator that uses entropy gathered from noise in the RF receive chain. The data is suitable for use in cryptographic applications.

Output from the random number generator can be used either directly or as a seed or entropy source for software-based random number generator algorithms such as Fortuna.

3.3 Power

The EFR32FG12 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a single external supply voltage is required, from which all internal voltages are created. An optional integrated DC-DC buck regulator can be utilized to further reduce the current consumption. The DC-DC regulator requires one external inductor and one external capacitor.

The EFR32FG12 device family includes support for internal supply voltage scaling, as well as two different power domains groups for peripherals. These enhancements allow for further supply current reductions and lower overall power consumption.

AVDD and VREGVDD need to be 1.8 V or higher for the MCU to operate across all conditions; however the rest of the system will operate down to 1.62 V , including the digital supply and I / O. This means that the device is fully compatible with 1.8 V components. Running from a sufficiently high supply, the device can use the DC-DC to regulate voltage not only for itself, but also for other PCB components, supplying up to a total of 200 mA .

3.3.1 Energy Management Unit (EMU)

The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM blocks, and it contains control registers for the DC-DC regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has fallen below a chosen threshold.

3.3.2 DC-DC Converter

The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2 and EM3, and can supply up to 200 mA to the device and surrounding PCB components. Patented RF noise mitigation allows operation of the DC-DC converter without degrading sensitivity of radio components. Protection features include programmable current limiting, short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input voltage is too low for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a low resistance switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients.

3.3.3 Power Domains

The EFR32FG12 has two peripheral power domains for operation in EM2 and lower. If all of the peripherals in a peripheral power domain are configured as unused, the power domain for that group will be powered off in the low-power mode, reducing the overall current consumption of the device.

Table 3.1. Peripheral Power Subdomains

Peripheral Power Domain 1	Peripheral Power Domain 2
ACMP0	ACMP1
PCNT0	PCNT1
ADC0	PCNT2
LETIMER0	CSEN
LESENSE	DAC0
APORT	LEUART0
-	I2C0
-	I2C1
-	IDAC

3.4 General Purpose Input/Output (GPIO)

EFR32FG12 has up to 65 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or input. More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin. The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals. The GPIO subsystem supports asynchronous external pin interrupts.

3.5 Clocking

3.5.1 Clock Management Unit (CMU)

The Clock Management Unit controls oscillators and clocks in the EFR32FG12. Individual enabling and disabling of clocks to all peripherals is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and oscillators.

3.5.2 Internal and External Oscillators

The EFR32FG12 supports two crystal oscillators and fully integrates four RC oscillators, listed below.

- A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing reference for the MCU. Crystal frequencies in the range from 38 to 40 MHz are supported. An external clock source such as a TCXO can also be applied to the HFXO input for improved accuracy over temperature.
- A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes.
- An integrated high frequency RC oscillator (HFRCO) is available for the MCU system, when crystal accuracy is not required. The HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range.
- An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial Wire Viewer port with a wide frequency range.
- An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crystal accuracy is not required.
- An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes.

3.6 Counters/Timers and PWM

3.6.1 Timer/Counter (TIMER)

TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit TIMER_0 only.

3.6.2 Wide Timer/Counter (WTIMER)

WTIMER peripherals function just as TIMER peripherals, but are 32 bits wide. They keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. The core of each WTIMER is a 32-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the WTIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit WTIMER_0 only.

3.6.3 Real Time Counter and Calendar (RTCC)

The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscillators with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. When receiving frames, the RTCC value can be used for timestamping. The RTCC includes 128 bytes of general purpose data retention, allowing easy and convenient data storage in all energy modes down to EM4H.

3.6.4 Low Energy Timer (LETIMER)

The unique LETIMER is a 16-bit timer that is available in energy mode EM2 Deep Sleep in addition to EM1 Sleep and EM0 Active. This allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC.

3.6.5 Ultra Low Power Wake-up Timer (CRYOTIMER)

The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation.

3.6.6 Pulse Counter (PCNT)

The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The clock for PCNT is selectable from either an external source on pin PCTNn_SOIN or from an internal timing reference, selectable from among any of the internal oscillators, except the AUXHFRCO. The peripheral may operate in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop.

3.6.7 Watchdog Timer (WDOG)

The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can also monitor autonomous systems driven by PRS.

3.7 Communications and Other Digital Peripherals

3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)

The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O interface. It supports full duplex asynchronous UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting:

- ISO7816 SmartCards
- IrDA
- $I^{2} S$

3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)

The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication possible with a minimum of software intervention and energy consumption.

3.7.3 Inter-Integrated Circuit Interface $\left(I^{2} \mathrm{C}\right)$

The $I^{2} C$ interface enables communication between the $M C U$ and a serial $I^{2} C$ bus. It is capable of acting as both a master and a slave and supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from $10 \mathrm{kbit} / \mathrm{s}$ up to $1 \mathrm{Mbit} / \mathrm{s}$. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The interface provided to software by the $I^{2} \mathrm{C}$ peripheral allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes.

3.7.4 Peripheral Reflex System (PRS)

The Peripheral Reflex System provides a communication network between different peripherals without software involvement. Peripherals producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals, which in turn perform actions in response. Edge triggers and other functionality such as simple logic operations (AND, OR, NOT) can be applied by the PRS to the signals. The PRS allows peripheral to act autonomously without waking the MCU core, saving power.

3.7.5 Low Energy Sensor Interface (LESENSE)

The Low Energy Sensor Interface LESENSE ${ }^{T M}$ is a highly configurable sensor interface with support for up to 16 individually configurable sensors. By controlling the analog comparators, ADC, and DAC, LESENSE is capable of supporting a wide range of sensors and measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a programmable finite state machine which enables simple processing of measurement results without CPU intervention. LESENSE is available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy budget.

3.8 Security Features

3.8.1 General Purpose Cyclic Redundancy Check (GPCRC)

The GPCRC block implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The supported 32 -bit polynomial is 0×04 C11DB7 (IEEE 802.3), while the 16 -bit polynomial can be programmed to any value, depending on the needs of the application.

3.8.2 Crypto Accelerator (CRYPTO)

The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. EFR32 devices support AES encryption and decryption with 128- or 256 -bit keys, ECC over both GF(P) and GF(2^{m}), SHA-1 and SHA-2 (SHA-224 and SHA-256).

Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM.
Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233.
The CRYPTO1 block is tightly linked to the Radio Buffer Controller (BUFC) enabling fast and efficient autonomous cipher operations on data buffer content. It allows fast processing of GCM (AES), ECC and SHA with little CPU intervention.

CRYPTO also provides trigger signals for DMA read and write operations.

3.8.3 True Random Number Generator (TRNG)

The TRNG is a non-deterministic random number generator based on a full hardware solution. The TRNG is validated with NIST800-22 and AIS-31 test suites as well as being suitable for FIPS 140-2 certification (for the purposes of cryptographic key generation).

3.8.4 Security Management Unit (SMU)

The Security Management Unit (SMU) allows software to set up fine-grained security for peripheral access, which is not possible in the Memory Protection Unit (MPU). Peripherals may be secured by hardware on an individual basis, such that only priveleged accesses to the peripheral's register interface will be allowed. When an access fault occurs, the SMU reports the specific peripheral involved and can optionally generate an interrupt.

3.9 Analog

3.9.1 Analog Port (APORT)

The Analog Port (APORT) is an analog interconnect matrix allowing access to many analog peripherals on a flexible selection of pins. Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are grouped by X/Y pairs.

3.9.2 Analog Comparator (ACMP)

The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption is configurable by software. Two 6 -bit reference dividers allow for a wide range of internally-programmable reference sources. The ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the programmable threshold.

3.9.3 Analog to Digital Converter (ADC)

The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples. The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of sources, including pins configurable as either single-ended or differential.

3.9.4 Capacitive Sense (CSEN)

The CSEN peripheral is a dedicated Capacitive Sensing block for implementing touch-sensitive user interface elements such a switches and sliders. The CSEN peripheral uses a charge ramping measurement technique, which provides robust sensing even in adverse conditions including radiated noise and moisture. The peripheral can be configured to take measurements on a single port pin or scan through multiple pins and store results to memory through DMA. Several channels can also be shorted together to measure the combined capacitance or implement wake-on-touch from very low energy modes. Hardware includes a digital accumulator and an averaging filter, as well as digital threshold comparators to reduce software overhead.

3.9.5 Digital to Analog Current Converter (IDAC)

The IDAC can source or sink a configurable constant current. This current can be driven on an output pin or routed to the selected ADC input pin for capacitive sensing. The full-scale current is programmable between $0.05 \mu \mathrm{~A}$ and $64 \mu \mathrm{~A}$ with several ranges consisting of various step sizes.

3.9.6 Digital to Analog Converter (VDAC)

The Digital to Analog Converter (VDAC) can convert a digital value to an analog output voltage. The VDAC is a fully differential, 500 ksps, 12-bit converter. The opamps are used in conjunction with the VDAC, to provide output buffering. One opamp is used per singleended channel, or two opamps are used to provide differential outputs. The VDAC may be used for a number of different applications such as sensor interfaces or sound output. The VDAC can generate high-resolution analog signals while the MCU is operating at low frequencies and with low total power consumption. Using DMA and a timer, the VDAC can be used to generate waveforms without any CPU intervention. The VDAC is available in all energy modes down to and including EM3.

3.9.7 Operational Amplifiers

The opamps are low power amplifiers with a high degree of flexibility targeting a wide variety of standard opamp application areas, and are available down to EM3. With flexible built-in programming for gain and interconnection they can be configured to support multiple common opamp functions. All pins are also available externally for filter configurations. Each opamp has a rail to rail input and a rail to rail output. They can be used in conjunction with the VDAC peripheral or in stand-alone configurations. The opamps save energy, PCB space, and cost as compared with standalone opamps because they are integrated on-chip.

3.10 Reset Management Unit (RMU)

The RMU is responsible for handling reset of the EFR32FG12. A wide range of reset sources are available, including several power supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset.

3.11 Core and Memory

3.11.1 Processor Core

The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system:

- ARM Cortex-M4 RISC processor achieving 1.25 Dhrystone MIPS/MHz
- Memory Protection Unit (MPU) supporting up to 8 memory segments
- Up to 1024 kB flash program memory
- Up to 256 kB RAM data memory
- Configuration and event handling of all peripherals
- 2-pin Serial-Wire debug interface

3.11.2 Memory System Controller (MSC)

The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active and EM1 Sleep.

3.11.3 Linked Direct Memory Access Controller (LDMA)

The Linked Direct Memory Access (LDMA) controller allows the system to perform memory operations independently of software. This reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling sophisticated operations to be implemented.

3.12 Memory Map

The EFR32FG12 memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration.

Figure 3.2. EFR32FG12 Memory Map - Core Peripherals and Code Space

		$\begin{array}{ll}1 \\ 1 \\ 1 \\ & 1 \\ & \\ & 1\end{array}$		
	PRS			0xfffffffe
	RाVU			0xe0100000
	CIMU		CM4 Peripherals	0xe00fffff
	EIVO			0xe0000000
			Bit Set(Peripherals / CRYPTOO)	0xdfffffff
	FPUEH			0x460f0400
	M15C			0x460f03ff
	RFSEISSE			0x460f03ff
	AGC			
				0x46000000
	MODEM		Bit Clear (Peripherals / CRYPTOO)	0x45ffffff
	PRUTIVIER			0x440f0400
	RAC			0x440f03ff
	SYIVIH			
	CRC			0x44000000
	BUFC		$\begin{aligned} & \text { Bit-Band } \\ & \text { (Peripherals / CRYPTOO) } \end{aligned}$	0x43ffffff
	FRC			0x43e08000
	LESENSE			0x43e07fff
	WVOOGI			
				0x42000000
	PCNTIL			0x41ffffff
	PCNIO			0x400f0400
	LEUARIU		CRYPTOO	0x400f03ff
	LEIIMERO			0x400f0000
	RICC		Peripherals	$0 \times 400 \mathrm{effff}$
	डाण			0x40000000
	CSEN			0x3fffffff
	RYOUIIMER		SRAM (bit-band)	0x24000000
	TRाVGO			0x23ffffff
	GPCRC			0×22000000
	WIIMERI			0x21ffffff
	WIIMERU			0x20040800
	HIVIVERL		RAM2 (data space)	0x200407ff
				0x20040000
	USARI2		RAM1 (data space)	0x2003ffff
	USARIIU			0×20020000
			RAMO (data space)	0x2001ffff
	GPIO		Code	0x1fffffff
	VIDACO			
	IDACO			
	ADCO			
				0x00000000

Figure 3.3. EFR32FG12 Memory Map - Peripherals

3.13 Configuration Summary

The features of the EFR32FG12 are a subset of the feature set described in the device reference manual. The table below describes device specific implementation of the features. Remaining modules support full configuration.

Table 3.2. Configuration Summary

Module	Configuration	Pin Connections
USART0	IrDA SmartCard	US0_TX, US0_RX, US0_CLK, US0_CS
USART1	2S SmartCard	US1_TX, US1_RX, US1_CLK, US1_CS
USART2	IrDA	
SmartCard	2S	US2_TX, US2_RX, US2_CLK, US2_CS
SmartCard	with DTI	TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1	-	TIM1_CC[3:0]
WTIMER0	with DTI	WTIM0_CC[2:0], WTIM0_CDTI[2:0]
WTIMER1	-	WTIM1_CC[3:0]

4. Electrical Specifications

4.1 Electrical Characteristics

All electrical parameters in all tables are specified under the following conditions, unless stated otherwise:

- Typical values are based on $\mathrm{T}_{\mathrm{AMB}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, by production test and/or technology characterization.
- Radio performance numbers are measured in conducted mode, based on Silicon Laboratories reference designs using output pow-er-specific external RF impedance-matching networks for interfacing to a 50Ω antenna.
- Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature, unless stated otherwise.

Refer to 4.1.2.1 General Operating Conditions for more details about operational supply and temperature limits.

4.1.1 Absolute Maximum Ratings

Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.

Table 4.1. Absolute Maximum Ratings

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Storage temperature range	TSTG		-50	-	150	${ }^{\circ} \mathrm{C}$
Voltage on any supply pin	$V_{\text {DDMAX }}$		-0.3	-	3.8	V
Voltage ramp rate on any supply pin	V ${ }_{\text {DDRAMPMAX }}$		-	-	1	$\mathrm{V} / \mu \mathrm{s}$
DC voltage on any GPIO pin	$V_{\text {DIGPIN }}$	5 V tolerant GPIO pins ${ }^{123}$	-0.3	-	Min of 5.25 and IOVDD +2	V
		Standard GPIO pins	-0.3	-	IOVDD+0.3	V
Voltage on HFXO pins	$V_{\text {HFXOPIN }}$		-0.3	-	1.4	V
Input RF level on pins 2G4RF_IOP and 2G4RF_ION	PRFMAX2G4		-	-	10	dBm
Voltage differential between RF pins (2G4RF_IOP 2G4RF_ION)	$\mathrm{V}_{\text {MAXDIFF2G4 }}$		-50	-	50	mV
Absolute voltage on RF pins 2G4RF_IOP and 2G4RF_ION	$\mathrm{V}_{\text {MAX2G4 }}$		-0.3	-	3.3	V
Absolute voltage on SubGHz RF pins	$\mathrm{V}_{\text {MAXSUBG }}$	Pins SUBGRF_OP and SUBGRF_ON	-0.3	-	3.3	V
		Pins SUBGRF_IP and SUBGRF_IN,	-0.3	-	0.3	V
Total current into VDD power lines	IVDDMAX	Source	-	-	200	mA
Total current into VSS ground lines	IVSSMAX	Sink	-	-	200	mA
Current per I/O pin	IIOMAX	Sink	-	-	50	mA
		Source	-	-	50	mA
Current for all I/O pins	IIoALLMAX	Sink	-	-	200	mA
		Source	-	-	200	mA
Junction temperature	T_{J}	-G grade devices	-40	-	105	${ }^{\circ} \mathrm{C}$
		-I grade devices	-40	-	125	${ }^{\circ} \mathrm{C}$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit

Note:

1. When a GPIO pin is routed to the analog block through the APORT, the maximum voltage = IOVDD.
2. Valid for IOVDD in valid operating range or when IOVDD is undriven (high-Z). If IOVDD is connected to a low-impedance source below the valid operating range (e.g. IOVDD shorted to VSS), the pin voltage maximum is IOVDD +0.3 V , to avoid exceeding the maximum IO current specifications.
3. To operate above the IOVDD supply rail, over-voltage tolerance must be enabled according to the GPIO_Px_OVTDIS register. Pins with over-voltage tolerance disabled have the same limits as Standard GPIO.

4.1.2 Operating Conditions

When assigning supply sources, the following requirements must be observed:

- VREGVDD must be greater than or equal to AVDD, DVDD, RFVDD, PAVDD and all IOVDD supplies.
- VREGVDD = AVDD
- DVDD \leq AVDD
- IOVDD \leq AVDD
- RFVDD \leq AVDD
- PAVDD \leq AVDD
4.1.2.1 General Operating Conditions

Table 4.2. General Operating Conditions

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Operating ambient temperature range ${ }^{1}$	T_{A}	-G temperature grade	-40	25	85	${ }^{\circ} \mathrm{C}$
		-I temperature grade	-40	25	125	${ }^{\circ} \mathrm{C}$
AVDD supply voltage ${ }^{2}$	$\mathrm{V}_{\text {AVDD }}$		1.8	3.3	3.8	V
VREGVDD operating supply voltage ${ }^{2} 3$	VVREGVDD	DCDC in regulation	2.4	3.3	3.8	V
		DCDC in bypass, 50 mA load	1.8	3.3	3.8	V
		DCDC not in use. DVDD externally shorted to VREGVDD	1.8	3.3	3.8	V
VREGVDD current	$I_{\text {VREGVDD }}$	DCDC in bypass, $\mathrm{T} \leq 85^{\circ} \mathrm{C}$	-	-	200	mA
		DCDC in bypass, $\mathrm{T}>85{ }^{\circ} \mathrm{C}$	-	-	100	mA
RFVDD operating supply voltage	$\mathrm{V}_{\text {RFVDD }}$		1.62	-	VVREGVDD	V
DVDD operating supply voltage	V ${ }_{\text {DVDD }}$		1.62	-	VVREGVDD	V
PAVDD operating supply voltage	V PAVDD		1.62	-	VVREGVDD	V
IOVDD operating supply voltage	VIOVDD	All IOVDD pins ${ }^{4}$	1.62	-	$V_{\text {VREGVDD }}$	V
DECOUPLE output capacitor ${ }^{5} 6$	C DECOUPLE		0.75	1.0	2.75	$\mu \mathrm{F}$
Difference between AVDD and VREGVDD, ABS(AVDDVREGVDD) ${ }^{2}$	$d V_{D D}$		-	-	0.1	V
HFCORECLK frequency	f CORE	VSCALE2, MODE = WS1	-	-	40	MHz
		VSCALE2, MODE = WS0	-	-	25	MHz
		VSCALE0, MODE = WS2	-	-	20	MHz
		VSCALE0, MODE = WS1	-	-	14	MHz
		VSCALE0, MODE = WSO	-	-	7	MHz
HFCLK frequency	$\mathrm{f}_{\text {HFCLK }}$	VSCALE2	-	-	40	MHz
		VSCALE0	-	-	20	MHz

Parameter	Symbol	Test Condition	Min	Typ	Max
Unit					

Note:

1. The maximum limit on T_{A} may be lower due to device self-heating, which depends on the power dissipation of the specific application. $\mathrm{T}_{\mathrm{A}}(\max)=\mathrm{T}_{\mathrm{J}}(\max)-\left(\right.$ THETA $_{\mathrm{JA}} \times$ PowerDissipation). Refer to the Absolute Maximum Ratings table and the Thermal Characteristics table for T_{J} and THETA ${ }_{J A}$.
2. VREGVDD must be tied to AVDD. Both VREGVDD and AVDD minimum voltages must be satisfied for the part to operate.
3. The minimum voltage required in bypass mode is calculated using $R_{B Y P}$ from the DCDC specification table. Requirements for other loads can be calculated as $V_{D V D D _m i n}{ }^{+} I_{\text {LOAD }}{ }^{*} R_{\text {BYP_max }}$.
4. When the CSEN peripheral is used with chopping enabled (CSEN_CTRL_CHOPEN = ENABLE), IOVDD must be equal to AVDD.
5. The system designer should consult the characteristic specs of the capacitor used on DECOUPLE to ensure its capacitance value stays within the specified bounds across temperature and DC bias.
6. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of $10 \mathrm{mV} / \mathrm{usec}$ for approximately 20 usec. During this transition, peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a $1 \mu \mathrm{~F}$ capacitor) to 70 mA (with a $2.7 \mu \mathrm{~F}$ capacitor).

4.1.3 Thermal Characteristics

Table 4.3. Thermal Characteristics

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Thermal resistance, QFN48 Package	THETAJA_QFN48	2-Layer PCB, Air velocity $=0 \mathrm{~m} / \mathrm{s}$	-	75.7	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		2-Layer PCB, Air velocity $=1 \mathrm{~m} / \mathrm{s}$	-	61.5	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		2-Layer PCB, Air velocity $=2 \mathrm{~m} / \mathrm{s}$	-	55.4	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		4-Layer PCB, Air velocity $=0 \mathrm{~m} / \mathrm{s}$	-	30.2	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		4-Layer PCB, Air velocity $=1 \mathrm{~m} / \mathrm{s}$	-	26.3	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		4-Layer PCB, Air velocity $=2 \mathrm{~m} / \mathrm{s}$	-	24.9	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal resistance, BGA125 Package	$\begin{aligned} & \text { THE- } \\ & \text { TA JA_BGA125 }^{\text {IN }} \end{aligned}$	2-Layer PCB, Air velocity $=0 \mathrm{~m} / \mathrm{s}$	-	90.7	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		2-Layer PCB, Air velocity $=1 \mathrm{~m} / \mathrm{s}$	-	73.7	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		2-Layer PCB, Air velocity $=2 \mathrm{~m} / \mathrm{s}$	-	66.4	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		4-Layer PCB, Air velocity $=0 \mathrm{~m} / \mathrm{s}$	-	45	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		4-Layer PCB, Air velocity $=1 \mathrm{~m} / \mathrm{s}$	-	39.6	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		4-Layer PCB, Air velocity $=2 \mathrm{~m} / \mathrm{s}$	-	37.6	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal resistance, QFN68 Package	THETAJA_QFN68	4-Layer PCB, Air velocity $=0 \mathrm{~m} / \mathrm{s}$	-	21.5	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		4-Layer PCB, Air velocity $=1 \mathrm{~m} / \mathrm{s}$	-	18.9	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		4-Layer PCB, Air velocity $=2 \mathrm{~m} / \mathrm{s}$	-	17.1	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$

4.1.4 DC-DC Converter

Test conditions: L_DCDC=4.7 $\mu \mathrm{H}$ (Murata LQH3NPN4R7MMOL), C_DCDC=4.7 $\mu \mathrm{F}$ (Samsung CL10B475KQ8NQNC), V_DCDC_I=3.3 V, V_DCDC_O=1.8 V, I_DCDC_LOAD=50 mA, Heavy Drive configuration, F_DCDC_LN=7 MHz, unless otherwise indicated.

Table 4.4. DC-DC Converter

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Input voltage range	V ${ }_{\text {DCDC_I }}$	Bypass mode, $\mathrm{I}_{\text {DCDC_LOAD }}=50$ mA	1.8	-	$V_{\text {VREGVDD_ }}$ MAX	V
		Low noise (LN) mode, 1.8 V output, $\mathrm{I}_{\text {DCDC_LOAD }}=100 \mathrm{~mA}$, or Low power (LP) mode, 1.8 V output, $I_{\text {DCDC_LOAD }}=10 \mathrm{~mA}$	2.4	-	VVREGVDD_ MAX	V
		Low noise (LN) mode, 1.8 V output, $\mathrm{I}_{\text {DCDC_L }}$ LOAD $=200 \mathrm{~mA}$	2.6	-	$V_{\text {VREGVDD_ }}$ MAX	V
Output voltage programmable range ${ }^{1}$	V ${ }_{\text {DCDC_O }}$		1.8	-	VVREGVDD	V
Regulation DC accuracy	$A C C D C$	Low Noise (LN) mode, 1.8 V target output	1.7	-	1.9	V
Regulation window ${ }^{2}$	WIN ${ }_{\text {REG }}$	Low Power (LP) mode, LPCMPBIASEMxx ${ }^{3}=0,1.8 \mathrm{~V}$ target output, $\mathrm{I}_{\text {DCDC_LOAD }} \leq 75 \mu \mathrm{~A}$	1.63	-	2.2	V
		Low Power (LP) mode, LPCMPBIASEMxx ${ }^{3}=3,1.8 \mathrm{~V}$ target output, $\mathrm{I}_{\text {DCDC_LOAD }} \leq 10 \mathrm{~mA}$	1.63	-	2.1	V
Steady-state output ripple	V_{R}	Radio disabled	-	3	-	mVpp
Output voltage under/overshoot	Vov	CCM Mode (LNFORCECCM ${ }^{3}=$ 1), Load changes between 0 mA and 100 mA	-	25	60	mV
		DCM Mode (LNFORCECCM ${ }^{3}=$ 0), Load changes between 0 mA and 10 mA	-	45	90	mV
		Overshoot during LP to LN CCM/DCM mode transitions compared to DC level in LN mode	-	200	-	mV
		Undershoot during BYP/LP to LN CCM (LNFORCECCM ${ }^{3}=1$) mode transitions compared to DC level in LN mode	-	40	-	mV
		Undershoot during BYP/LP to LN DCM (LNFORCECCM ${ }^{3}=0$) mode transitions compared to DC level in LN mode	-	100	-	mV
DC line regulation	$V_{\text {REG }}$	Input changes between VVREGVDD_MAX and 2.4 V	-	0.1	-	\%
DC load regulation	IREG	Load changes between 0 mA and 100 mA in CCM mode	-	0.1	-	\%

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Max load current	LLOAD_MAX	Low noise (LN) mode, Heavy Drive ${ }^{4}, \mathrm{~T} \leq 85^{\circ} \mathrm{C}$	-	-	200	mA
		Low noise (LN) mode, Heavy Drive ${ }^{4}, \mathrm{~T}>85^{\circ} \mathrm{C}$	-	-	100	mA
		Low noise (LN) mode, Medium Drive ${ }^{4}$	-	-	100	mA
		Low noise (LN) mode, Light Drive ${ }^{4}$	-	-	50	mA
		Low power (LP) mode, LPCMPBIASEMxx ${ }^{3}=0$	-	-	75	$\mu \mathrm{A}$
		Low power (LP) mode, LPCMPBIASEMxx ${ }^{3}=3$	-	-	10	mA
DCDC nominal output capacitor ${ }^{5}$	$\mathrm{C}_{\text {DCDC }}$	25\% tolerance	1	4.7	4.7	$\mu \mathrm{F}$
DCDC nominal output inductor	LDCDC	20\% tolerance	4.7	4.7	4.7	$\mu \mathrm{H}$
Resistance in Bypass mode	$\mathrm{R}_{\text {BYP }}$		-	1.2	2.5	Ω

Note:

1. Due to internal dropout, the DC-DC output will never be able to reach its input voltage, VVREGVDD.
2. LP mode controller is a hysteretic controller that maintains the output voltage within the specified limits.
3. LPCMPBIASEMxx refers to either LPCMPBIASEM234H in the EMU_DCDCMISCCTRL register or LPCMPBIASEM01 in the EMU_DCDCLOEM01CFG register, depending on the energy mode.
4. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medium Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=NFETCNT=15.
5. Output voltage under/over-shoot and regulation are specified with $C_{D C D C} 4.7 \mu \mathrm{~F}$. Different settings for DCDCLNCOMPCTRL must be used if $\mathrm{C}_{\text {DCDC }}$ is lower than $4.7 \mu \mathrm{~F}$. See Application Note AN0948 for details.

4.1.5 Current Consumption

4.1.5.1 Current Consumption 3.3 V without DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = RFVDD $=$ PAVDD $=3.3 \mathrm{~V} . \mathrm{T}=25^{\circ} \mathrm{C} . \mathrm{DCDC}$ is off. Minimum and maximum values in this table represent the worst conditions across process variation at $\mathrm{T}=25^{\circ} \mathrm{C}$.

Table 4.5. Current Consumption 3.3 V without DC-DC Converter

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Current consumption in EMO mode with all peripherals disabled	I ACtive	38.4 MHz crystal, CPU running while loop from flash ${ }^{1}$	-	130	-	$\mu \mathrm{A} / \mathrm{MHz}$
		$38 \mathrm{MHz} \mathrm{HFRCO}, \mathrm{CPU}$ running Prime from flash	-	99	-	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO, CPU running while loop from flash	-	99	105	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO, CPU running CoreMark from flash	-	124	-	$\mu \mathrm{A} / \mathrm{MHz}$
		$26 \mathrm{MHz} \mathrm{HFRCO}, \mathrm{CPU}$ running while loop from flash	-	102	108	$\mu \mathrm{A} / \mathrm{MHz}$
		1 MHz HFRCO, CPU running while loop from flash	-	280	435	$\mu \mathrm{A} / \mathrm{MHz}$
Current consumption in EMO mode with all peripherals disabled and voltage scaling enabled	IACtive_Vs	19 MHz HFRCO, CPU running while loop from flash	-	88	-	$\mu \mathrm{A} / \mathrm{MHz}$
		1 MHz HFRCO, CPU running while loop from flash	-	234	-	$\mu \mathrm{A} / \mathrm{MHz}$
Current consumption in EM1 mode with all peripherals disabled	IEM1	38.4 MHz crystal ${ }^{1}$	-	80	-	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO	-	50	54	$\mu \mathrm{A} / \mathrm{MHz}$
		26 MHz HFRCO	-	52	58	$\mu \mathrm{A} / \mathrm{MHz}$
		1 MHz HFRCO	-	230	400	$\mu \mathrm{A} / \mathrm{MHz}$
Current consumption in EM1 mode with all peripherals disabled and voltage scaling enabled	lem1_vs	19 MHz HFRCO	-	47	-	$\mu \mathrm{A} / \mathrm{MHz}$
		1 MHz HFRCO	-	193	-	$\mu \mathrm{A} / \mathrm{MHz}$
Current consumption in EM2 mode, with voltage scaling enabled	IEM2_Vs	Full 256 kB RAM retention and RTCC running from LFXO	-	2.9	-	$\mu \mathrm{A}$
		Full 256 kB RAM retention and RTCC running from LFRCO	-	3.2	-	$\mu \mathrm{A}$
		16 kB (1 bank) RAM retention and RTCC running from LFRCO²	-	2.1	3.5	$\mu \mathrm{A}$
Current consumption in EM3 mode, with voltage scaling enabled	IEM3_Vs	Full 256 kB RAM retention and CRYOTIMER running from ULFRCO	-	2.56	4.8	$\mu \mathrm{A}$
Current consumption in EM4H mode, with voltage scaling enabled	IEM4H_Vs	128 byte RAM retention, RTCC running from LFXO	-	1.0	-	$\mu \mathrm{A}$
		128 byte RAM retention, CRYOTIMER running from ULFRCO	-	0.45	-	$\mu \mathrm{A}$
		128 byte RAM retention, no RTCC	-	0.43	0.9	$\mu \mathrm{A}$

Parameter	Symbol	Test Condition	Min	Typ	Max
Current consumption in EM4S mode	IEM4S	No RAM retention, no RTCC	-	0.04	0.1
Note:					
1. CMU_HFXOCTRL_LOWPOWER=0. 2. CMU_LFRCOCTRL_ENVREF $=1$, CMU_LFRCOCTRL_VREFUPDATE $=1$					

4.1.5.2 Current Consumption 3.3 V using DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD = 1.8 V DC-DC output. $\mathrm{T}=25^{\circ} \mathrm{C}$. Minimum and maximum values in this table represent the worst conditions across process variation at $\mathrm{T}=25^{\circ} \mathrm{C}$.

Table 4.6. Current Consumption 3.3 V using DC-DC Converter

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Current consumption in EMO mode with all peripherals disabled, DCDC in Low Noise DCM mode ${ }^{1}$	IACTIVE_DCM	38.4 MHz crystal, CPU running while loop from flash ${ }^{2}$	-	88	-	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO, CPU running Prime from flash	-	70	-	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO, CPU running while loop from flash	-	70	-	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO, CPU running CoreMark from flash	-	85	-	$\mu \mathrm{A} / \mathrm{MHz}$
		26 MHz HFRCO, CPU running while loop from flash	-	77	-	$\mu \mathrm{A} / \mathrm{MHz}$
		1 MHz HFRCO, CPU running while loop from flash	-	636	-	$\mu \mathrm{A} / \mathrm{MHz}$
Current consumption in EMO mode with all peripherals disabled, DCDC in Low Noise CCM mode ${ }^{3}$	I ${ }_{\text {ACTIVE_CCM }}$	38.4 MHz crystal, CPU running while loop from flash ${ }^{2}$	-	98	-	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO, CPU running Prime from flash	-	81	-	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO, CPU running while loop from flash	-	82	-	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO, CPU running CoreMark from flash	-	95	-	$\mu \mathrm{A} / \mathrm{MHz}$
		26 MHz HFRCO, CPU running while loop from flash	-	95	-	$\mu \mathrm{A} / \mathrm{MHz}$
		1 MHz HFRCO, CPU running while loop from flash	-	1155	-	$\mu \mathrm{A} / \mathrm{MHz}$
Current consumption in EMO mode with all peripherals disabled and voltage scaling enabled, DCDC in Low Noise CCM mode ${ }^{3}$	IACTIVE_CCM_Vs	19 MHz HFRCO, CPU running while loop from flash	-	101	-	$\mu \mathrm{A} / \mathrm{MHz}$
		1 MHz HFRCO, CPU running while loop from flash	-	1128	-	$\mu \mathrm{A} / \mathrm{MHz}$
Current consumption in EM1 mode with all peripherals disabled, DCDC in Low Noise DCM mode ${ }^{1}$	IEM1_DCM	38.4 MHz crystal ${ }^{2}$	-	59	-	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO	-	41	-	$\mu \mathrm{A} / \mathrm{MHz}$
		26 MHz HFRCO	-	48	-	$\mu \mathrm{A} / \mathrm{MHz}$
		1 MHz HFRCO	-	610	-	$\mu \mathrm{A} / \mathrm{MHz}$
Current consumption in EM1 mode with all peripherals disabled and voltage scaling enabled, DCDC in Low Noise DCM mode ${ }^{1}$	lem1_DCM_vs	19 MHz HFRCO	-	52	-	$\mu \mathrm{A} / \mathrm{MHz}$
		1 MHz HFRCO	-	587	-	$\mu \mathrm{A} / \mathrm{MHz}$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Current consumption in EM2 mode, with voltage scaling enabled, DCDC in LP mode ${ }^{4}$	lem2_vs	Full 256 kB RAM retention and RTCC running from LFXO	-	2.1	-	$\mu \mathrm{A}$
		Full 256 kB RAM retention and RTCC running from LFRCO	-	2.2	-	$\mu \mathrm{A}$
		16 kB (1 bank) RAM retention and RTCC running from LFRCO ${ }^{5}$	-	1.5	-	$\mu \mathrm{A}$
Current consumption in EM3 mode, with voltage scaling enabled	lem3_vs	Full 256 kB RAM retention and CRYOTIMER running from ULFRCO	-	1.81	-	$\mu \mathrm{A}$
Current consumption in EM4H mode, with voltage scaling enabled	IEM4H_Vs	128 byte RAM retention, RTCC running from LFXO	-	0.69	-	$\mu \mathrm{A}$
		128 byte RAM retention, CRYOTIMER running from ULFRCO	-	0.39	-	$\mu \mathrm{A}$
		128 byte RAM retention, no RTCC	-	0.39	-	$\mu \mathrm{A}$
Current consumption in EM4S mode	$\mathrm{I}_{\text {EM4S }}$	No RAM retention, no RTCC	-	0.06	-	$\mu \mathrm{A}$

Note:

1. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD.
2. CMU_HFXOCTRL_LOWPOWER=0.
3. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD.
4. DCDC Low Power Mode = Medium Drive, LPOSCDIV=1, LPCMPBIASEM234H=0, LPCLIMILIMSEL=1, ANASW=DVDD.
5. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1

4.1.5.3 Current Consumption 1.8 V without DC-DC Converter

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = RFVDD $=\mathrm{PAVDD}=1.8 \mathrm{~V} . \mathrm{T}=25^{\circ} \mathrm{C} . \mathrm{DCDC}$ is off. Minimum and maximum values in this table represent the worst conditions across process variation at $\mathrm{T}=25^{\circ} \mathrm{C}$.

Table 4.7. Current Consumption 1.8 V without DC-DC Converter

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Current consumption in EMO mode with all peripherals disabled	I ${ }_{\text {active }}$	38.4 MHz crystal, CPU running while loop from flash ${ }^{1}$	-	130	-	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO, CPU running Prime from flash	-	99	-	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO, CPU running while loop from flash	-	99	-	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO, CPU running CoreMark from flash	-	124	-	$\mu \mathrm{A} / \mathrm{MHz}$
		$26 \mathrm{MHz} \mathrm{HFRCO}, \mathrm{CPU}$ running while loop from flash	-	102	-	$\mu \mathrm{A} / \mathrm{MHz}$
		1 MHz HFRCO, CPU running while loop from flash	-	277	-	$\mu \mathrm{A} / \mathrm{MHz}$
Current consumption in EMO mode with all peripherals disabled and voltage scaling enabled	IActive_Vs	19 MHz HFRCO, CPU running while loop from flash	-	87	-	$\mu \mathrm{A} / \mathrm{MHz}$
		1 MHz HFRCO, CPU running while loop from flash	-	231	-	$\mu \mathrm{A} / \mathrm{MHz}$
Current consumption in EM1 mode with all peripherals disabled	IEM1	38.4 MHz crystal ${ }^{1}$	-	80	-	$\mu \mathrm{A} / \mathrm{MHz}$
		38 MHz HFRCO	-	50	-	$\mu \mathrm{A} / \mathrm{MHz}$
		26 MHz HFRCO	-	52	-	$\mu \mathrm{A} / \mathrm{MHz}$
		1 MHz HFRCO	-	227	-	$\mu \mathrm{A} / \mathrm{MHz}$
Current consumption in EM1 mode with all peripherals disabled and voltage scaling enabled	lem1_vs	19 MHz HFRCO	-	47	-	$\mu \mathrm{A} / \mathrm{MHz}$
		1 MHz HFRCO	-	190	-	$\mu \mathrm{A} / \mathrm{MHz}$
Current consumption in EM2 mode, with voltage scaling enabled	IEM2_Vs	Full 256 kB RAM retention and RTCC running from LFXO	-	2.8	-	$\mu \mathrm{A}$
		Full 256 kB RAM retention and RTCC running from LFRCO	-	3.0	-	$\mu \mathrm{A}$
		16 kB (1 bank) RAM retention and RTCC running from LFRCO ${ }^{2}$	-	1.9	-	$\mu \mathrm{A}$
Current consumption in EM3 mode, with voltage scaling enabled	IEM3_Vs	Full 256 kB RAM retention and CRYOTIMER running from ULFRCO	-	2.47	-	$\mu \mathrm{A}$
Current consumption in EM4H mode, with voltage scaling enabled	IEM4H_Vs	128 byte RAM retention, RTCC running from LFXO	-	0.91	-	$\mu \mathrm{A}$
		128 byte RAM retention, CRYOTIMER running from ULFRCO	-	0.35	-	$\mu \mathrm{A}$
		128 byte RAM retention, no RTCC	-	0.35	-	$\mu \mathrm{A}$
Current consumption in EM4S mode	$\mathrm{I}_{\text {EM4S }}$	No RAM retention, no RTCC	-	0.04	-	$\mu \mathrm{A}$

Parameter	Symbol	Test Condition	Min	Typ	Max
Note:					
1. CMU_HFXOCTRL_LOWPOWER=0.					
2. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1					

4.1.5.4 Current Consumption Using Radio 3.3 V with DC-DC

Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD = $1.8 \mathrm{~V} . \mathrm{T}=25$
${ }^{\circ} \mathrm{C}$. Minimum and maximum values in this table represent the worst conditions across process variation at $\mathrm{T}=25^{\circ} \mathrm{C}$.
Table 4.8. Current Consumption Using Radio 3.3 V with DC-DC

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Current consumption in receive mode, active packet reception (MCU in EM1 @ 38.4 MHz , peripheral clocks disabled), $\mathrm{T} \leq 85^{\circ} \mathrm{C}$	IRX_ACTIVE	$500 \mathrm{kbit} / \mathrm{s}, 2 \mathrm{GFSK}, \mathrm{F}=915 \mathrm{MHz}$, Radio clock prescaled by 4	-	9.3	10.2	mA
		38.4 kbit/s, 2GFSK, F = 868 MHz , Radio clock prescaled by 4	-	8.6	10.2	mA
		38.4 kbit/s, 2GFSK, F = 490 MHz , Radio clock prescaled by 4	-	8.6	10.2	mA
		$50 \mathrm{kbit} / \mathrm{s}$, 2GFSK, F = 433 MHz , Radio clock prescaled by 4	-	8.6	10.2	mA
		$38.4 \mathrm{kbit} / \mathrm{s}, 2 \mathrm{GFSK}, \mathrm{F}=315 \mathrm{MHz}$, Radio clock prescaled by 4	-	8.6	10.2	mA
		38.4 kbit/s, 2GFSK, F = 169 MHz , Radio clock prescaled by 4	-	8.4	10.2	mA
		$1 \mathrm{Mbit} / \mathrm{s}, 2 \mathrm{GFSK}, \mathrm{F}=2.4 \mathrm{GHz}$, Radio clock prescaled by 4	-	10.0	-	mA
		$2 \mathrm{Mbit} / \mathrm{s}, 2 \mathrm{GFSK}, \mathrm{F}=2.4 \mathrm{GHz}$, Radio clock prescaled by 4	-	11.5	-	mA
		802.15.4 receiving frame, $F=2.4$ GHz, Radio clock prescaled by 3	-	11	-	mA
Current consumption in receive mode, active packet reception (MCU in EM1 @ 38.4 MHz, peripheral clocks disabled), T > $85{ }^{\circ} \mathrm{C}$	IRX_ACTIVE_HT	$500 \mathrm{kbit} / \mathrm{s}, 2 \mathrm{GFSK}, \mathrm{F}=915 \mathrm{MHz}$, Radio clock prescaled by 4	-	-	13	mA
		38.4 kbit/s, 2GFSK, F = 868 MHz , Radio clock prescaled by 4	-	-	13	mA
		38.4 kbit/s, 2GFSK, F = 490 MHz , Radio clock prescaled by 4	-	-	13	mA
		$50 \mathrm{kbit} / \mathrm{s}, 2 \mathrm{GFSK}, \mathrm{F}=433 \mathrm{MHz}$, Radio clock prescaled by 4	-	-	13	mA
		38.4 kbit/s, 2GFSK, F = 315 MHz , Radio clock prescaled by 4	-	-	13	mA
		38.4 kbit/s, 2GFSK, F = 169 MHz , Radio clock prescaled by 4	-	-	13	mA

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Current consumption in receive mode, listening for packet (MCU in EM1 @ 38.4 MHz , peripheral clocks disabled), $\mathrm{T} \leq 85^{\circ} \mathrm{C}$	IRX_Listen	$500 \mathrm{kbit} / \mathrm{s}, 2 \mathrm{GFSK}, \mathrm{F}=915 \mathrm{MHz}$, No radio clock prescaling	-	10.2	11	mA
		38.4 kbit/s, 2GFSK, F = 868 MHz , No radio clock prescaling	-	9.5	11	mA
		38.4 kbit/s, 2GFSK, F = 490 MHz , No radio clock prescaling	-	9.5	11	mA
		$50 \mathrm{kbit} / \mathrm{s}, 2 \mathrm{GFSK}, \mathrm{F}=433 \mathrm{MHz}$, No radio clock prescaling	-	9.5	11	mA
		38.4 kbit/s, 2GFSK, F = 315 MHz , No radio clock prescaling	-	9.4	11	mA
		$38.4 \mathrm{kbit} / \mathrm{s}, 2 \mathrm{GFSK}, \mathrm{F}=169 \mathrm{MHz}$, No radio clock prescaling	-	9.3	11	mA
		$1 \mathrm{Mbit} / \mathrm{s}, 2 \mathrm{GFSK}, \mathrm{F}=2.4 \mathrm{GHz}$, No radio clock prescaling	-	10.9	-	mA
		$2 \mathrm{Mbit} / \mathrm{s}, 2 \mathrm{GFSK}, \mathrm{F}=2.4 \mathrm{GHz}$, No radio clock prescaling	-	11.9	-	mA
		802.15.4, F = 2.4 GHz, No radio clock prescaling	-	12.5	-	mA
Current consumption in receive mode, listening for packet (MCU in EM1 @ 38.4 MHz , peripheral clocks disabled), $\mathrm{T}>85^{\circ} \mathrm{C}$	IRX_LISTEN_HT	$500 \mathrm{kbit} / \mathrm{s}, 2 \mathrm{GFSK}, \mathrm{F}=915 \mathrm{MHz}$, No radio clock prescaling	-	-	14	mA
		38.4 kbit/s, 2GFSK, F = 868 MHz , No radio clock prescaling	-	-	14	mA
		38.4 kbit/s, 2GFSK, F = 490 MHz , No radio clock prescaling	-	-	14	mA
		$50 \mathrm{kbit} / \mathrm{s}, 2 \mathrm{GFSK}, \mathrm{F}=433 \mathrm{MHz}$, No radio clock prescaling	-	-	14	mA
		$38.4 \mathrm{kbit} / \mathrm{s}, 2 \mathrm{GFSK}, \mathrm{F}=315 \mathrm{MHz}$, No radio clock prescaling	-	-	14	mA
		38.4 kbit/s, 2GFSK, F = 169 MHz , No radio clock prescaling	-	-	14	mA

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Current consumption in transmit mode (MCU in EM1 @ 38.4 MHz, peripheral clocks disabled), $\mathrm{T} \leq 85^{\circ} \mathrm{C}$	$I_{\text {TX }}$	$\begin{aligned} & \mathrm{F}=915 \mathrm{MHz}, \mathrm{CW}, 20 \mathrm{dBm} \\ & \text { match, External PA supply }=3.3 \mathrm{~V} \end{aligned}$	-	90.2	134.3	mA
		$\mathrm{F}=915 \mathrm{MHz}, \mathrm{CW}, 14 \mathrm{dBm}$ match, External PA supply connected to DCDC output	-	36	42.5	mA
		$\begin{aligned} & \mathrm{F}=868 \mathrm{MHz}, \mathrm{CW}, 20 \mathrm{dBm} \\ & \text { match, External PA supply }=3.3 \mathrm{~V} \end{aligned}$	-	79.7	106.7	mA
		$\mathrm{F}=868 \mathrm{MHz}, \mathrm{CW}, 14 \mathrm{dBm}$ match, External PA supply connected to DCDC output	-	35.3	41	mA
		$\mathrm{F}=490 \mathrm{MHz}, \mathrm{CW}, 20 \mathrm{dBm}$ match, External PA supply $=3.3 \mathrm{~V}$	-	93.8	125.4	mA
		$\mathrm{F}=433 \mathrm{MHz}, \mathrm{CW}, 10 \mathrm{dBm}$ match, External PA supply connected to DC-DC output	-	20.3	24	mA
		$\mathrm{F}=433 \mathrm{MHz}, \mathrm{CW}, 14 \mathrm{dBm}$ match, External PA supply connected to DCDC output	-	34	41.5	mA
		$\mathrm{F}=315 \mathrm{MHz}, \mathrm{CW}, 14 \mathrm{dBm}$ match, External PA supply connected to DCDC output	-	33.5	42	mA
		$\begin{aligned} & \mathrm{F}=169 \mathrm{MHz}, \mathrm{CW}, 20 \mathrm{dBm} \\ & \text { match, External PA supply }=3.3 \mathrm{~V} \end{aligned}$	-	88.6	116.7	mA
		$\mathrm{F}=2.4 \mathrm{GHz}, \mathrm{CW}, 0 \mathrm{dBm}$ output power, Radio clock prescaled by 3	-	8.5	-	mA
		$\mathrm{F}=2.4 \mathrm{GHz}, \mathrm{CW}, 0 \mathrm{dBm}$ output power, Radio clock prescaled by 1	-	9.5	-	mA
		$\mathrm{F}=2.4 \mathrm{GHz}, \mathrm{CW}, 3 \mathrm{dBm}$ output power	-	16.5	-	mA
		$\mathrm{F}=2.4 \mathrm{GHz}, \mathrm{CW}, 8 \mathrm{dBm}$ output power	-	26	-	mA
		$\mathrm{F}=2.4 \mathrm{GHz}, \mathrm{CW}, 10.5 \mathrm{dBm}$ output power	-	34	-	mA
		$\mathrm{F}=2.4 \mathrm{GHz}, \mathrm{CW}, 16.5 \mathrm{dBm}$ output power, PAVDD connected directly to external 3.3 V supply	-	86	-	mA
		$\mathrm{F}=2.4 \mathrm{GHz}, \mathrm{CW}, 19.5 \mathrm{dBm}$ output power, PAVDD connected directly to external 3.3V supply	-	131	-	mA

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Current consumption in transmit mode (MCU in EM1 @ 38.4 MHz , peripheral clocks disabled), $\mathrm{T}>85^{\circ} \mathrm{C}$	$\mathrm{I}_{\text {TX_HT }}$	$\begin{aligned} & \mathrm{F}=915 \mathrm{MHz}, \mathrm{CW}, 20 \mathrm{dBm} \\ & \text { match, External PA supply }=3.3 \mathrm{~V} \end{aligned}$	-	-	134.3	mA
		$\mathrm{F}=915 \mathrm{MHz}, \mathrm{CW}, 14 \mathrm{dBm}$ match, External PA supply connected to DCDC output	-	-	42.5	mA
		$\begin{aligned} & \mathrm{F}=868 \mathrm{MHz}, \mathrm{CW}, 20 \mathrm{dBm} \\ & \text { match, External PA supply }=3.3 \mathrm{~V} \end{aligned}$	-	-	109.8	mA
		$\mathrm{F}=868 \mathrm{MHz}, \mathrm{CW}, 14 \mathrm{dBm}$ match, External PA supply connected to DCDC output	-	-	41.3	mA
		$\mathrm{F}=490 \mathrm{MHz}, \mathrm{CW}, 20 \mathrm{dBm}$ match, External PA supply $=3.3 \mathrm{~V}$	-	-	130.8	mA
		$\mathrm{F}=433 \mathrm{MHz}, \mathrm{CW}, 10 \mathrm{dBm}$ match, External PA supply connected to DC-DC output	-	-	24.4	mA
		$\mathrm{F}=433 \mathrm{MHz}, \mathrm{CW}, 14 \mathrm{dBm}$ match, External PA supply connected to DCDC output	-	-	41.5	mA
		$\mathrm{F}=315 \mathrm{MHz}, \mathrm{CW}, 14 \mathrm{dBm}$ match, External PA supply connected to DCDC output	-	-	42	mA
		$\begin{aligned} & \mathrm{F}=169 \mathrm{MHz}, \mathrm{CW}, 20 \mathrm{dBm} \\ & \text { match, External PA supply }=3.3 \mathrm{~V} \end{aligned}$	-	-	122.8	mA

4.1.6 Wake Up Times

Table 4.9. Wake Up Times

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Wake up time from EM1	tem1_WU		-	3	-	AHB Clocks
Wake up from EM2	tem2_WU	Code execution from flash	-	10.1	-	$\mu \mathrm{s}$
		Code execution from RAM	-	3.2	-	$\mu \mathrm{s}$
Wake up from EM3	tem3_wU	Code execution from flash	-	10.1	-	$\mu \mathrm{s}$
		Code execution from RAM	-	3.2	-	$\mu \mathrm{s}$
Wake up from EM4H ${ }^{1}$	tem4H_WU	Executing from flash	-	80	-	$\mu \mathrm{s}$
Wake up from EM4S ${ }^{1}$	tem4s_WU	Executing from flash	-	291	-	$\mu \mathrm{s}$
Time from release of reset source to first instruction execution	$\mathrm{t}_{\text {RESET }}$	Soft Pin Reset released	-	43	-	$\mu \mathrm{s}$
		Any other reset released	-	350	-	$\mu \mathrm{s}$
Power mode scaling time	$\mathrm{t}_{\text {SCALE }}$	VSCALE0 to VSCALE2, HFCLK = $19 \mathrm{MHz}^{2} 3$	-	31.8	-	$\mu \mathrm{s}$
		VSCALE2 to VSCALE0, HFCLK = $19 \mathrm{MHz}^{4}$	-	4.3	-	$\mu \mathrm{s}$

Note:

1. Time from wake up request until first instruction is executed. Wakeup results in device reset.
2. Scaling up from VSCALE0 to VSCALE2 requires approximately $30.3 \mu \mathrm{~s}+28$ HFCLKs.
3. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of $10 \mathrm{mV} / \mu \mathrm{s}$ for approximately $20 \mu \mathrm{~s}$. During this transition, peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a $1 \mu \mathrm{~F}$ capacitor) to 70 mA (with a $2.7 \mu \mathrm{~F}$ capacitor).
4. Scaling down from VSCALE2 to VSCALE0 requires approximately $2.8 \mu \mathrm{~s}+29$ HFCLKs.

4.1.7 Brown Out Detector (BOD)

Table 4.10. Brown Out Detector (BOD)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
DVDD BOD threshold	V ${ }_{\text {DVDDBOD }}$	DVDD rising	-	-	1.62	V
		DVDD falling (EM0/EM1)	1.35	-	-	V
		DVDD falling (EM2/EM3)	1.3	-	-	V
DVDD BOD hysteresis	V ${ }_{\text {DVDDBOD_HYST }}$		-	18	-	mV
DVDD BOD response time	tDVDDBOD_DELAY	Supply drops at $0.1 \mathrm{~V} / \mu \mathrm{s}$ rate	-	2.4	-	$\mu \mathrm{s}$
AVDD BOD threshold	$V_{\text {AVDDBOD }}$	AVDD rising	-	-	1.8	V
		AVDD falling (EM0/EM1)	1.62	-	-	V
		AVDD falling (EM2/EM3)	1.53	-	-	V
AVDD BOD hysteresis	$\mathrm{V}_{\text {AVDDBOD_HYST }}$		-	20	-	mV
AVDD BOD response time	$\mathrm{t}_{\text {AVDDBOD_DELAY }}$	Supply drops at $0.1 \mathrm{~V} / \mu$ s rate	-	2.4	-	$\mu \mathrm{s}$
EM4 BOD threshold	$V_{\text {EM4DBOD }}$	AVDD rising	-	-	1.7	V
		AVDD falling	1.45	-	-	V
EM4 BOD hysteresis	VEM4BOD_HYST		-	25	-	mV
EM4 BOD response time	tem4BOd_DELAY	Supply drops at $0.1 \mathrm{~V} / \mu \mathrm{s}$ rate	-	300	-	$\mu \mathrm{s}$

4.1.8 Frequency Synthesizer

Table 4.11. Frequency Synthesizer

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
RF synthesizer frequency range	frange	2400-2483.5 MHz	2400	-	2483.5	MHz
		779-956 MHz	779	-	956	MHz
		584-717 MHz	584	-	717	MHz
		358-574 MHz	358	-	574	MHz
		$191-358 \mathrm{MHz}$	191	-	358	MHz
		$110-191$ MHz	110	-	191	MHz
LO tuning frequency resolution with 38.4 MHz crystal	$\mathrm{f}_{\text {RES }}$	2400-2483.5 MHz	-	-	73	Hz
		779 - 956 MHz	-	-	24	Hz
		$584-717 \mathrm{MHz}$	-	-	18.3	Hz
		358-574 MHz	-	-	12.2	Hz
		191-358 MHz	-	-	7.3	Hz
		$110-191$ MHz	-	-	4.6	Hz
Frequency deviation resolution with 38.4 MHz crystal	df RES	2400-2483.5 MHz	-	-	73	Hz
		779 - 956 MHz	-	-	24	Hz
		584-717 MHz	-	-	18.3	Hz
		$358-574 \mathrm{MHz}$	-	-	12.2	Hz
		191-358 MHz	-	-	7.3	Hz
		110-191 MHz	-	-	4.6	Hz
Maximum frequency deviation with 38.4 MHz crystal	$\mathrm{df}_{\text {MAX }}$	2400-2483.5 MHz	-	-	1677	kHz
		779 - 956 MHz	-	-	559	kHz
		$584-717 \mathrm{MHz}$	-	-	419	kHz
		358-574 MHz	-	-	280	kHz
		$191-358 \mathrm{MHz}$	-	-	167	kHz
		$110-191$ MHz	-	-	105	kHz

4.1.9 2.4 GHz RF Transceiver Characteristics

4.1.9.1 RF Transmitter General Characteristics for 2.4 GHz Band

Unless otherwise indicated, typical conditions are: $T=25^{\circ} \mathrm{C}$, $\mathrm{VREGVDD}=\mathrm{AVDD}=I O V D D=3.3 \mathrm{~V}$, $\mathrm{DVDD}=\mathrm{RFVDD}=\mathrm{PAVDD}$. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 2.45 GHz .

Table 4.12. RF Transmitter General Characteristics for 2.4 GHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Maximum TX power ${ }^{1}$	POUT $_{\text {MAX }}$	19 dBm-rated part numbers. PAVDD connected directly to external 3.3 V supply	-	19.5	-	dBm
Minimum active TX Power	POUT $_{\text {MIN }}$	CW		-30	-	dBm
Output power step size	POUT $_{\text {STEP }}$	$-5 \mathrm{dBm}<$ Output power $<0 \mathrm{dBm}$	-	1	-	dB
		0 dBm < output power < POUT $_{\text {MAX }}$	-	0.5	-	dB
Output power variation vs supply at POUTMAX	POUTVAR_V	$1.8 \mathrm{~V}<\mathrm{V}_{\text {VREGVDD }}<3.3 \mathrm{~V}$, PAVDD connected directly to external supply, for output power > 10 dBm .	-	4.5	-	dB
		$1.8 \mathrm{~V}<\mathrm{V}_{\text {VREGVDD }}<3.3 \mathrm{~V}$ using DC-DC converter	-	2.2	-	dB
Output power variation vs temperature at $\mathrm{POUT}_{\text {MAX }}$	POUTVAR_T	From -40 to $+85^{\circ} \mathrm{C}$, PAVDD connected to DC-DC output	-	1.5	-	dB
		From -40 to $+125^{\circ} \mathrm{C}$, PAVDD connected to DC-DC output	-	2.2	-	dB
		From -40 to $+85^{\circ} \mathrm{C}$, PAVDD connected to external supply	-	1.5	-	dB
		From -40 to $+125^{\circ} \mathrm{C}$, PAVDD connected to external supply	-	3.4	-	dB
Output power variation vs RF frequency at POUT $_{\text {MAX }}$	POUTVAR_F	Over RF tuning frequency range	-	0.4	-	dB
RF tuning frequency range	FRANGE		2400	-	2483.5	MHz
Note: 1. Supported transmit powe ered in this datasheet can	levels are de be found in th	ned by the ordering part number (ax TX Power column of the Orderi	Tran ormati	wer ra e.	for all de	cov-

4.1.9.2 RF Receiver General Characteristics for 2.4 GHz Band

Unless otherwise indicated, typical conditions are: $\mathrm{T}=25^{\circ} \mathrm{C}$, VREGVDD = AVDD $=1 O V D D=3.3 \mathrm{~V}$, DVDD $=$ RFVDD $=$ PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 2.45 GHz .

Table 4.13. RF Receiver General Characteristics for 2.4 GHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
RF tuning frequency range	Frange		2400	-	2483.5	MHz
Receive mode maximum spurious emission	$\mathrm{SPUR}_{\mathrm{RX}}$	30 MHz to 1 GHz	-	-57	-	dBm
		1 GHz to 12 GHz	-	-47	-	dBm
Max spurious emissions during active receive mode, per FCC Part 15.109(a)	SPUR ${ }_{\text {RX_FCC }}$	216 MHz to 960 MHz , Conducted Measurement	-	-55.2	-	dBm
		Above 960 MHz, Conducted Measurement	-	-47.2	-	dBm
Level above which RFSENSE will trigger ${ }^{1}$	RFSENSE ${ }_{\text {TRIG }}$	CW at 2.45 GHz	-	-24	-	dBm
Level below which RFSENSE will not trigger ${ }^{1}$	RFSENSE ${ }_{\text {THRES }}$	CW at 2.45 GHz	-	-50	-	dBm
1\% PER sensitivity	SENS 2GFSK	2 Mbps 2GFSK signal	-	-89.6	-	dBm
		250 kbps 2GFSK signal	-	-100.7	-	dBm

Note:

1. RFSENSE performance is only valid from 0 to $85^{\circ} \mathrm{C}$. RFSENSE should be disabled outside this temperature range.

4.1.9.3 RF Transmitter Characteristics for 2GFSK in the 2.4GHz Band, 1 Mbps Data Rate

Unless otherwise indicated, typical conditions are: $\mathrm{T}=25^{\circ} \mathrm{C}$, VREGVDD = AVDD $=1 O V D D=3.3 \mathrm{~V}$, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 2.45 GHz . Maximum duty cycle of 85\%.

Table 4.14. RF Transmitter Characteristics for 2GFSK in the 2.4 GHz Band, 1 Mbps Data Rate

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Transmit 6dB bandwidth	TXBW	10 dBm	-	781	-	kHz
Power spectral density limit	PSD ${ }_{\text {LIMIT }}$	Per FCC part 15.247 at 10 dBm	-	-8.4	-	$\begin{aligned} & \mathrm{dBm} / \\ & 3 \mathrm{kHz} \end{aligned}$
		Per FCC part 15.247 at 20 dBm	-	-0.4	-	$\begin{aligned} & \mathrm{dBm} / \\ & 3 \mathrm{kHz} \end{aligned}$
		Per ETSI 300.328 at $10 \mathrm{dBm} / 1$ MHz	-	10.1	-	dBm
Occupied channel bandwidth per ETSI EN300.328	$\mathrm{OCP}_{\text {ETSI328 }}$	99\% BW at highest and lowest channels in band, 10 dBm	-	1.1	-	MHz
Emissions of harmonics out-of-band, per FCC part 15.247	SPUR HRM_FCC $^{\text {a }}$	2nd,3rd, 5, 6, 8, 9,10 harmonics; continuous transmission of modulated carrier	-	-47	-	dBm
Spurious emissions out-ofband, excluding harmonics captured in SPUR ${ }_{\text {HARM,FCC }}$. Emissions taken at POUT $_{\text {MAX }}$, PAVDD connected to external 3.3 V supply	SPUROOB_FCC	Per FCC part 15.205/15.209, Above 2.483 GHz or below 2.4 GHz ; continuous transmission of CW carrier, Restricted Bands ${ }^{1} 2$	-	-47	-	dBm
		Per FCC part 15.247, Above 2.483 GHz or below 2.4 GHz ; continuous transmission of CW carrier, Non-Restricted Bands	-	-26	-	dBc
Spurious emissions out-ofband; per ETSI 300.328	SPUR ETSI328	[2400-BW to 2400] MHz, [2483.5 to $2483.5+B W]$ MHz	-	-16	-	dBm
		$\begin{aligned} & \text { [2400-2BW to } 2400-\mathrm{BW}] \mathrm{MHz} \text {, } \\ & \text { [} 2483.5+\mathrm{BW} \text { to } 2483.5+2 \mathrm{BW}] \\ & \mathrm{MHz} \text { per ETSI } 300.328 \end{aligned}$	-	-26	-	dBm
Spurious emissions per ETSI EN300.440	SPUR ETSI440	47-74 MHz, 87.5-108 MHz, $174-230 \mathrm{MHz}, 470-862 \mathrm{MHz}$	-	-60	-	dBm
		25-1000 MHz	-	-42	-	dBm
		$1-12 \mathrm{GHz}$	-	-36	-	dBm

Note:

1. For $2476 \mathrm{MHz}, 1.5 \mathrm{~dB}$ of power backoff is used to achieve this value.
2. For $2478 \mathrm{MHz}, 4.2 \mathrm{~dB}$ of power backoff is used to achieve this value.

4.1.9.4 RF Receiver Characteristics for 2GFSK in the 2.4GHz Band, 1 Mbps Data Rate

Unless otherwise indicated, typical conditions are: $\mathrm{T}=25^{\circ} \mathrm{C}$, VREGVDD = AVDD $=1 O V D D=3.3 \mathrm{~V}$, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 2.45 GHz .

Table 4.15. RF Receiver Characteristics for 2GFSK in the 2.4 GHz Band, 1 Mbps Data Rate

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Max usable receiver input level, 0.1\% BER	SAT	Signal is reference signal ${ }^{1}$. Packet length is 20 bytes.	-	10	-	dBm
Sensitivity, 0.1\% BER	SENS	Signal is reference signal ${ }^{1}$. Using DC-DC converter.	-	-94.8	-	dBm
Signal to co-channel interferer, 0.1\% BER	$\mathrm{C} / \mathrm{ICC}_{\text {c }}$	Desired signal 3 dB above reference sensitivity.	-	10.3	-	dB
$\mathrm{N}+1$ adjacent channel selectivity, 0.1% BER, with allowable exceptions. Desired is reference signal at -67 dBm	$\mathrm{C} / \mathrm{l}_{1+}$	Interferer is reference signal at +1 MHz offset. Desired frequency $2402 \mathrm{MHz} \leq \mathrm{Fc} \leq 2480 \mathrm{MHz}$	-	-1.8	-	dB
N -1 adjacent channel selectivity, 0.1% BER, with allowable exceptions. Desired is reference signal at -67 dBm	$\mathrm{C} / \mathrm{I}_{1}$	Interferer is reference signal at -1 MHz offset. Desired frequency $2402 \mathrm{MHz} \leq \mathrm{Fc} \leq 2480 \mathrm{MHz}$	-	-0.7	-	dB
Alternate selectivity, 0.1% BER, with allowable exceptions. Desired is reference signal at -67 dBm	$\mathrm{C} / \mathrm{I}_{2}$	Interferer is reference signal at ± 2 MHz offset. Desired frequency $2402 \mathrm{MHz} \leq \mathrm{Fc} \leq 2480 \mathrm{MHz}$, QFN48 and BGA125 packages.	-	-40.6	-	dB
		Interferer is reference signal at ± 2 MHz offset. Desired frequency $2402 \mathrm{MHz} \leq \mathrm{Fc} \leq 2480 \mathrm{MHz}$, QFN68 package.	-	-34.1	-	dB
Alternate selectivity, 0.1% BER, with allowable exceptions. Desired is reference signal at -67 dBm	$\mathrm{C} / \mathrm{I}_{3}$	Interferer is reference signal at ± 3 MHz offset. Desired frequency $2404 \mathrm{MHz} \leq \mathrm{Fc} \leq 2480 \mathrm{MHz}$	-	-46.2	-	dB
Selectivity to image frequency, 0.1% BER. Desired is reference signal at -67 dBm	$\mathrm{C} / \mathrm{IIM}_{\mathrm{M}}$	Interferer is reference signal at image frequency with 1 MHz precision	-	-38.1	-	dB
Selectivity to image frequency $\pm 1 \mathrm{MHz}, 0.1 \%$ BER. Desired is reference signal at -67 dBm	$\mathrm{C} / \mathrm{IIM}^{+1}$	Interferer is reference signal at image frequency $\pm 1 \mathrm{MHz}$ with 1 MHz precision	-	-46.5	-	dB
Blocking, less than 0.1\% BER. Desired is -67 dBm BLE reference signal at 2426 MHz . Interferer is CW in OOB range ${ }^{2}$	BLOCK $_{\text {OOB }}$	Interferer frequency $30 \mathrm{MHz} \leq \mathrm{f} \leq$ 2000 MHz	-5	-	-	dBm
		Interferer frequency 2003 MHz s f $\leq 2399 \mathrm{MHz}$	-24	-	-	dBm
		Interferer frequency 2484 MHz < f $\leq 2997 \mathrm{MHz}$	-10	-	-	dBm
		Interferer frequency $3 \mathrm{GHz} \leq \mathrm{f} \leq 6$ GHz	-10	-	-	dBm
		Interferer frequency $6 \mathrm{GHz} \leq \mathrm{f} \leq$ 12.75 GHz	-17	-	-	dBm

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit

Note:

1. Reference signal is defined 2GFSK at -67 dBm , Modulation index $=0.5, \mathrm{BT}=0.5$, Bit rate $=1 \mathrm{Mbps}$, desired data $=\mathrm{PRBS9}$; interferer data $=$ PRBS15; frequency accuracy better than 1 ppm .
2. Interferer max power limited by equipment capabilities and path loss. Minimum specified at $25^{\circ} \mathrm{C}$.

4.1.9.5 RF Transmitter Characteristics for 2GFSK in the 2.4GHz Band, 2 Mbps Data Rate

Unless otherwise indicated, typical conditions are: $\mathrm{T}=25^{\circ} \mathrm{C}$, VREGVDD = AVDD $=1 O V D D=3.3 \mathrm{~V}$, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 2.45 GHz . Maximum duty cycle of 85\%.

Table 4.16. RF Transmitter Characteristics for 2GFSK in the 2.4 GHz Band, 2 Mbps Data Rate

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Transmit 6dB bandwidth	TXBW	10 dBm	-	1404	-	kHz
Power spectral density limit	PSD ${ }_{\text {LIMIT }}$	Per FCC part 15.247 at 10 dBm	-	-12.3	-	$\begin{aligned} & \mathrm{dBm} / \\ & 3 \mathrm{kHz} \end{aligned}$
		Per FCC part 15.247 at 20 dBm	-	-4.0	-	$\begin{aligned} & \mathrm{dBm} / \\ & 3 \mathrm{kHz} \end{aligned}$
		Per ETSI 300.328 at $10 \mathrm{dBm} / 1$ MHz	-	11.3	-	dBm
Occupied channel bandwidth per ETSI EN300.328	$\mathrm{OCP}_{\text {ETSI328 }}$	99% BW at highest and lowest channels in band, 10 dBm	-	2.1	-	MHz
Emissions of harmonics out-of-band, per FCC part 15.247	SPUR HRM_FCC	2nd,3rd, 5, 6, 8, 9,10 harmonics; continuous transmission of modulated carrier	-	-47	-	dBm
Spurious emissions out-ofband, excluding harmonics captured in SPUR ${ }_{\text {HARM,FCC }}$. Emissions taken at POUT $_{\text {MAX }}$, PAVDD connected to external 3.3 V supply	SPUROOB_FCC	Per FCC part 15.205/15.209, Above 2.483 GHz or below 2.4 GHz ; continuous transmission of CW carrier, Restricted Bands ${ }^{1} 23$ 4	-	-47	-	dBm
		Per FCC part 15.247, Above 2.483 GHz or below 2.4 GHz; continuous transmission of CW carrier, Non-Restricted Bands	-	-26	-	dBc
Spurious emissions out-ofband; per ETSI 300.328	SPUR ${ }_{\text {ETSI328 }}$	[2400-BW to 2400] MHz, [2483.5 to $2483.5+B W]$ MHz	-	-16	-	dBm
		[2400-2BW to 2400-BW] MHz, [2483.5+BW to 2483.5+2BW] MHz per ETSI 300.328	-	-26	-	dBm
Spurious emissions per ETSI EN300.440	SPUR ${ }_{\text {ETSI440 }}$	47-74 MHz,87.5-108 MHz, $174-230 \mathrm{MHz}, 470-862 \mathrm{MHz}$	-	-60	-	dBm
		25-1000 MHz	-	-42	-	dBm
		1-12 GHz	-	-36	-	dBm

Note:

1. For $2472 \mathrm{MHz}, 1.3 \mathrm{~dB}$ of power backoff is used to achieve this value.
2. For $2474 \mathrm{MHz}, 3.8 \mathrm{~dB}$ of power backoff is used to achieve this value.
3. For $2476 \mathrm{MHz}, 7 \mathrm{~dB}$ of power backoff is used to achieve this value.
4. For $2478 \mathrm{MHz}, 11.2 \mathrm{~dB}$ of power backoff is used to achieve this value.

4.1.9.6 RF Receiver Characteristics for 2GFSK in the 2.4GHz Band, 2 Mbps Data Rate

Unless otherwise indicated, typical conditions are: $\mathrm{T}=25^{\circ} \mathrm{C}$, VREGVDD = AVDD $=1 O V D D=3.3 \mathrm{~V}$, $\mathrm{DVDD}=\mathrm{RFVDD}=\mathrm{PAVDD}$. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency $2.45 \mathrm{GHz}^{1}$.

Table 4.17. RF Receiver Characteristics for 2GFSK in the 2.4 GHz Band, 2 Mbps Data Rate

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Max usable receiver input level, 0.1\% BER	SAT	Signal is reference signal ${ }^{2}$. Packet length is 20 bytes.	-	10	-	dBm
Sensitivity, 0.1\% BER	SENS	Signal is reference signal ${ }^{2}$. Using DC-DC converter. QFN48 and BGA125 packages.	-	-91.3	-	dBm
		Signal is reference signal ${ }^{2}$. Using DC-DC converter. QFN68 package.	-	-91.3	-	dBm
Signal to co-channel interferer, 0.1\% BER	$\mathrm{C} / \mathrm{l} \mathrm{Cc}$	Desired signal 3 dB above reference sensitivity.	-	7.3	-	dB
$\mathrm{N}+1$ adjacent channel selectivity, 0.1% BER, with allowable exceptions. Desired is reference signal at -67 dBm	$\mathrm{C} / \mathrm{l}_{1+}$	Interferer is reference signal at +2 MHz offset. Desired frequency $2402 \mathrm{MHz} \leq \mathrm{Fc} \leq 2480 \mathrm{MHz}$	-	-10.4	-	dB
$\mathrm{N}-1$ adjacent channel selectivity, 0.1% BER, with allowable exceptions. Desired is reference signal at -67 dBm	$\mathrm{C} / \mathrm{I}_{1}$	Interferer is reference signal at -2 MHz offset. Desired frequency $2402 \mathrm{MHz} \leq \mathrm{Fc} \leq 2480 \mathrm{MHz}$	-	-13.9	-	dB
Alternate selectivity, 0.1\% BER, with allowable exceptions. Desired is reference signal at -67 dBm	$\mathrm{C} / \mathrm{I}_{2}$	Interferer is reference signal at ± 4 MHz offset. Desired frequency $2402 \mathrm{MHz} \leq \mathrm{Fc} \leq 2480 \mathrm{MHz}$	-	-40.9	-	dB
Alternate selectivity, 0.1\% BER, with allowable exceptions. Desired is reference signal at -67 dBm	$\mathrm{C} / \mathrm{l}_{3}$	Interferer is reference signal at ± 6 MHz offset. Desired frequency $2404 \mathrm{MHz} \leq \mathrm{Fc} \leq 2480 \mathrm{MHz}$	-	-43.7	-	dB
Selectivity to image frequency, 0.1% BER. Desired is reference signal at -67 dBm	$\mathrm{C} / \mathrm{IIM}$	Interferer is reference signal at image frequency with 1 MHz precision	-	-10.4	-	dB
Selectivity to image frequency $\pm 2 \mathrm{MHz}, 0.1 \%$ BER. Desired is reference signal at $-67 \mathrm{dBm}$	$\mathrm{C} / \mathrm{IIM}_{\mathrm{M}+1}$	Interferer is reference signal at image frequency $\pm 2 \mathrm{MHz}$ with 2 MHz precision	-	-40.9	-	dB

Note:

1. For the BLE 2Mbps in-band blocking performance, there may be up to 5 spurious response channels where the requirement of 30.8% PER is not met and therefore an exception will need to be taken for each of these frequencies to meet the requirements of the BLE standard.
2. Reference signal is defined 2GFSK at -67 dBm , Modulation index $=0.5$, $\mathrm{BT}=0.5$, Bit rate $=2 \mathrm{Mbps}$, desired data $=\mathrm{PRBS9}$; interferer data $=$ PRBS15; frequency accuracy better than 1 ppm .

4.1.9.7 RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band

Unless otherwise indicated, typical conditions are: $\mathrm{T}=25^{\circ} \mathrm{C}$, VREGVDD $=$ AVDD $=1 O V D D=3.3 \mathrm{~V}$, $\mathrm{DVDD}=\mathrm{RFVDD}=\mathrm{PAVDD}$. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 2.45 GHz . Maximum duty cycle of 66%.

Table 4.18. RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band

Parameter	Symbol	Test Condition	Typ	Max	Unit
Error vector magnitude (off- set EVM), per 802.15.4-2011	EVM	Average across frequency. Signal is DSSS-OQPSK reference pack- et ${ }^{1}$	-	3.8	-

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Spurious emissions out-ofband in non-restricted bands per FCC Part 15.247, Emissions taken at POUT MAX, PAVDD connected to external 3.3 V supply, Test Frequency $=2450 \mathrm{MHz}$	SPUROOB_FCC_ NR	Above 2.483 GHz or below 2.4 GHz ; continuous transmission of modulated carrier	-	-26	-	dBc
Spurious emissions out-ofband; per ETSI 300.328^{5}	$\mathrm{SPUR}_{\text {ETSI328 }}$	$\begin{aligned} & \text { [2400-BW to 2400], [2483.5 to } \\ & 2483.5+\mathrm{BW}] ; \end{aligned}$	-	-16	-	dBm
		[2400-2BW to 2400-BW], [2483.5+BW to 2483.5+2BW]; per ETSI 300.328	-	-26	-	dBm
Spurious emissions per ETSI EN300.440 ${ }^{5}$	SPUR ${ }_{\text {ETSI4 }}$ (40	47-74 MHz, 87.5-108 MHz, $174-230 \mathrm{MHz}, 470-862 \mathrm{MHz}$	-	-60	-	dBm
		$25-1000 \mathrm{MHz}$, excluding above frequencies	-	-42	-	dBm
		1G-14G	-	-36	-	dBm

Note:

1. Reference packet is defined as 20 octet PSDU, modulated according to 802.15.4-2011 DSSS-OQPSK in the 2.4 GHz band, with pseudo-random packet data content.
2. For $2415 \mathrm{MHz}, 2 \mathrm{~dB}$ of power backoff is used to achieve this value.
3. For $2475 \mathrm{MHz}, 2 \mathrm{~dB}$ of power backoff is used to achieve this value.
4. For $2480 \mathrm{MHz}, 13 \mathrm{~dB}$ of power backoff is used to achieve this value.
5. Specified at maximum power output level of 10 dBm .

4.1.9.8 RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band

Unless otherwise indicated, typical conditions are: $\mathrm{T}=25^{\circ} \mathrm{C}$, VREGVDD $=\mathrm{AVDD}=1 O V D D=3.3 \mathrm{~V}$, $\mathrm{DVDD}=\mathrm{RFVDD}=\mathrm{PAVDD}$. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 2.45 GHz .

Table 4.19. RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Max usable receiver input level, 1\% PER	SAT	Signal is reference signal ${ }^{1}$. Packet length is 20 octets.	-	10	-	dBm
Sensitivity, 1\% PER	SENS	Signal is reference signal. Packet length is 20 octets. Using DC-DC converter.	-	-102.7	-	dBm
		Signal is reference signal. Packet length is 20 octets. Without DCDC converter.	-	-102.7	-	dBm
Co-channel interferer rejection, 1\% PER	CCR	Desired signal 3 dB above sensitivity limit	-	-4.6	-	dB
High-side adjacent channel rejection, 1\% PER. Desired is reference signal at 3dB above reference sensitivity level ${ }^{2}$	$\mathrm{ACR}_{\mathrm{P} 1}$	Interferer is reference signal at +1 channel-spacing.	-	40.7	-	dB
		Interferer is filtered reference signal ${ }^{3}$ at +1 channel-spacing.	-	47	-	dB
		Interferer is CW at +1 channelspacing ${ }^{4}$.	-	54.3	-	dB
Low-side adjacent channel rejection, 1\% PER. Desired is reference signal at 3dB above reference sensitivity level ${ }^{2}$	$\mathrm{ACR}_{\mathrm{M} 1}$	Interferer is reference signal at -1 channel-spacing.	-	40.8	-	dB
		Interferer is filtered reference signal ${ }^{3}$ at -1 channel-spacing.	-	47.5	-	dB
		Interferer is CW at -1 channelspacing.	-	56.5	-	dB
Alternate channel rejection, 1% PER. Desired is reference signal at 3dB above reference sensitivity level ${ }^{2}$	ACR_{2}	Interferer is reference signal at ± 2 channel-spacing	-	51.5	-	dB
		Interferer is filtered reference signal 3 at ± 2 channel-spacing	-	53.7	-	dB
		Interferer is CW at ± 2 channelspacing	-	62.4	-	dB
Image rejection, 1\% PER, Desired is reference signal at 3 dB above reference sensitivity level ${ }^{2}$	IR	Interferer is CW in image band ${ }^{4}$	-	50.4	-	dB
Blocking rejection of all other channels. 1\% PER, Desired is reference signal at 3 dB above reference sensitivity level ${ }^{2}$. Interferer is reference signal	BLOCK	Interferer frequency < Desired frequency - 3 channel-spacing	-	58.5	-	dB
		Interferer frequency > Desired frequency +3 channel-spacing	-	56.4	-	dB
Blocking rejection of 802.11 g signal centered at +12 MHz or $-13 \mathrm{MHz}^{5}$	BLOCK $_{80211 \mathrm{G}}$	Desired is reference signal at 6dB above reference sensitivity level ${ }^{2}$	-	53	-	dB

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Upper limit of input power range over which RSSI reso- lution is maintained	RSSI $_{\text {MAX }}$		-	-	5	dBm
Lower limit of input power range over which RSSI reso- lution is maintained	RSSI $_{\text {MIN }}$		-98	-	-	dBm
RSSI resolution	RSSI $_{\text {RES }}$	over RSSI $_{\text {MIN }}$ to RSSI $_{\text {MAX }}$	-	0.25	-	dB
RSSI accuracy in the linear region as defined by $802.15 .4-2003$	RSSI $_{\text {LIN }}$		-	$+/-6$	-	dB

Note:

1. Reference signal is defined as O-QPSK DSSS per 802.15.4, Frequency range $=2400-2483.5 \mathrm{MHz}$, Symbol rate $=62.5 \mathrm{ksym}-$ bols/s.
2. Reference sensitivity level is -85 dBm .
3. Filter is characterized as a symmetric bandpass centered on the adjacent channel having a 3dB bandwidth of 4.6 MHz and stopband rejection better than 26 dB beyond 3.15 MHz from the adjacent carrier.
4. Due to low-IF frequency, there is some overlap of adjacent channel and image channel bands. Adjacent channel CW blocker tests place the Interferer center frequency at the Desired frequency $\pm 5 \mathrm{MHz}$ on the channel raster, whereas the image rejection test places the CW interferer near the image frequency of the Desired signal carrier, regardless of the channel raster.
5. This is an IEEE $802.11 \mathrm{~b} / \mathrm{g}$ ERP-PBCC $22 \mathrm{MBit} / \mathrm{s}$ signal as defined by the IEEE 802.11 specification and IEEE 802.11 g addendum.

4.1.10.1 Sub-GHz RF Transmitter characteristics for 915 MHz Band

Unless otherwise indicated, typical conditions are: $\mathrm{T}=25^{\circ} \mathrm{C}$, VREGVDD = AVDD $=1 O V D D=3.3 \mathrm{~V}$, DVDD = RFVDD $=$ External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 915 MHz .

Table 4.20. Sub-GHz RF Transmitter characteristics for 915 MHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
RF tuning frequency range	Frange		902	-	930	MHz
Maximum TX Power ${ }^{1}$	$\mathrm{POUT}_{\text {MAX }}$	External PA supply $=3.3 \mathrm{~V}, 20$ dBm output power setting	18	19.8	23.3	dBm
		External PA supply connected to DC-DC output, 14 dBm output power setting	12.6	14.2	16.1	dBm
Minimum active TX Power	POUT $_{\text {MIN }}$		-	-45.5	-	dBm
Output power step size	POUTSTEP	output power $>0 \mathrm{dBm}$	-	0.5	-	dB
Output power variation vs supply at POUTMAX	POUTVAR_V	$1.8 \mathrm{~V}<\mathrm{V}_{\text {VREGVDD }}<3.3 \mathrm{~V}$, External PA supply $=3.3 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$	-	4.8	-	dB
		1.8 V < VVREGVDD $<3.3 \mathrm{~V}$, External PA supply connected to DCDC output, $\mathrm{T}=25^{\circ} \mathrm{C}$	-	1.9	-	dB
Output power variation vs temperature, peak to peak	POUTVAR_T	-40 to $+85^{\circ} \mathrm{C}$ with External PA supply $=3.3 \mathrm{~V}$	-	0.6	1.3	dB
		-40 to $+85^{\circ} \mathrm{C}$ with External PA supply connected to DC-DC output	-	0.7	1.4	dB
Output power variation vs RF frequency	POUTVAR_F	External PA supply $=3.3 \mathrm{~V}, \mathrm{~T}=$ $25^{\circ} \mathrm{C}$	-	0.2	0.6	dB
		External PA supply connected to DC-DC output, $\mathrm{T}=25^{\circ} \mathrm{C}$	-	0.3	0.6	dB
Spurious emissions of harmonics at 20 dBm output power, Conducted measurement, 20 dBm match, External PA supply $=3.3 \mathrm{~V}$, Test Frequency $=915 \mathrm{MHz}$	SPURHARM_FCC\|_20	In restricted bands, per FCC Part 15.205 / 15.209	-	-45	-42	dBm
		In non-restricted bands, per FCC Part 15.247	-	-26	-20	dBc
Spurious emissions out-ofband at 20 dBm output power, Conducted measurement, 20dBm match, External PA supply $=3.3 \mathrm{~V}$, Test Frequen$\mathrm{cy}=915 \mathrm{MHz}$	$\begin{aligned} & \text { SPUROOB_FCC_ } \\ & 20 \end{aligned}$	In non-restricted bands, per FCC Part 15.247	-	-26	-20	dBc
		In restricted bands ($30-88 \mathrm{MHz}$), per FCC Part 15.205 / 15.209	-	-62	-56	dBm
		In restricted bands ($88-216 \mathrm{MHz}$), per FCC Part 15.205 / 15.209	-	-61	-56	dBm
		In restricted bands (216-960 MHz), per FCC Part 15.205 / 15.209	-	-58	-52	dBm
		In restricted bands (>960 MHz), per FCC Part 15.205 / 15.209	-	-47	-42	dBm

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Spurious emissions of harmonics at 14 dBm output power, Conducted measurement, 14 dBm match, External PA supply connected to DC-DC output, Test Frequency $=915 \mathrm{MHz}$	SPUR HARM_FCC\|_14	In restricted bands, per FCC Part 15.205/15.209	-	-47	-42	dBm
		In non-restricted bands, per FCC Part 15.247	-	-26	-20	dBc
Spurious emissions out-ofband at 14 dBm output power, Conducted measurement, 14dBm match, External PA supply connected to DC-DC output, Test Frequency = 915 MHz	SPUROOB_FCC_14	In non-restricted bands, per FCC Part 15.247	-	-26	-20	dBc
		In restricted bands ($30-88 \mathrm{MHz}$), per FCC Part 15.205 / 15.209	-	-62	-56	dBm
		In restricted bands ($88-216 \mathrm{MHz}$), per FCC Part 15.205 / 15.209	-	-61	-56	dBm
		In restricted bands (216-960 MHz), per FCC Part 15.205 / 15.209	-	-58	-52	dBm
		In restricted bands (>960 MHz), per FCC Part 15.205 / 15.209	-	-45	-42	dBm
Error vector magnitude (offset EVM), per 802.15.4-2011	EVM	Signal is DSSS-OQPSK reference packet. Modulated according to 802.15.4-2011 DSSS-OQPSK in the 915 MHz band, with pseudorandom packet data content. External PA supply $=3.3 \mathrm{~V}$.	-	1.0	2.8	\%rms
Power spectral density limit ${ }^{2}$	PSD	Relative, at carrier $\pm 1.2 \mathrm{MHz}$. Average spectral power shall be measured using a 100 kHz resolution bandwidth. The reference level shall be the highest average spectral power measured within \pm 600 kHz of the carrier frequency. External PA supply $=3.3 \mathrm{~V}$.	-	-37.1	-24.8	$\begin{gathered} \mathrm{dBc} / \\ 100 \mathrm{kHz} \end{gathered}$
		Absolute, at carrier $\pm 1.2 \mathrm{MHz}$. Average spectral power shall be measured using a 100 kHz resolution bandwidth. External PA supply $=3.3 \mathrm{~V}$.	-	-24.2	-20	$\begin{gathered} \mathrm{dBm} / \\ 100 \mathrm{kHz} \end{gathered}$

Note:

1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table.
2. Definition of reference signal is O-QPSK DSSS per 802.15 .4 , Frequency Range $=902-928 \mathrm{MHz}$, Data rate $=250 \mathrm{kbps}$, 16 -chip PN sequence mapping.

4.1.10.2 Sub-GHz RF Receiver Characteristics for 915 MHz Band

Unless otherwise indicated, typical conditions are: $\mathrm{T}=25^{\circ} \mathrm{C}$, VREGVDD = AVDD $=1 O V D D=3.3 \mathrm{~V}$, DVDD = RFVDD $=$ External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 915 MHz .

Table 4.21. Sub-GHz RF Receiver Characteristics for 915 MHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Tuning frequency range	Frange		902	-	930	MHz
Max usable input level, 0.1\% BER	SAT ${ }_{500 \mathrm{~K}}$	Desired is reference 500 kbps GFSK signal ${ }^{1}$	-	10	-	dBm
Sensitivity	SENS	Desired is reference 4.8 kbps OOK signal ${ }^{2}$, 20% PER, $\mathrm{T} \leq 85^{\circ} \mathrm{C}$	-	-105.2	-100.7	dBm
		Desired is reference 600 bps GFSK signal ${ }^{3}$, 0.1\% BER	-	-126.2	-	dBm
		Desired is reference 50 kbps GFSK signal ${ }^{4}, 0.1 \%$ BER, $T \leq 85$ ${ }^{\circ} \mathrm{C}$	-	-108.2	-104.2	dBm
		Desired is reference 100 kbps GFSK signal ${ }^{5}, 0.1 \%$ BER, $T \leq 85$ ${ }^{\circ} \mathrm{C}$	-	-105.1	-101.5	dBm
		Desired is reference 500 kbps GFSK signal ${ }^{1}, 0.1 \%$ BER, $T \leq 85$ ${ }^{\circ} \mathrm{C}$	-	-98.2	-93.2	dBm
		Desired is reference 400 kbps 4GFSK signal ${ }^{6}$, 1% PER, $T \leq 85$ ${ }^{\circ} \mathrm{C}$	-	-95.2	-91	dBm
		Desired is reference O-QPSK DSSS signal ${ }^{7}$, 1% PER, Payload length is 20 octets	-	-100.1	-	dBm
Level above which RFSENSE will trigger ${ }^{8}$	RFSENSE ${ }_{\text {TRIG }}$	CW at 915 MHz	-	-28.1	-	dBm
Level below which RFSENSE will not trigger ${ }^{8}$	RFSENSE ${ }_{\text {THRES }}$	CW at 915 MHz	-	-50	-	dBm

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Adjacent channel selectivity, Interferer is CW at $\pm 1 \times$ channel-spacing	$\mathrm{C} / \mathrm{l}_{1}$	Desired is 4.8 kbps OOK signal ${ }^{2}$ at 3 dB above sensitivity level, 20\% PER	-	48.1	-	dB
		Desired is 600 bps GFSK signal ${ }^{3}$ at 3 dB above sensitivity level, 0.1\% BER	-	71.4	-	dB
		Desired is 50 kbps GFSK signal ${ }^{4}$ at 3 dB above sensitivity level, 0.1\% BER	-	49.8	-	dB
		Desired is 100 kbps GFSK signal ${ }^{5}$ at 3dB above sensitivity level, 0.1\% BER	-	51.1	-	dB
		Desired is 500 kbps GFSK signal ${ }^{1}$ at 3dB above sensitivity level, 0.1\% BER	-	48.1	-	dB
		Desired is 400 kbps 4GFSK signal ${ }^{6}$ at 3dB above sensitivity level, 0.1\% BER	-	41.4	-	dB
		Desired is reference O-QPSK DSSS signal ${ }^{7}$ at 3 dB above sensitivity level, 1\% PER	-	49.1	-	dB
Alternate channel selectivity, Interferer is CW at $\pm 2 \times$ channel-spacing	$\mathrm{C} / \mathrm{I}_{2}$	Desired is 4.8 kbps OOK signal ${ }^{2}$ at 3dB above sensitivity level, 20\% PER	-	56.3	-	dB
		Desired is 600 bps GFSK signal ${ }^{3}$ at 3dB above sensitivity level, 0.1\% BER	-	74.7	-	dB
		Desired is 50 kbps GFSK signal ${ }^{4}$ at 3 dB above sensitivity level, 0.1\% BER	-	55.8	-	dB
		Desired is 100 kbps GFSK signal ${ }^{5}$ at 3 dB above sensitivity level, 0.1\% BER	-	56.4	-	dB
		Desired is 500 kbps GFSK signal ${ }^{1}$ at 3 dB above sensitivity level, 0.1\% BER	-	51.8	-	dB
		Desired is 400 kbps 4GFSK signal ${ }^{6}$ at 3dB above sensitivity level, 0.1\% BER	-	46.8	-	dB
		Desired is reference O-QPSK DSSS signal ${ }^{7}$ at 3 dB above sensitivity level, 1\% PER	-	57.7	-	dB

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Image rejection, Interferer is CW at image frequency	C/IIMAGE	Desired is 4.8 kbps OOK signal 2 at 3 dB above sensitivity level, 20\% PER	-	48.4	-	dB
		Desired is 50 kbps GFSK signal ${ }^{4}$ at 3 dB above sensitivity level, 0.1\% BER	-	54.9	-	dB
		Desired is 100 kbps GFSK signal ${ }^{5}$ at 3 dB above sensitivity level, 0.1\% BER	-	49.1	-	dB
		Desired is 500 kbps GFSK signal ${ }^{1}$ at 3 dB above sensitivity level, 0.1% BER	-	47.9	-	dB
		Desired is 400 kbps 4 GFSK signal ${ }^{6}$ at 3dB above sensitivity level, 0.1\% BER	-	42.8	-	dB
		Desired is reference O-QPSK DSSS signal ${ }^{7}$ at 3dB above sensitivity level, 1\% PER	-	48.9	-	dB
Blocking selectivity, 0.1\% BER. Desired is 100 kbps GFSK signal at 3dB above sensitivity level	C/IBLOCKER	Interferer CW at Desired $\pm 1 \mathrm{MHz}$	-	58.7	-	dB
		Interferer CW at Desired $\pm 2 \mathrm{MHz}$	-	62.5	-	dB
		Interferer CW at Desired ± 10 MHz	-	76.4	-	dB
Intermod selectivity, 0.1\% BER. CW interferers at 400 kHz and 800 kHz offsets	$\mathrm{C} / \mathrm{IIM}$	Desired is 100 kbps GFSK signal ${ }^{5}$ at 3dB above sensitivity level	-	45	-	dB
Upper limit of input power range over which RSSI resolution is maintained	$\mathrm{RSSI}_{\text {MAX }}$		-	-	5	dBm
Lower limit of input power range over which RSSI resolution is maintained	$\mathrm{RSSI}_{\text {MIN }}$		-98	-	-	dBm
RSSI resolution	RSSIRES	Over $\mathrm{RSSI}_{\text {MIN }}$ to $\mathrm{RSSI}_{\text {MAX }}$ range	-	0.25	-	dBm
Max spurious emissions during active receive mode, per FCC Part 15.109(a)	SPUR ${ }_{\text {XX_FCC }}$	216-960 MHz	-	-55	-49.2	dBm
		Above 960 MHz	-	-47	-41.2	dBm
Max spurious emissions during active receive mode,per ARIB STD-T108 Section 3.3	SPUR $_{\text {RX_ARIB }}$	Below 710 MHz , RBW=100kHz	-	-60	-54	dBm
		$710-900 \mathrm{MHz}$, RBW=1MHz	-	-61	-55	dBm
		$900-915 \mathrm{MHz}$, RBW=100kHz	-	-61	-55	dBm
		915-930 MHz, RBW=100kHz	-	-61	-55	dBm
		930-1000 MHz, RBW=100kHz	-	-61	-55	dBm
		Above 1000 MHz , RBW=1MHz	-	-53	-47	dBm

Parameter	Symbol	Test Condition	Min	T	Max	Unit
Note:						
1. Definition of reference signal is $500 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=175 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=835.076 \mathrm{kHz}$, channel spacing $=1$ MHz.						
2. Definition of reference signal is 4.8 kbps OOK, RX channel $\mathrm{BW}=306.036 \mathrm{kHz}$, channel spacing $=500 \mathrm{kHz}$						
3. Definition of reference signal is $600 \mathrm{bps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=0.3 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=1.2 \mathrm{kHz}$, channel spacing $=300 \mathrm{kHz}$.						
4. Definition of reference signal is $50 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=25 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=99.012 \mathrm{kHz}$, channel spacing $=200 \mathrm{kHz}$						
5. Definition of reference signal is $100 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=50 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=198.024 \mathrm{kHz}$, channel spacing $=400$ kHz .						
6. Definition of reference signal is $400 \mathrm{kbps} 4 \mathrm{GFSK}, \mathrm{BT}=0.5$, inner deviation $=33.3 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=368.920 \mathrm{kHz}$, channel spacing $=600 \mathrm{kHz}$.						
7. Definition of reference signal is O-QPSK DSSS per 802.15.4, Frequency Range $=902-928 \mathrm{MHz}$, Data rate $=250 \mathrm{kbps}, 16-\mathrm{chip}$ PN sequence mapping.						
RFSENSE performance is only valid from 0 to $85^{\circ} \mathrm{C}$. RFSENSE should be disabled outside this temperature range.						

4.1.10.3 Sub-GHz RF Transmitter characteristics for 868 MHz Band

Unless otherwise indicated, typical conditions are: $\mathrm{T}=25^{\circ} \mathrm{C}$, VREGVDD = AVDD $=1 O V D D=3.3 \mathrm{~V}$, DVDD $=$ RFVDD $=$ External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 868 MHz .

Table 4.22. Sub-GHz RF Transmitter characteristics for 868 MHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
RF tuning frequency range	$\mathrm{F}_{\text {RANGE }}$		863	-	876	MHz
Maximum TX Power ${ }^{1}$	POUT $_{\text {MAX }}$	External PA supply $=3.3 \mathrm{~V}, 20$ dBm output power setting, $\mathrm{T} \leq 85$ ${ }^{\circ} \mathrm{C}$	17.1	19.3	22.9	dBm
		External PA supply connected to DC-DC output, 14 dBm output power setting	11.4	13.7	16.5	dBm
Minimum active TX Power	POUT $_{\text {MIN }}$		-	-43.5	-	dBm
Output power step size	POUTSTEP	output power $>0 \mathrm{dBm}$	-	0.5	-	dB
Output power variation vs supply at POUTMAX	POUTVAR_V	$1.8 \mathrm{~V}<\mathrm{V}_{\text {VREGVDD }}<3.3 \mathrm{~V}$, External PA supply $=3.3 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$	-	5	-	dB
		1.8 V < V VREGVDD $<3.3 \mathrm{~V}$, External PA supply connected to DCDC output, $\mathrm{T}=25^{\circ} \mathrm{C}$	-	2	-	dB
Output power variation vs temperature, peak to peak	POUTVAR_T	$\begin{aligned} & -40 \text { to }+85^{\circ} \mathrm{C} \text { with External PA } \\ & \text { supply }=3.3 \mathrm{~V} \end{aligned}$	-	0.6	0.9	dB
		-40 to $+85^{\circ} \mathrm{C}$ with External PA supply connected to DC-DC output	-	0.5	1.2	dB
Output power variation vs RF frequency	POUTVAR_F	$\begin{aligned} & \text { External PA supply }=3.3 \mathrm{~V}, \mathrm{~T}= \\ & 25^{\circ} \mathrm{C} \end{aligned}$	-	0.2	0.6	dB
		External PA supply connected to DC-DC output, $\mathrm{T}=25^{\circ} \mathrm{C}$	-	0.2	0.8	dB
Spurious emissions of harmonics, Conducted measurement, External PA supply connected to DC-DC output, Test Frequency $=868 \mathrm{MHz}$	SPUR HARM_ETSI $^{\text {I }}$	Per ETSI EN 300-220, Section 7.8.2.1	-	-35	-30	dBm
Spurious emissions out-ofband, Conducted measurement, External PA supply connected to DC-DC output, Test Frequency $=868 \mathrm{MHz}$	SPUROOB_ETSI	Per ETSI EN 300-220, Section 7.8.2.1 (47-74 MHz, 87.5-118 $\mathrm{MHz}, 174-230 \mathrm{MHz}$, and 470-862 MHz)	-	-59	-54	dBm
		Per ETSI EN 300-220, Section 7.8.2.1 (other frequencies below 1 GHz)	-	-42	-36	dBm
		Per ETSI EN 300-220, Section 7.8.2.1 (frequencies above 1 GHz)	-	-36	-30	dBm

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Error vector magnitude (offset EVM), per 802.15.4-2015	EVM	Signal is DSSS-BPSK reference packet. Modulated according to 802.15.4-2015 DSSS-BPSK in the 868 MHz band, with pseudo-random packet data content. External PA supply connected to external 3.3V supply	-	5.7	-	\%rms

Note:

1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table.

4.1.10.4 Sub-GHz RF Receiver Characteristics for 868 MHz Band

Unless otherwise indicated, typical conditions are: $\mathrm{T}=25^{\circ} \mathrm{C}$, VREGVDD = AVDD $=1 O V D D=3.3 \mathrm{~V}$, DVDD = RFVDD $=$ External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 868 MHz .

Table 4.23. Sub-GHz RF Receiver Characteristics for 868 MHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Tuning frequency range	FRANGE		863	-	876	MHz
Max usable input level, 0.1% BER	SAT $_{2 k 4}$	Desired is reference 2.4 kbps GFSK signal				

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Upper limit of input power range over which RSSI reso- lution is maintained	RSSI $_{\text {MAX }}$		-	-	5	dBm
Lower limit of input power range over which RSSI reso- lution is maintained	RSSI $_{\text {MIN }}$		-98	-	-	dBm
RSSI resolution				-		
Max spurious emissions dur- ing active receive mode	SPUR $_{\text {RX }}$	30 MHz to 1 GHz	-	0.25	-	dBm
		1 GHz to 12 GHz	-	-63	-57	dBm

Note:

1. Definition of reference signal is $2.4 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=1.2 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=4.797 \mathrm{kHz}$, channel spacing $=12.5$ kHz.
2. Definition of reference signal is $38.4 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=20 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=74.809 \mathrm{kHz}$, channel spacing $=100$ kHz.
3. Definition of reference signal is $500 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=125 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=753.320 \mathrm{kHz}$.
4. Definition of reference signal is 20 kbps BPSK
5. RFSENSE performance is only valid from 0 to $85^{\circ} \mathrm{C}$. RFSENSE should be disabled outside this temperature range.

4.1.10.5 Sub-GHz RF Transmitter characteristics for 490 MHz Band

Unless otherwise indicated, typical conditions are: $\mathrm{T}=25^{\circ} \mathrm{C}$, VREGVDD = AVDD $=1 O V D D=3.3 \mathrm{~V}$, DVDD = RFVDD $=$ External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 490 MHz .

Table 4.24. Sub-GHz RF Transmitter characteristics for 490 MHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
RF tuning frequency range	$\mathrm{F}_{\text {RANGE }}$		470	-	510	MHz
Maximum TX Power ${ }^{1}$	POUT $_{\text {MAX }}$	External PA supply $=3.3 \mathrm{~V}$	18.1	20.3	23.7	dBm
Minimum active TX Power	POUT $_{\text {MIN }}$			-44.9	-	dBm
Output power step size	POUTSTEP	output power $>0 \mathrm{dBm}$	-	0.5	-	dB
Output power variation vs supply, peak to peak	POUTVAR_V	at $20 \mathrm{dBm} ; 1.8 \mathrm{~V}<\mathrm{V}_{\text {VREGVDD }}<$ 3.3 V , External PA supply connected directly to external supply, $\mathrm{T}=$ $25^{\circ} \mathrm{C}$	-	4.3	-	dB
Output power variation vs temperature, peak to peak	POUTVAR_T	-40 to $+85{ }^{\circ} \mathrm{C}$ at 20 dBm	-	0.2	0.9	dB
Output power variation vs RF frequency	POUTVAR_F	$\mathrm{T}=25^{\circ} \mathrm{C}$	-	0.2	0.4	dB
Harmonic emissions, 20 dBm output power setting, 490 MHz	SPUR HARM_CN	Per China SRW Requirement, Section 2.1, frequencies below 1 GHz	-	-40	-36	dBm
		Per China SRW Requirement, Section 2.1, frequencies above 1 GHz	-	-36	-30	dBm
Spurious emissions, 20 dBm output power setting, 490 MHz	SPUROOB_CN	Per China SRW Requirement, Section 3 ($48.5-72.5 \mathrm{MHz}$, $76-108 \mathrm{MHz}, 167-223 \mathrm{MHz}$, $470-556 \mathrm{MHz}$, and $606-798 \mathrm{MHz}$)	-	-54	-	dBm
		Per China SRW Requirement, Section 2.1 (other frequencies below 1 GHz)	-	-42	-	dBm
		Per China SRW Requirement, Section 2.1 (frequencies above 1 GHz)	-	-36	-	dBm

Note:

1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table.

4.1.10.6 Sub-GHz RF Receiver Characteristics for 490 MHz Band

Unless otherwise indicated, typical conditions are: $\mathrm{T}=25^{\circ} \mathrm{C}$, VREGVDD = AVDD $=1 O V D D=3.3 \mathrm{~V}$, DVDD = RFVDD $=$ External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 490 MHz .

Table 4.25. Sub-GHz RF Receiver Characteristics for 490 MHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Tuning frequency range	FRANGE		470	-	510	MHz
Max usable input level, 0.1% BER	SAT $_{2 k 4}$	Desired is reference 2.4 kbps GFSK signal				

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Upper limit of input power range over which RSSI reso- lution is maintained	RSSI $_{\text {MAX }}$		-	-	5	dBm
Lower limit of input power range over which RSSI reso- lution is maintained	RSSI $_{\text {MIN }}$		-98	-	-	dBm
RSSI resolution						
Max spurious emissions dur- ing active receive mode	SPUR $_{\text {RX }}$	30 MHz to 1 GHz	-	-	-53	-47
	1 GHz to 12 GHz	-	-53	-47	dBm	

Note:

1. Definition of reference signal is $2.4 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=1.2 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=4.798 \mathrm{kHz}$, channel spacing $=12.5$ kHz.
2. Definition of reference signal is $38.4 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=20 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=74.809 \mathrm{kHz}$, channel spacing $=100$ kHz.
3. Definition of reference signal is $10 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=5 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=20.038 \mathrm{kHz}$.
4. Definition of reference signal is $100 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=50 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=198.024 \mathrm{kHz}$.
5. RFSENSE performance is only valid from 0 to $85^{\circ} \mathrm{C}$. RFSENSE should be disabled outside this temperature range.

4.1.10.7 Sub-GHz RF Transmitter characteristics for 433 MHz Band

Unless otherwise indicated, typical conditions are: $\mathrm{T}=25^{\circ} \mathrm{C}$, VREGVDD = AVDD $=1 O V D D=3.3 \mathrm{~V}$, DVDD = RFVDD $=$ External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 433 MHz .

Table 4.26. Sub-GHz RF Transmitter characteristics for 433 MHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
RF tuning frequency range	Frange		426	-	445	MHz
Maximum TX Power ${ }^{1}$	POUT $_{\text {MAX }}$	External PA supply connected to DC-DC output, 14 dBm output power	12.5	15.1	17.4	dBm
		External PA supply connected to DC-DC output, 10 dBm output power	8.3	10.6	13.3	dBm
Minimum active TX Power	POUT $_{\text {MIN }}$		-	-42	-	dBm
Output power step size	POUTSTEP	output power > 0 dBm	-	0.5	-	dB
Output power variation vs supply, peak to peak, Pout = 10 dBm	POUTVAR_V	At $10 \mathrm{dBm} ; 1.8 \mathrm{~V}<\mathrm{V}_{\text {VREGVDD }}<$ 3.3 V, External PA supply = DCDC output, $\mathrm{T}=25^{\circ} \mathrm{C}$	-	1.7	-	dB
Output power variation vs temperature, peak to peak, Pout $=10 \mathrm{dBm}$	POUTVAR_T	-40 to +85 C at 10 dBm	-	0.5	1.2	dB
Output power variation vs RF frequency, Pout $=10 \mathrm{dBm}$	POUTVAR_F	$\mathrm{T}=25^{\circ} \mathrm{C}$	-	0.1	0.2	dB
Spurious emissions of harmonics FCC, Conducted measurement, 14 dBm match, External PA supply connected to DC-DC output, Test Frequency $=434 \mathrm{MHz}$	SPUR ${ }_{\text {HARM_FCC }}$	In restricted bands, per FCC Part 15.205/15.209	-	-47	-42	dBm
		In non-restricted bands, per FCC Part 15.231	-	-26	-20	dBc
Spurious emissions out-ofband FCC, Conducted measurement, 14 dBm match, External PA supply connected to DC-DC output, Test Frequency $=434 \mathrm{MHz}$	SPUROOB_FCC	In non-restricted bands, per FCC Part 15.231	-	-26	-20	dBc
		In restricted bands ($30-88 \mathrm{MHz}$), per FCC Part 15.205 / 15.209	-	-52	-46	dBm
		In restricted bands (88-216 MHz), per FCC Part 15.205 / 15.209	-	-61	-56	dBm
		In restricted bands (216-960 MHz), per FCC Part 15.205 / 15.209	-	-58	-52	dBm
		In restricted bands (>960 MHz), per FCC Part 15.205 / 15.209	-	-47	-42	dBm
Spurious emissions of harmonics ETSI, Conducted measurement, 14 dBm match, External PA supply connected to DC-DC output, Test Frequency $=434 \mathrm{MHz}$	SPUR ${ }_{\text {HARM_ETSI }}$	Per ETSI EN 300-220, Section 7.8.2.1 (frequencies below 1Ghz)	-	-42	-36	dBm
		Per ETSI EN 300-220, Section 7.8.2.1 (frequencies above 1Ghz)	-	-36	-30	dBm

Parameter	Symbol	Test Condition	Min	Typ	Max
Spurious emissions out-of- band ETSI, Conducted measurement, 14dBm match, External PA supply connected to DC-DC output, Test Frequency = 434 MHz	SPUROOB_ETSI	Per ETSI EN 300-220, Section $7.8 .2 .1(47-74 ~ M H z, ~ 87.5-118 ~$ MHz, 174-230 MHz, and 470-862 MHz)	-	-60	-54
	Per ETSI EN 300-220, Section 7.8 .2 .1 (other frequencies below 1 GHz)	-	-42	-36	dBm
	Per ETSI EN 300-220, Section 7.8 .2 .1 (frequencies above 1 GHz)	-	-36	-30	dBm

Note:

1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table.

4.1.10.8 Sub-GHz RF Receiver Characteristics for 433 MHz Band

Unless otherwise indicated, typical conditions are: $\mathrm{T}=25^{\circ} \mathrm{C}$, VREGVDD $=\mathrm{AVDD}=I O V D D=3.3 \mathrm{~V}$, DVDD $=$ RFVDD $=$ External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 433 MHz .

Table 4.27. Sub-GHz RF Receiver Characteristics for 433 MHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Tuning frequency range	Frange		426	-	445	MHz
Max usable input level, 0.1% BER	SAT ${ }_{2 k 4}$	Desired is reference 2.4 kbps GFSK signal ${ }^{1}$	-	10	-	dBm
Max usable input level, 0.1\% BER	SAT ${ }_{50 \mathrm{k}}$	Desired is reference 50 kbps GFSK signal ${ }^{2}$	-	10	-	dBm
Sensitivity	SENS	Desired is reference 4.8 kbps OOK signal ${ }^{3}$, 20\% PER	-	-107.4	-	dBm
		Desired is reference 100 kbps GFSK signal ${ }^{4}, 0.1 \%$ BER, $T \leq 85$ ${ }^{\circ} \mathrm{C}$	-	-107.3	-105	dBm
		Desired is reference 50 kbps GFSK signal ${ }^{2}, 0.1 \%$ BER, $T \leq 85$ ${ }^{\circ} \mathrm{C}$	-	-110.3	-107.2	dBm
		Desired is reference 2.4 kbps GFSK signal ${ }^{1}, 0.1 \%$ BER	-	-123.1	-	dBm
		Desired is reference 9.6 kbps GFSK signal ${ }^{5}, 1 \%$ PER, $\mathrm{T} \leq 85^{\circ} \mathrm{C}$	-	-112.6	-109	dBm
Level above which RFSENSE will trigger ${ }^{6}$	RFSENSE $_{\text {TRIG }}$	CW at 433 MHz	-	-28.1	-	dBm
Level below which RFSENSE will not trigger ${ }^{6}$	RFSENSE ${ }_{\text {THRES }}$	CW at 433 MHz	-	-50	-	dBm
Adjacent channel selectivity, Interferer is CW at $\pm 1 \times$ channel-spacing	$\mathrm{C} / \mathrm{I}_{1}$	Desired is $4.8 \mathrm{kbps}^{\mathrm{OOK}}$ signal 3 at 3dB above sensitivity level, 20\% PER	-	51.6	-	dB
		Desired is 100 kbps GFSK signal ${ }^{4}$ at 3dB above sensitivity level, 0.1\% BER	35	44.1	-	dB
		Desired is 2.4 kbps GFSK signal ${ }^{1}$ at 3dB above sensitivity level, 0.1\% BER	47	61.5	-	dB
		Desired is 50 kbps GFSK signal ${ }^{2}$ at 3 dB above sensitivity level, 0.1\% BER	45.6	53.1	-	dB
		Desired is 9.6 kbps 4GFSK signal ${ }^{5}$ at 3 dB above sensitivity level, 1\% PER	-	35.7	-	dB

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Alternate channel selectivity, Interferer is CW at $\pm 2 \times$ channel-spacing	$\mathrm{C} / \mathrm{I}_{2}$	Desired is 4.8 kbps OOK signal ${ }^{3}$ at 3 dB above sensitivity level, 20\% PER	-	57.8	-	dB
		Desired is 100 kbps GFSK signal ${ }^{4}$ at 3dB above sensitivity level, 0.1\% BER	-	54.6	-	dB
		Desired is 2.4 kbps GFSK signal ${ }^{1}$ at 3 dB above sensitivity level, 0.1\% BER	-	62.4	-	dB
		Desired is 50 kbps GFSK signal ${ }^{2}$ at 3 dB above sensitivity level, 0.1\% BER	-	58.1	-	dB
		Desired is 9.6 kbps 4GFSK signal ${ }^{5}$ at 3 dB above sensitivity level, 1\% PER	-	50.6	-	dB
Image rejection, Interferer is CW at image frequency	C/IIMAGE	Desired is $4.8 \mathrm{kbps}^{\mathrm{kOOK}}$ signal 3 at 3 dB above sensitivity level, 20\% PER	-	46.5	-	dB
		Desired is 100 kbps GFSK signal ${ }^{4}$ at 3 dB above sensitivity level, 0.1\% BER	-	51.7	-	dB
		Desired is 2.4 kbps GFSK signal ${ }^{1}$ at 3 dB above sensitivity level, 0.1\% BER	-	57.5	-	dB
		Desired is 50 kbps GFSK signal ${ }^{2}$ at 3 dB above sensitivity level, 0.1\% BER	-	54.4	-	dB
		Desired is 9.6 kbps 4GFSK signal ${ }^{5}$ at 3 dB above sensitivity level, 1\% PER	-	48	-	dB
Blocking selectivity, 0.1% BER. Desired is 2.4 kbps GFSK signal ${ }^{1}$ at 3 dB above sensitivity level	C/IBLOCKER	Interferer CW at Desired $\pm 1 \mathrm{MHz}$	-	75.7	-	dB
		Interferer CW at Desired $\pm 2 \mathrm{MHz}$	-	77.2	-	dB
		Interferer CW at Desired ± 10 MHz	-	92	-	dB
Intermod selectivity, 0.1\% BER. CW interferers at 12.5 kHz and 25 kHz offsets	$\mathrm{C} / \mathrm{IIM}_{\mathrm{M}}$	Desired is 2.4 kbps GFSK signal ${ }^{1}$ at 3 dB above sensitivity level	-	58.8	-	dB
Upper limit of input power range over which RSSI resolution is maintained	RSSI ${ }_{\text {MAX }}$		-	-	5	dBm
Lower limit of input power range over which RSSI resolution is maintained	$\mathrm{RSSI}_{\text {MIN }}$		-98	-	-	dBm
RSSI resolution	RSSIRES	Over $\mathrm{RSSI}_{\text {MIN }}$ to $\mathrm{RSSI}_{\text {MAX }}$ range	-	0.25	-	dBm
Max spurious emissions during active receive mode, per FCC Part 15.109(a)	SPUR ${ }_{\text {RX_FCC }}$	216-960 MHz	-	-55	-49	dBm
		Above 960 MHz	-	-47	-41	dBm

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Max spurious emissions during active receive mode, per ETSI 300-220 Section 8.6	SPURRX_ETSI	Below 1000 MHz	-	-63	-57	dBm
		Above 1000 MHz	-	-53	-47	dBm
Max spurious emissions during active receive mode, per ARIB STD T67 Section 3.3(5)	SPUR $_{\text {RX_ARIB }}$	Below 710 MHz , RBW=100kHz	-	-60	-54	dBm
Note: 1. Definition of reference sig kHz . 2. Definition of reference sig 3. Definition of reference sig 4. Definition of reference sig kHz . 5. Definition of reference sig $=12.5 \mathrm{kHz}$. 6. RFSENSE performance is	nal is 2.4 kbps nal is 50 kbps nal is 4.8 kbps nal is 100 kbps nal is 9.6 kbps s only valid from	FSK, $B T=0.5, \Delta f=1.2 \mathrm{kHz}, \mathrm{RX}$ ch SK, $B T=0.5, \Delta f=25 \mathrm{kHz}, R X$ cha K, RX channel BW $=306.036 \mathrm{kHz}$ FSK, $B T=0.5, \Delta f=50 \mathrm{kHz}, R X$ ch $F S K, B T=0.5$, inner deviation $=0$. to $85^{\circ} \mathrm{C}$. RFSENSE should be dis	BW = W = nel s BW = RX outsi	kHz, kz, 500 4 kHz W = empe	spaci spaci el spa chan range.	2.5 00 kH 200 pacing

4.1.10.9 Sub-GHz RF Transmitter characteristics for 315 MHz Band

Unless otherwise indicated, typical conditions are: $\mathrm{T}=25^{\circ} \mathrm{C}$, VREGVDD $=\mathrm{AVDD}=I O V D D=3.3 \mathrm{~V}$, DVDD $=$ RFVDD $=$ External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 315 MHz .

Table 4.28. Sub-GHz RF Transmitter characteristics for 315 MHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
RF tuning frequency range	Frange		195	-	358	MHz
Maximum TX Power ${ }^{1}$	POUT $_{\text {MAX }}$	External PA supply connected to DC-DC output, $\mathrm{T} \leq 85^{\circ} \mathrm{C}$	13.8	17.2	21.1	dBm
Minimum active TX Power	POUT $_{\text {MIN }}$			-43.9	-	dBm
Output power step size	POUTSTEP	output power $>0 \mathrm{dBm}$	-	0.5	-	dB
Output power variation vs supply	POUTVAR_V	```1.8 V < V VREGVDD < 3.3 V, Exter- nal PA supply = DC-DC output, T = 25 '}\textrm{C```	-	1.8	-	dB
Output power variation vs temperature	POUTVAR_T	-40 to +85C	-	0.5	1.2	dB
Output power variation vs RF frequency	POUTVAR_F	$\mathrm{T}=25^{\circ} \mathrm{C}$	-	0.1	0.7	dB
Spurious emissions of harmonics at 14 dBm output	SPUR HARM_FCC	In restricted bands, per FCC Part 15.205 / 15.209	-	-47	-42	dBm
ment, 14 dBm match, External PA supply connected to DC-DC output, Test Frequency $=303 \mathrm{MHz}$		In non-restricted bands, per FCC Part 15.231	-	-26	-20	dBc
Spurious emissions out-ofband at 14 dBm output power, Conducted measurement, 14dBm match, External PA supply connected to DC-DC output, Test Frequency = 303 MHz	SPUROOB_FCC	In non-restricted bands, per FCC Part 15.231	-	-26	-20	dBc
		In restricted bands ($30-88 \mathrm{MHz}$), per FCC Part 15.205 / 15.209	-	-52	-46	dBm
		In restricted bands ($88-216 \mathrm{MHz}$), per FCC Part 15.205 / 15.209	-	-61	-56	dBm
		In restricted bands (216-960 MHz), per FCC Part 15.205 / 15.209	-	-58	-52	dBm
		In restricted bands (>960 MHz), per FCC Part 15.205 / 15.209	-	-47	-42	dBm

Note:

1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table.

4.1.10.10 Sub-GHz RF Receiver Characteristics for 315 MHz Band

Unless otherwise indicated, typical conditions are: $\mathrm{T}=25^{\circ} \mathrm{C}$, VREGVDD $=\mathrm{AVDD}=I O V D D=3.3 \mathrm{~V}$, DVDD $=$ RFVDD $=$ External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 315 MHz .

Table 4.29. Sub-GHz RF Receiver Characteristics for 315 MHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Tuning frequency range	FRANGE		195	-	358	MHz
Max usable input level, 0.1% BER	SAT $_{2 k 4}$	Desired is reference 2.4 kbps GFSK signal				
Max usable input level, 0.1% BER	SAT $_{38 k 4}$	Desired is reference 38.4 kbps GFSK signal				

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Upper limit of input power range over which RSSI reso- lution is maintained	RSSI $_{\text {MAX }}$		-	-	5	dBm
Lower limit of input power range over which RSSI reso- lution is maintained	RSSI $_{\text {MIN }}$		-98	-	-	dBm
RSSI resolution		RSSI $_{\text {RES }}$	Over RSSI	-		
Max spurious emissions dur- RSSI $_{\text {MAX }}$ range ing active receive mode, per FCC Part $15.109(a)$	SPUR $_{\text {RX_FCC }}$	$216-960 \mathrm{MHz}$	-	0.25	-	dBm
	Above 960 MHz	-	-63	-57	dBm	

Note:

1. Definition of reference signal is $2.4 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=1.2 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=4.798 \mathrm{kHz}$, channel spacing $=12.5$ kHz.
2. Definition of reference signal is $38.4 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=20 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=74.809 \mathrm{kHz}$, channel spacing $=100$ kHz.
3. Definition of reference signal is $500 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=125 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=753.320 \mathrm{kHz}$.
4. RFSENSE performance is only valid from 0 to $85^{\circ} \mathrm{C}$. RFSENSE should be disabled outside this temperature range.

4.1.10.11 Sub-GHz RF Transmitter Characteristics for 169 MHz Band

Unless otherwise indicated, typical conditions are: $\mathrm{T}=25^{\circ} \mathrm{C}$, VREGVDD = AVDD $=1 O V D D=3.3 \mathrm{~V}$, DVDD = RFVDD $=$ External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 169 MHz .

Table 4.30. Sub-GHz RF Transmitter Characteristics for 169 MHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
RF tuning frequency range	Frange		169	-	170	MHz
Maximum TX Power ${ }^{1}$	POUT $_{\text {MAX }}$	External PA supply $=3.3 \mathrm{~V}$	18.1	19.7	22.4	dBm
Minimum active TX Power	POUT $_{\text {MIN }}$			-42.6	-	dBm
Output power step size	POUT $_{\text {STEP }}$	output power $>0 \mathrm{dBm}$	-	0.5	-	dB
Output power variation vs supply, peak to peak	POUTVAR_V	1.8 V < V VREGVDD $<3.3 \mathrm{~V}$, External PA supply $=3.3 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$	-	4.8	5.0	dB
Output power variation vs temperature, peak to peak	POUTVAR_T	-40 to $+85{ }^{\circ} \mathrm{C}$ at 20 dBm	-	0.6	1.2	dB
Spurious emissions of harmonics, Conducted measurement, External PA supply $=3.3 \mathrm{~V}$, Test Frequency = 169 MHz	SPUR HARM_ETSI $^{\text {a }}$	Per ETSI EN 300-220, Section 7.8.2.1 (47-74 MHz, 87.5-118 $\mathrm{MHz}, 174-230 \mathrm{MHz}$, and 470-862 MHz)	-	-42	-	dBm
		Per ETSI EN 300-220, Section 7.8.2.1 (other frequencies below 1 $\mathrm{GHz})^{2}$	-	-38	-	dBm
		Per ETSI EN 300-220, Section 7.8.2.1 (frequencies above 1 $\mathrm{GHz})^{2}$	-	-36	-	dBm
Spurious emissions out-ofband, Conducted measurement, External PA supply = 3.3 V, Test Frequency $=169$ MHz	SPUROOB_ETSI	Per ETSI EN 300-220, Section 7.8.2.1 (47-74 MHz, 87.5-118 $\mathrm{MHz}, 174-230 \mathrm{MHz}$, and 470-862 MHz)	-	-42	-36	dBm
		Per ETSI EN 300-220, Section 7.8.2.1 (other frequencies below 1 GHz)	-	-42	-36	dBm
		Per ETSI EN 300-220, Section 7.8.2.1 (frequencies above 1 GHz)	-	-36	-30	dBm

Note:

1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of the Ordering Information Table.
2. Typical value marginally passes specification. Additional margin can be obtained by increasing the order of the harmonic filter.

4.1.10.12 Sub-GHz RF Receiver Characteristics for 169 MHz Band

Unless otherwise indicated, typical conditions are: $\mathrm{T}=25^{\circ} \mathrm{C}$, VREGVDD $=\mathrm{AVDD}=I O V D D=3.3 \mathrm{~V}$, DVDD $=$ RFVDD $=$ External PA Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency $=38.4 \mathrm{MHz}$. RF center frequency 169 MHz .

Table 4.31. Sub-GHz RF Receiver Characteristics for 169 MHz Band

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Tuning frequency range	FRANGE		169	-	170	MHz
Max usable input level, 0.1% BER	SAT $_{2 k 4}$	Desired is reference 2.4 kbps GFSK signal				

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Lower limit of input power range over which RSSI reso- lution is maintained	RSSI $_{\text {MIN }}$		-98	-	-	dBm
RSSI resolution	RSSI $_{\text {RES }}$	Over RSSI				
MIN to RSSI $_{\text {MAX }}$ range	-	0.25	-	dBm		
Max spurious emissions dur- ing active receive mode	SPUR $_{\mathrm{RX}}$	30 MHz to 1 GHz	-	-63	-57	dBm
	1 GHz to 12 GHz	-	-53	-47	dBm	

Note:

1. Definition of reference signal is $2.4 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=1.2 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=4.798 \mathrm{kHz}$, channel spacing $=12.5$ kHz.
2. Definition of reference signal is $38.4 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=20 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=74.809 \mathrm{kHz}$, channel spacing $=100$ kHz .
3. Definition of reference signal is $500 \mathrm{kbps} 2 \mathrm{GFSK}, \mathrm{BT}=0.5, \Delta \mathrm{f}=125 \mathrm{kHz}, \mathrm{RX}$ channel $\mathrm{BW}=753.320 \mathrm{kHz}$.
4. RFSENSE performance is only valid from 0 to $85^{\circ} \mathrm{C}$. RFSENSE should be disabled outside this temperature range.

4.1.11 Modem

Table 4.32. Modem

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Receive bandwidth	BW $_{\text {RX }}$	Configurable range with 38.4 MHz crystal	0.1	-	2530	kHz
IF frequency	f_{IF}	Configurable range with 38.4 MHz crystal. Selected steps available.	150	-	1371	kHz
DSSS symbol length	SL $_{\text {DSSS }}$	Configurable in steps of 1 chip	2	-	32	chips
DSSS bits per symbol	BPS $_{\text {DSSS }}$	Configurable	1	-	4	bits/ symbol

4.1.12 Oscillators

4.1.12.1 Low-Frequency Crystal Oscillator (LFXO)

Table 4.33. Low-Frequency Crystal Oscillator (LFXO)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Crystal frequency	fLFXO		-	32.768	-	kHz
Supported crystal equivalent series resistance (ESR)	ESR ${ }_{\text {LFXO }}$		-	-	70	k ת
Supported range of crystal load capacitance ${ }^{1}$	$\mathrm{CLFXO}_{\text {_CL }}$		6	-	18	pF
On-chip tuning cap range ${ }^{2}$	CLFXO_T	On each of LFXTAL_N and LFXTAL_P pins	8	-	40	pF
On-chip tuning cap step size	SS ${ }_{\text {LFXO }}$		-	0.25	-	pF
Current consumption after startup ${ }^{3}$	ILFXO	$\begin{aligned} & \mathrm{ESR}=70 \mathrm{kOhm}, \mathrm{C}_{\mathrm{L}}=7 \mathrm{pF}, \\ & \mathrm{GAIN}^{4}=2, \mathrm{AGC}^{4}=1 \end{aligned}$	-	273	-	nA
Start- up time	tLFXO	$\begin{aligned} & \mathrm{ESR}=70 \mathrm{kOhm}, \mathrm{C}_{\mathrm{L}}=7 \mathrm{pF}, \\ & \mathrm{GAIN}^{4}=2 \end{aligned}$	-	308	-	ms

Note:

1. Total load capacitance as seen by the crystal.
2. The effective load capacitance seen by the crystal will be $\mathrm{C}_{\mathrm{LFXO}} \mathrm{T}^{\mathrm{T}} / 2$. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal.
3. Block is supplied by AVDD if ANASW $=0$, or DVDD if ANASW=1 in EMU_PWRCTRL register.
4. In CMU_LFXOCTRL register.

4.1.12.2 High-Frequency Crystal Oscillator (HFXO)

Table 4.34. High-Frequency Crystal Oscillator (HFXO)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Crystal frequency	$\mathrm{f}_{\mathrm{HFXO}}$	38.4 MHz required for radio transciever operation	38	38.4	40	MHz
Supported crystal equivalent series resistance (ESR)	ESR ${ }_{\text {HFXO_38M4 }}$	Crystal frequency 38.4 MHz	-	-	60	Ω
Supported range of crystal load capacitance ${ }^{1}$	$\mathrm{CHFXO}_{\text {_CL }}$		6	-	12	pF
On-chip tuning cap range ${ }^{2}$	$\mathrm{CHFXO}_{\text {_T }}$	On each of HFXTAL_N and HFXTAL_P pins	9	20	25	pF
On-chip tuning capacitance step	SS ${ }_{\text {HFXO }}$		-	0.04	-	pF
Startup time	$\mathrm{t}_{\text {HFXO }}$	$\begin{aligned} & 38.4 \mathrm{MHz}, \mathrm{ESR}=50 \mathrm{Ohm}, \mathrm{C}_{\mathrm{L}}= \\ & 10 \mathrm{pF} \end{aligned}$	-	300	-	$\mu \mathrm{s}$
Frequency tolerance for the crystal	$\mathrm{FT}_{\text {HFXO }}$	$\begin{aligned} & 38.4 \mathrm{MHz}, \mathrm{ESR}=50 \mathrm{Ohm}, \mathrm{C}_{\mathrm{L}}= \\ & 10 \mathrm{pF} \end{aligned}$	-40	-	40	ppm

Note:

1. Total load capacitance as seen by the crystal.
2. The effective load capacitance seen by the crystal will be $\mathrm{C}_{\mathrm{HFXO}} \mathrm{T}^{\mathrm{T}}$ /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal.

4.1.12.3 Low-Frequency RC Oscillator (LFRCO)

Table 4.35. Low-Frequency RC Oscillator (LFRCO)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Oscillation frequency	flfRCO	ENVREF ${ }^{1}=1, \mathrm{~T} \leq 85{ }^{\circ} \mathrm{C}$	31.3	32.768	33.6	kHz
		ENVREF ${ }^{1}=1, \mathrm{~T}>85{ }^{\circ} \mathrm{C}$	31.6	32.768	36.8	kHz
		ENVREF $^{1}=0, \mathrm{~T} \leq 85{ }^{\circ} \mathrm{C}$	31.3	32.768	33.4	kHz
		ENVREF ${ }^{1}=0, \mathrm{~T}>85{ }^{\circ} \mathrm{C}$	30.0	32.768	33.4	kHz
Startup time	tifrco		-	500	-	$\mu \mathrm{s}$
Current consumption ${ }^{2}$	ILFRCO	ENVREF = 1 in CMU_LFRCOCTRL	-	370	-	nA
		ENVREF $=0$ in CMU_LFRCOCTRL	-	520	-	nA

Note:

1. In CMU_LFRCOCTRL register.
2. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register.
4.1.12.4 High-Frequency RC Oscillator (HFRCO)

Table 4.36. High-Frequency RC Oscillator (HFRCO)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Frequency accuracy	$\mathrm{f}_{\mathrm{HFRCO}}$ _ACC	At production calibrated frequencies, across supply voltage and temperature	-2.5	-	2.5	\%
Start-up time	$\mathrm{thfrco}^{\text {a }}$	$\mathrm{f}_{\mathrm{HFRCO}} \geq 19 \mathrm{MHz}$	-	300	-	ns
		$4<\mathrm{f}_{\text {HFRCO }}<19 \mathrm{MHz}$	-	1	-	$\mu \mathrm{s}$
		$\mathrm{f}_{\mathrm{HFRCO}} \leq 4 \mathrm{MHz}$	-	2.5	-	$\mu \mathrm{s}$
Current consumption on all supplies	IHFRCO	$\mathrm{f}_{\text {HFRCO }}=38 \mathrm{MHz}$	-	244	265	$\mu \mathrm{A}$
		$\mathrm{f}_{\mathrm{HFRCO}}=32 \mathrm{MHz}$	-	204	222	$\mu \mathrm{A}$
		$\mathrm{f}_{\text {HFRCO }}=26 \mathrm{MHz}$	-	173	188	$\mu \mathrm{A}$
		$\mathrm{f}_{\mathrm{HFRCO}}=19 \mathrm{MHz}$	-	143	156	$\mu \mathrm{A}$
		$\mathrm{f}_{\mathrm{HFRCO}}=16 \mathrm{MHz}$	-	123	136	$\mu \mathrm{A}$
		$\mathrm{f}_{\text {HFRCO }}=13 \mathrm{MHz}$	-	110	124	$\mu \mathrm{A}$
		$\mathrm{f}_{\mathrm{HFRCO}}=7 \mathrm{MHz}$	-	85	94	$\mu \mathrm{A}$
		$\mathrm{f}_{\mathrm{HFRCO}}=4 \mathrm{MHz}$	-	32	37	$\mu \mathrm{A}$
		$\mathrm{f}_{\text {HFRCO }}=2 \mathrm{MHz}$	-	28	34	$\mu \mathrm{A}$
		$\mathrm{f}_{\mathrm{HFRCO}}=1 \mathrm{MHz}$	-	26	31	$\mu \mathrm{A}$
Coarse trim step size (\% of period)	$\begin{aligned} & \text { SS } \\ & \text { E } \end{aligned}$		-	0.8	-	\%
Fine trim step size (\% of period)	SS HFRCO_FINE		-	0.1	-	\%
Period jitter	PJ ${ }_{\text {HFRCO }}$		-	0.2	-	\% RMS

4.1.12.5 Auxiliary High-Frequency RC Oscillator (AUXHFRCO)

Table 4.37. Auxiliary High-Frequency RC Oscillator (AUXHFRCO)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Frequency accuracy	$\mathrm{f}_{\text {AUXHFRCO_ACC }}$	At production calibrated frequencies, across supply voltage and temperature	-3	-	3	\%
Start-up time	$\mathrm{t}_{\text {AUXHFRCO }}$	$\mathrm{f}_{\text {AUXHFRCO }} \geq 19 \mathrm{MHz}$	-	400	-	ns
		$4<\mathrm{f}_{\text {AUXHFRCO }}<19 \mathrm{MHz}$	-	1.4	-	$\mu \mathrm{s}$
		$\mathrm{f}_{\text {AUXHFRCO }} \leq 4 \mathrm{MHz}$	-	2.5	-	$\mu \mathrm{s}$
Current consumption on all supplies	IAUXHFRCO	$\mathrm{f}_{\text {AUXHFRCO }}=38 \mathrm{MHz}$	-	193	213	$\mu \mathrm{A}$
		$\mathrm{f}_{\text {AUXHFRCO }}=32 \mathrm{MHz}$	-	157	175	$\mu \mathrm{A}$
		$\mathrm{f}_{\text {AUXHFRCO }}=26 \mathrm{MHz}$	-	135	151	$\mu \mathrm{A}$
		$\mathrm{f}_{\text {AUXHFRCO }}=19 \mathrm{MHz}$	-	108	122	$\mu \mathrm{A}$
		$\mathrm{f}_{\text {AUXHFRCO }}=16 \mathrm{MHz}$	-	100	113	$\mu \mathrm{A}$
		$\mathrm{f}_{\text {AUXHFRCO }}=13 \mathrm{MHz}$	-	77	88	$\mu \mathrm{A}$
		$\mathrm{f}_{\text {AUXHFRCO }}=7 \mathrm{MHz}$	-	53	63	$\mu \mathrm{A}$
		$\mathrm{f}_{\text {AUXHFRCO }}=4 \mathrm{MHz}$	-	29	36	$\mu \mathrm{A}$
		$\mathrm{f}_{\text {AUXHFRCO }}=2 \mathrm{MHz}$	-	28	34	$\mu \mathrm{A}$
		$\mathrm{f}_{\text {AUXHFRCO }}=1 \mathrm{MHz}$	-	27	31	$\mu \mathrm{A}$
Coarse trim step size (\% of period)	SS AUXHFRCO_COARSE		-	0.8	-	\%
Fine trim step size (\% of period)	SS AUXHFRCO_FINE		-	0.1	-	\%
Period jitter	PJ ${ }_{\text {AUXHFRCO }}$		-	0.2	-	\% RMS

4.1.12.6 Ultra-low Frequency RC Oscillator (ULFRCO)

Table 4.38. Ultra-low Frequency RC Oscillator (ULFRCO)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Oscillation frequency	fuLFRCO		0.95	1	1.07	kHz

4.1.13 Flash Memory Characteristics ${ }^{1}$

Table 4.39. Flash Memory Characteristics ${ }^{1}$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Flash erase cycles before failure	ECFLASH		10000	-	-	cycles
Flash data retention	RET FLASH	$\mathrm{T} \leq 85^{\circ} \mathrm{C}$	10	-	-	years
		$\mathrm{T} \leq 125^{\circ} \mathrm{C}$	10	-	-	years
Word (32-bit) programming time	tw_PROG	Burst write, 128 words, average time per word	20	24.4	30	$\mu \mathrm{s}$
		Single word	60	68.4	80	$\mu \mathrm{s}$
Page erase time ${ }^{2}$	tPERASE		20	26.4	35	ms
Mass erase time ${ }^{3}$	$\mathrm{t}_{\text {MERASE }}$		20	26.5	35	ms
Device erase time ${ }^{4} 5$	t DERASE	$\mathrm{T} \leq 85^{\circ} \mathrm{C}$	-	82	100	ms
		$\mathrm{T} \leq 125^{\circ} \mathrm{C}$	-	82	110	ms
Erase current ${ }^{6}$	IERASE	Page Erase	-	-	1.6	mA
Write current ${ }^{6}$	IWRITE		-	-	3.8	mA
Supply voltage during flash erase and write	$\mathrm{V}_{\text {FLASH }}$		1.62	-	3.6	V
Note: 1. Flash data retention info 2. From setting the ERASE and hold times for flash 3. Mass erase is issued by 4. Device erase is issued Word (ULW). 5. From setting the DEVIC and hold times for flash 6. Measured at $25^{\circ} \mathrm{C}$.	mation is pub PAGE bit in ontrol signal the CPU and er the AAP ERASE bit in ontrol signal	in the Quarterly Quality and Rel VRITECMD to 1 until the BUSY bit cluded. s all flash. ee and erases all flash, SRAM, th CMD to 1 until the ERASEBUSY cluded.	Report SC_ST Bit (LB) AAP_S	is cle and is	0. Inte data 0. In	setup Lock setup

4.1.14 General-Purpose I/O (GPIO)

Table 4.40. General-Purpose I/O (GPIO)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Input low voltage ${ }^{1}$	$\mathrm{V}_{\text {IL }}$	GPIO pins	-	-	IOVDD*0.3	V
Input high voltage ${ }^{1}$	V_{IH}	GPIO pins	IOVDD*0.7	-	-	V
Output high voltage relative to IOVDD	V_{OH}	Sourcing 3 mA, IOVDD $\geq 3 \mathrm{~V}$, DRIVESTRENGTH ${ }^{2}=$ WEAK	IOVDD*0.8	-	-	V
		```Sourcing 1.2 mA, IOVDD \geq 1.62 V, DRIVESTRENGTH }\mp@subsup{}{}{2}= WEA```	IOVDD*0.6	-	-	V
		Sourcing $20 \mathrm{~mA}, ~ I O V D D \geq 3 \mathrm{~V}$, DRIVESTRENGTH ${ }^{2}=$ STRONG	IOVDD*0.8	-	-	V
		Sourcing 8 mA, IOVDD $\geq 1.62 \mathrm{~V}$, DRIVESTRENGTH ${ }^{2}=$ STRONG	IOVDD*0.6	-	-	V
Output low voltage relative to IOVDD	$\mathrm{V}_{\mathrm{OL}}$	Sinking $3 \mathrm{~mA}, ~ I O V D D \geq 3 \mathrm{~V}$, DRIVESTRENGTH ${ }^{2}=$ WEAK	-	-	IOVDD*0.2	V
		Sinking 1.2 mA, IOVDD $\geq 1.62 \mathrm{~V}$, DRIVESTRENGTH ${ }^{2}=$ WEAK	-	-	IOVDD*0.4	V
		Sinking $20 \mathrm{~mA}, ~ I O V D D \geq 3 \mathrm{~V}$, DRIVESTRENGTH ${ }^{2}=$ STRONG	-	-	IOVDD*0.2	V
		Sinking 8 mA , IOVDD $\geq 1.62 \mathrm{~V}$, DRIVESTRENGTH ${ }^{2}=$ STRONG	-	-	IOVDD*0.4	V
Input leakage current	IIOLEAK	All GPIO except LFXO pins, GPIO $\leq I O V D D, \mathrm{~T} \leq 85^{\circ} \mathrm{C}$	-	0.1	30	nA
		$\begin{aligned} & \text { LFXO Pins, GPIO } \leq \text { IOVDD, } \mathrm{T} \leq \\ & 85^{\circ} \mathrm{C} \end{aligned}$	-	0.1	50	nA
		All GPIO except LFXO pins, GPIO $\leq$ IOVDD, T > $85^{\circ} \mathrm{C}$	-	-	110	nA
		$\begin{aligned} & \text { LFXO Pins, GPIO } \leq \text { IOVDD, } \mathrm{T}> \\ & 85^{\circ} \mathrm{C} \end{aligned}$	-	-	250	nA
Input leakage current on 5VTOL pads above IOVDD	I5VTOLLEAK	IOVDD < GPIO $\leq I O V D D+2 \mathrm{~V}$	-	3.3	15	$\mu \mathrm{A}$
I/O pin pull-up/pull-down resistor ${ }^{3}$	RPUD		30	40	65	k $\Omega$
Pulse width of pulses removed by the glitch suppression filter	tioglitch		15	25	45	ns


Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Output fall time, From 70\% to $30 \%$ of $\mathrm{V}_{\text {IO }}$	$\mathrm{t}_{\text {IOOF }}$	$C_{L}=50 \mathrm{pF}$   DRIVESTRENGTH ${ }^{2}=$ STRONG, SLEWRATE $^{2}=0 \times 6$	-	1.8	-	ns
		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \text { DRIVESTRENGTH }{ }^{2}=\text { WEAK } \\ & \text { SLEWRATE }^{2}=0 \times 6 \end{aligned}$	-	4.5	-	ns
Output rise time, From 30\% to $70 \%$ of $\mathrm{V}_{10}$	$\mathrm{t}_{\text {IOOR }}$	$C_{L}=50 \mathrm{pF}$   DRIVESTRENGTH ${ }^{2}=$ STRONG, SLEWRATE $=0 \times 6^{2}$	-	2.2	-	ns
		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { DRIVESTRENGTH }{ }^{2}=\text { WEAK, } \\ & \text { SLEWRATE }^{2}=0 \times 6 \end{aligned}$	-	7.4	-	ns
Note:   1. GPIO input threshold are proportional to the IOVDD supply, except for RESETn which is proportional to AVDD.   2. In GPIO_Pn_CTRL register.   3. GPIO pull-ups are referenced to the IOVDD supply, except for RESETn, which connects to AVDD.						

### 4.1.15 Voltage Monitor (VMON)

Table 4.41. Voltage Monitor (VMON)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Supply current (including I_SENSE)	$\mathrm{I}_{\mathrm{VMON}}$	In EM0 or EM1, 1 active channel, $\mathrm{T} \leq 85^{\circ} \mathrm{C}$	-	6.3	10	$\mu \mathrm{A}$
		In EM0 or EM1, 1 active channel, $\mathrm{T}>85^{\circ} \mathrm{C}$	-	-	14	$\mu \mathrm{A}$
		In EM0 or EM1, All channels active, $\mathrm{T} \leq 85^{\circ} \mathrm{C}$	-	12.5	17	$\mu \mathrm{A}$
		In EM0 or EM1, All channels active, $\mathrm{T}>85^{\circ} \mathrm{C}$	-	-	21	$\mu \mathrm{A}$
		In EM2, EM3 or EM4, 1 channel active and above threshold	-	62	-	nA
		In EM2, EM3 or EM4, 1 channel active and below threshold	-	62	-	nA
		In EM2, EM3 or EM4, All channels active and above threshold	-	99	-	nA
		In EM2, EM3 or EM4, All channels active and below threshold	-	99	-	nA
Loading of monitored supply	Isense	In EM0 or EM1	-	2	-	$\mu \mathrm{A}$
		In EM2, EM3 or EM4	-	2	-	nA
Threshold range	V Vmon_Range		1.62	-	3.4	V
Threshold step size	NVMON_STESP	Coarse	-	200	-	mV
		Fine	-	20	-	mV
Response time	$t_{\text {VMON_RES }}$	Supply drops at $1 \mathrm{~V} / \mu \mathrm{s}$ rate	-	460	-	ns
Hysteresis	V $\mathrm{VMON}_{\text {_HYST }}$		-	26	-	mV

### 4.1.16 Analog to Digital Converter (ADC)

Specified at 1 Msps, ADCCLK $=16 \mathrm{MHz}$, BIASPROG $=0$, GPBIASACC $=0$, unless otherwise indicated.
Table 4.42. Analog to Digital Converter (ADC)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Resolution	VRESOLUTION		6	-	12	Bits
Input voltage range ${ }^{1}$	$\mathrm{V}_{\text {ADCIN }}$	Single ended	-	-	$V_{\text {FS }}$	V
		Differential	$-V_{F S} / 2$	-	$\mathrm{V}_{\mathrm{FS}} / 2$	V
Input range of external reference voltage, single ended and differential	VADCREFIN_P		1	-	$\mathrm{V}_{\text {AVDD }}$	V
Power supply rejection ${ }^{2}$	$\mathrm{PSRR}_{\text {ADC }}$	At DC	-	80	-	dB
Analog input common mode rejection ratio	$\mathrm{CMRR}_{\text {ADC }}$	At DC	-	80	-	dB
Current from all supplies, using internal reference buffer. Continuous operation. WARMUPMODE ${ }^{3}=$ KEEPADC WARM	I $A D C$ _CONTINUOUS_LP	1 Msps / 16 MHz ADCCLK, BIASPROG $=0, G P B I A S A C C=14$	-	270	315	$\mu \mathrm{A}$
		250 ksps / 4 MHz ADCCLK, BIASPROG $=6$, GPBIASACC $=14$	-	125	-	$\mu \mathrm{A}$
		$62.5 \mathrm{ksps} / 1 \mathrm{MHz}$ ADCCLK, BIASPROG $=15$, GPBIASACC $=1^{4}$	-	80	-	$\mu \mathrm{A}$
Current from all supplies, using internal reference buffer. Duty-cycled operation. WARMUPMODE ${ }^{3}=$ NORMAL	IADC_NORMAL_LP	$35 \mathrm{ksps} / 16 \mathrm{MHz}$ ADCCLK, BIASPROG $=0$, GPBIASACC $=1^{4}$	-	45	-	$\mu \mathrm{A}$
		$5 \mathrm{ksps} / 16 \mathrm{MHz}$ ADCCLK BIASPROG $=0$, GPBIASACC $=14$	-	8	-	$\mu \mathrm{A}$
Current from all supplies, using internal reference buffer. Duty-cycled operation. AWARMUPMODE ${ }^{3}=$ KEEPINSTANDBY or KEEPINSLOWACC	IADC_STANDBY_LP	125 ksps / 16 MHz ADCCLK, BIASPROG $=0$, GPBIASACC $=1^{4}$	-	105	-	$\mu \mathrm{A}$
		$35 \mathrm{ksps} / 16 \mathrm{MHz}$ ADCCLK, BIASPROG $=0$, GPBIASACC $=1^{4}$	-	70	-	$\mu \mathrm{A}$
Current from all supplies, using internal reference buffer. Continuous operation. WARMUPMODE ${ }^{3}=$ KEEPADCWARM	IADC_CONTINUOUS_HP	1 Msps / 16 MHz ADCCLK, BIASPROG $=0$, GPBIASACC $=04$	-	325	-	$\mu \mathrm{A}$
		$250 \mathrm{ksps} / 4 \mathrm{MHz}$ ADCCLK, BIASPROG $=6$, GPBIASACC $=04$	-	175	-	$\mu \mathrm{A}$
		$62.5 \mathrm{ksps} / 1 \mathrm{MHz}$ ADCCLK, BIASPROG $=15, \operatorname{GPBIASACC}=0^{4}$	-	125	-	$\mu \mathrm{A}$
Current from all supplies, using internal reference buffer. Duty-cycled operation. WARMUPMODE ${ }^{3}=$ NORMAL	$I_{\text {ADC_NORMAL_HP }}$	$35 \mathrm{ksps} / 16 \mathrm{MHz}$ ADCCLK, BIASPROG $=0$, GPBIASACC $=0^{4}$	-	85	-	$\mu \mathrm{A}$
		$5 \mathrm{ksps} / 16 \mathrm{MHz}$ ADCCLK BIASPROG $=0$, GPBIASACC $=04$	-	16	-	$\mu \mathrm{A}$
Current from all supplies, using internal reference buffer. Duty-cycled operation. AWARMUPMODE ${ }^{3}=$ KEEPINSTANDBY or KEEPINSLOWACC	IADC_STANDBY_HP	125 ksps / 16 MHz ADCCLK, BIASPROG $=0$, GPBIASACC $=0{ }^{4}$	-	160	-	$\mu \mathrm{A}$
		$35 \mathrm{ksps} / 16 \mathrm{MHz}$ ADCCLK, BIASPROG $=0$, GPBIASACC $=0^{4}$	-	125	-	$\mu \mathrm{A}$
Current from HFPERCLK	$\mathrm{I}_{\text {ADC_CLK }}$	HFPERCLK $=16 \mathrm{MHz}$	-	160	-	$\mu \mathrm{A}$


Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
ADC clock frequency	$\mathrm{f}_{\text {ADCCLK }}$		-	-	16	MHz
Throughput rate	$\mathrm{f}_{\text {ADCRATE }}$		-	-	1	Msps
Conversion time ${ }^{5}$	$\mathrm{t}_{\text {ADCCONV }}$	6 bit	-	7	-	cycles
		8 bit	-	9	-	cycles
		12 bit	-	13	-	cycles
Startup time of reference generator and ADC core	$\mathrm{t}_{\text {ADCSTART }}$	WARMUPMODE ${ }^{3}=$ NORMAL $^{\text {a }}$	-	-	5	$\mu \mathrm{s}$
		WARMUPMODE $^{3}=$ KEEPINSTANDBY	-	-	2	$\mu \mathrm{s}$
		$\text { WARMUPMODE }{ }^{3}=\text { KEEPINSLO- }$ WACC	-	-	1	$\mu \mathrm{s}$
SNDR at 1 Msps and $\mathrm{f}_{\mathrm{IN}}=$ 10 kHz	$\mathrm{SNDR}_{\text {ADC }}$	Internal reference ${ }^{6}$, differential measurement	58	67	-	dB
		External reference ${ }^{7}$, differential measurement	-	68	-	dB
Spurious-free dynamic range (SFDR)	$\mathrm{SFDR}_{\text {ADC }}$	1 MSamples/s, 10 kHz full-scale sine wave	-	75	-	dB
Differential non-linearity (DNL)	DNL ${ }_{\text {adc }}$	12 bit resolution, No missing codes	-1	-	2	LSB
Integral non-linearity (INL), End point method	INL ${ }_{\text {ADC }}$	12 bit resolution	-6	-	6	LSB
Offset error	$\mathrm{V}_{\text {ADCOFFSETERR }}$		-3	0	3	LSB
Gain error in ADC	$\mathrm{V}_{\text {ADCGAIN }}$	Using internal reference	-	-0.2	3.5	\%
		Using external reference	-	-1	-	\%
Temperature sensor slope	$\mathrm{V}_{\text {TS_SLOPE }}$		-	-1.84	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

## Note:

1. The absolute voltage allowed at any ADC input is dictated by the power rail supplied to on-chip circuitry, and may be lower than the effective full scale voltage. All ADC inputs are limited to the ADC supply (AVDD or DVDD depending on EMU_PWRCTRL_ANASW). Any ADC input routed through the APORT will further be limited by the IOVDD supply to the pin.
2. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL.
3. In ADCn_CTRL register.
4. In ADCn_BIASPROG register.
5. Derived from ADCCLK.
6. Internal reference option used corresponds to selection 2 V 5 in the SINGLECTRL_REF or SCANCTRL_REF register field. The differential input range with this configuration is $\pm 1.25 \mathrm{~V}$. Typical value is characterized using full-scale sine wave input. Minimum value is production-tested using sine wave input at 1.5 dB lower than full scale.
7. External reference is 1.25 V applied externally to ADCnEXTREFP, with the selection CONF in the SINGLECTRL_REF or SCANCTRL_REF register field and VREFP in the SINGLECTRLX_VREFSEL or SCANCTRLX_VREFSEL field. The differential input range with this configuration is $\pm 1.25 \mathrm{~V}$.

### 4.1.17 Analog Comparator (ACMP)

Table 4.43. Analog Comparator (ACMP)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Input voltage range	$\mathrm{V}_{\text {ACMPIN }}$	ACMPVDD = ACMPn_CTRL_PWRSEL ${ }^{1}$	-	-	$\mathrm{V}_{\text {ACMPVDD }}$	V
Supply voltage	$\mathrm{V}_{\text {ACMPVDD }}$	BIASPROG $^{2} \leq 0 \times 10$ or FULL- $\mathrm{BIAS}^{2}=0$	1.8	-	VVREGVDD_ max	V
		$0 \times 10<$ BIASPROG $^{2} \leq 0 \times 20$ and FULLBIAS ${ }^{2}=1$	2.1	-	$V_{\text {VREGVDD }}$ MAX	V
Active current not including voltage reference ${ }^{3}$	$\mathrm{I}_{\text {ACMP }}$	$\mathrm{BIASPROG}^{2}=1$, FULLBIAS $^{2}=0$	-	50	-	nA
		$\begin{aligned} & \text { BIASPROG }^{2}=0 \times 10, \text { FULLBIAS }^{2} \\ & =0 \end{aligned}$	-	306	-	nA
		$\begin{aligned} & \text { BIASPROG }^{2}=0 \times 02, \text { FULLBIAS }^{2} \\ & =1 \end{aligned}$	-	6.5	-	$\mu \mathrm{A}$
		$\begin{aligned} & \text { BIASPROG }^{2}=0 \times 20, \text { FULLBIAS }^{2} \\ & =1 \end{aligned}$	-	75	92	$\mu \mathrm{A}$
Current consumption of internal voltage reference ${ }^{3}$	IACMPREF	VLP selected as input using 2.5 V Reference / 4 (0.625 V)	-	50	-	nA
		VLP selected as input using VDD	-	20	-	nA
		VBDIV selected as input using 1.25 V reference / 1	-	4.1	-	$\mu \mathrm{A}$
		VADIV selected as input using VDD/1	-	2.4	-	$\mu \mathrm{A}$


Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Hysteresis $\left(\mathrm{V}_{\mathrm{CM}}=1.25 \mathrm{~V}\right.$, BIASPROG $^{2}=0 \times 10$, FULL$\left.B I A S^{2}=1\right)$	$\mathrm{V}_{\text {ACMPHYST }}$	HYSTSEL ${ }^{4}=$ HYSTO	-3	0	3	mV
		HYSTSEL ${ }^{4}=$ HYST1	5	18	27	mV
		HYSTSEL ${ }^{4}=$ HYST2	12	33	50	mV
		HYSTSEL ${ }^{4}=$ HYST3	17	46	65	mV
		HYSTSEL ${ }^{4}=$ HYST4	23	57	82	mV
		HYSTSEL ${ }^{4}=$ HYST5	26	68	98	mV
		HYSTSEL ${ }^{4}=$ HYST6	30	79	130	mV
		HYSTSEL ${ }^{4}=$ HYST7	34	90	150	mV
		HYSTSEL ${ }^{4}=$ HYST8	-3	0	3	mV
		HYSTSEL ${ }^{4}=$ HYST9	-27	-18	-5	mV
		HYSTSEL ${ }^{4}=$ HYST10	-50	-33	-12	mV
		HYSTSEL ${ }^{4}=$ HYST11	-65	-45	-17	mV
		HYSTSEL ${ }^{4}=$ HYST12	-82	-57	-23	mV
		HYSTSEL ${ }^{4}=$ HYST13	-98	-67	-26	mV
		HYSTSEL ${ }^{4}=$ HYST14	-130	-78	-30	mV
		HYSTSEL ${ }^{4}=$ HYST15	-150	-88	-34	mV
Comparator delay ${ }^{5}$	$\mathrm{t}_{\text {ACMPDELAY }}$	$\mathrm{BIASPROG}^{2}=1$, FULLBIAS $^{2}=0$	-	30	-	$\mu \mathrm{s}$
		$\begin{aligned} & \text { BIASPROG }^{2}=0 \times 10, \text { FULLBIAS }^{2} \\ & =0 \end{aligned}$	-	3.7	-	$\mu \mathrm{s}$
		$\begin{aligned} & \text { BIASPROG }^{2}=0 \times 02, \text { FULLBIAS }^{2} \\ & =1 \end{aligned}$	-	360	-	ns
		$\begin{aligned} & \text { BIASPROG }^{2}=0 \times 20, \text { FULLBIAS }^{2} \\ & =1 \end{aligned}$	-	35	-	ns
Offset voltage	$V_{\text {ACMPOFFSET }}$	$\begin{aligned} & \text { BIASPROG }^{2}=0 \times 10, \text { FULLBIAS }^{2} \\ & =1 \end{aligned}$	-35	-	35	mV
Reference voltage	$V_{\text {ACMPREF }}$	Internal 1.25 V reference	1	1.25	1.47	V
		Internal 2.5 V reference	2	2.5	2.8	V
Capacitive sense internal resistance	RCSRES	CSRESSEL ${ }^{6}=0$	-	infinite	-	k $\Omega$
		CSRESSEL $^{6}=1$	-	15	-	$k \Omega$
		CSRESSEL ${ }^{6}=2$	-	27	-	$k \Omega$
		CSRESSEL ${ }^{6}=3$	-	39	-	k $\Omega$
		CSRESSEL $^{6}=4$	-	51	-	$\mathrm{k} \Omega$
		CSRESSEL $^{6}=5$	-	100	-	$\mathrm{k} \Omega$
		CSRESSEL ${ }^{6}=6$	-	162	-	$k \Omega$
		CSRESSEL $^{6}=7$	-	235	-	$\mathrm{k} \Omega$


Parameter	Symbol	Test Condition	Min	Typ
Note:				
1. ACMPVDD is a supply chosen by the setting in ACMPn_CTRL_PWRSEL and may be IOVDD, AVDD or DVDD.				
2. In ACMPn_CTRL register.				
3. The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference. $I_{\text {ACMPTOTAL }}=I_{\text {ACMP }}+$				
$I_{\text {ACMPREF. }}$				
4. In ACMPn_HYSTERESIS registers.				
5. $\pm 100 \mathrm{mV}$ differential drive.				
6. In ACMPn_INPUTSEL register.				

### 4.1.18 Digital to Analog Converter (VDAC)

DRIVESTRENGTH = 2 unless otherwise specified. Primary VDAC output.
Table 4.44. Digital to Analog Converter (VDAC)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Output voltage	V DACOUT	Single-Ended	0	-	$V_{\text {VREF }}$	V
		Differential ${ }^{1}$	$-V_{\text {VREF }}$	-	$V_{\text {VREF }}$	V
Current consumption including references (2 channels) ${ }^{2}$	${ }^{\text {DAC }}$	500 ksps, 12-bit, DRIVES-   TRENGTH = 2, REFSEL = 4	-	396	-	$\mu \mathrm{A}$
		44.1 ksps, 12-bit, DRIVESTRENGTH $=1$, REFSEL $=4$	-	72	-	$\mu \mathrm{A}$
		200 Hz refresh rate, 12-bit Sam-ple-Off mode in EM2, DRIVESTRENGTH $=2$, REFSEL $=4$, SETTLETIME $=0 \times 02$, WARMUPTIME $=0 \times 0 \mathrm{~A}$	-	1.2	-	$\mu \mathrm{A}$
Current from HFPERCLK ${ }^{3}$	IDAC_CLK		-	5.8	-	$\mu \mathrm{A} / \mathrm{MHz}$
Sample rate	$\mathrm{SR}_{\text {DAC }}$		-	-	500	ksps
DAC clock frequency	$f_{\text {DAC }}$		-	-	1	MHz
Conversion time	t ${ }_{\text {DACCONV }}$	$\mathrm{f}_{\mathrm{DAC}}=1 \mathrm{MHz}$	2	-	-	$\mu \mathrm{s}$
Settling time	t DACSETTLE	50\% fs step settling to 5 LSB	-	2.5	-	$\mu \mathrm{s}$
Startup time	$\mathrm{t}_{\text {DACSTARTUP }}$	Enable to $90 \%$ fs output, settling to 10 LSB	-	-	12	$\mu \mathrm{s}$
Output impedance	$\mathrm{R}_{\text {OUT }}$	DRIVESTRENGTH $=2,0.4 \mathrm{~V} \leq$   $\mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {OPA }}-0.4 \mathrm{~V},-8 \mathrm{~mA}<$   IOUT $<8 \mathrm{~mA}$, Full supply range	-	2	-	$\Omega$
		DRIVESTRENGTH $=0$ or $1,0.4 \mathrm{~V}$   $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {OPA }}-0.4 \mathrm{~V},-400 \mu \mathrm{~A}<$ lout $<400 \mu \mathrm{~A}$, Full supply range	-	2	-	$\Omega$
		DRIVESTRENGTH $=2,0.1 \mathrm{~V} \leq$   $\mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {OPA }}-0.1 \mathrm{~V},-2 \mathrm{~mA}<$   IOUT $<2 \mathrm{~mA}$, Full supply range	-	2	-	$\Omega$
		DRIVESTRENGTH $=0$ or $1,0.1 \mathrm{~V}$   $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {OPA }}-0.1 \mathrm{~V},-100 \mu \mathrm{~A}<$   lout $<100 \mu \mathrm{~A}$, Full supply range	-	2	-	$\Omega$
Power supply rejection ratio ${ }^{4}$	PSRR	Vout $=50 \% \mathrm{fs}$. DC	-	65.5	-	dB


Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Signal to noise and distortion ratio ( 1 kHz sine wave), Noise band limited to 250 kHz	SNDR ${ }_{\text {DAC }}$	500 ksps, single-ended, internal 1.25 V reference	-	60.4	-	dB
		500 ksps , single-ended, internal 2.5 V reference	-	61.6	-	dB
		500 ksps , single-ended, 3.3V VDD reference	-	64.0	-	dB
		500 ksps , differential, internal 1.25 V reference	-	63.3	-	dB
		500 ksps , differential, internal 2.5 V reference	-	64.4	-	dB
		500 ksps , differential, 3.3V VDD reference	-	65.8	-	dB
Signal to noise and distortion ratio ( 1 kHz sine wave), Noise band limited to 22 kHz	SNDR DAC_BAND	500 ksps, single-ended, internal 1.25 V reference	-	65.3	-	dB
		500 ksps , single-ended, internal 2.5 V reference	-	66.7	-	dB
		500 ksps , single-ended, 3.3V VDD reference	-	70.0	-	dB
		500 ksps , differential, internal 1.25 V reference	-	67.8	-	dB
		500 ksps , differential, internal 2.5 V reference	-	69.0	-	dB
		500 ksps , differential, 3.3V VDD reference	-	68.5	-	dB
Total harmonic distortion	THD		-	70.2	-	dB
Differential non-linearity ${ }^{5}$	DNL ${ }_{\text {DAC }}$		-0.99	-	1	LSB
Intergral non-linearity	$\mathrm{INL}_{\text {DAC }}$		-4	-	4	LSB
Offset error ${ }^{6}$	V OFFSET	$\mathrm{T}=25^{\circ} \mathrm{C}$	-8	-	8	mV
		Across operating temperature range	-25	-	25	mV
Gain error ${ }^{6}$	$\mathrm{V}_{\text {GAIN }}$	$\mathrm{T}=25^{\circ} \mathrm{C}$, Low-noise internal reference (REFSEL $=1 \mathrm{~V} 25 \mathrm{LN}$ or 2V5LN)	-2.5	-	2.5	\%
		$\mathrm{T}=25^{\circ} \mathrm{C}$, Internal reference (REFSEL = 1V25 or 2 V 5 )	-5	-	5	\%
		$\mathrm{T}=25^{\circ} \mathrm{C}$, External reference (REFSEL = VDD or EXT)	-1.8	-	1.8	\%
		Across operating temperature range, Low-noise internal reference (REFSEL $=1 \mathrm{~V} 25 \mathrm{LN}$ or 2V5LN)	-3.5	-	3.5	\%
		Across operating temperature range, Internal reference (REFSEL = 1V25 or 2 V 5 )	-7.5	-	7.5	\%
		Across operating temperature range, External reference (REFSEL = VDD or EXT)	$-2.0$	-	2.0	\%


Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
External load capactiance, OUTSCALE=0	CLOAD		-	-	75	pF
Note:						
1. In differential mode, the output is defined as the difference between two single-ended outputs. Absolute voltage on each output is limited to the single-ended range.						
2. Supply current specifications are for VDAC circuitry operating with static output only and do not include current required to drive the load.						
3. Current from HFPERCLK is dependent on HFPERCLK frequency. This current contributes to the total supply current used when the clock to the DAC peripheral is enabled in the CMU.						
4. PSRR calculated as $20{ }^{*} \log _{10}\left(\Delta \mathrm{VDD} / \Delta \mathrm{V}_{\text {OUT }}\right)$, VDAC output at $90 \%$ of full scale						
5. Entire range is monotonic and has no missing codes.						
6. Gain is calculated by measuring the slope from $10 \%$ to $90 \%$ of full scale. Offset is calculated by comparing actual VDAC output at $10 \%$ of full scale to ideal VDAC output at $10 \%$ of full scale with the measured gain.						

### 4.1.19 Current Digital to Analog Converter (IDAC)

Table 4.45. Current Digital to Analog Converter (IDAC)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Number of ranges	NIDAC_RANGES		-	4	-	ranges
Output current	IIDAC_OUT	RANGESEL ${ }^{1}=$ RANGE0 $^{\text {a }}$	0.05	-	1.6	$\mu \mathrm{A}$
		RANGESEL ${ }^{1}=$ RANGE1	1.6	-	4.7	$\mu \mathrm{A}$
		RANGESEL ${ }^{1}=$ RANGE2	0.5	-	16	$\mu \mathrm{A}$
		RANGESEL ${ }^{1}=$ RANGE3	2	-	64	$\mu \mathrm{A}$
Linear steps within each range	NIDAC_STEPS		-	32	-	steps
Step size	SSIDAC	RANGESEL ${ }^{1}=$ RANGE0	-	50	-	nA
		RANGESEL ${ }^{1}=$ RANGE1	-	100	-	nA
		RANGESEL ${ }^{1}=$ RANGE2	-	500	-	nA
		RANGESEL ${ }^{1}=$ RANGE3	-	2	-	$\mu \mathrm{A}$
Total accuracy, STEPSEL ${ }^{1}=$ $0 \times 10$	ACC ${ }_{\text {IDAC }}$	EM0 or EM1, AVDD $=3.3 \mathrm{~V}, \mathrm{~T}=25$ ${ }^{\circ} \mathrm{C}$	-3	-	3	\%
		EM0 or EM1, Across operating temperature range	-18	-	22	\%
		EM2 or EM3, Source mode, RANGESEL ${ }^{1}=$ RANGE0, $A V D D=3.3$ V, $\mathrm{T}=25^{\circ} \mathrm{C}$	-	-2	-	\%
		EM2 or EM3, Source mode, RANGESEL $^{1}=$ RANGE1, AVDD $=3.3$ $\mathrm{V}, \mathrm{T}=25^{\circ} \mathrm{C}$	-	-1.7	-	\%
		EM2 or EM3, Source mode, RANGESEL $^{1}=$ RANGE2, AVDD $=3.3$ $\mathrm{V}, \mathrm{T}=25^{\circ} \mathrm{C}$	-	-0.8	-	\%
		EM2 or EM3, Source mode, RANGESEL ${ }^{1}=$ RANGE3, $\operatorname{AVDD}=3.3$ $\mathrm{V}, \mathrm{~T}=25^{\circ} \mathrm{C}$	-	-0.5	-	\%
		EM2 or EM3, Sink mode, RANGESEL ${ }^{1}=$ RANGE0, $A V D D=3.3$ V, $\mathrm{T}=25^{\circ} \mathrm{C}$	-	-0.7	-	\%
		EM2 or EM3, Sink mode, RANGESEL ${ }^{1}=$ RANGE1, $A V D D=3.3$ V, $\mathrm{T}=25^{\circ} \mathrm{C}$	-	-0.6	-	\%
		EM2 or EM3, Sink mode, RANGESEL ${ }^{1}=$ RANGE2, AVDD $=3.3$ $\mathrm{V}, \mathrm{T}=25^{\circ} \mathrm{C}$	-	-0.5	-	\%
		EM2 or EM3, Sink mode, RANGESEL $^{1}=$ RANGE3, AVDD $=3.3$ V, $\mathrm{T}=25^{\circ} \mathrm{C}$	-	-0.5	-	\%
Start up time	tidAC_SU	Output within $1 \%$ of steady state value	-	5	-	$\mu \mathrm{s}$


Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Settling time, (output settled within $1 \%$ of steady state value),	tidac_SETTLE	Range setting is changed	-	5	-	$\mu \mathrm{s}$
		Step value is changed	-	1	-	$\mu \mathrm{s}$
Current consumption ${ }^{2}$	IIDAC	EM0 or EM1 Source mode, excluding output current, Across operating temperature range	-	11	18	$\mu \mathrm{A}$
		EM0 or EM1 Sink mode, excluding output current, Across operating temperature range	-	13	21	$\mu \mathrm{A}$
		EM2 or EM3 Source mode, excluding output current, $\mathrm{T}=25^{\circ} \mathrm{C}$	-	0.023	-	$\mu \mathrm{A}$
		EM2 or EM3 Sink mode, excluding output current, $\mathrm{T}=25^{\circ} \mathrm{C}$	-	0.041	-	$\mu \mathrm{A}$
		EM2 or EM3 Source mode, excluding output current, $\mathrm{T} \geq 85^{\circ} \mathrm{C}$	-	11	-	$\mu \mathrm{A}$
		EM2 or EM3 Sink mode, excluding output current, $\mathrm{T} \geq 85^{\circ} \mathrm{C}$	-	13	-	$\mu \mathrm{A}$
Output voltage compliance in source mode, source current change relative to current sourced at 0 V	ICOMP_SRC	$\begin{aligned} & \text { RANGESEL }{ }^{1}=\text { RANGEO, output } \\ & \text { voltage }=\min \left(\text { V }_{\text {IOVDD }},\right. \\ & \text { V }_{\text {AVDD } \left.^{2}-100 \mathrm{mV}\right)}{ }^{2} \end{aligned}$	-	0.11	-	\%
		$\begin{aligned} & \text { RANGESEL }{ }^{1}=\text { RANGE1, output } \\ & \text { voltage }=\min \left(\text { V IOVDD }^{2}\right. \\ & \text { V }_{\text {VVDD } \left.^{2}-100 \mathrm{mV}\right)} \end{aligned}$	-	0.06	-	\%
		$\begin{aligned} & \text { RANGESEL }{ }^{1}=\text { RANGE2, output } \\ & \text { voltage }=\min \left(V_{\text {IOVDD }},\right. \\ & \text { V } \left._{\text {VVDD }^{2}-150 ~}{ }^{2} \mathrm{~V}\right) \end{aligned}$	-	0.04	-	\%
		$\begin{aligned} & \text { RANGESEL }{ }^{1}=\text { RANGE3, output } \\ & \text { voltage }=\min (\text { V IOVDD } \\ & \text { V } \left._{\text {AVDD }}{ }^{2}-250 \mathrm{mV}\right) \end{aligned}$	-	0.03	-	\%
Output voltage compliance in sink mode, sink current change relative to current sunk at IOVDD	ICOMP_SINK	RANGESEL¹ $=$ RANGE0, output voltage $=100 \mathrm{mV}$	-	0.12	-	\%
		RANGESEL ${ }^{1}=$ RANGE1, output voltage $=100 \mathrm{mV}$	-	0.05	-	\%
		RANGESEL ${ }^{1}=$ RANGE2, output voltage $=150 \mathrm{mV}$	-	0.04	-	\%
		RANGESEL ${ }^{1}=$ RANGE3, output voltage $=250 \mathrm{mV}$	-	0.03	-	\%

## Note:

1. In IDAC_CURPROG register.
2. The IDAC is supplied by either AVDD, DVDD, or IOVDD based on the setting of ANASW in the EMU_PWRCTRL register and PWRSEL in the IDAC_CTRL register. Setting PWRSEL to 1 selects IOVDD. With PWRSEL cleared to 0, ANASW selects between AVDD (0) and DVDD (1).

### 4.1.20 Capacitive Sense (CSEN)

Table 4.46. Capacitive Sense (CSEN)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Single conversion time (1x accumulation)	$\mathrm{t}_{\mathrm{CNV}}$	12-bit SAR Conversions	-	20.2	-	$\mu \mathrm{s}$
		16-bit SAR Conversions	-	26.4	-	$\mu \mathrm{s}$
		Delta Modulation Conversion (single comparison)	-	1.55	-	$\mu \mathrm{s}$
Maximum external capacitive load	Cextmax	IREFPROG=7 (Gain = 1x), including routing parasitics	-	68	-	pF
		IREFPROG=0 (Gain = 10x), including routing parasitics	-	680	-	pF
Maximum external series impedance	$\mathrm{R}_{\text {EXtMAX }}$		-	1	-	k $\Omega$
Supply current, EM2 bonded conversions, WARMUPMODE=NORMAL, WARMUPCNT=0	ICSEN_BOND	12-bit SAR conversions, 20 ms conversion rate, IREFPROG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF ) ${ }^{1}$	-	326	-	nA
		Delta Modulation conversions, 20 ms conversion rate, IRE-   FPROG=7 (Gain = 1x), 10 channels bonded (total capacitance of $330 \mathrm{pF})^{1}$	-	226	-	nA
		12-bit SAR conversions, 200 ms conversion rate, IREFPROG=7 (Gain = 1x), 10 channels bonded (total capacitance of 330 pF ) ${ }^{1}$	-	33	-	nA
		Delta Modulation conversions, 200 ms conversion rate, IREFPROG=7 (Gain = 1x), 10 channels bonded (total capacitance of $330 \mathrm{pF})^{1}$	-	25	-	nA
Supply current, EM2 scan conversions, WARMUPMODE=NORMAL, WARMUPCNT=0	ICSEN_EM2	12-bit SAR conversions, 20 ms scan rate, IREFPROG=0 (Gain = 10x), 8 samples per scan ${ }^{1}$	-	690	-	nA
		Delta Modulation conversions, 20 ms scan rate, 8 comparisons per sample (DMCR = 1, DMR = 2), IREFPROG=0 (Gain = 10x), 8 samples per scan ${ }^{1}$	-	515	-	nA
		12-bit SAR conversions, 200 ms scan rate, IREFPROG=0 (Gain = 10x), 8 samples per scan ${ }^{1}$	-	79	-	nA
		Delta Modulation conversions, 200 ms scan rate, 8 comparisons per sample (DMCR = 1, DMR = 2), IREFPROG=0 (Gain = 10x), 8 samples per scan ${ }^{1}$	-	57	-	nA


Parameter	Symbol	Test Condition	Min	Typ	Max
Supply current, continuous   conversions, WARMUP-   MODE=KEEPCSENWARM	ICSEN_ACTIVE	SAR or Delta Modulation conver-   sions of 33 pF capacitor, IRE-   FPROG=0 (Gain = 10x), always   on	-	90.5	-
HFPERCLK supply current	ICSEN_HFPERCLK	Current contribution from   HFPERCLK when clock to CSEN   block is enabled.	-	2.25	-

## Note:

1. Current is specified with a total external capacitance of 33 pF per channel. Average current is dependent on how long the peripheral is actively sampling channels within the scan period, and scales with the number of samples acquired. Supply current for a specific application can be estimated by multiplying the current per sample by the total number of samples per period (total_current = single_sample_current * (number_of_channels * accumulation)).

### 4.1.21 Operational Amplifier (OPAMP)

Unless otherwise indicated, specified conditions are: Non-inverting input configuration, VDD $=3.3 \mathrm{~V}$, DRIVESTRENGTH $=2$, MAINOUTEN $=1, C_{\text {LOAD }}=75 \mathrm{pF}$ with OUTSCALE $=0$, or C COAD $=37.5 \mathrm{pF}$ with OUTSCALE $=1$. Unit gain buffer and $3 X$-gain connection as specified in table footnotes ${ }^{12}$.

Table 4.47. Operational Amplifier (OPAMP)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Supply voltage (from AVDD)	$\mathrm{V}_{\text {OPA }}$	HCMDIS $=0$, Rail-to-rail input range	2	-	3.8	V
		HCMDIS $=1$	1.62	-	3.8	V
Input voltage	$\mathrm{V}_{\text {IN }}$	HCMDIS $=0$, Rail-to-rail input range	Vvss	-	$\mathrm{V}_{\text {OPA }}$	V
		HCMDIS $=1$	V ${ }_{\text {Vss }}$	-	$\mathrm{V}_{\text {OPA }}-1.2$	V
Input impedance	$\mathrm{R}_{\mathrm{IN}}$		100	-	-	$\mathrm{M} \Omega$
Output voltage	$\mathrm{V}_{\text {OUT }}$		Vvss	-	$\mathrm{V}_{\text {OPA }}$	V
Load capacitance ${ }^{3}$	CLOAD	OUTSCALE $=0$	-	-	75	pF
		OUTSCALE = 1	-	-	37.5	pF
Output impedance	ROUT	DRIVESTRENGTH $=2$ or $3,0.4 \mathrm{~V}$ $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {OPA }}-0.4 \mathrm{~V}$, $-8 \mathrm{~mA}<$ IOUT < 8 mA , Buffer connection, Full supply range	-	0.25	-	$\Omega$
		DRIVESTRENGTH $=0$ or $1,0.4 \mathrm{~V}$ $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {OPA }}-0.4 \mathrm{~V},-400 \mu \mathrm{~A}<$ $\mathrm{I}_{\text {OUt }}<400 \mu \mathrm{~A}$, Buffer connection, Full supply range	-	0.6	-	$\Omega$
		DRIVESTRENGTH $=2$ or $3,0.1 \mathrm{~V}$ $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {OPA }}-0.1 \mathrm{~V}$, $-2 \mathrm{~mA}<$ lout < 2 mA , Buffer connection, Full supply range	-	0.4	-	$\Omega$
		DRIVESTRENGTH $=0$ or $1,0.1 \mathrm{~V}$ $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {OPA }}-0.1 \mathrm{~V},-100 \mu \mathrm{~A}<$ IOUT < $100 \mu \mathrm{~A}$, Buffer connection, Full supply range	-	1	-	$\Omega$
Internal closed-loop gain	$\mathrm{G}_{\mathrm{CL}}$	Buffer connection	0.99	1	1.01	-
		$3 x$ Gain connection	2.93	2.99	3.05	-
		16x Gain connection	15.07	15.7	16.33	-
Active current ${ }^{4}$	IOPA	DRIVESTRENGTH $=3$, OUTSCALE $=0$	-	580	-	$\mu \mathrm{A}$
		DRIVESTRENGTH $=2$, OUTSCALE $=0$	-	176	-	$\mu \mathrm{A}$
		DRIVESTRENGTH = 1, OUTSCALE $=0$	-	13	-	$\mu \mathrm{A}$
		DRIVESTRENGTH $=0$, OUTSCALE $=0$	-	4.7	-	$\mu \mathrm{A}$


Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Open-loop gain	GoL	DRIVESTRENGTH = 3	-	135	-	dB
		DRIVESTRENGTH = 2	-	137	-	dB
		DRIVESTRENGTH = 1	-	121	-	dB
		DRIVESTRENGTH = 0	-	109	-	dB
Loop unit-gain frequency ${ }^{5}$	UGF	DRIVESTRENGTH $=3$, Buffer connection	-	3.38	-	MHz
		DRIVESTRENGTH = 2, Buffer connection	-	0.9	-	MHz
		DRIVESTRENGTH = 1, Buffer connection	-	132	-	kHz
		DRIVESTRENGTH $=0$, Buffer connection	-	34	-	kHz
		DRIVESTRENGTH $=3,3 x$ Gain connection	-	2.57	-	MHz
		DRIVESTRENGTH $=2,3 x$ Gain connection	-	0.71	-	MHz
		DRIVESTRENGTH $=1,3 x$ Gain connection	-	113	-	kHz
		DRIVESTRENGTH $=0,3 x$ Gain connection	-	28	-	kHz
Phase margin	PM	DRIVESTRENGTH = 3, Buffer connection	-	67	-	。
		DRIVESTRENGTH = 2, Buffer connection	-	69	-	-
		DRIVESTRENGTH = 1, Buffer connection	-	63	-	-
		DRIVESTRENGTH = 0, Buffer connection	-	68	-	-
Output voltage noise	Nout	DRIVESTRENGTH = 3, Buffer connection, $10 \mathrm{~Hz}-10 \mathrm{MHz}$	-	146	-	$\mu \mathrm{Vrms}$
		DRIVESTRENGTH = 2, Buffer connection, $10 \mathrm{~Hz}-10 \mathrm{MHz}$	-	163	-	$\mu \mathrm{Vrms}$
		DRIVESTRENGTH = 1, Buffer connection, $10 \mathrm{~Hz}-1 \mathrm{MHz}$	-	170	-	$\mu \mathrm{Vrms}$
		DRIVESTRENGTH = 0, Buffer connection, $10 \mathrm{~Hz}-1 \mathrm{MHz}$	-	176	-	$\mu \mathrm{Vrms}$
		DRIVESTRENGTH $=3$, $3 x$ Gain connection, $10 \mathrm{~Hz}-10 \mathrm{MHz}$	-	313	-	$\mu \mathrm{Vrms}$
		DRIVESTRENGTH $=2$, $3 x$ Gain connection, $10 \mathrm{~Hz}-10 \mathrm{MHz}$	-	271	-	$\mu \mathrm{Vrms}$
		DRIVESTRENGTH $=1$, $3 x$ Gain connection, $10 \mathrm{~Hz}-1 \mathrm{MHz}$	-	247	-	$\mu \mathrm{Vrms}$
		DRIVESTRENGTH $=0,3 x$ Gain connection, $10 \mathrm{~Hz}-1 \mathrm{MHz}$	-	245	-	$\mu \mathrm{Vrms}$


Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Slew rate ${ }^{6}$	SR	DRIVESTRENGTH $=3$, INCBW=17	-	4.7	-	V/us
		$\begin{aligned} & \text { DRIVESTRENGTH = 3, } \\ & \text { INCBW=0 } \end{aligned}$	-	1.5	-	V/ $/$ s
		DRIVESTRENGTH $=2$, INCBW=1 ${ }^{7}$	-	1.27	-	V/us
		$\begin{aligned} & \text { DRIVESTRENGTH }=2 \text {, } \\ & \text { INCBW }=0 \end{aligned}$	-	0.42	-	V/ $/$ s
		$\begin{aligned} & \text { DRIVESTRENGTH = 1, } \\ & \text { INCBW }=17^{7} \end{aligned}$	-	0.17	-	V/us
		$\begin{aligned} & \text { DRIVESTRENGTH = } 1, \\ & \text { INCBW=0 } \end{aligned}$	-	0.058	-	V/us
		$\begin{aligned} & \text { DRIVESTRENGTH = 0, } \\ & \text { INCBW }=1^{7} \end{aligned}$	-	0.044	-	V/ $/$ s
		$\begin{aligned} & \text { DRIVESTRENGTH }=0, \\ & \text { INCBW }=0 \end{aligned}$	-	0.015	-	V/ $/$ s
Startup time ${ }^{8}$	TStart	DRIVESTRENGTH = 2	-	-	12	$\mu \mathrm{s}$
Input offset voltage	Vosı	$\begin{aligned} & \text { DRIVESTRENGTH }=2 \text { or } 3, \mathrm{~T}= \\ & 25^{\circ} \mathrm{C} \end{aligned}$	-2	-	2	mV
		$\begin{aligned} & \text { DRIVESTRENGTH }=1 \text { or } 0, \mathrm{~T}= \\ & 25^{\circ} \mathrm{C} \end{aligned}$	-2	-	2	mV
		DRIVESTRENGTH $=2$ or 3 , across operating temperature range	-12	-	12	mV
		DRIVESTRENGTH = 1 or 0, across operating temperature range	-30	-	30	mV
DC power supply rejection ratio ${ }^{9}$	$\mathrm{PSRR}_{\text {DC }}$	Input referred	-	70	-	dB
DC common-mode rejection ratio ${ }^{9}$	$\mathrm{CMRR}_{\text {DC }}$	Input referred	-	70	-	dB
Total harmonic distortion	THD ${ }_{\text {OPA }}$	DRIVESTRENGTH $=2,3 x$ Gain connection, 1 kHz , $\mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{OPA}}-0.1 \mathrm{~V}$	-	90	-	dB
		DRIVESTRENGTH $=0,3 x$ Gain connection, $0.1 \mathrm{kHz}, \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V}$ to $\mathrm{V}_{\text {OPA }}-0.1 \mathrm{~V}$	-	90	-	dB


| Parameter | Symbol | Test Condition | Min | Typ | Max |
| :--- | :--- | :--- | :--- | :--- | :--- | Unit

## Note:

1. Specified configuration for Unit gain buffer configuration is: $\operatorname{INCBW}=0, H C M D I S=0, R E S I N S E L=D I S A B L E . ~ V_{\text {INPUT }}=0.5 \mathrm{~V}$, $\mathrm{V}_{\text {OUTPUT }}=0.5 \mathrm{~V}$.
2. Specified configuration for $3 X$-Gain configuration is: $\operatorname{INCBW}=1$, HCMDIS $=1$, RESINSEL $=\mathrm{VSS}, \mathrm{V}_{\text {INPUT }}=0.5 \mathrm{~V}, \mathrm{~V}_{\text {OUTPUT }}=1.5$ V . Nominal voltage gain is 3 .
3. If the maximum C COAD is exceeded, an isolation resistor is required for stability. See AN0038 for more information.
4. Current into the load resistor is excluded. When the OPAMP is connected with closed-loop gain $>1$, there will be extra current to drive the resistor feedback network. The internal resistor feedback network has total resistance of 143.5 kOhm , which will cause another $\sim 10 \mu \mathrm{~A}$ current when the OPAMP drives 1.5 V between output and ground.
5. In unit gain connection, UGF is the gain-bandwidth product of the OPAMP. In $3 x$ Gain connection, UGF is the gain-bandwidth product of the OPAMP and $1 / 3$ attenuation of the feedback network.
6. Step between 0.2 V and $\mathrm{V}_{\text {OPA }}-0.2 \mathrm{~V}, 10 \%-90 \%$ rising/falling range.
7. When INCBW is set to 1 the OPAMP bandwidth is increased. This is allowed only when the non-inverting close-loop gain is $\geq 3$, or the OPAMP may not be stable.
8. From enable to output settled. In sample-and-off mode, RC network after OPAMP will contribute extra delay. Settling error $<1 \mathrm{mV}$.
9. When HCMDIS=1 and input common mode transitions the region from $\mathrm{V}_{\mathrm{OPA}}-1.4 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{OPA}}-1 \mathrm{~V}$, input offset will change. PSRR and CMRR specifications do not apply to this transition region.

### 4.1.22 Pulse Counter (PCNT)

Table 4.48. Pulse Counter (PCNT)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Input frequency	FIN	Asynchronous Single and Quad-   rature Modes	-	-	20	MHz
		Sampled Modes with Debounce   filter set to 0.	-	-	8	kHz

### 4.1.23 Analog Port (APORT)

Table 4.49. Analog Port (APORT)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Supply current ${ }^{12}$	I APORT	Operation in EM0/EM1	-	7	-	$\mu \mathrm{A}$
		Operation in EM2/EM3	-	67	-	nA

## Note:

1. Supply current increase that occurs when an analog peripheral requests access to APORT. This current is not included in reported peripheral currents. Additional peripherals requesting access to APORT do not incur further current.
2. Specified current is for continuous APORT operation. In applications where the APORT is not requested continuously (e.g. periodic ACMP requests from LESENSE in EM2), the average current requirements can be estimated by mutiplying the duty cycle of the requests by the specified continuous current number.

### 4.1.24 I2C

### 4.1.24.1 I2C Standard-mode (Sm) 1

Table 4.50. I2C Standard-mode (Sm) ${ }^{1}$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
SCL clock frequency ${ }^{2}$	$\mathrm{f}_{\text {SCL }}$		0	-	100	kHz
SCL clock low time	t Low		4.7	-	-	$\mu \mathrm{s}$
SCL clock high time	$\mathrm{t}_{\text {HIGH }}$		4	-	-	$\mu \mathrm{s}$
SDA set-up time	tSU_DAT		250	-	-	ns
SDA hold time ${ }^{3}$	$\mathrm{t}_{\text {HD_D }}$ DAT		100	-	3450	ns
Repeated START condition set-up time	tSU_STA		4.7	-	-	$\mu \mathrm{s}$
(Repeated) START condition hold time	$\mathrm{t}_{\text {HD_STA }}$		4	-	-	$\mu \mathrm{s}$
STOP condition set-up time	tsu_Sto		4	-	-	$\mu \mathrm{s}$
Bus free time between a STOP and START condition	$\mathrm{t}_{\text {BUF }}$		4.7	-	-	$\mu \mathrm{s}$

## Note:

1. For CLHR set to 0 in the I2Cn_CTRL register.
2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual.
3. The maximum SDA hold time ( $\mathrm{t}_{\text {HD_DAT }}$ ) needs to be met only when the device does not stretch the low time of SCL (tLow).
4.1.24.2 I2C Fast-mode (Fm) 1

Table 4.51. I2C Fast-mode (Fm) ${ }^{1}$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
SCL clock frequency ${ }^{2}$	$\mathrm{f}_{\text {SCL }}$		0	-	400	kHz
SCL clock low time	tow		1.3	-	-	$\mu \mathrm{s}$
SCL clock high time	$\mathrm{t}_{\text {HIGH }}$		0.6	-	-	$\mu \mathrm{s}$
SDA set-up time	tsu_DAT		100	-	-	ns
SDA hold time ${ }^{3}$	$t_{\text {HD_DAT }}$		100	-	900	ns
Repeated START condition set-up time	tsu_STA		0.6	-	-	$\mu \mathrm{s}$
(Repeated) START condition hold time	thd_STA		0.6	-	-	$\mu \mathrm{s}$
STOP condition set-up time	tsu_Sto		0.6	-	-	$\mu \mathrm{s}$
Bus free time between a STOP and START condition	$\mathrm{t}_{\text {BUF }}$		1.3	-	-	$\mu \mathrm{s}$
Note:   1. For CLHR set to 1 in the   2. For the minimum HFPER   3. The maximum SDA hold	2Cn_CTR   CLK frequ   time ( $\mathrm{t}_{\mathrm{HD}, \mathrm{D}}$	r.   uired in Fast-mod ds to be met only	not str	eren   low	al.   SCL	

4.1.24.3 I2C Fast-mode Plus (Fm+) ${ }^{1}$

Table 4.52. I2C Fast-mode Plus (Fm+) ${ }^{1}$

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
SCL clock frequency ${ }^{2}$	$\mathrm{f}_{\text {SCL }}$		0	-	1000	kHz
SCL clock low time	tow		0.5	-	-	$\mu \mathrm{s}$
SCL clock high time	$\mathrm{t}_{\text {HIGH }}$		0.26	-	-	$\mu \mathrm{s}$
SDA set-up time	tsu_DAT		50	-	-	ns
SDA hold time	thD_DAT		100	-	-	ns
Repeated START condition set-up time	tsu_STA		0.26	-	-	$\mu \mathrm{s}$
(Repeated) START condition hold time	thd_StA		0.26	-	-	$\mu \mathrm{s}$
STOP condition set-up time	tsu_Sto		0.26	-	-	$\mu \mathrm{s}$
Bus free time between a STOP and START condition	$\mathrm{t}_{\text {BUF }}$		0.5	-	-	$\mu \mathrm{s}$
Note:   1. For CLHR set to 0 or 1 in   2. For the minimum HFPER	the I 2 Cn CLK frequ	gister.   uired in Fast-mod	cha	re	manua	

### 4.1.25 USART SPI

## SPI Master Timing

Table 4.53. SPI Master Timing

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
SCLK period ${ }^{123}$	tsCLK		2 *   thfPerclk	-	-	ns
CS to MOSI ${ }^{12}$	tCs_MO		-14.5	-	13.5	ns
SCLK to MOSI ${ }^{12}$	tSCLK_MO		-8.5	-	8	ns
MISO setup time ${ }^{12}$	tSU_MI	$\mathrm{IOVDD}=1.62 \mathrm{~V}$	92	-	-	ns
		$\mathrm{IOVDD}=3.0 \mathrm{~V}$	42	-	-	ns
MISO hold time ${ }^{12}$	$\mathrm{tH}_{\mathbf{H}} \mathrm{Ml}$		-10	-	-	ns

## Note:

1. Applies for both CLKPHA $=0$ and CLKPHA $=1$ (figure only shows CLKPHA $=0$ ).
2. Measurement done with 8 pF output loading at $10 \%$ and $90 \%$ of $\mathrm{V}_{\mathrm{DD}}$ (figure shows $50 \%$ of $\mathrm{V}_{\mathrm{DD}}$ ).
3. $\mathrm{t}_{\text {HFPERCLK }}$ is one period of the selected HFPERCLK.


Figure 4.1. SPI Master Timing Diagram

## SPI Slave Timing

Table 4.54. SPI Slave Timing

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
SCLK period ${ }^{123}$	tscLK		$6 \text { * }$   thfPERCLK	-	-	ns
SCLK high time ${ }^{123}$	tSCLK_HI		$\begin{gathered} 2.5^{*} \\ \text { t }_{\text {HFPERCLK }} \end{gathered}$	-	-	ns
SCLK low time ${ }^{123}$	tsclk_LO		$\begin{gathered} 2.5^{*} \\ \mathrm{t}_{\text {HFPERCLK }} \end{gathered}$	-	-	ns
CS active to MISO ${ }^{12}$	tCS_ACT_MI		4	-	70	ns
CS disable to MISO ${ }^{12}$	tCS_DIS_MI		4	-	50	ns
MOSI setup time ${ }^{12}$	tsu_MO		8	-	-	ns
MOSI hold time ${ }^{123}$	$\mathrm{t}_{\mathrm{H}} \mathrm{MO}$		7	-	-	ns
SCLK to MISO ${ }^{123}$	tsCLK_MI		$10+1.5 \text { * }$   thfPERCLK	-	$65+2.5 \text { * }$   $t_{\text {HFPERCLK }}$	ns
Note:   1. Applies for both CLKPHA $=0$ and CLKPHA $=1$ (figure only shows CLKPHA $=0$ ).   2. Measurement done with 8 pF output loading at $10 \%$ and $90 \%$ of $\mathrm{V}_{\mathrm{DD}}$ (figure shows $50 \%$ of $\mathrm{V}_{\mathrm{DD}}$ ).   3. $\mathrm{t}_{\text {HFPERCLK }}$ is one period of the selected HFPERCLK.						



Figure 4.2. SPI Slave Timing Diagram

### 4.2 Typical Performance Curves

Typical performance curves indicate typical characterized performance under the stated conditions.

### 4.2.1 Supply Current



EMO, 38 MHz HFRCO, With DCDC, LN DCM


EMO, $38 \mathrm{MHz} \mathrm{HFRCO} ,\mathrm{With} \mathrm{DCDC}$,


EMO, 38 MHz HFRCO , With DCDC, LP


Figure 4.3. EMO Active Mode Typical Supply Current vs. Temperature


Figure 4.4. EM1 Sleep Mode Typical Supply Current vs. Temperature

Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories.

EM2, RTCC running from
LFRCO (non-duty cycled)


EM4H, 128B RAM Retention,


EM3, 256kB RAM Retention, CRYOTIMER from ULFRCO



Figure 4.5. EM2, EM3, EM4H and EM4S Typical Supply Current vs. Temperature


Figure 4.6. EM0 and EM1 Mode Typical Supply Current vs. Supply

Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories.

EM2, RTCC running from LFRCO (non-duty cycled), T=25C


EM3, 256kB RAM Retention, CRYOTIMER from ULFRCO, $\mathrm{T}=25 \mathrm{C}$



EM4S, T=25C


Figure 4.7. EM2, EM3, EM4H and EM4S Typical Supply Current vs. Supply

### 4.2.2 DC-DC Converter

Default test conditions: $C C M$ mode, $\operatorname{LDCDC}=4.7 \mu \mathrm{H}, \mathrm{CDCDC}=4.7 \mu \mathrm{~F}, \mathrm{VDCDC}$ I $=3.3 \mathrm{~V}, \mathrm{VDCDC}$ O $=1.8 \mathrm{~V}$, FDCDC_LN $=7 \mathrm{MHz}$


Figure 4.8. DC-DC Converter Typical Performance Characteristics


Figure 4.9. DC-DC Converter Transition Waveforms


Output Power vs. Supply, PAVDD = External Supply, 25 Degrees C, 2.4 GHz, CW


Figure 4.10. 2.4 GHz RF Transmitter Output Power



Figure 4.11. 2.4 GHz RF Receiver Sensitivity

## 5. Typical Connection Diagrams

### 5.1 Power

Typical power supply connections for direct supply, without using the internal DC-DC converter, are shown in the following figure.


Figure 5.1. EFR32FG12 Typical Application Circuit: Direct Supply Configuration without DC-DC converter

Typical power supply circuits using the internal DC-DC converter are shown below. The MCU operates from the DC-DC converter supply. For low RF transmit power applications less than 13 dBm , the RF PA may be supplied by the DC-DC converter. For OPNs supporting high power RF transmission, the RF PA must be directly supplied by VDD for RF transmit power greater than 13 dBm .


Figure 5.2. EFR32FG12 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC)


Figure 5.3. EFR32FG12 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDD)

### 5.2 RF Matching Networks

Typical RF matching network circuit diagrams are shown in Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 118 for applications in the 2.4 GHz band, and in Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page 118 for applications in the sub-GHz band. Application-specific component values can be found in the EFR32xG12 Reference Manual. For low RF transmit power applications less than 13 dBm , the two-element match is recommended. For OPNs supporting high power RF transmission, the four-element match is recommended for high RF transmit power (> 13dBm).

## 2-Element Match for 2.4GHz Band

4-Element Match for 2.4 GHz Band


Figure 5.4. Typical 2.4 GHz RF impedance-matching network circuits

Sub-GHz Match Topology I (169-500 MHz)


Sub-GHz Match Topology 2 (500-915 MHz)


Figure 5.5. Typical Sub-GHz RF impedance-matching network circuits

### 5.3 Other Connections

Other components or connections may be required to meet the system-level requirements. Application Note AN0002: "Hardware Design Considerations" contains detailed information on these connections. Application Notes can be accessed on the Silicon Labs website (www.silabs.com/32bit-appnotes).

## 6. Pin Definitions

### 6.1 BGA125 2.4 GHz and Sub-GHz Device Pinout



Figure 6.1. BGA125 2.4 GHz and Sub-GHz Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 6.9 GPIO Functionality Table or 6.10 Alternate Functionality Overview.

Table 6.1. BGA125 2.4 GHz and Sub-GHz Device Pinout

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PF3	A1	GPIO $(5 \mathrm{~V})$	PF1	A2	GPIO (5V)
PC5	A3	GPIO $(5 \mathrm{~V})$	PC3	A4	GPIO (5V)
PC0	A5	GPIO $(5 \mathrm{~V})$	PC11	A6	GPIO (5V)
PC9	A7	GPIO $(5 \mathrm{~V})$	PC7	A8	GPIO (5V)


Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
DECOUPLE	A9	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. This pin should not be used to power any external circuits.	DVDD	A10	Digital power supply.
VREGVDD	A11	Voltage regulator VDD input	VREGSW	A12	DCDC regulator switching node
VREGVSS	A13   B11   B12	Voltage regulator VSS	PF8	B1	GPIO (5V)
PF2	B2	GPIO (5V)	PF0	B3	GPIO (5V)
PC4	B4	GPIO (5V)	PC1	B5	GPIO (5V)
PJ14	B6	GPIO (5V)	PC10	B7	GPIO (5V)
PC8	B8	GPIO (5V)	PC6	B9	GPIO (5V)
IOVDD	B10   F2   F11   M12	Digital IO power supply.	AVDD	B13	Analog power supply.
PF11	C1	GPIO (5V)	PF10	C2	GPIO (5V)
PF9	C3	GPIO (5V)	PC2	C5	GPIO (5V)
PJ15	C6	GPIO (5V)	PB15	C10	GPIO
PB14	C11	GPIO	PB13	C12	GPIO
PB12	C13	GPIO	PF14	D1	GPIO (5V)
PF13	D2	GPIO (5V)	PF12	D3	GPIO (5V)
PB11	D11	GPIO	PB10	D12	GPIO (5V)
PB9	D13	GPIO (5V)	PK1	E1	GPIO (5V)
PK0	E2	GPIO	PF15	E3	GPIO (5V)


Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VSS	E5 E6 E7 E8 E9 F5 F6 F7 F8 F9 G5 G6 G7 G8 G9 H5 H6 H7 H8 H9 J5 J6 J7 J8 J9 K2 L2	Ground	PB8	E12	GPIO (5V)
PB7	E13	GPIO (5V)	PK2	F1	GPIO (5V)
PB6	F12	GPIO (5V)	PI3	F13	GPIO (5V)
PF5	G1	GPIO (5V)	PF4	G2	GPIO (5V)
PI2	G11	GPIO (5V)	PI1	G12	GPIO (5V)
PIO	G13	GPIO (5V)	PF7	H1	GPIO (5V)
PF6	H2	GPIO (5V)	PA9	H12	GPIO (5V)
PA8	H13	GPIO (5V)	RFVDD	$\begin{aligned} & \mathrm{J} 1 \\ & \mathrm{~J} 2 \end{aligned}$	Radio power supply
PA7	J11	GPIO (5V)	PA6	J12	GPIO (5V)
PA5	J13	GPIO (5V)	HFXTAL_N	K1	High Frequency Crystal input pin.
PA4	K12	GPIO	PA3	K13	GPIO
HFXTAL_P	L1	High Frequency Crystal output pin.	BODEN	L10	Brown-Out Detector Enable. This pin may be left disconnected or tied to AVDD.
PA2	L12	GPIO	PA1	L13	GPIO
RESETn	M1	Reset input, active low. This pin is internally pulled up to AVDD. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	RFVSS	$\begin{aligned} & \text { M2 } \\ & \text { M3 } \\ & \text { M4 } \\ & \text { M5 } \\ & \text { N5 } \end{aligned}$	Radio Ground
PAVSS	$\begin{aligned} & \text { M6 } \\ & \text { M7 } \end{aligned}$	Power Amplifier (PA) voltage regulator VSS	PAVDD	$\begin{aligned} & \text { M8 } \\ & \text { N8 } \end{aligned}$	Power Amplifier (PA) voltage regulator VDD input
PD9	M9	GPIO (5V)	PD11	M10	GPIO (5V)
PD13	M11	GPIO	PAO	M13	GPIO


Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
SUBGRF_OP	N1	Sub GHz Differential RF output, positive   path.	SUBGRF_ON	N2	Sub GHz Differential RF output, nega-   tive path.
SUBGRF_IP	N3	Sub GHz Differential RF input, positive   path.	SUBGRF_IN	N4	Sub GHz Differential RF input, negative   path.
2G4RF_ION	N6	2.4 GHz Differential RF input/output,   negative path. This pin should be exter-   nally grounded.	2G4RF_IOP	N7	2.4 GHz Differential RF input/output,   positive path.
PD8	N9	GPIO (5V)	PD10	N10	GPIO (5V)
PD12	N11	GPIO (5V)	PD14	N12	GPIO
PD15	N13	GPIO			
Note:   1. GPIO with 5V tolerance are indicated by (5V).					

### 6.2 BGA125 2.4 GHz Device Pinout



Figure 6.2. BGA125 2.4 GHz Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 6.9 GPIO Functionality Table or 6.10 Alternate Functionality Overview.

Table 6.2. BGA125 2.4 GHz Device Pinout

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PF3	A1	GPIO (5V)	PF1	A2	GPIO (5V)
PC5	A3	GPIO (5V)	PC3	A4	GPIO (5V)
PC0	A5	GPIO (5V)	PC11	A6	GPIO (5V)
PC9	A7	GPIO (5V)	PC7	A8	GPIO (5V)
DECOUPLE	A9	Decouple output for on-chip voltage   regulator. An external decoupling ca-   pacitor is required at this pin. This pin   should not be used to power any exter-   nal circuits.	DVDD	A10	Digital power supply.


Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VREGVDD	A11	Voltage regulator VDD input	VREGSW	A12	DCDC regulator switching node
VREGVSS	A13   B11   B12	Voltage regulator VSS	PF8	B1	GPIO (5V)
PF2	B2	GPIO (5V)	PF0	B3	GPIO (5V)
PC4	B4	GPIO (5V)	PC1	B5	GPIO (5V)
PJ14	B6	GPIO (5V)	PC10	B7	GPIO (5V)
PC8	B8	GPIO (5V)	PC6	B9	GPIO (5V)
IOVDD	B10   F2   F11   M12	Digital IO power supply.	AVDD	B13	Analog power supply.
PF11	C1	GPIO (5V)	PF10	C2	GPIO (5V)
PF9	C3	GPIO (5V)	PC2	C5	GPIO (5V)
PJ15	C6	GPIO (5V)	PB15	C10	GPIO
PB14	C11	GPIO	PB13	C12	GPIO
PB12	C13	GPIO	PF14	D1	GPIO (5V)
PF13	D2	GPIO (5V)	PF12	D3	GPIO (5V)
PB11	D11	GPIO	PB10	D12	GPIO (5V)
PB9	D13	GPIO (5V)	PK1	E1	GPIO (5V)
PK0	E2	GPIO	PF15	E3	GPIO (5V)
VSS	E5 E6 E7 E8 E9 F5 F6 F7 F8 F9 G5 G6 G7 G8 G9 H5 H6 H7 H8 H9 J5 J6 J7 J8 J9 K2 L2	Ground	PB8	E12	GPIO (5V)
PB7	E13	GPIO (5V)	PK2	F1	GPIO (5V)
PB6	F12	GPIO (5V)	PI3	F13	GPIO (5V)


Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PF5	G1	GPIO (5V)	PF4	G2	GPIO (5V)
PI2	G11	GPIO (5V)	PI1	G12	GPIO (5V)
PIO	G13	GPIO (5V)	PF7	H1	GPIO (5V)
PF6	H2	GPIO (5V)	PA9	H12	GPIO (5V)
PA8	H13	GPIO (5V)	RFVDD	$\begin{aligned} & \text { J1 } \\ & \text { J2 } \end{aligned}$	Radio power supply
PA7	J11	GPIO (5V)	PA6	J12	GPIO (5V)
PA5	J13	GPIO (5V)	HFXTAL_N	K1	High Frequency Crystal input pin.
PA4	K12	GPIO	PA3	K13	GPIO
HFXTAL_P	L1	High Frequency Crystal output pin.	BODEN	L10	Brown-Out Detector Enable. This pin may be left disconnected or tied to AVDD.
PA2	L12	GPIO	PA1	L13	GPIO
RESETn	M1	Reset input, active low. This pin is internally pulled up to AVDD. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	RFVSS	$\begin{aligned} & \text { M2 } \\ & \text { M3 } \\ & \text { M4 } \\ & \text { M5 } \\ & \text { N5 } \end{aligned}$	Radio Ground
PAVSS	$\begin{aligned} & \text { M6 } \\ & \text { M7 } \end{aligned}$	Power Amplifier (PA) voltage regulator VSS	PAVDD	$\begin{aligned} & \text { M8 } \\ & \text { N8 } \end{aligned}$	Power Amplifier (PA) voltage regulator VDD input
PD9	M9	GPIO (5V)	PD11	M10	GPIO (5V)
PD13	M11	GPIO	PA0	M13	GPIO
NC	$\begin{aligned} & \text { N1 } \\ & \text { N2 } \\ & \text { N3 } \\ & \text { N4 } \end{aligned}$	No Connect.	2G4RF_ION	N6	2.4 GHz Differential RF input/output, negative path. This pin should be externally grounded.
2G4RF_IOP	N7	2.4 GHz Differential RF input/output, positive path.	PD8	N9	GPIO (5V)
PD10	N10	GPIO (5V)	PD12	N11	GPIO (5V)
PD14	N12	GPIO	PD15	N13	GPIO
Note:   1. GPIO with 5 V tolerance are indicated by $(5 \mathrm{~V})$.					

### 6.3 BGA125 Sub-GHz Device Pinout



Figure 6.3. BGA125 Sub-GHz Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 6.9 GPIO Functionality Table or 6.10 Alternate Functionality Overview.

Table 6.3. BGA125 Sub-GHz Device Pinout

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PF3	A1	GPIO (5V)	PF1	A2	GPIO (5V)
PC5	A3	GPIO (5V)	PC3	A4	GPIO (5V)
PC0	A5	GPIO (5V)	PC11	A6	GPIO (5V)
PC9	A7	GPIO (5V)	PC7	A8	GPIO (5V)
DECOUPLE	A9	Decouple output for on-chip voltage   regulator. An external decoupling ca-   pacitor is required at this pin. This pin   should not be used to power any exter-   nal circuits.	DVDD	A10	Digital power supply.


Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VREGVDD	A11	Voltage regulator VDD input	VREGSW	A12	DCDC regulator switching node
VREGVSS	A13   B11   B12	Voltage regulator VSS	PF8	B1	GPIO (5V)
PF2	B2	GPIO (5V)	PF0	B3	GPIO (5V)
PC4	B4	GPIO (5V)	PC1	B5	GPIO (5V)
PJ14	B6	GPIO (5V)	PC10	B7	GPIO (5V)
PC8	B8	GPIO (5V)	PC6	B9	GPIO (5V)
IOVDD	$\begin{gathered} \text { B10 } \\ \text { F2 } \\ \text { F11 } \\ \text { M12 } \end{gathered}$	Digital IO power supply.	AVDD	B13	Analog power supply.
PF11	C1	GPIO (5V)	PF10	C2	GPIO (5V)
PF9	C3	GPIO (5V)	PC2	C5	GPIO (5V)
PJ15	C6	GPIO (5V)	PB15	C10	GPIO
PB14	C11	GPIO	PB13	C12	GPIO
PB12	C13	GPIO	PF14	D1	GPIO (5V)
PF13	D2	GPIO (5V)	PF12	D3	GPIO (5V)
PB11	D11	GPIO	PB10	D12	GPIO (5V)
PB9	D13	GPIO (5V)	PK1	E1	GPIO (5V)
PK0	E2	GPIO	PF15	E3	GPIO (5V)
VSS	E5   E6   E7   E8   E9   F5   F6   F7   F8   F9   G5   G6   G7   G8   G9   H5   H6   H7   H8   H9   J5   J6   J7   J8   J9   K2   L2   M6   M7	Ground	PB8	E12	GPIO (5V)
PB7	E13	GPIO (5V)	PK2	F1	GPIO (5V)


Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PB6	F12	GPIO (5V)	PI3	F13	GPIO (5V)
PF5	G1	GPIO (5V)	PF4	G2	GPIO (5V)
PI2	G11	GPIO (5V)	PI1	G12	GPIO (5V)
PI0	G13	GPIO (5V)	PF7	H1	GPIO (5V)
PF6	H2	GPIO (5V)	PA9	H12	GPIO (5V)
PA8	H13	GPIO (5V)	RFVDD	J1   J2	Radio power supply
PA7	J11	GPIO (5V)	PA6	J12	GPIO (5V)
PA5	J13	GPIO (5V)	HFXTAL_N	K1	High Frequency Crystal input pin.
PA4	K12	GPIO	K13	GPIO	
HFXTAL_P	L1	High Frequency Crystal output pin.	BODEN	L10	Brown-Out Detector Enable. This pin   may be left disconnected or tied to
PAVDD.					

### 6.4 QFN68 2.4 GHz and Sub-GHz Device Pinout



Figure 6.4. QFN68 2.4 GHz and Sub-GHz Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 6.9 GPIO Functionality Table or 6.10 Alternate Functionality Overview.

Table 6.4. QFN68 2.4 GHz and Sub-GHz Device Pinout

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VSS	0	Ground	PC5	1	GPIO (5V)
PF0	2	GPIO (5V)	PF1	3	GPIO (5V)
PF2	4	GPIO (5V)	PF3	5	GPIO (5V)
PF8	6	GPIO (5V)	PF9	7	GPIO (5V)
PF10	8	GPIO (5V)		9	IOVDD
			41	Digital IO power supply.	
	10	GPIO (5V)	PF5	11	GPIO (5V)


Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PF6	12	GPIO (5V)	PF7	13	GPIO (5V)
RFVDD	14	Radio power supply	HFXTAL_N	15	High Frequency Crystal input pin.
HFXTAL_P	16	High Frequency Crystal output pin.	RESETn	17	Reset input, active low. This pin is internally pulled up to AVDD. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
SUBGRF_OP	18	Sub GHz Differential RF output, positive path.	SUBGRF_ON	19	Sub GHz Differential RF output, negative path.
SUBGRF_IP	20	Sub GHz Differential RF input, positive path.	SUBGRF_IN	21	Sub GHz Differential RF input, negative path.
RFVSS	22	Radio Ground	PAVSS	23	Power Amplifier (PA) voltage regulator VSS
2G4RF_ION	24	2.4 GHz Differential RF input/output, negative path. This pin should be externally grounded.	2G4RF_IOP	25	2.4 GHz Differential RF input/output, positive path.
PAVDD	26	Power Amplifier (PA) voltage regulator VDD input	PD8	27	GPIO (5V)
PD9	28	GPIO (5V)	PD10	29	GPIO (5V)
PD11	30	GPIO (5V)	PD12	31	GPIO (5V)
PD13	32	GPIO	PD14	33	GPIO
PD15	34	GPIO	PA0	35	GPIO
PA1	36	GPIO	PA2	37	GPIO
PA3	38	GPIO	PA4	39	GPIO
PA5	40	GPIO (5V)	PB7	42	GPIO (5V)
PB8	43	GPIO (5V)	PB9	44	GPIO (5V)
PB10	45	GPIO (5V)	PB11	46	GPIO
PB12	47	GPIO	PB13	48	GPIO
AVDD	49	Analog power supply.	PB14	50	GPIO
PB15	51	GPIO	VREGVSS	52	Voltage regulator VSS
VREGSW	53	DCDC regulator switching node	VREGVDD	54	Voltage regulator VDD input
DVDD	55	Digital power supply.	DECOUPLE	56	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. This pin should not be used to power any external circuits.
PC6	58	GPIO (5V)	PC7	59	GPIO (5V)
PC8	60	GPIO (5V)	PC9	61	GPIO (5V)
PC10	62	GPIO (5V)	PC11	63	GPIO (5V)
PC0	64	GPIO (5V)	PC1	65	GPIO (5V)
PC2	66	GPIO (5V)	PC3	67	GPIO (5V)
PC4	68	GPIO (5V)			


| Pin Name | Pin(s) | Description | Pin Name | Pin(s) |
| :--- | :--- | :--- | :--- | :--- | Description | Note: |
| :--- |
| 1. GPIO with 5V tolerance are indicated by $(5 \mathrm{~V})$. |

### 6.5 QFN68 Sub-GHz Device Pinout



Figure 6.5. QFN68 Sub-GHz Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 6.9 GPIO Functionality Table or 6.10 Alternate Functionality Overview.

Table 6.5. QFN68 Sub-GHz Device Pinout

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VSS	0   23	Ground	PC5	1	GPIO (5V)
PF0	2	GPIO (5V)	PF1	3	GPIO (5V)
PF2	4	GPIO (5V)	PF3	5	GPIO (5V)
PF8	6	GPIO (5V)	PF9	7	GPIO (5V)
PF10	8	GPIO (5V)		9	


Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
PF4	10	GPIO (5V)	PF5	11	GPIO (5V)
PF6	12	GPIO (5V)	PF7	13	GPIO (5V)
RFVDD	14	Radio power supply	HFXTAL_N	15	High Frequency Crystal input pin.
HFXTAL_P	16	High Frequency Crystal output pin.	RESETn	17	Reset input, active low. This pin is internally pulled up to AVDD. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.
SUBGRF_OP	18	Sub GHz Differential RF output, positive path.	SUBGRF_ON	19	Sub GHz Differential RF output, negative path.
SUBGRF_IP	20	Sub GHz Differential RF input, positive path.	SUBGRF_IN	21	Sub GHz Differential RF input, negative path.
RFVSS	22	Radio Ground	NC	$\begin{aligned} & 24 \\ & 25 \\ & 26 \end{aligned}$	No Connect.
PD8	27	GPIO (5V)	PD9	28	GPIO (5V)
PD10	29	GPIO (5V)	PD11	30	GPIO (5V)
PD12	31	GPIO (5V)	PD13	32	GPIO
PD14	33	GPIO	PD15	34	GPIO
PAO	35	GPIO	PA1	36	GPIO
PA2	37	GPIO	PA3	38	GPIO
PA4	39	GPIO	PA5	40	GPIO (5V)
PB7	42	GPIO (5V)	PB8	43	GPIO (5V)
PB9	44	GPIO (5V)	PB10	45	GPIO (5V)
PB11	46	GPIO	PB12	47	GPIO
PB13	48	GPIO	AVDD	49	Analog power supply.
PB14	50	GPIO	PB15	51	GPIO
VREGVSS	52	Voltage regulator VSS	VREGSW	53	DCDC regulator switching node
VREGVDD	54	Voltage regulator VDD input	DVDD	55	Digital power supply.
DECOUPLE	56	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. This pin should not be used to power any external circuits.	PC6	58	GPIO (5V)
PC7	59	GPIO (5V)	PC8	60	GPIO (5V)
PC9	61	GPIO (5V)	PC10	62	GPIO (5V)
PC11	63	GPIO (5V)	PC0	64	GPIO (5V)
PC1	65	GPIO (5V)	PC2	66	GPIO (5V)
PC3	67	GPIO (5V)	PC4	68	GPIO (5V)
Note:   1. GPIO with 5 V tolerance are indicated by $(5 \mathrm{~V})$.					

### 6.6 QFN48 2.4 GHz and Sub-GHz Device Pinout



Figure 6.6. QFN48 2.4 GHz and Sub-GHz Device Pinout
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 6.9 GPIO Functionality Table or 6.10 Alternate Functionality Overview.

Table 6.6. QFN48 2.4 GHz and Sub-GHz Device Pinout

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VSS	0	Ground	PF0	1	GPIO (5V)
PF1	2	GPIO (5V)	PF2	3	GPIO (5V)
PF3	4	GPIO (5V)	PF4	5	GPIO (5V)
PF5	6	GPIO (5V)	PF6	7	GPIO (5V)
PF7	8	GPIO (5V)	RFVDD	9	Radio power supply
HFXTAL_N	10	High Frequency Crystal input pin.	HFXTAL_P	11	High Frequency Crystal output pin.


Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
RESETn	12	Reset input, active low. This pin is internally pulled up to AVDD. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	SUBGRF_OP	13	Sub GHz Differential RF output, positive path.
SUBGRF_ON	14	Sub GHz Differential RF output, negative path.	SUBGRF_IP	15	Sub GHz Differential RF input, positive path.
SUBGRF_IN	16	Sub GHz Differential RF input, negative path.	RFVSS	17	Radio Ground
PAVSS	18	Power Amplifier (PA) voltage regulator VSS	2G4RF_ION	19	2.4 GHz Differential RF input/output, negative path. This pin should be externally grounded.
2G4RF_IOP	20	2.4 GHz Differential RF input/output, positive path.	PAVDD	21	Power Amplifier (PA) voltage regulator VDD input
PD13	22	GPIO	PD14	23	GPIO
PD15	24	GPIO	PA0	25	GPIO
PA1	26	GPIO	PA2	27	GPIO
PA3	28	GPIO	PA4	29	GPIO
PA5	30	GPIO (5V)	PB11	31	GPIO
PB12	32	GPIO	PB13	33	GPIO
AVDD	34	Analog power supply.	PB14	35	GPIO
PB15	36	GPIO	VREGVSS	37	Voltage regulator VSS
VREGSW	38	DCDC regulator switching node	VREGVDD	39	Voltage regulator VDD input
DVDD	40	Digital power supply.	DECOUPLE	41	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. This pin should not be used to power any external circuits.
IOVDD	42	Digital IO power supply.	PC6	43	GPIO (5V)
PC7	44	GPIO (5V)	PC8	45	GPIO (5V)
PC9	46	GPIO (5V)	PC10	47	GPIO (5V)
PC11	48	GPIO (5V)			
Note:   1. GPIO with 5 V tolerance are indicated by $(5 \mathrm{~V})$.					

### 6.7 QFN48 2.4 GHz Device Pinout



Figure 6.7. QFN48 2.4 GHz Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 6.9 GPIO Functionality Table or 6.10 Alternate Functionality Overview.

Table 6.7. QFN48 2.4 GHz Device Pinout

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VSS	0	Ground	PF0	1	GPIO (5V)
PF1	2	GPIO (5V)	PF2	3	GPIO (5V)
PF3	4	GPIO (5V)	PF4	5	GPIO (5V)
PF5	6	GPIO (5V)	PF6	7	GPIO (5V)
PF7	8	GPIO (5V)	RFVDD	9	Radio power supply
HFXTAL_N	10	High Frequency Crystal input pin.	HFXTAL_P	11	High Frequency Crystal output pin.


Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
RESETn	12	Reset input, active low. This pin is internally pulled up to AVDD. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	NC	13	No Connect.
RFVSS	14	Radio Ground	PAVSS	15	Power Amplifier (PA) voltage regulator VSS
2G4RF_ION	16	2.4 GHz Differential RF input/output, negative path. This pin should be externally grounded.	2G4RF_IOP	17	2.4 GHz Differential RF input/output, positive path.
PAVDD	18	Power Amplifier (PA) voltage regulator VDD input	PD10	19	GPIO (5V)
PD11	20	GPIO (5V)	PD12	21	GPIO (5V)
PD13	22	GPIO	PD14	23	GPIO
PD15	24	GPIO	PAO	25	GPIO
PA1	26	GPIO	PA2	27	GPIO
PA3	28	GPIO	PA4	29	GPIO
PA5	30	GPIO (5V)	PB11	31	GPIO
PB12	32	GPIO	PB13	33	GPIO
AVDD	34	Analog power supply.	PB14	35	GPIO
PB15	36	GPIO	VREGVSS	37	Voltage regulator VSS
VREGSW	38	DCDC regulator switching node	VREGVDD	39	Voltage regulator VDD input
DVDD	40	Digital power supply.	DECOUPLE	41	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. This pin should not be used to power any external circuits.
IOVDD	42	Digital IO power supply.	PC6	43	GPIO (5V)
PC7	44	GPIO (5V)	PC8	45	GPIO (5V)
PC9	46	GPIO (5V)	PC10	47	GPIO (5V)
PC11	48	GPIO (5V)			

## Note:

1. GPIO with 5 V tolerance are indicated by $(5 \mathrm{~V})$.

### 6.8 QFN48 Sub-GHz Device Pinout



Figure 6.8. QFN48 Sub-GHz Device Pinout

The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the supported features for each GPIO pin, see 6.9 GPIO Functionality Table or 6.10 Alternate Functionality Overview.

Table 6.8. QFN48 Sub-GHz Device Pinout

Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
VSS	0	Ground	PF0	1	GPIO (5V)
PF1	2	GPIO (5V)	PF2	3	GPIO (5V)
PF3	4	GPIO (5V)	PF4	5	GPIO (5V)
PF5	6	GPIO (5V)	PF6	7	GPIO (5V)
PF7	8	GPIO (5V)	RFVDD	9	Radio power supply
HFXTAL_N	10	High Frequency Crystal input pin.	HFXTAL_P	11	High Frequency Crystal output pin.


Pin Name	Pin(s)	Description	Pin Name	Pin(s)	Description
RESETn	12	Reset input, active low. This pin is internally pulled up to AVDD. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released.	SUBGRF_OP	13	Sub GHz Differential RF output, positive path.
SUBGRF_ON	14	Sub GHz Differential RF output, negative path.	SUBGRF_IP	15	Sub GHz Differential RF input, positive path.
SUBGRF_IN	16	Sub GHz Differential RF input, negative path.	RFVSS	17	Radio Ground
PD9	18	GPIO (5V)	PD10	19	GPIO (5V)
PD11	20	GPIO (5V)	PD12	21	GPIO (5V)
PD13	22	GPIO	PD14	23	GPIO
PD15	24	GPIO	PAO	25	GPIO
PA1	26	GPIO	PA2	27	GPIO
PA3	28	GPIO	PA4	29	GPIO
PA5	30	GPIO (5V)	PB11	31	GPIO
PB12	32	GPIO	PB13	33	GPIO
AVDD	34	Analog power supply.	PB14	35	GPIO
PB15	36	GPIO	VREGVSS	37	Voltage regulator VSS
VREGSW	38	DCDC regulator switching node	VREGVDD	39	Voltage regulator VDD input
DVDD	40	Digital power supply.	DECOUPLE	41	Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin. This pin should not be used to power any external circuits.
IOVDD	42	Digital IO power supply.	PC6	43	GPIO (5V)
PC7	44	GPIO (5V)	PC8	45	GPIO (5V)
PC9	46	GPIO (5V)	PC10	47	GPIO (5V)
PC11	48	GPIO (5V)			
Note:   1. GPIO with 5 V tolerance are indicated by $(5 \mathrm{~V})$.					

### 6.9 GPIO Functionality Table

A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of each GPIO pin, followed by the functionality available on that pin. Refer to 6.10 Alternate Functionality Overview for a list of GPIO locations available for each function.

Table 6.9. GPIO Functionality Table

GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PA0	$\begin{gathered} \text { BUSDY } \\ \text { BUSCX } \\ \text { ADCO_EXTN } \end{gathered}$	$\begin{gathered} \text { TIMO_CC0 \#0 } \\ \text { TIMO_CC1 \#31 } \\ \text { TIMO_CC2 \#30 } \\ \text { TIMO_CDTI0 \#29 } \\ \text { TIMO_CDTI1 \#28 } \\ \text { TIM0_CDTI2 \#27 } \\ \text { TIM1_CC0 \#0 } \\ \text { TIM1_CC1 \#31 } \\ \text { TIM1_CC2 \#30 } \\ \text { TIM1_CC3 \#29 } \\ \text { WTIMO_CC0 \#0 } \\ \text { LETIM0_OUT0 \#0 } \\ \text { LETIM0_OUT1 \#31 } \\ \text { PCNT0_S0IN \#0 } \\ \text { PCNT0_S1IN \#31 } \end{gathered}$	US0_TX \#0 US0_RX \#31 US0_CLK \#30 US0_CS \#29 US0_CTS \#28 US0_RTS \#27 US1_TX \#0 US1_RX \#31 US1_CLK \#30 US1_CS \#29 US1_CTS \#28 US1_RTS \#27 LEU0_TX \#0 LEU0_RX \#31 I2C0_SDA \#0 I2C0_SCL \#31	FRC_DCLK \#0   FRC_DOUT \#31   FRC_DFRAME \#30   MODEM_DCLK \#0   MODEM_DIN \#31   MODEM_DOUT \#30   MODEM_ANTO \#29   MODEM_ANT1 \#28	CMU_CLK1 \#0   PRS_CH6 \#0   PRS_CH7 \#10   PRS_CH8 \#9   PRS_CH9 \#8   ACMP0_O \#0   ACMP1_O \#0   LES_CH8


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PA1	BUSCY BUSDX ADCO_EXTP VDACO_EXT	$\begin{gathered} \text { TIM0_CC0 \#1 } \\ \text { TIM0_CC1 \#0 } \\ \text { TIM0_CC2 \#31 } \\ \text { TIMO_CDTIO \#30 } \\ \text { TIMO_CDTI1 \#29 } \\ \text { TIMO_CDTI2 \#28 } \\ \text { TIM1_CC0 \#1 } \\ \text { TIM1_CC1 \#0 } \\ \text { TIM1_CC2 \#31 } \\ \text { TIM1_CC3 \#30 } \\ \text { WTIMO_CC0 \#1 } \\ \text { LETIM0_OUT0 \#1 } \\ \text { LETIM0_OUT1 \#0 } \\ \text { PCNTO_S0IN \#1 } \\ \text { PCNT0_S1IN \#0 } \end{gathered}$	US0_TX \#1 US0_RX \#0 US0_CLK \#31 US0_CS \#30 US0_CTS \#29 US0_RTS \#28 US1_TX \#1 US1_RX \#0 US1_CLK \#31 US1_CS \#30 US1_CTS \#29 US1_RTS \#28 LEU0_TX \#1 LEU0_RX \#0 I2C0_SDA \#1 I2C0_SCL \#0	FRC_DCLK \#1   FRC_DOUT \#0   FRC_DFRAME \#31   MODEM_DCLK \#1   MODEM_DIN \#0   MODEM_DOUT \#31   MODEM_ANTO \#30   MODEM_ANT1 \#29	CMU_CLK0 \#0   PRS_CH6 \#1   PRS_CH7 \#0   PRS_CH8 \#10   PRS_CH9 \#9   ACMPO_O \#1   ACMP1_O \#1   LES_CH9
PA2	VDACO_OUT1ALT / OPA1_OUTALT \#1   BUSDY   BUSCX   OPAO_P	$\begin{gathered} \text { TIM0_CC0 \#2 } \\ \text { TIMO_CC1 \#1 } \\ \text { TIMO_CC2 \#0 } \\ \text { TIMO_CDTIO \#31 } \\ \text { TIM0_CDTI1 \#30 } \\ \text { TIMO_CDTI2 \#29 } \\ \text { TIM1_CC0 \#2 } \\ \text { TIM1_CC1 \#1 } \\ \text { TIM1_CC2 \#0 } \\ \text { TIM1_CC3 \#31 } \\ \text { WTIMO_CC0 \#2 } \\ \text { WTIM0_CC1 \#0 } \\ \text { LETIM0_OUT0 \#2 } \\ \text { LETIM0_OUT1 \#1 } \\ \text { PCNT0_S0IN \#2 } \\ \text { PCNT0_S1IN \#1 } \end{gathered}$	$\begin{gathered} \text { US0_TX \#2 } \\ \text { US0_RX \#1 } \\ \text { US0_CLK \#0 } \\ \text { US0_CS \#31 } \\ \text { US0_CTS \#30 } \\ \text { US0_RTS \#29 } \\ \text { US1_TX \#2 } \\ \text { US1_RX \#1 } \\ \text { US1_CLK \#0 } \\ \text { US1_CS \#31 } \\ \text { US1_CTS \#30 } \\ \text { US1_RTS \#29 } \\ \text { LEU0_TX \#2 } \\ \text { LEU0_RX \#1 } \\ \text { I2C0_SDA \#2 } \\ \text { I2C0_SCL \#1 } \end{gathered}$	FRC_DCLK \#2   FRC_DOUT \#1   FRC_DFRAME \#0   MODEM_DCLK \#2   MODEM_DIN \#1   MODEM_DOUT \#0   MODEM_ANT0 \#31   MODEM_ANT1 \#30	PRS_CH6 \#2   PRS_CH7 \#1   PRS_CH8 \#0   PRS_CH9 \#10   ACMP0_O \#2   ACMP1_O \#2   LES_CH10


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PA3	BUSCY   BUSDX   VDAC0_OUTO / OPAO_OUT	$\begin{gathered} \text { TIM0_CC0 \#3 } \\ \text { TIM0_CC1 \#2 } \\ \text { TIM0_CC2 \#1 } \\ \text { TIM0_CDTI0 \#0 } \\ \text { TIM0_CDTI1 \#31 } \\ \text { TIM0_CDTI2 \#30 } \\ \text { TIM1_CC0 \#3 } \\ \text { TIM1_CC1 \#2 } \\ \text { TIM1_CC2 \#1 } \\ \text { TIM1_CC3 \#0 } \\ \text { WTIMO_CC0 \#3 } \\ \text { WTIM0_CC1 \#1 } \\ \text { LETIM0_OUT0 \#3 } \\ \text { LETIM0_OUT1 \#2 } \\ \text { PCNT0_S0IN \#3 } \\ \text { PCNTO_S1IN \#2 } \end{gathered}$	$\begin{gathered} \text { US0_TX \#3 } \\ \text { US0_RX \#2 } \\ \text { US0_CLK \#1 } \\ \text { US0_CS \#0 } \\ \text { US0_CTS \#31 } \\ \text { US0_RTS \#30 } \\ \text { US1_TX \#3 } \\ \text { US1_RX \#2 } \\ \text { US1_CLK \#1 } \\ \text { US1_CS \#0 } \\ \text { US1_CTS \#31 } \\ \text { US1_RTS \#30 } \\ \text { LEU0_TX \#3 } \\ \text { LEU0_RX \#2 } \\ \text { I2C0_SDA \#3 } \\ \text { I2C0_SCL \#2 } \end{gathered}$	FRC_DCLK \#3   FRC_DOUT \#2   FRC_DFRAME \#1   MODEM_DCLK \#3   MODEM_DIN \#2   MODEM_DOUT \#1   MODEM_ANTO \#0   MODEM_ANT1 \#31	PRS_CH6 \#3   PRS_CH7 \#2   PRS_CH8 \#1   PRS_CH9 \#0   ACMPO_O \#3   ACMP1_O \#3   LES_CH11   GPIO_EM4WU8
PA4	VDACO_OUT1ALT / OPA1_OUTALT \#2   BUSDY   BUSCX   OPAO_N	$\begin{gathered} \text { TIM0_CC0 \#4 } \\ \text { TIM0_CC1 \#3 } \\ \text { TIM0_CC2 \#2 } \\ \text { TIM0_CDTIO \#1 } \\ \text { TIMO_CDTI1 \#0 } \\ \text { TIMO_CDTI2 \#31 } \\ \text { TIM1_CC0 \#4 } \\ \text { TIM1_CC1 \#3 } \\ \text { TIM1_CC2 \#2 } \\ \text { TIM1_CC3 \#1 } \\ \text { WTIMO_CC0 \#4 } \\ \text { WTIMO_CC1 \#2 } \\ \text { WTIMO_CC2 \#0 } \\ \text { LETIM0_OUT0 \#4 } \\ \text { LETIM0_OUT1 \#3 } \\ \text { PCNT0_S0IN \#4 } \\ \text { PCNT0_S1IN \#3 } \end{gathered}$	$\begin{gathered} \text { US0_TX \#4 } \\ \text { USO_RX \#3 } \\ \text { US0_CLK \#2 } \\ \text { US0_CS \#1 } \\ \text { US0_CTS \#0 } \\ \text { US0_RTS \#31 } \\ \text { US1_TX \#4 } \\ \text { US1_RX \#3 } \\ \text { US1_CLK \#2 } \\ \text { US1_CS \#1 } \\ \text { US1_CTS \#0 } \\ \text { US1_RTS \#31 } \\ \text { LEU0_TX \#4 } \\ \text { LEU0_RX \#3 } \\ \text { I2C0_SDA \#4 } \\ \text { I2C0_SCL \#3 } \end{gathered}$	FRC_DCLK \#4   FRC_DOUT \#3   FRC_DFRAME \#2   MODEM_DCLK \#4   MODEM_DIN \#3   MODEM_DOUT \#2   MODEM_ANTO \#1   MODEM_ANT1 \#0	PRS_CH6 \#4 PRS_CH7 \#3 PRS_CH8 \#2 PRS_CH9 \#1 ACMPO_O \#4 ACMP1_O \#4 LES_CH12


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PA5	VDACO_OUTOALT / OPAO_OUTALT \#O BUSCY BUSDX	$\begin{gathered} \text { TIM0_CC0 \#5 } \\ \text { TIMO_CC1 \#4 } \\ \text { TIM0_CC2 \#3 } \\ \text { TIM0_CDTIO \#2 } \\ \text { TIM0_CDTI1 \#1 } \\ \text { TIM0_CDTI2 \#0 } \\ \text { TIM1_CC0 \#5 } \\ \text { TIM1_CC1 \#4 } \\ \text { TIM1_CC2 \#3 } \\ \text { TIM1_CC3 \#2 } \\ \text { WTIMO_CC0 \#5 } \\ \text { WTIMO_CC1 \#3 } \\ \text { WTIM0_CC2 \#1 } \\ \text { LETIM0_OUT0 \#5 } \\ \text { LETIMO_OUT1 \#4 } \\ \text { PCNT0_S0IN \#5 } \\ \text { PCNTO_S1IN \#4 } \end{gathered}$	US0_TX \#5 US0_RX \#4 US0_CLK \#3 US0_CS \#2 US0_CTS \#1 US0_RTS \#0 US1_TX \#5 US1_RX \#4 US1_CLK \#3 US1_CS \#2 US1_CTS \#1 US1_RTS \#0 US2_TX \#0 US2_RX \#31 US2_CLK \#30 US2_CS \#29 US2_CTS \#28 US2_RTS \#27 LEU0_TX \#5 LEU0_RX \#4 I2C0_SDA \#5 I2C0_SCL \#4	FRC_DCLK \#5   FRC_DOUT \#4   FRC_DFRAME \#3   MODEM_DCLK \#5   MODEM_DIN \#4   MODEM_DOUT \#3   MODEM_ANT0 \#2   MODEM_ANT1 \#1	CMU_CLKIO \#4   PRS_CH6 \#5   PRS_CH7 \#4   PRS_CH8 \#3   PRS_CH9 \#2   ACMPO_O \#5   ACMP1_O \#5   LES_CH13   ETM_TCLK \#1
PA6	BUSDY   BUSCX	$\begin{aligned} & \text { WTIMO_CC0 \#6 } \\ & \text { WTIMO_CC1 \#4 } \\ & \text { WTIMO_CC2 \#2 } \\ & \text { PCNT1_soIN \#0 } \\ & \text { PCNT1_S1IN \#31 } \\ & \text { PCNT2_S0IN \#0 } \\ & \text { PCNT2_S1IN \#31 } \end{aligned}$	US2_TX \#1 US2_RX \#0 US2_CLK \#31 US2_CS \#30 US2_CTS \#29 US2_RTS \#28 I2C1_SDA \#0 I2C1_SCL \#31		LES_CH14   ETM_TD0 \#1


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PA7	$\begin{aligned} & \text { BUSCY } \\ & \text { BUSDX } \end{aligned}$	WTIMO_CCO \#7   WTIMO_CC1 \#5   WTIMO_CC2 \#3   PCNT1_SOIN \#1   PCNT1_S1IN \#0   PCNT2_SOIN \#1   PCNT2_S1IN \#0	$\begin{gathered} \text { US2_TX \#2 } \\ \text { US2_RX \#1 } \\ \text { US2_CLK \#0 } \\ \text { US2_CS \#31 } \\ \text { US2_CTS \#30 } \\ \text { US2_RTS \#29 } \\ \text { I2C1_SDA \#1 } \\ \text { I2C1_SCL \#0 } \end{gathered}$		$\begin{gathered} \text { LES_CH15 } \\ \text { ETM_TD1 \#1 } \end{gathered}$
PA8	BUSACMPOY BUSACMPOX	WTIMO_CCO \#8   WTIMO_CC1 \#6   WTIMO_CC2 \#4   WTIMO_CDTIO \#0   PCNT1_SOIN \#2   PCNT1_S1IN \#1   PCNT2_SOIN \#2   PCNT2_S1IN \#1	$\begin{gathered} \text { US2_TX \#3 } \\ \text { US2_RX \#2 } \\ \text { US2_CLK \#1 } \\ \text { US2_CS \#0 } \\ \text { US2_CTS \#31 } \\ \text { US2_RTS \#30 } \\ \text { I2C1_SDA \#2 } \\ \text { I2C1_SCL \#1 } \end{gathered}$		LES_ALTEXO   ETM_TD2 \#1
PA9	BUSACMPOY BUSACMPOX	WTIMO_CCO \#9   WTIMO_CC1 \#7   WTIMO_CC2 \#5   WTIMO_CDTIO \#1   PCNT1_SOIN \#3   PCNT1_S1IN \#2   PCNT2_SOIN \#3   PCNT2_S1IN \#2	$\begin{gathered} \text { US2_TX \#4 } \\ \text { US2_RX \#3 } \\ \text { US2_CLK \#2 } \\ \text { US2_CS \#1 } \\ \text { US2_CTS \#0 } \\ \text { US2_RTS \#31 } \\ \text { I2C1_SDA \#3 } \\ \text { I2C1_SCL \#2 } \end{gathered}$		LES_ALTEX1   ETM_TD3 \#1


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PB6	BUSDY   BUSCX	WTIMO_CC0 \#10   WTIMO_CC1 \#8   WTIMO_CC2 \#6   WTIMO_CDTIO \#2   WTIMO_CDTI1 \#0   PCNT1_SOIN \#6   PCNT1_S1IN \#5   PCNT2_SOIN \#6   PCNT2_S1IN \#5	$\begin{aligned} & \text { US2_TX \#9 } \\ & \text { US2_RX \#8 } \\ & \text { US2_CLK \#7 } \\ & \text { US2_CS \#6 } \\ & \text { US2_CTS \#5 } \\ & \text { US2_RTS \#4 } \\ & \text { US3_TX \#10 } \\ & \text { US3_RX \#9 } \\ & \text { US3_CLK \#8 } \\ & \text { US3_CS \#7 } \\ & \text { US3_CTS \#6 } \\ & \text { US3_RTS \#5 } \\ & \text { I2C1_SDA \#6 } \\ & \text { I2C1_SCL \#5 } \end{aligned}$		CMU_CLKIO \#3 ETM_TD1 \#2
PB7	$\begin{aligned} & \text { BUSCY } \\ & \text { BUSDX } \end{aligned}$	WTIMO_CC0 \#11   WTIMO_CC1 \#9   WTIMO_CC2 \#7   WTIMO_CDTIO \#3   WTIMO_CDTI1 \#1   PCNT1_SOIN \#7   PCNT1_S1IN \#6   PCNT2_SOIN \#7   PCNT2_S1IN \#6	US2_TX \#10 US2_RX \#9 US2_CLK \#8 US2_CS \#7 US2_CTS \#6 US2_RTS \#5 US3_TX \#11 US3_RX \#10 US3_CLK \#9 US3_CS \#8 US3_CTS \#7 US3_RTS \#6 I2C1_SDA \#7 I2C1_SCL \#6		ETM_TD2 \#2


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PB8	$\begin{aligned} & \text { BUSDY } \\ & \text { BUSCX } \end{aligned}$	WTIMO_CCO \#12   WTIM0_CC1 \#10   WTIMO_CC2 \#8   WTIMO_CDTIO \#4   WTIMO_CDTI1 \#2   WTIMO_CDTI2 \#0   PCNT1_S0IN \#8   PCNT1_S1IN \#7   PCNT2_SOIN \#8   PCNT2_S1IN \#7	$\begin{aligned} & \text { US2_TX \#11 } \\ & \text { US2_RX \#10 } \\ & \text { US2_CLK \#9 } \\ & \text { US2_CS \#8 } \\ & \text { US2_CTS \#7 } \\ & \text { US2_RTS \#6 } \\ & \text { US3_TX \#12 } \\ & \text { US3_RX \#11 } \\ & \text { US3_CLK \#10 } \\ & \text { US3_CS \#9 } \\ & \text { US3_CTS \#8 } \\ & \text { US3_RTS \#7 } \\ & \text { I2C1_SDA \#8 } \\ & \text { I2C1_SCL \#7 } \end{aligned}$		ETM_TD3 \#2
PB9	OPA2_OUTALT \#0 BUSCY BUSDX	WTIMO_CC0 \#13   WTIMO_CC1 \#11   WTIMO_CC2 \#9   WTIMO_CDTIO \#5   WTIMO_CDTI1 \#3   WTIMO_CDTI2 \#1   PCNT1_SOIN \#9   PCNT1_S1IN \#8   PCNT2_SOIN \#9   PCNT2_S1IN \#8	US2_TX \#12 US2_RX \#11 US2_CLK \#10 US2_CS \#9 US2_CTS \#8 US2_RTS \#7 US3_TX \#13 US3_RX \#12 US3_CLK \#11 US3_CS \#10 US3_CTS \#9 US3_RTS \#8 I2C1_SDA \#9 12C1_SCL \#8		


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PB10	OPA2_OUTALT \#1   BUSDY   BUSCX	WTIMO_CCO \#14   WTIMO_CC1 \#12   WTIMO_CC2 \#10   WTIMO_CDTIO \#6   WTIMO_CDTI1 \#4   WTIMO_CDTI2 \#2   PCNT1_SOIN \#10   PCNT1_S1IN \#9   PCNT2_SOIN \#10   PCNT2_S1IN \#9	$\begin{gathered} \text { US2_TX \#13 } \\ \text { US2_RX \#12 } \\ \text { US2_CLK \#11 } \\ \text { US2_CS \#10 } \\ \text { US2_CTS \#9 } \\ \text { US2_RTS \#8 } \\ \text { US3_TX \#14 } \\ \text { US3_RX \#13 } \\ \text { US3_CLK \#12 } \\ \text { US3_CS \#11 } \\ \text { US3_CTS \#10 } \\ \text { US3_RTS \#9 } \\ \text { I2C1_SDA \#10 } \\ \text { I2C1_SCL \#9 } \end{gathered}$		


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PB11	BUSCY   BUSDX   OPA2_P	$\begin{gathered} \text { TIM0_CC0 \#6 } \\ \text { TIMO_CC1 \#5 } \\ \text { TIMO_CC2 \#4 } \\ \text { TIMO_CDTIO \#3 } \\ \text { TIM0_CDTI1 \#2 } \\ \text { TIM0_CDTI2 \#1 } \\ \text { TIM1_CC0 \#6 } \\ \text { TIM1_CC1 \#5 } \\ \text { TIM1_CC2 \#4 } \\ \text { TIM1_CC3 \#3 } \\ \text { WTIM0_CC0 \#15 } \\ \text { WTIM0_CC1 \#13 } \\ \text { WTIMO_CC2 \#11 } \\ \text { WTIM0_CDTI0 \#7 } \\ \text { WTIM0_CDTI1 \#5 } \\ \text { WTIM0_CDTI2 \#3 } \\ \text { LETIM0_OUT0 \#6 } \\ \text { LETIM0_OUT1 \#5 } \\ \text { PCNTO_S0IN \#6 } \\ \text { PCNT0_S1IN \#5 } \end{gathered}$	$\begin{gathered} \text { US0_TX \#6 } \\ \text { USO_RX \#5 } \\ \text { US0_CLK \#4 } \\ \text { US0_CS \#3 } \\ \text { US0_CTS \#2 } \\ \text { US0_RTS \#1 } \\ \text { US1_TX \#6 } \\ \text { US1_RX \#5 } \\ \text { US1_CLK \#4 } \\ \text { US1_CS \#3 } \\ \text { US1_CTS \#2 } \\ \text { US1_RTS \#1 } \\ \text { US3_TX \#15 } \\ \text { US3_RX \#14 } \\ \text { US3_CLK \#13 } \\ \text { US3_CS \#12 } \\ \text { US3_CTS \#11 } \\ \text { US3_RTS \#10 } \\ \text { LEUO_TX \#6 } \\ \text { LEU0_RX \#5 } \\ \text { I2C0_SDA \#6 } \\ \text { I2Co_SCL \#5 } \end{gathered}$	FRC_DCLK \#6   FRC_DOUT \#5   FRC_DFRAME \#4   MODEM_DCLK \#6   MODEM_DIN \#5   MODEM_DOUT \#4   MODEM_ANT0 \#3   MODEM_ANT1 \#2	PRS_CH6 \#6   PRS_CH7 \#5   PRS_CH8 \#4   PRS_CH9 \#3   ACMPO_O \#6   ACMP1_O \#6


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PB12	$\begin{gathered} \text { BUSDY } \\ \text { BUSCX } \\ \text { OPA2_OUT } \end{gathered}$	$\begin{gathered} \text { TIMO_CC0 \#7 } \\ \text { TIMO_CC1 \#6 } \\ \text { TIM0_CC2 \#5 } \\ \text { TIM0_CDTIO \#4 } \\ \text { TIM0_CDTI1 \#3 } \\ \text { TIM0_CDTI2 \#2 } \\ \text { TIM1_CC0 \#7 } \\ \text { TIM1_CC1 \#6 } \\ \text { TIM1_CC2 \#5 } \\ \text { TIM1_CC3 \#4 } \\ \text { WTIM0_CC0 \#16 } \\ \text { WTIM0_CC1 \#14 } \\ \text { WTIM0_CC2 \#12 } \\ \text { WTIM0_CDTI0 \#8 } \\ \text { WTIM0_CDTI1 \#6 } \\ \text { WTIM0_CDTI2 \#4 } \\ \text { WTIM1_CC0 \#0 } \\ \text { LETIMO_OUT0 \#7 } \\ \text { LETIM0_OUT1 \#6 } \\ \text { PCNT0_S0IN \#7 } \\ \text { PCNT0_S1IN \#6 } \end{gathered}$	$\begin{aligned} & \text { US0_TX \#7 } \\ & \text { US0_RX \#6 } \\ & \text { US0_CLK \#5 } \\ & \text { US0_CS \#4 } \\ & \text { US0_CTS \#3 } \\ & \text { US0_RTS \#2 } \\ & \text { US1_TX \#7 } \\ & \text { US1_RX \#6 } \\ & \text { US1_CLK \#5 } \\ & \text { US1_CS \#4 } \\ & \text { US1_CTS \#3 } \\ & \text { US1_RTS \#2 } \\ & \text { LEU0_TX \#7 } \\ & \text { LEU0_RX \#6 } \\ & \text { I2C0_SDA \#7 } \\ & \text { I2C0_SCL \#6 } \end{aligned}$	FRC_DCLK \#7   FRC_DOUT \#6   FRC_DFRAME \#5   MODEM_DCLK \#7   MODEM_DIN \#6   MODEM_DOUT \#5   MODEM_ANTO \#4   MODEM_ANT1 \#3	PRS_CH6 \#7   PRS_CH7 \#6   PRS_CH8 \#5   PRS_CH9 \#4   ACMP0_O \#7   ACMP1_O \#7


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PB13	BUSCY   BUSDX   OPA2_N	TIMO_CC0 \#8   TIMO_CC1 \#7   TIMO_CC2 \#6   TIMO_CDTIO \#5   TIMO_CDTI1 \#4   TIMO_CDTI2 \#3   TIM1_CC0 \#8   TIM1_CC1 \#7   TIM1_CC2 \#6   TIM1_CC3 \#5   WTIMO_CC0 \#17   WTIMO_CC1 \#15   WTIMO_CC2 \#13   WTIMO_CDTIO \#9   WTIMO_CDTI1 \#7   WTIMO_CDTI2 \#5   WTIM1_CC0 \#1   LETIMO_OUTO \#8   LETIM0_OUT1 \#7   PCNTO_SOIN \#8   PCNT0_S1IN \#7	$\begin{gathered} \text { US0_TX \#8 } \\ \text { US0_RX \#7 } \\ \text { US0_CLK \#6 } \\ \text { US0_CS \#5 } \\ \text { US0_CTS \#4 } \\ \text { US0_RTS \#3 } \\ \text { US1_TX \#8 } \\ \text { US1_RX \#7 } \\ \text { US1_CLK \#6 } \\ \text { US1_CS \#5 } \\ \text { US1_CTS \#4 } \\ \text { US1_RTS \#3 } \\ \text { LEU0_TX \#8 } \\ \text { LEU0_RX \#7 } \\ \text { I2C0_SDA \#8 } \\ \text { I2C0_SCL \#7 } \end{gathered}$	FRC_DCLK \#8   FRC_DOUT \#7   FRC_DFRAME \#6   MODEM_DCLK \#8   MODEM_DIN \#7   MODEM_DOUT \#6   MODEM_ANTO \#5   MODEM_ANT1 \#4	CMU_CLKIO \#0   PRS_CH6 \#8   PRS_CH7 \#7   PRS_CH8 \#6   PRS_CH9 \#5   ACMP0_O \#8   ACMP1_O \#8   DBG_SWO \#1   GPIO_EM4WU9


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PB14	BUSDY   BUSCX   LFXTAL_N	$\begin{gathered} \text { TIMO_CC0 \#9 } \\ \text { TIMO_CC1 \#8 } \\ \text { TIMO_CC2 \#7 } \\ \text { TIM0_CDTI0 \#6 } \\ \text { TIM0_CDTI1 \#5 } \\ \text { TIM0_CDTI2 \#4 } \\ \text { TIM1_CC0 \#9 } \\ \text { TIM1_CC1 \#8 } \\ \text { TIM1_CC2 \#7 } \\ \text { TIM1_CC3 \#6 } \\ \text { WTIM0_CC0 \#18 } \\ \text { WTIM0_CC1 \#16 } \\ \text { WTIM0_CC2 \#14 } \\ \text { WTIM0_CDTIO \#10 } \\ \text { WTIM0_CDTI1 \#8 } \\ \text { WTIM0_CDTI2 \#6 } \\ \text { WTIM1_CC0 \#2 } \\ \text { WTIM1_CC1 \#0 } \\ \text { LETIM0_OUT0 \#9 } \\ \text { LETIM0_OUT1 \#8 } \\ \text { PCNT0_S0IN \#9 } \\ \text { PCNT0_S1IN \#8 } \end{gathered}$	US0_TX \#9 US0_RX \#8 US0_CLK \#7 US0_CS \#6 US0_CTS \#5 US0_RTS \#4 US1_TX \#9 US1_RX \#8 US1_CLK \#7 US1_CS \#6 US1_CTS \#5 US1_RTS \#4 LEU0_TX \#9 LEU0_RX \#8 I2C0_SDA \#9 I2C0_SCL \#8	FRC_DCLK \#9   FRC_DOUT \#8   FRC_DFRAME \#7   MODEM_DCLK \#9   MODEM_DIN \#8   MODEM_DOUT \#7   MODEM_ANT0 \#6   MODEM_ANT1 \#5	CMU_CLK1 \#1   PRS_CH6 \#9   PRS_CH7 \#8   PRS_CH8 \#7   PRS_CH9 \#6   ACMPO_O \#9   ACMP1_O \#9


GPIO Name	Pin Alternate Functionality / Description		Radio	Other
	Analog	Timers	Communication	


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PC1	$\begin{aligned} & \text { BUSAY } \\ & \text { BUSBX } \end{aligned}$	$\begin{gathered} \text { WTIM0_CC0 \#21 } \\ \text { WTIM0_CC1 \#19 } \\ \text { WTIM0_CC2 \#17 } \\ \text { WTIMO_CDTIO \#13 } \\ \text { WTIMO_CDTI1 \#11 } \\ \text { WTIM0_CDTI2 \#9 } \\ \text { WTIM1_CC0 \#5 } \\ \text { WTIM1_CC1 \#3 } \\ \text { WTIM1_CC2 \#1 } \\ \text { PCNT1_SOIN \#14 } \\ \text { PCNT1_S1IN \#13 } \\ \text { PCNT2_SOIN \#14 } \\ \text { PCNT2_S1IN \#13 } \end{gathered}$	$\begin{aligned} & \text { US3_TX \#19 } \\ & \text { US3_RX \#18 } \\ & \text { US3_CLK \#17 } \\ & \text { US3_CS \#16 } \\ & \text { US3_CTS \#15 } \\ & \text { US3_RTS \#14 } \\ & \text { I2C1_SDA \#14 } \\ & \text { I2C1_SCL \#13 } \end{aligned}$		
PC2	BUSBY   BUSAX	$\begin{gathered} \text { WTIM0_CC0 \#22 } \\ \text { WTIM0_CC1 \#20 } \\ \text { WTIM0_CC2 \#18 } \\ \text { WTIM0_CDTIO \#14 } \\ \text { WTIM0_CDTI1 \#12 } \\ \text { WTIMO_CDTI2 \#10 } \\ \text { WTIM1_CC0 \#6 } \\ \text { WTIM1_CC1 \#4 } \\ \text { WTIM1_CC2 \#2 } \\ \text { WTIM1_CC3 \#0 } \\ \text { PCNT1_SOIN \#15 } \\ \text { PCNT1_S1IN \#14 } \\ \text { PCNT2_SOIN \#15 } \\ \text { PCNT2_S1IN \#14 } \end{gathered}$	$\begin{gathered} \text { US3_TX \#20 } \\ \text { US3_RX \#19 } \\ \text { US3_CLK \#18 } \\ \text { US3_CS \#17 } \\ \text { US3_CTS \#16 } \\ \text { US3_RTS \#15 } \\ \text { I2C1_SDA \#15 } \\ \text { I2C1_SCL \#14 } \end{gathered}$		


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PC3	BUSAY   BUSBX	$\begin{gathered} \text { WTIM0_CC0 \#23 } \\ \text { WTIM0_CC1 \#21 } \\ \text { WTIM0_CC2 \#19 } \\ \text { WTIM0_CDTIO \#15 } \\ \text { WTIM0_CDTI1 \#13 } \\ \text { WTIMO_CDTI2 \#11 } \\ \text { WTIM1_CC0 \#7 } \\ \text { WTIM1_CC1 \#5 } \\ \text { WTIM1_CC2 \#3 } \\ \text { WTIM1_CC3 \#1 } \\ \text { PCNT1_SOIN \#16 } \\ \text { PCNT1_S1IN \#15 } \\ \text { PCNT2_SOIN \#16 } \\ \text { PCNT2_S1IN \#15 } \end{gathered}$	$\begin{aligned} & \text { US3_TX \#21 } \\ & \text { US3_RX \#20 } \\ & \text { US3_CLK \#19 } \\ & \text { US3_CS \#18 } \\ & \text { US3_CTS \#17 } \\ & \text { US3_RTS \#16 } \\ & \text { I2C1_SDA \#16 } \\ & \text { I2C1_SCL \#15 } \end{aligned}$		
PC4	BUSBY   BUSAX	$\begin{gathered} \text { WTIM0_CC0 \#24 } \\ \text { WTIM0_CC1 \#22 } \\ \text { WTIMO_CC2 \#20 } \\ \text { WTIM0_CDTIO \#16 } \\ \text { WTIM0_CDTI1 \#14 } \\ \text { WTIM0_CDTI2 \#12 } \\ \text { WTIM1_CC0 \#8 } \\ \text { WTIM1_CC1 \#6 } \\ \text { WTIM1_CC2 \#4 } \\ \text { WTIM1_CC3 \#2 } \\ \text { PCNT1_SOIN \#17 } \\ \text { PCNT1_S1IN \#16 } \\ \text { PCNT2_SOIN \#17 } \\ \text { PCNT2_S1IN \#16 } \end{gathered}$	$\begin{aligned} & \text { US3_TX \#22 } \\ & \text { US3_RX \#21 } \\ & \text { US3_CLK \#20 } \\ & \text { US3_CS \#19 } \\ & \text { US3_CTS \#18 } \\ & \text { US3_RTS \#17 } \\ & \text { I2C1_SDA \#17 } \\ & \text { I2C1_SCL \#16 } \end{aligned}$		


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PC5	$\begin{aligned} & \text { BUSAY } \\ & \text { BUSBX } \end{aligned}$	$\begin{gathered} \text { WTIM0_CC0 \#25 } \\ \text { WTIM0_CC1 \#23 } \\ \text { WTIMO_CC2 \#21 } \\ \text { WTIMO_CDTIO \#17 } \\ \text { WTIMO_CDTI1 \#15 } \\ \text { WTIMO_CDTI2 \#13 } \\ \text { WTIM1_CC0 \#9 } \\ \text { WTIM1_CC1 \#7 } \\ \text { WTIM1_CC2 \#5 } \\ \text { WTIM1_CC3 \#3 } \\ \text { PCNT1_SOIN \#18 } \\ \text { PCNT1_S1IN \#17 } \\ \text { PCNT2_SOIN \#18 } \\ \text { PCNT2_S1IN \#17 } \end{gathered}$	$\begin{aligned} & \text { US3_TX \#23 } \\ & \text { US3_RX \#22 } \\ & \text { US3_CLK \#21 } \\ & \text { US3_CS \#20 } \\ & \text { US3_CTS \#19 } \\ & \text { US3_RTS \#18 } \\ & \text { I2C1_SDA \#18 } \\ & \text { I2C1_SCL \#17 } \end{aligned}$		


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PC6	$\begin{aligned} & \text { BUSBY } \\ & \text { BUSAX } \end{aligned}$	$\begin{gathered} \text { TIMO_CC0 \#11 } \\ \text { TIM0_CC1 \#10 } \\ \text { TIMO_CC2 \#9 } \\ \text { TIM0_CDTI0 \#8 } \\ \text { TIM0_CDTI1 \#7 } \\ \text { TIM0_CDTI2 \#6 } \\ \text { TIM1_CC0 \#11 } \\ \text { TIM1_CC1 \#10 } \\ \text { TIM1_CC2 \#9 } \\ \text { TIM1_CC3 \#8 } \\ \text { WTIM0_CC0 \#26 } \\ \text { WTIM0_CC1 \#24 } \\ \text { WTIM0_CC2 \#22 } \\ \text { WTIM0_CDTI0 \#18 } \\ \text { WTIM0_CDTI1 \#16 } \\ \text { WTIMO_CDTI2 \#14 } \\ \text { WTIM1_CC0 \#10 } \\ \text { WTIM1_CC1 \#8 } \\ \text { WTIM1_CC2 \#6 } \\ \text { WTIM1_CC3 \#4 } \\ \text { LETIM0_OUT0 \#11 } \\ \text { LETIM0_OUT1 \#10 } \\ \text { PCNT0_SOIN \#11 } \\ \text { PCNT0_S1IN \#10 } \end{gathered}$	$\begin{gathered} \text { US0_TX \#11 } \\ \text { US0_RX \#10 } \\ \text { US0_CLK \#9 } \\ \text { US0_CS \#8 } \\ \text { US0_CTS \#7 } \\ \text { US0_RTS \#6 } \\ \text { US1_TX \#11 } \\ \text { US1_RX \#10 } \\ \text { US1_CLK \#9 } \\ \text { US1_CS \#8 } \\ \text { US1_CTS \#7 } \\ \text { US1_RTS \#6 } \\ \text { LEU0_TX \#11 } \\ \text { LEU0_RX \#10 } \\ \text { I2C0_SDA \#11 } \\ \text { I2C0_SCL \#10 } \end{gathered}$	FRC_DCLK \#11   FRC_DOUT \#10   FRC_DFRAME \#9   MODEM_DCLK \#11   MODEM_DIN \#10   MODEM_DOUT \#9   MODEM_ANT0 \#8   MODEM_ANT1 \#7	CMU_CLK0 \#2   CMU_CLKIO \#2   PRS_CHO \#8   PRS_CH9 \#11   PRS_CH10 \#0   PRS_CH11 \#5   ACMP0_O \#11   ACMP1_O \#11   ETM_TCLK \#3


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PC7	$\begin{aligned} & \text { BUSAY } \\ & \text { BUSBX } \end{aligned}$	$\begin{gathered} \text { TIMO_CC0 \#12 } \\ \text { TIM0_CC1 \#11 } \\ \text { TIM0_CC2 \#10 } \\ \text { TIM0_CDTIO \#9 } \\ \text { TIM0_CDTI1 \#8 } \\ \text { TIM0_CDTI2 \#7 } \\ \text { TIM1_CC0 \#12 } \\ \text { TIM1_CC1 \#11 } \\ \text { TIM1_CC2 \#10 } \\ \text { TIM1_CC3 \#9 } \\ \text { WTIM0_CC0 \#27 } \\ \text { WTIM0_CC1 \#25 } \\ \text { WTIM0_CC2 \#23 } \\ \text { WTIM0_CDTI0 \#19 } \\ \text { WTIM0_CDTI1 \#17 } \\ \text { WTIM0_CDTI2 \#15 } \\ \text { WTIM1_CC0 \#11 } \\ \text { WTIM1_CC1 \#9 } \\ \text { WTIM1_CC2 \#7 } \\ \text { WTIM1_CC3 \#5 } \\ \text { LETIM0_OUT0 \#12 } \\ \text { LETIM0_OUT1 \#11 } \\ \text { PCNT0_S0IN \#12 } \\ \text { PCNT0_S1IN \#11 } \end{gathered}$	$\begin{gathered} \text { US0_TX \#12 } \\ \text { US0_RX \#11 } \\ \text { US0_CLK \#10 } \\ \text { USO_CS \#9 } \\ \text { US0_CTS \#8 } \\ \text { US0_RTS \#7 } \\ \text { US1_TX \#12 } \\ \text { US1_RX \#11 } \\ \text { US1_CLK \#10 } \\ \text { US1_CS \#9 } \\ \text { US1_CTS \#8 } \\ \text { US1_RTS \#7 } \\ \text { LEU0_TX \#12 } \\ \text { LEU0_RX \#11 } \\ \text { I2C0_SDA \#12 } \\ \text { I2C0_SCL \#11 } \end{gathered}$	FRC_DCLK \#12   FRC_DOUT \#11   FRC_DFRAME \#10   MODEM_DCLK \#12   MODEM_DIN \#11   MODEM_DOUT \#10   MODEM_ANTO \#9   MODEM_ANT1 \#8	CMU_CLK1 \#2   PRS_CHO \#9   PRS_CH9 \#12   PRS_CH10 \#1   PRS_CH11 \#0   ACMP0_O \#12   ACMP1_O \#12   ETM_TDO \#3


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PC8	$\begin{aligned} & \text { BUSBY } \\ & \text { BUSAX } \end{aligned}$	$\begin{gathered} \text { TIM0_CC0 \#13 } \\ \text { TIMO_CC1 \#12 } \\ \text { TIM0_CC2 \#11 } \\ \text { TIMO_CDTI0 \#10 } \\ \text { TIM0_CDTI1 \#9 } \\ \text { TIM0_CDTI2 \#8 } \\ \text { TIM1_CC0 \#13 } \\ \text { TIM1_CC1 \#12 } \\ \text { TIM1_CC2 \#11 } \\ \text { TIM1_CC3 \#10 } \\ \text { WTIM0_CC0 \#28 } \\ \text { WTIM0_CC1 \#26 } \\ \text { WTIM0_CC2 \#24 } \\ \text { WTIM0_CDTI0 \#20 } \\ \text { WTIM0_CDTI1 \#18 } \\ \text { WTIM0_CDTI2 \#16 } \\ \text { WTIM1_CC0 \#12 } \\ \text { WTIM1_CC1 \#10 } \\ \text { WTIM1_CC2 \#8 } \\ \text { WTIM1_CC3 \#6 } \\ \text { LETIM0_OUT0 \#13 } \\ \text { LETIM0_OUT1 \#12 } \\ \text { PCNT0_S0IN \#13 } \\ \text { PCNT0_S1IN \#12 } \end{gathered}$	$\begin{aligned} & \text { US0_TX \#13 } \\ & \text { US0_RX \#12 } \\ & \text { US0_CLK \#11 } \\ & \text { US0_CS \#10 } \\ & \text { US0_CTS \#9 } \\ & \text { US0_RTS \#8 } \\ & \text { US1_TX \#13 } \\ & \text { US1_RX \#12 } \\ & \text { US1_CLK \#11 } \\ & \text { US1_CS \#10 } \\ & \text { US1_CTS \#9 } \\ & \text { US1_RTS \#8 } \\ & \text { LEU0_TX \#13 } \\ & \text { LEU0_RX \#12 } \\ & \text { I2C0_SDA \#13 } \\ & \text { I2C0_SCL \#12 } \end{aligned}$	FRC_DCLK \#13   FRC_DOUT \#12   FRC_DFRAME \#11   MODEM_DCLK \#13   MODEM_DIN \#12   MODEM_DOUT \#11   MODEM_ANTO \#10   MODEM_ANT1 \#9	PRS_CH0 \#10   PRS_CH9 \#13   PRS_CH10 \#2   PRS_CH11 \#1   ACMP0_O \#13   ACMP1_O \#13   ETM_TD1 \#3


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PC9	$\begin{aligned} & \text { BUSAY } \\ & \text { BUSBX } \end{aligned}$	$\begin{gathered} \text { TIMO_CC0 \#14 } \\ \text { TIMO_CC1 \#13 } \\ \text { TIM0_CC2 \#12 } \\ \text { TIMO_CDTIO \#11 } \\ \text { TIMO_CDTI1 \#10 } \\ \text { TIM0_CDTI2 \#9 } \\ \text { TIM1_CC0 \#14 } \\ \text { TIM1_CC1 \#13 } \\ \text { TIM1_CC2 \#12 } \\ \text { TIM1_CC3 \#11 } \\ \text { WTIM0_CC0 \#29 } \\ \text { WTIM0_CC1 \#27 } \\ \text { WTIMO_CC2 \#25 } \\ \text { WTIM0_CDTI0 \#21 } \\ \text { WTIM0_CDTI1 \#19 } \\ \text { WTIM0_CDTI2 \#17 } \\ \text { WTIM1_CC0 \#13 } \\ \text { WTIM1_CC1 \#11 } \\ \text { WTIM1_CC2 \#9 } \\ \text { WTIM1_CC3 \#7 } \\ \text { LETIM0_OUT0 \#14 } \\ \text { LETIM0_OUT1 \#13 } \\ \text { PCNT0_S0IN \#14 } \\ \text { PCNT0_S1IN \#13 } \end{gathered}$	$\begin{gathered} \text { US0_TX \#14 } \\ \text { US0_RX \#13 } \\ \text { US0_CLK \#12 } \\ \text { US0_CS \#11 } \\ \text { US0_CTS \#10 } \\ \text { US0_RTS \#9 } \\ \text { US1_TX \#14 } \\ \text { US1_RX \#13 } \\ \text { US1_CLK \#12 } \\ \text { US1_CS \#11 } \\ \text { US1_CTS \#10 } \\ \text { US1_RTS \#9 } \\ \text { LEU0_TX \#14 } \\ \text { LEU0_RX \#13 } \\ \text { I2C0_SDA \#14 } \\ \text { I2C0_SCL \#13 } \end{gathered}$	FRC_DCLK \#14   FRC_DOUT \#13   FRC_DFRAME \#12   MODEM_DCLK \#14   MODEM_DIN \#13   MODEM_DOUT \#12   MODEM_ANT0 \#11   MODEM_ANT1 \#10	PRS_CH0 \#11   PRS_CH9 \#14   PRS_CH10 \#3   PRS_CH11 \#2   ACMP0_O \#14   ACMP1_O \#14   ETM_TD2 \#3


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PC10	BUSBY   BUSAX	$\begin{gathered} \text { TIM0_CC0 \#15 } \\ \text { TIMO_CC1 \#14 } \\ \text { TIMO_CC2 \#13 } \\ \text { TIMO_CDTI0 \#12 } \\ \text { TIMO_CDTI1 \#11 } \\ \text { TIMO_CDTI2 \#10 } \\ \text { TIM1_CC0 \#15 } \\ \text { TIM1_CC1 \#14 } \\ \text { TIM1_CC2 \#13 } \\ \text { TIM1_CC3 \#12 } \\ \text { WTIM0_CC0 \#30 } \\ \text { WTIM0_CC1 \#28 } \\ \text { WTIM0_CC2 \#26 } \\ \text { WTIMO_CDTI0 \#22 } \\ \text { WTIMO_CDTI1 \#20 } \\ \text { WTIMO_CDTI2 \#18 } \\ \text { WTIM1_CC0 \#14 } \\ \text { WTIM1_CC1 \#12 } \\ \text { WTIM1_CC2 \#10 } \\ \text { WTIM1_CC3 \#8 } \\ \text { LETIM0_OUT0 \#15 } \\ \text { LETIM0_OUT1 \#14 } \\ \text { PCNT0_SOIN \#15 } \\ \text { PCNT0_S1IN \#14 } \\ \text { PCNT2_SOIN \#19 } \\ \text { PCNT2_S1IN \#18 } \end{gathered}$	$\begin{gathered} \text { US0_TX \#15 } \\ \text { US0_RX \#14 } \\ \text { US0_CLK \#13 } \\ \text { US0_CS \#12 } \\ \text { US0_CTS \#11 } \\ \text { US0_RTS \#10 } \\ \text { US1_TX \#15 } \\ \text { US1_RX \#14 } \\ \text { US1_CLK \#13 } \\ \text { US1_CS \#12 } \\ \text { US1_CTS \#11 } \\ \text { US1_RTS \#10 } \\ \text { LEU0_TX \#15 } \\ \text { LEU0_RX \#14 } \\ \text { I2C0_SDA \#15 } \\ \text { I2C0_SCL \#14 } \\ \text { I2C1_SDA \#19 } \\ \text { I2C1_SCL \#18 } \end{gathered}$	FRC_DCLK \#15   FRC_DOUT \#14   FRC_DFRAME \#13   MODEM_DCLK \#15   MODEM_DIN \#14   MODEM_DOUT \#13   MODEM_ANTO \#12   MODEM_ANT1 \#11	CMU_CLK1 \#3   PRS_CH0 \#12   PRS_CH9 \#15   PRS_CH10 \#4   PRS_CH11 \#3   ACMP0_O \#15   ACMP1_O \#15   ETM_TD3 \#3   GPIO_EM4WU12


GPIO Name	Pin Alternate Functionality / Description		Radio	Other
	Analog	Timers	Communication	


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PD9	$\begin{aligned} & \text { BUSCY } \\ & \text { BUSDX } \end{aligned}$	$\begin{gathered} \text { TIMO_CC0 \#17 } \\ \text { TIMO_CC1 \#16 } \\ \text { TIMO_CC2 \#15 } \\ \text { TIM0_CDTIO \#14 } \\ \text { TIM0_CDTI1 \#13 } \\ \text { TIM0_CDTI2 \#12 } \\ \text { TIM1_CC0 \#17 } \\ \text { TIM1_CC1 \#16 } \\ \text { TIM1_CC2 \#15 } \\ \text { TIM1_CC3 \#14 } \\ \text { WTIM0_CC1 \#31 } \\ \text { WTIM0_CC2 \#29 } \\ \text { WTIM0_CDTI0 \#25 } \\ \text { WTIM0_CDTI1 \#23 } \\ \text { WTIMO_CDTI2 \#21 } \\ \text { WTIM1_CC0 \#17 } \\ \text { WTIM1_CC1 \#15 } \\ \text { WTIM1_CC2 \#13 } \\ \text { WTIM1_CC3 \#11 } \\ \text { LETIM0_OUT0 \#17 } \\ \text { LETIM0_OUT1 \#16 } \\ \text { PCNT0_S0IN \#17 } \\ \text { PCNT0_S1IN \#16 } \end{gathered}$	$\begin{gathered} \text { US0_TX \#17 } \\ \text { US0_RX \#16 } \\ \text { US0_CLK \#15 } \\ \text { US0_CS \#14 } \\ \text { US0_CTS \#13 } \\ \text { US0_RTS \#12 } \\ \text { US1_TX \#17 } \\ \text { US1_RX \#16 } \\ \text { US1_CLK \#15 } \\ \text { US1_CS \#14 } \\ \text { US1_CTS \#13 } \\ \text { US1_RTS \#12 } \\ \text { US3_TX \#1 } \\ \text { US3_RX \#0 } \\ \text { US3_CLK \#31 } \\ \text { US3_CS \#30 } \\ \text { US3_CTS \#29 } \\ \text { US3_RTS \#28 } \\ \text { LEU0_TX \#17 } \\ \text { LEU0_RX \#16 } \\ \text { I2C0_SDA \#17 } \\ \text { I2C0_SCL \#16 } \end{gathered}$	FRC_DCLK \#17   FRC_DOUT \#16   FRC_DFRAME \#15   MODEM_DCLK \#17   MODEM_DIN \#16   MODEM_DOUT \#15   MODEM_ANTO \#14   MODEM_ANT1 \#13	CMU_CLKO \#4   PRS_CH3 \#8   PRS_CH4 \#0   PRS_CH5 \#6   PRS_CH6 \#11   ACMP0_O \#17   ACMP1_O \#17   LES_CH1


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PD10	$\begin{aligned} & \text { BUSDY } \\ & \text { BUSCX } \end{aligned}$	$\begin{gathered} \text { TIM0_CC0 \#18 } \\ \text { TIM0_CC1 \#17 } \\ \text { TIM0_CC2 \#16 } \\ \text { TIM0_CDTI0 \#15 } \\ \text { TIM0_CDTI1 \#14 } \\ \text { TIM0_CDTI2 \#13 } \\ \text { TIM1_CC0 \#18 } \\ \text { TIM1_CC1 \#17 } \\ \text { TIM1_CC2 \#16 } \\ \text { TIM1_CC3 \#15 } \\ \text { WTIM0_CC2 \#30 } \\ \text { WTIMO_CDTI0 \#26 } \\ \text { WTIM0_CDTI1 \#24 } \\ \text { WTIM0_CDTI2 \#22 } \\ \text { WTIM1_CC0 \#18 } \\ \text { WTIM1_CC1 \#16 } \\ \text { WTIM1_CC2 \#14 } \\ \text { WTIM1_CC3 \#12 } \\ \text { LETIM0_OUT0 \#18 } \\ \text { LETIM0_OUT1 \#17 } \\ \text { PCNT0_SOIN \#18 } \\ \text { PCNT0_S1IN \#17 } \end{gathered}$	US0_TX \#18 US0_RX \#17 US0_CLK \#16 US0_CS \#15 US0_CTS \#14 US0_RTS \#13 US1_TX \#18 US1_RX \#17 US1_CLK \#16 US1_CS \#15 US1_CTS \#14 US1_RTS \#13 US3_TX \#2 US3_RX \#1 US3_CLK \#0 US3_CS \#31 US3_CTS \#30 US3_RTS \#29 LEU0_TX \#18 LEU0_RX \#17 I2C0_SDA \#18 I2C0_SCL \#17	FRC_DCLK \#18   FRC_DOUT \#17   FRC_DFRAME \#16   MODEM_DCLK \#18   MODEM_DIN \#17   MODEM_DOUT \#16   MODEM_ANTO \#15   MODEM_ANT1 \#14	CMU_CLK1 \#4   PRS_CH3 \#9   PRS_CH4 \#1   PRS_CH5 \#0   PRS_CH6 \#12   ACMP0_O \#18   ACMP1_O \#18   LES_CH2


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PD11	$\begin{aligned} & \text { BUSCY } \\ & \text { BUSDX } \end{aligned}$	$\begin{gathered} \text { TIMO_CC0 \#19 } \\ \text { TIM0_CC1 \#18 } \\ \text { TIM0_CC2 \#17 } \\ \text { TIMO_CDTI0 \#16 } \\ \text { TIMO_CDTI1 \#15 } \\ \text { TIM0_CDTI2 \#14 } \\ \text { TIM1_CC0 \#19 } \\ \text { TIM1_CC1 \#18 } \\ \text { TIM1_CC2 \#17 } \\ \text { TIM1_CC3 \#16 } \\ \text { WTIM0_CC2 \#31 } \\ \text { WTIMO_CDTI0 \#27 } \\ \text { WTIM0_CDTI1 \#25 } \\ \text { WTIM0_CDTI2 \#23 } \\ \text { WTIM1_CC0 \#19 } \\ \text { WTIM1_CC1 \#17 } \\ \text { WTIM1_CC2 \#15 } \\ \text { WTIM1_CC3 \#13 } \\ \text { LETIM0_OUT0 \#19 } \\ \text { LETIM0_OUT1 \#18 } \\ \text { PCNTO_S0IN \#19 } \\ \text { PCNT0_S1IN \#18 } \end{gathered}$	$\begin{gathered} \text { US0_TX \#19 } \\ \text { US0_RX \#18 } \\ \text { US0_CLK \#17 } \\ \text { US0_CS \#16 } \\ \text { US0_CTS \#15 } \\ \text { US0_RTS \#14 } \\ \text { US1_TX \#19 } \\ \text { US1_RX \#18 } \\ \text { US1_CLK \#17 } \\ \text { US1_CS \#16 } \\ \text { US1_CTS \#15 } \\ \text { US1_RTS \#14 } \\ \text { US3_TX \#3 } \\ \text { US3_RX \#2 } \\ \text { US3_CLK \#1 } \\ \text { US3_CS \#0 } \\ \text { US3_CTS \#31 } \\ \text { US3_RTS \#30 } \\ \text { LEU0_TX \#19 } \\ \text { LEU0_RX \#18 } \\ \text { I2C0_SDA \#19 } \\ \text { I2C0_SCL \#18 } \end{gathered}$	FRC_DCLK \#19   FRC_DOUT \#18   FRC_DFRAME \#17   MODEM_DCLK \#19   MODEM_DIN \#18   MODEM_DOUT \#17   MODEM_ANT0 \#16   MODEM_ANT1 \#15	PRS_CH3 \#10   PRS_CH4 \#2   PRS_CH5 \#1   PRS_CH6 \#13   ACMP0_O \#19   ACMP1_O \#19   LES_CH3


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PD12	VDACO_OUT1ALT / OPA1_OUTALT \#0 BUSDY BUSCX	$\begin{gathered} \text { TIM0_CC0 \#20 } \\ \text { TIM0_CC1 \#19 } \\ \text { TIM0_CC2 \#18 } \\ \text { TIMO_CDTI0 \#17 } \\ \text { TIMO_CDTI1 \#16 } \\ \text { TIM0_CDTI2 \#15 } \\ \text { TIM1_CC0 \#20 } \\ \text { TIM1_CC1 \#19 } \\ \text { TIM1_CC2 \#18 } \\ \text { TIM1_CC3 \#17 } \\ \text { WTIM0_CDTI0 \#28 } \\ \text { WTIM0_CDTI1 \#26 } \\ \text { WTIM0_CDTI2 \#24 } \\ \text { WTIM1_CC0 \#20 } \\ \text { WTIM1_CC1 \#18 } \\ \text { WTIM1_CC2 \#16 } \\ \text { WTIM1_CC3 \#14 } \\ \hline \text { LETIMO_OUT0 \#20 } \\ \text { LETIMO_OUT1 \#19 } \\ \text { PCNTO_SOIN \#20 } \\ \text { PCNTO_S1IN \#19 } \end{gathered}$	US0_TX \#20 US0_RX \#19 US0_CLK \#18 US0_CS \#17 US0_CTS \#16 US0_RTS \#15 US1_TX \#20 US1_RX \#19 US1_CLK \#18 US1_CS \#17 US1_CTS \#16 US1_RTS \#15 US3_TX \#4 US3_RX \#3 US3_CLK \#2 US3_CS \#1 US3_CTS \#0 US3_RTS \#31 LEU0_TX \#20 LEU0_RX \#19 I2C0_SDA \#20 I2C0_SCL \#19	FRC_DCLK \#20   FRC_DOUT \#19   FRC_DFRAME \#18   MODEM_DCLK \#20   MODEM_DIN \#19   MODEM_DOUT \#18   MODEM_ANT0 \#17   MODEM_ANT1 \#16	PRS_CH3 \#11   PRS_CH4 \#3   PRS_CH5 \#2   PRS_CH6 \#14   ACMP0_O \#20   ACMP1_O \#20   LES_CH4


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PD13	VDACO_OUTOALT / OPAO_OUTALT \#1   BUSCY   BUSDX   OPA1_P	$\begin{gathered} \text { TIM0_CC0 \#21 } \\ \text { TIM0_CC1 \#20 } \\ \text { TIM0_CC2 \#19 } \\ \text { TIMO_CDTI0 \#18 } \\ \text { TIM0_CDTI1 \#17 } \\ \text { TIM0_CDTI2 \#16 } \\ \text { TIM1_CC0 \#21 } \\ \text { TIM1_CC1 \#20 } \\ \text { TIM1_CC2 \#19 } \\ \text { TIM1_CC3 \#18 } \\ \text { WTIM0_CDTI0 \#29 } \\ \text { WTIM0_CDTI1 \#27 } \\ \text { WTIM0_CDTI2 \#25 } \\ \text { WTIM1_CC0 \#21 } \\ \text { WTIM1_CC1 \#19 } \\ \text { WTIM1_CC2 \#17 } \\ \text { WTIM1_CC3 \#15 } \\ \text { LETIMO_OUT0 \#21 } \\ \text { LETIMO_OUT1 \#20 } \\ \text { PCNTO_SOIN \#21 } \\ \text { PCNT0_S1IN \#20 } \end{gathered}$	$\begin{gathered} \text { US0_TX \#21 } \\ \text { US0_RX \#20 } \\ \text { US0_CLK \#19 } \\ \text { US0_CS \#18 } \\ \text { US0_CTS \#17 } \\ \text { US0_RTS \#16 } \\ \text { US1_TX \#21 } \\ \text { US1_RX \#20 } \\ \text { US1_CLK \#19 } \\ \text { US1_CS \#18 } \\ \text { US1_CTS \#17 } \\ \text { US1_RTS \#16 } \\ \text { US3_TX \#5 } \\ \text { US3_RX \#4 } \\ \text { US3_CLK \#3 } \\ \text { US3_CS \#2 } \\ \text { US3_CTS \#1 } \\ \text { US3_RTS \#0 } \\ \text { LEU0_TX \#21 } \\ \text { LEU0_RX \#20 } \\ \text { I2C0_SDA \#21 } \\ \text { I2C0_SCL \#20 } \end{gathered}$	FRC_DCLK \#21   FRC_DOUT \#20   FRC_DFRAME \#19   MODEM_DCLK \#21   MODEM_DIN \#20   MODEM_DOUT \#19   MODEM_ANT0 \#18   MODEM_ANT1 \#17	PRS_CH3 \#12   PRS_CH4 \#4   PRS_CH5 \#3   PRS_CH6 \#15   ACMP0_O \#21   ACMP1_O \#21   LES_CH5


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PD14	BUSDY   BUSCX   VDAC0_OUT1/ OPA1_OUT	$\begin{gathered} \text { TIM0_CC0 \#22 } \\ \text { TIM0_CC1 \#21 } \\ \text { TIM0_CC2 \#20 } \\ \text { TIMO_CDTIO \#19 } \\ \text { TIM0_CDTI1 \#18 } \\ \text { TIM0_CDTI2 \#17 } \\ \text { TIM1_CC0 \#22 } \\ \text { TIM1_CC1 \#21 } \\ \text { TIM1_CC2 \#20 } \\ \text { TIM1_CC3 \#19 } \\ \text { WTIM0_CDTI0 \#30 } \\ \text { WTIM0_CDTI1 \#28 } \\ \text { WTIM0_CDTI2 \#26 } \\ \text { WTIM1_CC0 \#22 } \\ \text { WTIM1_CC1 \#20 } \\ \text { WTIM1_CC2 \#18 } \\ \text { WTIM1_CC3 \#16 } \\ \text { LETIMO_OUT0 \#22 } \\ \text { LETIMO_OUT1 \#21 } \\ \text { PCNT0_SOIN \#22 } \\ \text { PCNT0_S1IN \#21 } \end{gathered}$	$\begin{gathered} \text { US0_TX \#22 } \\ \text { US0_RX \#21 } \\ \text { US0_CLK \#20 } \\ \text { US0_CS \#19 } \\ \text { US0_CTS \#18 } \\ \text { US0_RTS \#17 } \\ \text { US1_TX \#22 } \\ \text { US1_RX \#21 } \\ \text { US1_CLK \#20 } \\ \text { US1_CS \#19 } \\ \text { US1_CTS \#18 } \\ \text { US1_RTS \#17 } \\ \text { US3_TX \#6 } \\ \text { US3_RX \#5 } \\ \text { US3_CLK \#4 } \\ \text { US3_CS \#3 } \\ \text { US3_CTS \#2 } \\ \text { US3_RTS \#1 } \\ \text { LEU0_TX \#22 } \\ \text { LEU0_RX \#21 } \\ \text { I2C0_SDA \#22 } \\ \text { I2C0_SCL \#21 } \end{gathered}$	FRC_DCLK \#22   FRC_DOUT \#21   FRC_DFRAME \#20   MODEM_DCLK \#22   MODEM_DIN \#21   MODEM_DOUT \#20   MODEM_ANTO \#19   MODEM_ANT1 \#18	CMU_CLKO \#5   PRS_CH3 \#13   PRS_CH4 \#5   PRS_CH5 \#4   PRS_CH6 \#16   ACMP0_O \#22   ACMP1_O \#22   LES_CH6   GPIO_EM4WU4


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PD15	VDACO_OUTOALT / OPAO_OUTALT \#2   BUSCY   BUSDX   OPA1_N	$\begin{gathered} \text { TIM0_CC0 \#23 } \\ \text { TIM0_CC1 \#22 } \\ \text { TIM0_CC2 \#21 } \\ \text { TIMO_CDTI0 \#20 } \\ \text { TIMO_CDTI1 \#19 } \\ \text { TIM0_CDTI2 \#18 } \\ \text { TIM1_CC0 \#23 } \\ \text { TIM1_CC1 \#22 } \\ \text { TIM1_CC2 \#21 } \\ \text { TIM1_CC3 \#20 } \\ \text { WTIM0_CDTI0 \#31 } \\ \text { WTIM0_CDTI1 \#29 } \\ \text { WTIM0_CDTI2 \#27 } \\ \text { WTIM1_CC0 \#23 } \\ \text { WTIM1_CC1 \#21 } \\ \text { WTIM1_CC2 \#19 } \\ \text { WTIM1_CC3 \#17 } \\ \text { LETIMO_OUT0 \#23 } \\ \text { LETIMO_OUT1 \#22 } \\ \text { PCNTO_SOIN \#23 } \\ \text { PCNTO_S1IN \#22 } \end{gathered}$	$\begin{gathered} \text { US0_TX \#23 } \\ \text { US0_RX \#22 } \\ \text { US0_CLK \#21 } \\ \text { US0_CS \#20 } \\ \text { US0_CTS \#19 } \\ \text { US0_RTS \#18 } \\ \text { US1_TX \#23 } \\ \text { US1_RX \#22 } \\ \text { US1_CLK \#21 } \\ \text { US1_CS \#20 } \\ \text { US1_CTS \#19 } \\ \text { US1_RTS \#18 } \\ \text { US3_TX \#7 } \\ \text { US3_RX \#6 } \\ \text { US3_CLK \#5 } \\ \text { US3_CS \#4 } \\ \text { US3_CTS \#3 } \\ \text { US3_RTS \#2 } \\ \text { LEU0_TX \#23 } \\ \text { LEU0_RX \#22 } \\ \text { I2C0_SDA \#23 } \\ \text { I2C0_SCL \#22 } \end{gathered}$	FRC_DCLK \#23   FRC_DOUT \#22   FRC_DFRAME \#21   MODEM_DCLK \#23   MODEM_DIN \#22   MODEM_DOUT \#21   MODEM_ANT0 \#20   MODEM_ANT1 \#19	CMU_CLK1 \#5   PRS_CH3 \#14   PRS_CH4 \#6   PRS_CH5 \#5   PRS_CH6 \#17   ACMP0_O \#23   ACMP1_O \#23   LES_CH7   DBG_SWO \#2


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PF0	BUSBY   BUSAX	$\begin{gathered} \text { TIMO_CC0 \#24 } \\ \text { TIM0_CC1 \#23 } \\ \text { TIMO_CC2 \#22 } \\ \text { TIMO_CDTI0 \#21 } \\ \text { TIMO_CDTI1 \#20 } \\ \text { TIM0_CDTI2 \#19 } \\ \text { TIM1_CC0 \#24 } \\ \text { TIM1_CC1 \#23 } \\ \text { TIM1_CC2 \#22 } \\ \text { TIM1_CC3 \#21 } \\ \text { WTIMO_CDTI1 \#30 } \\ \text { WTIMO_CDTI2 \#28 } \\ \text { WTIM1_CC0 \#24 } \\ \text { WTIM1_CC1 \#22 } \\ \text { WTIM1_CC2 \#20 } \\ \text { WTIM1_CC3 \#18 } \\ \text { LETIM0_OUT0 \#24 } \\ \text { LETIM0_OUT1 \#23 } \\ \text { PCNT0_SOIN \#24 } \\ \text { PCNTO_S1IN \#23 } \end{gathered}$	US0_TX \#24 US0_RX \#23 US0_CLK \#22 US0_CS \#21 US0_CTS \#20 US0_RTS \#19 US1_TX \#24 US1_RX \#23 US1_CLK \#22 US1_CS \#21 US1_CTS \#20 US1_RTS \#19 US2_TX \#14 US2_RX \#13 US2_CLK \#12 US2_CS \#11 US2_CTS \#10 US2_RTS \#9 LEU0_TX \#24 LEU0_RX \#23 I2C0_SDA \#24 I2C0_SCL \#23	FRC_DCLK \#24   FRC_DOUT \#23   FRC_DFRAME \#22   MODEM_DCLK \#24   MODEM_DIN \#23   MODEM_DOUT \#22   MODEM_ANTO \#21   MODEM_ANT1 \#20	PRS_CH0 \#0   PRS_CH1 \#7   PRS_CH2 \#6   PRS_CH3 \#5   ACMP0_O \#24   ACMP1_O \#24   DBG_SWCLKTCK   BOOT_TX


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PF1	BUSAY   BUSBX	$\begin{gathered} \text { TIMO_CC0 \#25 } \\ \text { TIMO_CC1 \#24 } \\ \text { TIMO_CC2 \#23 } \\ \text { TIM0_CDTI0 \#22 } \\ \text { TIM0_CDTI1 \#21 } \\ \text { TIM0_CDTI2 \#20 } \\ \text { TIM1_CC0 \#25 } \\ \text { TIM1_CC1 \#24 } \\ \text { TIM1_CC2 \#23 } \\ \text { TIM1_CC3 \#22 } \\ \text { WTIMO_CDTI1 \#31 } \\ \text { WTIMO_CDTI2 \#29 } \\ \text { WTIM1_CC0 \#25 } \\ \text { WTIM1_CC1 \#23 } \\ \text { WTIM1_CC2 \#21 } \\ \text { WTIM1_CC3 \#19 } \\ \text { LETIM0_OUT0 \#25 } \\ \text { LETIM0_OUT1 \#24 } \\ \text { PCNT0_SOIN \#25 } \\ \text { PCNT0_S1IN \#24 } \end{gathered}$	$\begin{gathered} \text { US0_TX \#25 } \\ \text { US0_RX \#24 } \\ \text { US0_CLK \#23 } \\ \text { USO_CS \#22 } \\ \text { US0_CTS \#21 } \\ \text { US0_RTS \#20 } \\ \text { US1_TX \#25 } \\ \text { US1_RX \#24 } \\ \text { US1_CLK \#23 } \\ \text { US1_CS \#22 } \\ \text { US1_CTS \#21 } \\ \text { US1_RTS \#20 } \\ \text { US2_TX \#15 } \\ \text { US2_RX \#14 } \\ \text { US2_CLK \#13 } \\ \text { US2_CS \#12 } \\ \text { US2_CTS \#11 } \\ \text { US2_RTS \#10 } \\ \text { LEU0_TX \#25 } \\ \text { LEU0_RX \#24 } \\ \text { I2C0_SDA \#25 } \\ \text { I2C0_SCL \#24 } \end{gathered}$	FRC_DCLK \#25   FRC_DOUT \#24   FRC_DFRAME \#23   MODEM_DCLK \#25   MODEM_DIN \#24   MODEM_DOUT \#23   MODEM_ANTO \#22   MODEM_ANT1 \#21	PRS_CH0 \#1   PRS_CH1 \#0   PRS_CH2 \#7   PRS_CH3 \#6   ACMP0_O \#25   ACMP1_O \#25   DBG_SWDIOTMS BOOT_RX


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PF2	$\begin{aligned} & \text { BUSBY } \\ & \text { BUSAX } \end{aligned}$	$\begin{gathered} \text { TIM0_CC0 \#26 } \\ \text { TIM0_CC1 \#25 } \\ \text { TIM0_CC2 \#24 } \\ \text { TIM0_CDTI0 \#23 } \\ \text { TIM0_CDTI1 \#22 } \\ \text { TIM0_CDTI2 \#21 } \\ \text { TIM1_CC0 \#26 } \\ \text { TIM1_CC1 \#25 } \\ \text { TIM1_CC2 \#24 } \\ \text { TIM1_CC3 \#23 } \\ \text { WTIM0_CDTI2 \#30 } \\ \text { WTIM1_CC0 \#26 } \\ \text { WTIM1_CC1 \#24 } \\ \text { WTIM1_CC2 \#22 } \\ \text { WTIM1_CC3 \#20 } \\ \text { LETIM0_OUT0 \#26 } \\ \text { LETIM0_OUT1 \#25 } \\ \text { PCNT0_S0IN \#26 } \\ \text { PCNT0_S1IN \#25 } \end{gathered}$	$\begin{gathered} \text { US0_TX \#26 } \\ \text { US0_RX \#25 } \\ \text { US0_CLK \#24 } \\ \text { US0_CS \#23 } \\ \text { US0_CTS \#22 } \\ \text { US0_RTS \#21 } \\ \text { US1_TX \#26 } \\ \text { US1_RX \#25 } \\ \text { US1_CLK \#24 } \\ \text { US1_CS \#23 } \\ \text { US1_CTS \#22 } \\ \text { US1_RTS \#21 } \\ \text { LEU0_TX \#26 } \\ \text { LEU0_RX \#25 } \\ \text { I2C0_SDA \#26 } \\ \text { I2C0_SCL \#25 } \end{gathered}$	FRC_DCLK \#26   FRC_DOUT \#25   FRC_DFRAME \#24   MODEM_DCLK \#26   MODEM_DIN \#25   MODEM_DOUT \#24   MODEM_ANTO \#23   MODEM_ANT1 \#22	CMU_CLK0 \#6   PRS_CHO \#2   PRS_CH1 \#1   PRS_CH2 \#0   PRS_CH3 \#7   ACMP0_O \#26   ACMP1_O \#26   DBG_TDO   DBG_SWO \#0   GPIO_EM4WUO


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PF3	$\begin{aligned} & \text { BUSAY } \\ & \text { BUSBX } \end{aligned}$	$\begin{gathered} \text { TIM0_CC0 \#27 } \\ \text { TIM0_CC1 \#26 } \\ \text { TIMO_CC2 \#25 } \\ \text { TIMO_CDTIO \#24 } \\ \text { TIMO_CDTI1 \#23 } \\ \text { TIM0_CDTI2 \#22 } \\ \text { TIM1_CC0 \#27 } \\ \text { TIM1_CC1 \#26 } \\ \text { TIM1_CC2 \#25 } \\ \text { TIM1_CC3 \#24 } \\ \text { WTIM0_CDTI2 \#31 } \\ \text { WTIM1_CC0 \#27 } \\ \text { WTIM1_CC1 \#25 } \\ \text { WTIM1_CC2 \#23 } \\ \text { WTIM1_CC3 \#21 } \\ \text { LETIM0_OUT0 \#27 } \\ \text { LETIM0_OUT1 \#26 } \\ \text { PCNTO_SOIN \#27 } \\ \text { PCNT0_S1IN \#26 } \end{gathered}$	US0_TX \#27 US0_RX \#26 US0_CLK \#25 US0_CS \#24 US0_CTS \#23 US0_RTS \#22 US1_TX \#27 US1_RX \#26 US1_CLK \#25 US1_CS \#24 US1_CTS \#23 US1_RTS \#22 US2_TX \#16 US2_RX \#15 US2_CLK \#14 US2_CS \#13 US2_CTS \#12 US2_RTS \#11 LEU0_TX \#27 LEU0_RX \#26 I2C0_SDA \#27 I2C0_SCL \#26	FRC_DCLK \#27   FRC_DOUT \#26   FRC_DFRAME \#25   MODEM_DCLK \#27   MODEM_DIN \#26   MODEM_DOUT \#25   MODEM_ANTO \#24   MODEM_ANT1 \#23	CMU_CLK1 \#6   PRS_CHO \#3   PRS_CH1 \#2   PRS_CH2 \#1   PRS_CH3 \#0   ACMP0_O \#27   ACMP1_O \#27   DBG_TDI


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PF4	BUSBY   BUSAX	$\begin{gathered} \text { TIMO_CC0 \#28 } \\ \text { TIMO_CC1 \#27 } \\ \text { TIMO_CC2 \#26 } \\ \text { TIMO_CDTIO \#25 } \\ \text { TIMO_CDTI1 \#24 } \\ \text { TIM0_CDTI2 \#23 } \\ \text { TIM1_CC0 \#28 } \\ \text { TIM1_CC1 \#27 } \\ \text { TIM1_CC2 \#26 } \\ \text { TIM1_CC3 \#25 } \\ \text { WTIM1_CC0 \#28 } \\ \text { WTIM1_CC1 \#26 } \\ \text { WTIM1_CC2 \#24 } \\ \text { WTIM1_CC3 \#22 } \\ \text { LETIM0_OUT0 \#28 } \\ \text { LETIM0_OUT1 \#27 } \\ \text { PCNT0_SOIN \#28 } \\ \text { PCNT0_S1IN \#27 } \end{gathered}$	$\begin{gathered} \text { US0_TX \#28 } \\ \text { US0_RX \#27 } \\ \text { US0_CLK \#26 } \\ \text { US0_CS \#25 } \\ \text { US0_CTS \#24 } \\ \text { US0_RTS \#23 } \\ \text { US1_TX \#28 } \\ \text { US1_RX \#27 } \\ \text { US1_CLK \#26 } \\ \text { US1_CS \#25 } \\ \text { US1_CTS \#24 } \\ \text { US1_RTS \#23 } \\ \text { US2_TX \#17 } \\ \text { US2_RX \#16 } \\ \text { US2_CLK \#15 } \\ \text { US2_CS \#14 } \\ \text { US2_CTS \#13 } \\ \text { US2_RTS \#12 } \\ \text { LEU0_TX \#28 } \\ \text { LEU0_RX \#27 } \\ \text { I2C0_SDA \#28 } \\ \text { I2C0_SCL \#27 } \end{gathered}$	FRC_DCLK \#28   FRC_DOUT \#27   FRC_DFRAME \#26   MODEM_DCLK \#28   MODEM_DIN \#27   MODEM_DOUT \#26   MODEM_ANTO \#25   MODEM_ANT1 \#24	PRS_CHO \#4   PRS_CH1 \#3   PRS_CH2 \#2   PRS_CH3 \#1   ACMPO_O \#28   ACMP1_O \#28


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PF5	$\begin{aligned} & \text { BUSAY } \\ & \text { BUSBX } \end{aligned}$	$\begin{gathered} \text { TIMO_CC0 \#29 } \\ \text { TIMO_CC1 \#28 } \\ \text { TIMO_CC2 \#27 } \\ \text { TIMO_CDTIO \#26 } \\ \text { TIM0_CDTI1 \#25 } \\ \text { TIM0_CDTI2 \#24 } \\ \text { TIM1_CC0 \#29 } \\ \text { TIM1_CC1 \#28 } \\ \text { TIM1_CC2 \#27 } \\ \text { TIM1_CC3 \#26 } \\ \text { WTIM1_CC0 \#29 } \\ \text { WTIM1_CC1 \#27 } \\ \text { WTIM1_CC2 \#25 } \\ \text { WTIM1_CC3 \#23 } \\ \text { LETIM0_OUT0 \#29 } \\ \text { LETIM0_OUT1 \#28 } \\ \text { PCNT0_SOIN \#29 } \\ \text { PCNT0_S1IN \#28 } \end{gathered}$	US0_TX \#29 US0_RX \#28 US0_CLK \#27 US0_CS \#26 US0_CTS \#25 US0_RTS \#24 US1_TX \#29 US1_RX \#28 US1_CLK \#27 US1_CS \#26 US1_CTS \#25 US1_RTS \#24 US2_TX \#18 US2_RX \#17 US2_CLK \#16 US2_CS \#15 US2_CTS \#14 US2_RTS \#13 LEU0_TX \#29 LEU0_RX \#28 I2C0_SDA \#29 I2C0_SCL \#28	FRC_DCLK \#29   FRC_DOUT \#28   FRC_DFRAME \#27   MODEM_DCLK \#29   MODEM_DIN \#28   MODEM_DOUT \#27   MODEM_ANTO \#26   MODEM_ANT1 \#25	PRS_CH0 \#5   PRS_CH1 \#4   PRS_CH2 \#3   PRS_CH3 \#2   ACMP0_O \#29   ACMP1_O \#29


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PF6	$\begin{aligned} & \text { BUSBY } \\ & \text { BUSAX } \end{aligned}$	$\begin{gathered} \text { TIMO_CC0 \#30 } \\ \text { TIM0_CC1 \#29 } \\ \text { TIM0_CC2 \#28 } \\ \text { TIMO_CDTI0 \#27 } \\ \text { TIMO_CDTI1 \#26 } \\ \text { TIM0_CDTI2 \#25 } \\ \text { TIM1_CC0 \#30 } \\ \text { TIM1_CC1 \#29 } \\ \text { TIM1_CC2 \#28 } \\ \text { TIM1_CC3 \#27 } \\ \text { WTIM1_CC0 \#30 } \\ \text { WTIM1_CC1 \#28 } \\ \text { WTIM1_CC2 \#26 } \\ \text { WTIM1_CC3 \#24 } \\ \text { LETIM0_OUT0 \#30 } \\ \text { LETIM0_OUT1 \#29 } \\ \text { PCNT0_SOIN \#30 } \\ \text { PCNT0_S1IN \#29 } \\ \text { PCNT1_SOIN \#19 } \\ \text { PCNT1_S1IN \#18 } \end{gathered}$	US0_TX \#30 US0_RX \#29 US0_CLK \#28 US0_CS \#27 US0_CTS \#26 US0_RTS \#25 US1_TX \#30 US1_RX \#29 US1_CLK \#28 US1_CS \#27 US1_CTS \#26 US1_RTS \#25 US2_TX \#19 US2_RX \#18 US2_CLK \#17 US2_CS \#16 US2_CTS \#15 US2_RTS \#14 LEU0_TX \#30 LEU0_RX \#29 I2C0_SDA \#30 I2C0_SCL \#29	FRC_DCLK \#30   FRC_DOUT \#29   FRC_DFRAME \#28   MODEM_DCLK \#30   MODEM_DIN \#29   MODEM_DOUT \#28   MODEM_ANTO \#27   MODEM_ANT1 \#26	CMU_CLK1 \#7   PRS_CHO \#6   PRS_CH1 \#5   PRS_CH2 \#4   PRS_CH3 \#3   ACMP0_O \#30   ACMP1_O \#30


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PF7	$\begin{aligned} & \text { BUSAY } \\ & \text { BUSBX } \end{aligned}$	$\begin{gathered} \text { TIMO_CC0 \#31 } \\ \text { TIM0_CC1 \#30 } \\ \text { TIM0_CC2 \#29 } \\ \text { TIMO_CDTI0 \#28 } \\ \text { TIMO_CDTI1 \#27 } \\ \text { TIM0_CDTI2 \#26 } \\ \text { TIM1_CC0 \#31 } \\ \text { TIM1_CC1 \#30 } \\ \text { TIM1_CC2 \#29 } \\ \text { TIM1_CC3 \#28 } \\ \text { WTIM1_CC0 \#31 } \\ \text { WTIM1_CC1 \#29 } \\ \text { WTIM1_CC2 \#27 } \\ \text { WTIM1_CC3 \#25 } \\ \text { LETIM0_OUT0 \#31 } \\ \text { LETIM0_OUT1 \#30 } \\ \hline \text { PCNT0_SOIN \#31 } \\ \text { PCNT0_S1IN \#30 } \\ \text { PCNT1_SOIN \#20 } \\ \text { PCNT1_S1IN \#19 } \end{gathered}$	US0_TX \#31 US0_RX \#30 US0_CLK \#29 US0_CS \#28 US0_CTS \#27 US0_RTS \#26 US1_TX \#31 US1_RX \#30 US1_CLK \#29 US1_CS \#28 US1_CTS \#27 US1_RTS \#26 US2_TX \#20 US2_RX \#19 US2_CLK \#18 US2_CS \#17 US2_CTS \#16 US2_RTS \#15 LEU0_TX \#31 LEU0_RX \#30 I2C0_SDA \#31 I2C0_SCL \#30	FRC_DCLK \#31   FRC_DOUT \#30   FRC_DFRAME \#29   MODEM_DCLK \#31   MODEM_DIN \#30   MODEM_DOUT \#29   MODEM_ANTO \#28   MODEM_ANT1 \#27	CMU_CLKIO \#1   CMU_CLKO \#7   PRS_CH0 \#7   PRS_CH1 \#6   PRS_CH2 \#5   PRS_CH3 \#4   ACMP0_O \#31   ACMP1_O \#31   GPIO_EM4WU1
PF8	BUSBY   BUSAX	WTIM1_CC1 \#30   WTIM1_CC2 \#28   WTIM1_CC3 \#26   PCNT1_SOIN \#21   PCNT1_S1IN \#20   PCNT2_SOIN \#21   PCNT2_S1IN \#20	$\begin{aligned} & \text { US2_TX \#21 } \\ & \text { US2_RX \#20 } \\ & \text { US2_CLK \#19 } \\ & \text { US2_CS \#18 } \\ & \text { US2_CTS \#17 } \\ & \text { US2_RTS \#16 } \\ & \text { I2C1_SDA \#21 } \\ & \text { I2C1_SCL \#20 } \end{aligned}$		ETM_TCLK \#0


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PF9	$\begin{aligned} & \text { BUSAY } \\ & \text { BUSBX } \end{aligned}$	WTIM1_CC1 \#31   WTIM1_CC2 \#29   WTIM1_CC3 \#27   PCNT1_SOIN \#22   PCNT1_S1IN \#21   PCNT2_SOIN \#22   PCNT2_S1IN \#21	$\begin{aligned} & \text { US2_TX \#22 } \\ & \text { US2_RX \#21 } \\ & \text { US2_CLK \#20 } \\ & \text { US2_CS \#19 } \\ & \text { US2_CTS \#18 } \\ & \text { US2_RTS \#17 } \\ & \text { I2C1_SDA \#22 } \\ & \text { I2C1_SCL \#21 } \end{aligned}$		ETM_TD0 \#0
PF10	BUSBY   BUSAX	WTIM1_CC2 \#30   WTIM1_CC3 \#28   PCNT1_SOIN \#23   PCNT1_S1IN \#22   PCNT2_SOIN \#23   PCNT2_S1IN \#22	$\begin{aligned} & \text { US2_TX \#23 } \\ & \text { US2_RX \#22 } \\ & \text { US2_CLK \#21 } \\ & \text { US2_CS \#20 } \\ & \text { US2_CTS \#19 } \\ & \text { US2_RTS \#18 } \\ & \text { I2C1_SDA \#23 } \\ & \text { I2C1_SCL \#22 } \end{aligned}$		ETM_TD1 \#0
PF11	$\begin{aligned} & \text { BUSAY } \\ & \text { BUSBX } \end{aligned}$	WTIM1_CC2 \#31   WTIM1_CC3 \#29   PCNT1_SOIN \#24   PCNT1_S1IN \#23   PCNT2_SOIN \#24   PCNT2_S1IN \#23	$\begin{gathered} \text { US2_TX \#24 } \\ \text { US2_RX \#23 } \\ \text { US2_CLK \#22 } \\ \text { US2_CS \#21 } \\ \text { US2_CTS \#20 } \\ \text { US2_RTS \#19 } \\ \text { US3_TX \#24 } \\ \text { US3_RX \#23 } \\ \text { US3_CLK \#22 } \\ \text { US3_CS \#21 } \\ \text { US3_CTS \#20 } \\ \text { US3_RTS \#19 } \\ \text { I2C1_SDA \#24 } \\ \text { I2C1_SCL \#23 } \end{gathered}$		ETM_TD2 \#0


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PF12	$\begin{aligned} & \text { BUSBY } \\ & \text { BUSAX } \end{aligned}$	WTIM1_CC3 \#30   PCNT1_SOIN \#25   PCNT1_S1IN \#24   PCNT2_SOIN \#25   PCNT2_S1IN \#24	US2_TX \#25 US2_RX \#24 US2_CLK \#23 US2_CS \#22 US2_CTS \#21 US2_RTS \#20 US3_TX \#25 US3_RX \#24 US3_CLK \#23 US3_CS \#22 US3_CTS \#21 US3_RTS \#20 I2C1_SDA \#25 I2C1_SCL \#24		ETM_TD3 \#0
PF13	$\begin{aligned} & \text { BUSAY } \\ & \text { BUSBX } \end{aligned}$	WTIM1_CC3 \#31   PCNT1_SOIN \#26   PCNT1_S1IN \#25   PCNT2_SOIN \#26   PCNT2_S1IN \#25	US2_TX \#26 US2_RX \#25 US2_CLK \#24 US2_CS \#23 US2_CTS \#22 US2_RTS \#21 US3_TX \#26 US3_RX \#25 US3_CLK \#24 US3_CS \#23 US3_CTS \#22 US3_RTS \#21 I2C1_SDA \#26 I2C1_SCL \#25		


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PF14	BUSBY BUSAX	PCNT1_SOIN \#27   PCNT1_S1IN \#26   PCNT2_SOIN \#27   PCNT2_S1IN \#26	US2_TX \#27 US2_RX \#26 US2_CLK \#25 US2_CS \#24 US2_CTS \#23 US2_RTS \#22 US3_TX \#27 US3_RX \#26 US3_CLK \#25 US3_CS \#24 US3_CTS \#23 US3_RTS \#22 I2C1_SDA \#27 I2C1_SCL \#26		
PF15	BUSAY   BUSBX	PCNT1_SOIN \#28   PCNT1_S1IN \#27   PCNT2_SOIN \#28   PCNT2_S1IN \#27	US2_TX \#28 US2_RX \#27 US2_CLK \#26 US2_CS \#25 US2_CTS \#24 US2_RTS \#23 US3_TX \#28 US3_RX \#27 US3_CLK \#26 US3_CS \#25 US3_CTS \#24 US3_RTS \#23 I2C1_SDA \#28 I2C1_SCL \#27		
PIO	BUSADCOY   BUSADCOX		$\begin{gathered} \text { US2_TX \#5 } \\ \text { US2_RX \#4 } \\ \text { US2_CLK \#3 } \\ \text { US2_CS \#2 } \\ \text { US2_CTS \#1 } \\ \text { US2_RTS \#0 } \end{gathered}$		LES_ALTEX4


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PI1	BUSADCOY   BUSADCOX		US2_TX \#6 US2_RX \#5 US2_CLK \#4 US2_CS \#3 US2_CTS \#2 US2_RTS \#1		LES_ALTEX5
PI2	BUSADCOY   BUSADCOX	PCNT1_SOIN \#4   PCNT1_S1IN \#3   PCNT2_SOIN \#4   PCNT2_S1IN \#3	$\begin{gathered} \text { US2_TX \#7 } \\ \text { US2_RX \#6 } \\ \text { US2_CLK \#5 } \\ \text { US2_CS \#4 } \\ \text { US2_CTS \#3 } \\ \text { US2_RTS \#2 } \\ \text { US3_TX \#8 } \\ \text { US3_RX \#7 } \\ \text { US3_CLK \#6 } \\ \text { US3_CS \#5 } \\ \text { US3_CTS \#4 } \\ \text { US3_RTS \#3 } \\ \text { I2C1_SDA \#4 } \\ \text { I2C1_SCL \#3 } \end{gathered}$		LES_ALTEX6   ETM_TCLK \#2
PI3	BUSADCOY   BUSADCOX	PCNT1_SOIN \#5   PCNT1_S1IN \#4   PCNT2_SOIN \#5   PCNT2_S1IN \#4	$\begin{aligned} & \text { US2_TX \#8 } \\ & \text { US2_RX \#7 } \\ & \text { US2_CLK \#6 } \\ & \text { US2_CS \#5 } \\ & \text { US2_CTS \#4 } \\ & \text { US2_RTS \#3 } \\ & \text { US3_TX \#9 } \\ & \text { US3_RX \#8 } \\ & \text { US3_CLK \#7 } \\ & \text { US3_CS \#6 } \\ & \text { US3_CTS \#5 } \\ & \text { US3_RTS \#4 } \\ & \text { I2C1_SDA \#5 } \\ & \text { I2C1_SCL \#4 } \end{aligned}$		$\begin{aligned} & \text { LES_ALTEX7 } \\ & \text { ETM_TD0 \#2 } \end{aligned}$


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PJ14	BUSACMP1Y BUSACMP1X	PCNT1_SOIN \#11   PCNT1_S1IN \#10   PCNT2_SOIN \#11   PCNT2_S1IN \#10	$\begin{aligned} & \text { US3_TX \#16 } \\ & \text { US3_RX \#15 } \\ & \text { US3_CLK \#14 } \\ & \text { US3_CS \#13 } \\ & \text { US3_CTS \#12 } \\ & \text { US3_RTS \#11 } \\ & \text { I2C1_SDA \#11 } \\ & \text { I2C1_SCL \#10 } \end{aligned}$		LES_ALTEX2
PJ15	BUSACMP1Y   BUSACMP1X	PCNT1_SOIN \#12   PCNT1_S1IN \#11   PCNT2_SOIN \#12   PCNT2_S1IN \#11	$\begin{aligned} & \text { US3_TX \#17 } \\ & \text { US3_RX \#16 } \\ & \text { US3_CLK \#15 } \\ & \text { US3_CS \#14 } \\ & \text { US3_CTS \#13 } \\ & \text { US3_RTS \#12 } \\ & \text { I2C1_SDA \#12 } \\ & \text { I2C1_SCL \#11 } \end{aligned}$		LES_ALTEX3
PK0	IDAC0_OUT	PCNT1_SOIN \#29   PCNT1_S1IN \#28   PCNT2_SOIN \#29   PCNT2_S1IN \#28	US2_TX \#29 US2_RX \#28 US2_CLK \#27 US2_CS \#26 US2_CTS \#25 US2_RTS \#24 US3_TX \#29 US3_RX \#28 US3_CLK \#27 US3_CS \#26 US3_CTS \#25 US3_RTS \#24 I2C1_SDA \#29 I2C1_SCL \#28		


GPIO Name	Pin Alternate Functionality / Description				
	Analog	Timers	Communication	Radio	Other
PK1		PCNT1_SOIN \#30   PCNT1_S1IN \#29   PCNT2_SOIN \#30   PCNT2_S1IN \#29	US2_TX \#30 US2_RX \#29 US2_CLK \#28 US2_CS \#27 US2_CTS \#26 US2_RTS \#25 US3_TX \#30 US3_RX \#29 US3_CLK \#28 US3_CS \#27 US3_CTS \#26 US3_RTS \#25 I2C1_SDA \#30 I2C1_SCL \#29		
PK2		PCNT1_SOIN \#31   PCNT1_S1IN \#30   PCNT2_SOIN \#31   PCNT2_S1IN \#30	US2_TX \#31 US2_RX \#30 US2_CLK \#29 US2_CS \#28 US2_CTS \#27 US2_RTS \#26 US3_TX \#31 US3_RX \#30 US3_CLK \#29 US3_CS \#28 US3_CTS \#27 US3_RTS \#26 I2C1_SDA \#31 I2C1_SCL \#30		

### 6.10 Alternate Functionality Overview

A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings and the associated GPIO pin. Refer to 6.9 GPIO Functionality Table for a list of functions available on each GPIO pin.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Table 6.10. Alternate Functionality Overview

Alternate	LOCATION								
Functionality	0-3	4-7	8-11	12-15	16-19	20-23	24-27	28-31	Description
ACMPO_O	$\begin{aligned} & \text { 0: PA0 } \\ & \text { 1: PA1 } \\ & \text { 2: PA2 } \\ & \text { 3: PA3 } \end{aligned}$	4: PA4   5: PA5   6: PB11   7: PB12	8: PB13   9: PB14   10: PB15   11: PC6	12: PC7   13: PC8   14: PC9   15: PC10	16: PC11   17: PD9   18: PD10   19: PD11	20: PD12   21: PD13   22: PD14   23: PD15	24: PFO   25: PF1   26: PF2   27: PF3	$\begin{aligned} & \text { 28: PF4 } \\ & \text { 29: PF5 } \\ & \text { 30: PF6 } \\ & \text { 31: PF7 } \end{aligned}$	Analog comparator ACMP0, digital output.
ACMP1_O	$\begin{aligned} & \text { 0: PA0 } \\ & \text { 1: PA1 } \\ & \text { 2: PA2 } \\ & \text { 3: PA3 } \end{aligned}$	4: PA4   5: PA5   6: PB11   7: PB12	8: PB13   9: PB14   10: PB15   11: PC6	12: PC7   13: PC8   14: PC9   15: PC10	16: PC11   17: PD9   18: PD10   19: PD11	20: PD12   21: PD13   22: PD14   23: PD15	24: PFO   25: PF1   26: PF2   27: PF3	28: PF4   29: PF5   30: PF6   31: PF7	Analog comparator ACMP1, digital output.
ADC0_EXTN	0: PAO								Analog to digital converter ADC0 external reference input negative pin.
ADC0_EXTP	0: PA1								Analog to digital converter ADC0 external reference input positive pin.
BOOT_RX	0: PF1								Bootloader RX.
BOOT_TX	0: PF0								Bootloader TX.
CMU_CLKO	$\begin{aligned} & \text { 0: PA1 } \\ & \text { 1: PB15 } \\ & \text { 2: PC6 } \\ & \text { 3: PC11 } \end{aligned}$	4: PD9   5: PD14   6: PF2   7: PF7							Clock Management Unit, clock output number 0 .
CMU_CLK1	$\begin{aligned} & \text { 0: PA0 } \\ & \text { 1: PB14 } \\ & \text { 2: PC7 } \\ & \text { 3: PC10 } \end{aligned}$	4: PD10   5: PD15   6: PF3   7: PF6							Clock Management Unit, clock output number 1.
CMU_CLKIO	$\begin{aligned} & \text { 0: PB13 } \\ & \text { 1: PF7 } \\ & \text { 2: PC6 } \\ & \text { 3: PB6 } \end{aligned}$	4: PA5							Clock Management Unit, clock input number 0 .


Alternate	LOCATION								
Functionality	0-3	4-7	8-11	12-15	16-19	20-23	24-27	28-31	Description
DBG_SWCLKTCK	0: PF0								Debug-interface Serial Wire clock input and JTAG Test Clock.   Note that this function is enabled to the pin out of reset, and has a built-in pull down.
DBG_SWDIOTMS	0: PF1								Debug-interface Serial Wire data input / output and JTAG Test Mode Select.   Note that this function is enabled to the pin out of reset, and has a built-in pull up.
DBG_SWO	$\begin{aligned} & \text { 0: PF2 } \\ & \text { 1: PB13 } \\ & \text { 2: PD15 } \\ & \text { 3: PC11 } \end{aligned}$								Debug-interface Serial Wire viewer Output.   Note that this function is not enabled after reset, and must be enabled by software to be used.
DBG_TDI	0: PF3								Debug-interface JTAG Test Data In.   Note that this function becomes available after the first valid JTAG command is received, and has a built-in pull up when JTAG is active.
DBG_TDO	0: PF2								Debug-interface JTAG Test Data Out.   Note that this function becomes available after the first valid JTAG command is received.
ETM_TCLK	$\begin{aligned} & \text { 0: PF8 } \\ & \text { 1: PA5 } \\ & \text { 2: PI2 } \\ & \text { 3: PC6 } \end{aligned}$								Embedded Trace Module ETM clock .


Alternate	LOCATION								
Functionality	0-3	4-7	8-11	12-15	16-19	20-23	24-27	28-31	Description
ETM_TD0	$\begin{aligned} & \text { 0: PF9 } \\ & \text { 1: PA6 } \\ & \text { 2: PI3 } \\ & \text { 3: PC7 } \end{aligned}$								Embedded Trace Module ETM data 0.
ETM_TD1	$\begin{aligned} & \text { 0: PF10 } \\ & \text { 1: PA7 } \\ & \text { 2: PB6 } \\ & \text { 3: PC8 } \end{aligned}$								Embedded Trace Module ETM data 1.
ETM_TD2	$\begin{aligned} & \text { 0: PF11 } \\ & \text { 1: PA8 } \\ & \text { 2: PB7 } \\ & \text { 3: PC9 } \end{aligned}$								Embedded Trace Module ETM data 2.
ETM_TD3	$\begin{aligned} & \text { 0: PF12 } \\ & \text { 1: PA9 } \\ & \text { 2: PB8 } \\ & \text { 3: PC10 } \end{aligned}$								Embedded Trace Module ETM data 3.
FRC_DCLK	$\begin{aligned} & \text { 0: PA0 } \\ & \text { 1: PA1 } \\ & \text { 2: PA2 } \\ & \text { 3: PA3 } \end{aligned}$	$\begin{aligned} & \text { 4: PA4 } \\ & \text { 5: PA5 } \\ & \text { 6: PB11 } \\ & \text { 7: PB12 } \end{aligned}$	8: PB13   9: PB14   10: PB15   11: PC6	12: PC7   13: PC8   14: PC9   15: PC10	16: PC11   17: PD9   18: PD10   19: PD11	20: PD12   21: PD13   22: PD14   23: PD15	24: PFO   25: PF1   26: PF2   27: PF3	$\begin{aligned} & \text { 28: PF4 } \\ & \text { 29: PF5 } \\ & \text { 30: PF6 } \\ & \text { 31: PF7 } \end{aligned}$	Frame Controller, Data Sniffer Clock.
FRC_DFRAME	$\begin{aligned} & \text { 0: PA2 } \\ & \text { 1: PA3 } \\ & \text { 2: PA4 } \\ & \text { 3: PA5 } \end{aligned}$	4: PB11 5: PB12 6: PB13 7: PB14	8: PB15   9: PC6   10: PC7   11: PC8	12: PC9   13: PC10   14: PC11   15: PD9	16: PD10   17: PD11   18: PD12   19: PD13	20: PD14   21: PD15   22: PFO   23: PF1	24: PF2   25: PF3   26: PF4   27: PF5	$\begin{aligned} & \text { 28: PF6 } \\ & \text { 29: PF7 } \\ & \text { 30: PA0 } \\ & \text { 31: PA1 } \end{aligned}$	Frame Controller, Data Sniffer Frame active
FRC_DOUT	$\begin{aligned} & \text { 0: PA1 } \\ & \text { 1: PA2 } \\ & \text { 2: PA3 } \\ & \text { 3: PA4 } \end{aligned}$	$\begin{aligned} & \text { 4: PA5 } \\ & \text { 5: PB11 } \\ & \text { 6: PB12 } \\ & \text { 7: PB13 } \end{aligned}$	8: PB14   9: PB15   10: PC6   11: PC7	12: PC8   13: PC9   14: PC10   15: PC11	16: PD9   17: PD10   18: PD11   19: PD12	20: PD13   21: PD14   22: PD15   23: PFO	24: PF1   25: PF2   26: PF3   27: PF4	$\begin{aligned} & \text { 28: PF5 } \\ & \text { 29: PF6 } \\ & \text { 30: PF7 } \\ & \text { 31: PA0 } \end{aligned}$	Frame Controller, Data Sniffer Output.
GPIO_EM4WU0	0: PF2								Pin can be used to wake the system up from EM4
GPIO_EM4WU1	0: PF7								Pin can be used to wake the system up from EM4
GPIO_EM4WU4	0: PD14								Pin can be used to wake the system up from EM4


Alternate	LOCATION								
Functionality	0-3	4-7	8-11	12-15	16-19	20-23	24-27	28-31	Description
GPIO_EM4WU8	$0: ~ P A 3$								Pin can be used to wake the system up from EM4
GPIO_EM4WU9	0: PB13								Pin can be used to wake the system up from EM4
GPIO_EM4WU12	0: PC10								Pin can be used to wake the system up from EM4
I2C0_SCL	$\begin{aligned} & \text { 0: PA1 } \\ & \text { 1: PA2 } \\ & \text { 2: PA3 } \\ & \text { 3: PA4 } \end{aligned}$	$\begin{aligned} & \text { 4: PA5 } \\ & \text { 5: PB11 } \\ & \text { 6: PB12 } \\ & \text { 7: PB13 } \end{aligned}$	$\begin{aligned} & \text { 8: PB14 } \\ & \text { 9: PB15 } \\ & \text { 10: PC6 } \\ & \text { 11: PC7 } \end{aligned}$	12: PC8   13: PC9   14: PC10   15: PC11	16: PD9   17: PD10   18: PD11   19: PD12	$\begin{aligned} & \text { 20: PD13 } \\ & \text { 21: PD14 } \\ & \text { 22: PD15 } \\ & \text { 23: PF0 } \end{aligned}$	24: PF1   25: PF2   26: PF3   27: PF4	$\begin{aligned} & \text { 28: PF5 } \\ & \text { 29: PF6 } \\ & \text { 30: PF7 } \\ & \text { 31: PA0 } \end{aligned}$	I2C0 Serial Clock   Line input / output.
I2C0_SDA	$\begin{aligned} & \text { 0: PA0 } \\ & \text { 1: PA1 } \\ & \text { 2: PA2 } \\ & \text { 3: PA3 } \end{aligned}$	4: PA4   5: PA5   6: PB11   7: PB12	8: PB13   9: PB14   10: PB15   11: PC6	12: PC7   13: PC8   14: PC9   15: PC10	16: PC11   17: PD9   18: PD10   19: PD11	$\begin{aligned} & \text { 20: PD12 } \\ & \text { 21: PD13 } \\ & \text { 22: PD14 } \\ & \text { 23: PD15 } \end{aligned}$	24: PFO   25: PF1   26: PF2   27: PF3	$\begin{aligned} & \text { 28: PF4 } \\ & \text { 29: PF5 } \\ & \text { 30: PF6 } \\ & \text { 31: PF7 } \end{aligned}$	I2C0 Serial Data input / output.
I2C1_SCL	$\begin{aligned} & \text { 0: PA7 } \\ & \text { 1: PA8 } \\ & \text { 2: PA9 } \\ & \text { 3: PI2 } \end{aligned}$	4: PI3   5: PB6   6: PB7   7: PB8	$\begin{aligned} & \text { 8: PB9 } \\ & \text { 9: PB10 } \\ & \text { 10: PJ14 } \\ & \text { 11: PJ15 } \end{aligned}$	12: PC0   13: PC1   14: PC2   15: PC3	16: PC4   17: PC5   18: PC10   19: PC11	20: PF8   21: PF9   22: PF10   23: PF11	24: PF12   25: PF13   26: PF14   27: PF15	$\begin{aligned} & \text { 28: PK0 } \\ & \text { 29: PK1 } \\ & \text { 30: PK2 } \\ & \text { 31: PA6 } \end{aligned}$	I2C1 Serial Clock Line input / output.
I2C1_SDA	$\begin{aligned} & \text { 0: PA6 } \\ & \text { 1: PA7 } \\ & \text { 2: PA8 } \\ & \text { 3: PA9 } \end{aligned}$	$\begin{aligned} & \text { 4: } \mathrm{PI} 2 \\ & \text { 5: } \mathrm{PI} 3 \\ & \text { 6: } \mathrm{PB} 6 \\ & \text { 7: } \mathrm{PB} 7 \end{aligned}$	$\begin{aligned} & \text { 8: PB8 } \\ & \text { 9: PB9 } \\ & \text { 10: PB10 } \\ & \text { 11: PJ14 } \end{aligned}$	12: PJ15   13: PC0   14: PC1   15: PC2	16: PC3   17: PC4   18: PC5   19: PC10	$\begin{aligned} & \text { 20: PC11 } \\ & \text { 21: PF8 } \\ & \text { 22: PF9 } \\ & \text { 23: PF10 } \end{aligned}$	24: PF11   25: PF12   26: PF13   27: PF14	28: PF15   29: PKO   30: PK1   31: PK2	I2C1 Serial Data input / output.
IDAC0_OUT	0: PK0								IDAC0 output.
LES_ALTEX0	$0:$ PA8								LESENSE alternate excite output 0 .
LES_ALTEX1	0: PA9								LESENSE alternate excite output 1.
LES_ALTEX2	0: PJ14								LESENSE alternate excite output 2.
LES_ALTEX3	0: PJ15								LESENSE alternate excite output 3.
LES_ALTEX4	0: PIO								LESENSE alternate excite output 4.
LES_ALTEX5	0: PI1								LESENSE alternate excite output 5.
LES_ALTEX6	0: PI2								LESENSE alternate excite output 6.
LES_ALTEX7	0: PI3								LESENSE alternate excite output 7.


Alternate	LOCATION								
Functionality	0-3	4-7	8-11	12-15	16-19	20-23	24-27	28-31	Description
LES_CH0	$0: ~ P D 8$								LESENSE channel 0.
LES_CH1	0: PD9								LESENSE channel 1.
LES_CH2	0: PD10								LESENSE channel 2.
LES_CH3	0: PD11								LESENSE channel 3.
LES_CH4	0: PD12								LESENSE channel 4.
LES_CH5	0: PD13								LESENSE channel 5.
LES_CH6	0: PD14								LESENSE channel 6.
LES_CH7	0: PD15								LESENSE channel 7.
LES_CH8	0: PAO								LESENSE channel 8.
LES_CH9	0: PA1								LESENSE channel 9.
LES_CH10	0: PA2								LESENSE channel 10.
LES_CH11	0: PA3								LESENSE channel 11.
LES_CH12	0: PA4								LESENSE channel 12.
LES_CH13	0: PA5								LESENSE channel 13.
LES_CH14	0: PA6								LESENSE channel 14.
LES_CH15	0: PA7								LESENSE channel 15.
LETIMO_OUTO	$\begin{aligned} & \text { 0: PA0 } \\ & \text { 1: PA1 } \\ & \text { 2: PA2 } \\ & \text { 3: PA3 } \end{aligned}$	$\begin{aligned} & \text { 4: PA4 } \\ & \text { 5: PA5 } \\ & \text { 6: PB11 } \\ & \text { 7: PB12 } \end{aligned}$	8: PB13   9: PB14   10: PB15   11: PC6	12: PC7   13: PC8   14: PC9   15: PC10	16: PC11   17: PD9   18: PD10   19: PD11	20: PD12   21: PD13   22: PD14   23: PD15	24: PFO   25: PF1   26: PF2   27: PF3	$\begin{aligned} & \text { 28: PF4 } \\ & \text { 29: PF5 } \\ & \text { 30: PF6 } \\ & \text { 31: PF7 } \end{aligned}$	Low Energy Timer LETIMO, output channel 0.
LETIM0_OUT1	$\begin{aligned} & \text { 0: PA1 } \\ & \text { 1: PA2 } \\ & \text { 2: PA3 } \\ & \text { 3: PA4 } \end{aligned}$	$\begin{aligned} & \text { 4: PA5 } \\ & \text { 5: PB11 } \\ & \text { 6: PB12 } \\ & \text { 7: PB13 } \end{aligned}$	8: PB14   9: PB15   10: PC6   11: PC7	12: PC8   13: PC9   14: PC10   15: PC11	16: PD9   17: PD10   18: PD11   19: PD12	20: PD13   21: PD14   22: PD15   23: PFO	24: PF1   25: PF2   26: PF3   27: PF4	$\begin{aligned} & \text { 28: PF5 } \\ & \text { 29: PF6 } \\ & \text { 30: PF7 } \\ & \text { 31: PA0 } \end{aligned}$	Low Energy Timer LETIMO, output channel 1.


Alternate	LOCATION								
Functionality	0-3	4-7	8-11	12-15	16-19	20-23	24-27	28-31	Description
LEU0_RX	$\begin{aligned} & \text { 0: PA1 } \\ & \text { 1: PA2 } \\ & \text { 2: PA3 } \\ & \text { 3: PA4 } \end{aligned}$	4: PA5   5: PB11   6: PB12   7: PB13	$\begin{aligned} & \text { 8: PB14 } \\ & \text { 9: PB15 } \\ & \text { 10: PC6 } \\ & \text { 11: PC7 } \end{aligned}$	12: PC8   13: PC9   14: PC10   15: PC11	16: PD9   17: PD10   18: PD11   19: PD12	20: PD13   21: PD14   22: PD15   23: PF0	24: PF1   25: PF2   26: PF3   27: PF4	28: PF5   29: PF6   30: PF7   31: PA0	LEUART0 Receive input.
LEU0_TX	$\begin{aligned} & \text { 0: PA0 } \\ & \text { 1: PA1 } \\ & \text { 2: PA2 } \\ & \text { 3: PA3 } \end{aligned}$	4: PA4   5: PA5   6: PB11   7: PB12	8: PB13   9: PB14   10: PB15   11: PC6	12: PC7   13: PC8   14: PC9   15: PC10	16: PC11   17: PD9   18: PD10   19: PD11	20: PD12   21: PD13   22: PD14   23: PD15	24: PFO   25: PF1   26: PF2   27: PF3	28: PF4   29: PF5   30: PF6   31: PF7	LEUARTO Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	0: PB14								Low Frequency Crystal (typically 32.768 kHz ) negative pin. Also used as an optional external clock input pin.
LFXTAL_P	0: PB15								Low Frequency Crystal (typically 32.768 kHz ) positive pin.
MODEM_ANTO	$\begin{aligned} & \text { 0: PA3 } \\ & \text { 1: PA4 } \\ & \text { 2: PA5 } \\ & \text { 3: PB11 } \end{aligned}$	4: PB12   5: PB13   6: PB14   7: PB15	$\begin{aligned} & \text { 8: PC6 } \\ & \text { 9: PC7 } \\ & \text { 10: PC8 } \\ & \text { 11: PC9 } \end{aligned}$	12: PC10   13: PC11   14: PD9   15: PD10	16: PD11   17: PD12   18: PD13   19: PD14	20: PD15   21: PFO   22: PF1   23: PF2	24: PF3   25: PF4   26: PF5   27: PF6	28: PF7   29: PAO   30: PA1   31: PA2	MODEM antenna control output 0 , used for antenna diversity.
MODEM_ANT1	$\begin{aligned} & \text { 0: PA4 } \\ & \text { 1: PA5 } \\ & \text { 2: PB11 } \\ & \text { 3: PB12 } \end{aligned}$	4: PB13   5: PB14   6: PB15   7: PC6	8: PC7   9: PC8   10: PC9   11: PC10	12: PC11   13: PD9   14: PD10   15: PD11	16: PD12   17: PD13   18: PD14   19: PD15	$\begin{aligned} & \text { 20: PF0 } \\ & \text { 21: PF1 } \\ & \text { 22: PF2 } \\ & \text { 23: PF3 } \end{aligned}$	24: PF4   25: PF5   26: PF6   27: PF7	28: PA0   29: PA1   30: PA2   31: PA3	MODEM antenna control output 1, used for antenna diversity.
MODEM_DCLK	$\begin{aligned} & \text { 0: PA0 } \\ & \text { 1: PA1 } \\ & \text { 2: PA2 } \\ & \text { 3: PA3 } \end{aligned}$	4: PA4   5: PA5   6: PB11   7: PB12	8: PB13   9: PB14   10: PB15   11: PC6	12: PC7   13: PC8   14: PC9   15: PC10	16: PC11   17: PD9   18: PD10   19: PD11	$\begin{aligned} & \text { 20: PD12 } \\ & \text { 21: PD13 } \\ & \text { 22: PD14 } \\ & \text { 23: PD15 } \end{aligned}$	24: PFO   25: PF1   26: PF2   27: PF3	28: PF4   29: PF5   30: PF6   31: PF7	MODEM data clock out.
MODEM_DIN	$\begin{aligned} & \text { 0: PA1 } \\ & \text { 1: PA2 } \\ & \text { 2: PA3 } \\ & \text { 3: PA4 } \end{aligned}$	4: PA5   5: PB11   6: PB12   7: PB13	8: PB14   9: PB15   10: PC6   11: PC7	12: PC8   13: PC9   14: PC10   15: PC11	16: PD9   17: PD10   18: PD11   19: PD12	20: PD13   21: PD14   22: PD15   23: PFO	24: PF1   25: PF2   26: PF3   27: PF4	28: PF5   29: PF6   30: PF7   31: PA0	MODEM data in.
MODEM_DOUT	$\begin{aligned} & \text { 0: PA2 } \\ & \text { 1: PA3 } \\ & \text { 2: PA4 } \\ & \text { 3: PA5 } \end{aligned}$	4: PB11   5: PB12   6: PB13   7: PB14	$\begin{aligned} & \text { 8: PB15 } \\ & \text { 9: PC6 } \\ & \text { 10: PC7 } \\ & \text { 11: PC8 } \end{aligned}$	12: PC9   13: PC10   14: PC11   15: PD9	16: PD10   17: PD11   18: PD12   19: PD13	20: PD14   21: PD15   22: PFO   23: PF1	24: PF2   25: PF3   26: PF4   27: PF5	28: PF6   29: PF7   30: PAO   31: PA1	MODEM data out.


Alternate	LOCATION								
Functionality	0-3	4-7	8-11	12-15	16-19	20-23	24-27	28-31	Description
OPAO_N	$0:$ PA4								Operational Amplifier 0 external negative input.
OPAO_P	0: PA2								Operational Amplifier 0 external positive input.
OPA1_N	0: PD15								Operational Amplifier 1 external negative input.
OPA1_P	0: PD13								Operational Amplifier 1 external positive input.
OPA2_N	0: PB13								Operational Amplifier 2 external negative input.
OPA2_OUT	0: PB12								Operational Amplifier 2 output.
OPA2_OUTALT	$\begin{aligned} & \text { 0: PB9 } \\ & \text { 1: PB10 } \end{aligned}$								Operational Amplifier 2 alternative output.
OPA2_P	0: PB11								Operational Amplifier 2 external positive input.
PCNTO_SOIN	$\begin{aligned} & \text { 0: PA0 } \\ & \text { 1: PA1 } \\ & \text { 2: PA2 } \\ & \text { 3: PA3 } \end{aligned}$	$\begin{aligned} & \text { 4: PA4 } \\ & \text { 5: PA5 } \\ & \text { 6: PB11 } \\ & \text { 7: PB12 } \end{aligned}$	8: PB13   9: PB14   10: PB15   11: PC6	12: PC7   13: PC8   14: PC9   15: PC10	16: PC11   17: PD9   18: PD10   19: PD11	20: PD12   21: PD13   22: PD14   23: PD15	24: PF0   25: PF1   26: PF2   27: PF3	$\begin{aligned} & \text { 28: PF4 } \\ & \text { 29: PF5 } \\ & \text { 30: PF6 } \\ & \text { 31: PF7 } \end{aligned}$	Pulse Counter PCNT0 input number 0 .
PCNT0_S1IN	$\begin{aligned} & \text { 0: PA1 } \\ & \text { 1: PA2 } \\ & \text { 2: PA3 } \\ & \text { 3: PA4 } \end{aligned}$	4: PA5   5: PB11   6: PB12   7: PB13	8: PB14   9: PB15   10: PC6   11: PC7	12: PC8   13: PC9   14: PC10   15: PC11	16: PD9   17: PD10   18: PD11   19: PD12	20: PD13   21: PD14   22: PD15   23: PFO	24: PF1   25: PF2   26: PF3   27: PF4	$\begin{aligned} & \text { 28: PF5 } \\ & \text { 29: PF6 } \\ & \text { 30: PF7 } \\ & \text { 31: PA0 } \end{aligned}$	Pulse Counter PCNT0 input number 1.
PCNT1_SOIN	$\begin{aligned} & \text { 0: PA6 } \\ & \text { 1: PA7 } \\ & \text { 2: PA8 } \\ & \text { 3: PA9 } \end{aligned}$	$\begin{aligned} & \text { 4: } \mathrm{PI} 2 \\ & \text { 5: } \mathrm{PI} 3 \\ & \text { 6: } \mathrm{PB} 6 \\ & \text { 7: } \mathrm{PB} 7 \end{aligned}$	8: PB8   9: PB9   10: PB10   11: PJ14	12: PJ15   13: PC0   14: PC1   15: PC2	16: PC3   17: PC4   18: PC5   19: PF6	20: PF7   21: PF8   22: PF9   23: PF10	24: PF11   25: PF12   26: PF13   27: PF14	28: PF15   29: PKO   30: PK1   31: PK2	Pulse Counter PCNT1 input number 0 .
PCNT1_S1IN	$\begin{aligned} & \text { 0: PA7 } \\ & \text { 1: PA8 } \\ & \text { 2: PA9 } \\ & \text { 3: PI2 } \end{aligned}$	$\begin{aligned} & \text { 4: PI3 } \\ & \text { 5: } \mathrm{PB} 6 \\ & \text { 6: } \mathrm{PB} 7 \\ & \text { 7: } \mathrm{PB} 8 \end{aligned}$	8: PB9   9: PB10   10: PJ14   11: PJ15	12: PC0   13: PC1   14: PC2   15: PC3	16: PC4   17: PC5   18: PF6   19: PF7	20: PF8   21: PF9   22: PF10   23: PF11	24: PF12   25: PF13   26: PF14   27: PF15	$\begin{aligned} & \text { 28: PK0 } \\ & \text { 29: PK1 } \\ & \text { 30: PK2 } \\ & \text { 31: PA6 } \end{aligned}$	Pulse Counter PCNT1 input number 1.


Alternate	LOCATION								
Functionality	0-3	4-7	8-11	12-15	16-19	20-23	24-27	28-31	Description
PCNT2_SOIN	$\begin{aligned} & \text { 0: PA6 } \\ & \text { 1: PA7 } \\ & \text { 2: PA8 } \\ & \text { 3: PA9 } \end{aligned}$	$\begin{aligned} & \text { 4: PI2 } \\ & \text { 5: PI3 } \\ & \text { 6: } \mathrm{PB6} \\ & \text { 7: PB7 } \end{aligned}$	8: PB8   9: PB9   10: PB10   11: PJ14	12: PJ15   13: PC0   14: PC1   15: PC2	16: PC3   17: PC4   18: PC5   19: PC10	20: PC11   21: PF8   22: PF9   23: PF10	24: PF11   25: PF12   26: PF13   27: PF14	28: PF15   29: PK0   30: PK1   31: PK2	Pulse Counter PCNT2 input number 0 .
PCNT2_S1IN	$\begin{aligned} & \text { 0: PA7 } \\ & \text { 1: PA8 } \\ & \text { 2: PA9 } \\ & \text { 3: PI2 } \end{aligned}$	$\begin{aligned} & \text { 4: PI3 } \\ & \text { 5: } \mathrm{PB} 6 \\ & \text { 6: } \mathrm{PB} 7 \\ & \text { 7: } \mathrm{PB} 8 \end{aligned}$	8: PB9   9: PB10   10: PJ14   11: PJ15	12: PCO   13: PC1   14: PC2   15: PC3	16: PC4   17: PC5   18: PC10   19: PC11	20: PF8   21: PF9   22: PF10   23: PF11	24: PF12   25: PF13   26: PF14   27: PF15	$\begin{aligned} & \text { 28: PK0 } \\ & \text { 29: PK1 } \\ & \text { 30: PK2 } \\ & \text { 31: PA6 } \end{aligned}$	Pulse Counter PCNT2 input number 1.
PRS_CH0	$\begin{aligned} & \text { 0: PF0 } \\ & \text { 1: PF1 } \\ & \text { 2: PF2 } \\ & \text { 3: PF3 } \end{aligned}$	$\begin{aligned} & \text { 4: PF4 } \\ & \text { 5: PF5 } \\ & \text { 6: PF6 } \\ & \text { 7: PF7 } \end{aligned}$	8: PC6   9: PC7   10: PC8   11: PC9	12: PC10   13: PC11					Peripheral Reflex System PRS, channel 0.
PRS_CH1	$\begin{aligned} & \text { 0: PF1 } \\ & \text { 1: PF2 } \\ & \text { 2: PF3 } \\ & \text { 3: PF4 } \end{aligned}$	$\begin{aligned} & \text { 4: PF5 } \\ & \text { 5: PF6 } \\ & \text { 6: PF7 } \\ & \text { 7: PF0 } \end{aligned}$							Peripheral Reflex System PRS, channel 1.
PRS_CH2	$\begin{aligned} & \text { 0: PF2 } \\ & \text { 1: PF3 } \\ & \text { 2: PF4 } \\ & \text { 3: PF5 } \end{aligned}$	$\begin{aligned} & \text { 4: PF6 } \\ & \text { 5: PF7 } \\ & \text { 6: PF0 } \\ & \text { 7: PF1 } \end{aligned}$							Peripheral Reflex System PRS, channel 2.
PRS_CH3	$\begin{aligned} & \text { 0: PF3 } \\ & \text { 1: PF4 } \\ & \text { 2: PF5 } \\ & \text { 3: PF6 } \end{aligned}$	$\begin{aligned} & \text { 4: PF7 } \\ & \text { 5: PF0 } \\ & \text { 6: PF1 } \\ & \text { 7: PF2 } \end{aligned}$	8: PD9   9: PD10   10: PD11   11: PD12	12: PD13   13: PD14   14: PD15					Peripheral Reflex System PRS, channel 3.
PRS_CH4	$\begin{aligned} & \text { 0: PD9 } \\ & \text { 1: PD10 } \\ & \text { 2: PD11 } \\ & \text { 3: PD12 } \end{aligned}$	4: PD13   5: PD14   6: PD15							Peripheral Reflex System PRS, channel 4.
PRS_CH5	$\begin{aligned} & \text { 0: PD10 } \\ & \text { 1: PD11 } \\ & \text { 2: PD12 } \\ & \text { 3: PD13 } \end{aligned}$	4: PD14   5: PD15   6: PD9							Peripheral Reflex System PRS, channel 5.
PRS_CH6	$\begin{aligned} & \text { 0: PA0 } \\ & \text { 1: PA1 } \\ & \text { 2: PA2 } \\ & \text { 3: PA3 } \end{aligned}$	4: PA4 5: PA5 6: PB11 7: PB12	8: PB13   9: PB14   10: PB15   11: PD9	12: PD10   13: PD11   14: PD12   15: PD13	16: PD14   17: PD15				Peripheral Reflex System PRS, channel 6.


Alternate	LOCATION								
Functionality	0-3	4-7	8-11	12-15	16-19	20-23	24-27	28-31	Description
PRS_CH7	$\begin{aligned} & \text { 0: PA1 } \\ & \text { 1: PA2 } \\ & \text { 2: PA3 } \\ & \text { 3: PA4 } \end{aligned}$	4: PA5   5: PB11   6: PB12   7: PB13	$\begin{aligned} & \text { 8: PB14 } \\ & \text { 9: PB15 } \\ & \text { 10: PA0 } \end{aligned}$						Peripheral Reflex System PRS, channel 7.
PRS_CH8	$\begin{aligned} & \text { 0: PA2 } \\ & \text { 1: PA3 } \\ & \text { 2: PA4 } \\ & \text { 3: PA5 } \end{aligned}$	4: PB11   5: PB12   6: PB13   7: PB14	$\begin{aligned} & \text { 8: PB15 } \\ & \text { 9: PA0 } \\ & \text { 10: PA1 } \end{aligned}$						Peripheral Reflex System PRS, channel 8.
PRS_CH9	$\begin{aligned} & \text { 0: PA3 } \\ & \text { 1: PA4 } \\ & \text { 2: PA5 } \\ & \text { 3: PB11 } \end{aligned}$	4: PB12   5: PB13   6: PB14   7: PB15	8: PAO   9: PA1   10: PA2   11: PC6	12: PC7   13: PC8   14: PC9   15: PC10	16: PC11				Peripheral Reflex System PRS, channel 9.
PRS_CH10	$\begin{aligned} & \text { 0: PC6 } \\ & \text { 1: PC7 } \\ & \text { 2: PC8 } \\ & \text { 3: PC9 } \end{aligned}$	4: PC10   5: PC11							Peripheral Reflex System PRS, channel 10.
PRS_CH11	$\begin{aligned} & \text { 0: PC7 } \\ & \text { 1: PC8 } \\ & \text { 2: PC9 } \\ & \text { 3: PC10 } \end{aligned}$	4: PC11   5: PC6							Peripheral Reflex System PRS, channel 11.
TIMO_CC0	$\begin{aligned} & \text { 0: PA0 } \\ & \text { 1: PA1 } \\ & \text { 2: PA2 } \\ & \text { 3: PA3 } \end{aligned}$	4: PA4   5: PA5   6: PB11   7: PB12	8: PB13   9: PB14   10: PB15   11: PC6	12: PC7   13: PC8   14: PC9   15: PC10	16: PC11   17: PD9   18: PD10   19: PD11	$\begin{aligned} & \text { 20: PD12 } \\ & \text { 21: PD13 } \\ & \text { 22: PD14 } \\ & \text { 23: PD15 } \end{aligned}$	$\begin{aligned} & \text { 24: PF0 } \\ & \text { 25: PF1 } \\ & \text { 26: PF2 } \\ & \text { 27: PF3 } \end{aligned}$	$\begin{aligned} & \text { 28: PF4 } \\ & \text { 29: PF5 } \\ & 30: \text { PF6 } \\ & 31: ~ P F 7 \end{aligned}$	Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	$\begin{aligned} & \text { 0: PA1 } \\ & \text { 1: PA2 } \\ & \text { 2: PA3 } \\ & \text { 3: PA4 } \end{aligned}$	4: PA5   5: PB11   6: PB12   7: PB13	$\begin{aligned} & \text { 8: PB14 } \\ & \text { 9: PB15 } \\ & \text { 10: PC6 } \\ & \text { 11: PC7 } \end{aligned}$	12: PC8   13: PC9   14: PC10   15: PC11	16: PD9   17: PD10   18: PD11   19: PD12	$\begin{aligned} & \text { 20: PD13 } \\ & \text { 21: PD14 } \\ & \text { 22: PD15 } \\ & \text { 23: PF0 } \end{aligned}$	24: PF1   25: PF2   26: PF3   27: PF4	$\begin{aligned} & \text { 28: PF5 } \\ & \text { 29: PF6 } \\ & \text { 30: PF7 } \\ & \text { 31: PA0 } \end{aligned}$	Timer 0 Capture Compare input / output channel 1.
TIMO_CC2	$\begin{aligned} & \text { 0: PA2 } \\ & \text { 1: PA3 } \\ & \text { 2: PA4 } \\ & \text { 3: PA5 } \end{aligned}$	4: PB11   5: PB12   6: PB13   7: PB14	8: PB15   9: PC6   10: PC7   11: PC8	12: PC9   13: PC10   14: PC11   15: PD9	16: PD10   17: PD11   18: PD12   19: PD13	$\begin{aligned} & \text { 20: PD14 } \\ & \text { 21: PD15 } \\ & \text { 22: PF0 } \\ & \text { 23: PF1 } \end{aligned}$	24: PF2   25: PF3   26: PF4   27: PF5	$\begin{aligned} & \text { 28: PF6 } \\ & \text { 29: PF7 } \\ & \text { 30: PA0 } \\ & \text { 31: PA1 } \end{aligned}$	Timer 0 Capture Compare input / output channel 2.
TIMO_CDTIO	$\begin{aligned} & \text { 0: PA3 } \\ & \text { 1: PA4 } \\ & \text { 2: PA5 } \\ & \text { 3: PB11 } \end{aligned}$	4: PB12   5: PB13   6: PB14   7: PB15	8: PC6   9: PC7   10: PC8   11: PC9	12: PC10   13: PC11   14: PD9   15: PD10	16: PD11   17: PD12   18: PD13   19: PD14	$\begin{aligned} & \text { 20: PD15 } \\ & \text { 21: PF0 } \\ & \text { 22: PF1 } \\ & \text { 23: PF2 } \end{aligned}$	24: PF3   25: PF4   26: PF5   27: PF6	$\begin{aligned} & \text { 28: PF7 } \\ & \text { 29: PA0 } \\ & \text { 30: PA1 } \\ & 31: \text { PA2 } \end{aligned}$	Timer 0 Complimentary Dead Time Insertion channel 0.


Alternate	LOCATION								
Functionality	0-3	4-7	8-11	12-15	16-19	20-23	24-27	28-31	Description
TIM0_CDTI1	$\begin{aligned} & \text { 0: PA4 } \\ & \text { 1: PA5 } \\ & \text { 2: PB11 } \\ & \text { 3: PB12 } \end{aligned}$	4: PB13   5: PB14   6: PB15   7: PC6	8: PC7   9: PC8   10: PC9   11: PC10	12: PC11   13: PD9   14: PD10   15: PD11	16: PD12   17: PD13   18: PD14   19: PD15	$\begin{aligned} & \text { 20: PF0 } \\ & \text { 21: PF1 } \\ & \text { 22: PF2 } \\ & \text { 23: PF3 } \end{aligned}$	24: PF4   25: PF5   26: PF6   27: PF7	$\begin{aligned} & \text { 28: PA0 } \\ & \text { 29: PA1 } \\ & \text { 30: PA2 } \\ & \text { 31: PA3 } \end{aligned}$	Timer 0 Complimentary Dead Time Insertion channel 1.
TIM0_CDTI2	$\begin{aligned} & \text { 0: PA5 } \\ & \text { 1: PB11 } \\ & \text { 2: PB12 } \\ & \text { 3: PB13 } \end{aligned}$	4: PB14   5: PB15   6: PC6   7: PC7	8: PC8   9: PC9   10: PC10   11: PC11	12: PD9   13: PD10   14: PD11   15: PD12	16: PD13   17: PD14   18: PD15   19: PFO	$\begin{aligned} & \text { 20: PF1 } \\ & \text { 21: PF2 } \\ & \text { 22: PF3 } \\ & \text { 23: PF4 } \end{aligned}$	24: PF5   25: PF6   26: PF7   27: PAO	$\begin{aligned} & \text { 28: PA1 } \\ & \text { 29: PA2 } \\ & \text { 30: PA3 } \\ & \text { 31: PA4 } \end{aligned}$	Timer 0 Complimentary Dead Time Insertion channel 2.
TIM1_CC0	$\begin{aligned} & \text { 0: PAO } \\ & \text { 1: PA1 } \\ & \text { 2: PA2 } \\ & \text { 3: PA3 } \end{aligned}$	$\begin{aligned} & \text { 4: PA4 } \\ & \text { 5: PA5 } \\ & \text { 6: PB11 } \\ & \text { 7: PB12 } \end{aligned}$	8: PB13   9: PB14   10: PB15   11: PC6	12: PC7   13: PC8   14: PC9   15: PC10	16: PC11   17: PD9   18: PD10   19: PD11	$\begin{aligned} & \text { 20: PD12 } \\ & \text { 21: PD13 } \\ & \text { 22: PD14 } \\ & \text { 23: PD15 } \end{aligned}$	24: PFO   25: PF1   26: PF2   27: PF3	28: PF4   29: PF5   30: PF6   31: PF7	Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	$\begin{aligned} & \text { 0: PA1 } \\ & \text { 1: PA2 } \\ & \text { 2: PA3 } \\ & \text { 3: PA4 } \end{aligned}$	4: PA5   5: PB11   6: PB12   7: PB13	8: PB14   9: PB15   10: PC6   11: PC7	12: PC8   13: PC9   14: PC10   15: PC11	16: PD9   17: PD10   18: PD11   19: PD12	$\begin{aligned} & \text { 20: PD13 } \\ & \text { 21: PD14 } \\ & \text { 22: PD15 } \\ & \text { 23: PF0 } \end{aligned}$	24: PF1   25: PF2   26: PF3   27: PF4	28: PF5   29: PF6   30: PF7   31: PAO	Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	$\begin{aligned} & \text { 0: PA2 } \\ & \text { 1: PA3 } \\ & \text { 2: PA4 } \\ & \text { 3: PA5 } \end{aligned}$	4: PB11   5: PB12   6: PB13   7: PB14	8: PB15   9: PC6   10: PC7   11: PC8	12: PC9   13: PC10   14: PC11   15: PD9	16: PD10   17: PD11   18: PD12   19: PD13	$\begin{aligned} & \text { 20: PD14 } \\ & \text { 21: PD15 } \\ & \text { 22: PF0 } \\ & \text { 23: PF1 } \end{aligned}$	24: PF2   25: PF3   26: PF4   27: PF5	$\begin{aligned} & \text { 28: PF6 } \\ & \text { 29: PF7 } \\ & \text { 30: PA0 } \\ & \text { 31: PA1 } \end{aligned}$	Timer 1 Capture Compare input / output channel 2.
TIM1_CC3	$\begin{aligned} & \text { 0: PA3 } \\ & \text { 1: PA4 } \\ & \text { 2: PA5 } \\ & \text { 3: PB11 } \end{aligned}$	$\begin{aligned} & \text { 4: PB12 } \\ & \text { 5: PB13 } \\ & \text { 6: PB14 } \\ & \text { 7: PB15 } \end{aligned}$	8: PC6   9: PC7   10: PC8   11: PC9	12: PC10   13: PC11   14: PD9   15: PD10	16: PD11   17: PD12   18: PD13   19: PD14	$\begin{aligned} & \text { 20: PD15 } \\ & \text { 21: PF0 } \\ & \text { 22: PF1 } \\ & \text { 23: PF2 } \end{aligned}$	24: PF3   25: PF4   26: PF5   27: PF6	$\begin{aligned} & \text { 28: PF7 } \\ & \text { 29: PA0 } \\ & \text { 30: PA1 } \\ & \text { 31: PA2 } \end{aligned}$	Timer 1 Capture Compare input / output channel 3.
USO_CLK	$\begin{aligned} & \text { 0: PA2 } \\ & \text { 1: PA3 } \\ & \text { 2: PA4 } \\ & \text { 3: PA5 } \end{aligned}$	$\begin{aligned} & \text { 4: PB11 } \\ & \text { 5: PB12 } \\ & \text { 6: PB13 } \\ & \text { 7: PB14 } \end{aligned}$	8: PB15   9: PC6   10: PC7   11: PC8	12: PC9   13: PC10   14: PC11   15: PD9	16: PD10   17: PD11   18: PD12   19: PD13	$\begin{aligned} & \text { 20: PD14 } \\ & \text { 21: PD15 } \\ & \text { 22: PF0 } \\ & \text { 23: PF1 } \end{aligned}$	24: PF2   25: PF3   26: PF4   27: PF5	$\begin{aligned} & \text { 28: PF6 } \\ & \text { 29: PF7 } \\ & \text { 30: PA0 } \\ & \text { 31: PA1 } \end{aligned}$	USARTO clock input / output.
US0_CS	$\begin{aligned} & \text { 0: PA3 } \\ & \text { 1: PA4 } \\ & \text { 2: PA5 } \\ & \text { 3: PB11 } \end{aligned}$	$\begin{aligned} & \text { 4: PB12 } \\ & \text { 5: PB13 } \\ & \text { 6: PB14 } \\ & \text { 7: PB15 } \end{aligned}$	$\begin{aligned} & \text { 8: PC6 } \\ & \text { 9: PC7 } \\ & \text { 10: PC8 } \\ & \text { 11: PC9 } \end{aligned}$	12: PC10   13: PC11   14: PD9   15: PD10	16: PD11   17: PD12   18: PD13   19: PD14	$\begin{aligned} & \text { 20: PD15 } \\ & \text { 21: PF0 } \\ & \text { 22: PF1 } \\ & \text { 23: PF2 } \end{aligned}$	24: PF3   25: PF4   26: PF5   27: PF6	$\begin{aligned} & \text { 28: PF7 } \\ & \text { 29: PA0 } \\ & \text { 30: PA1 } \\ & \text { 31: PA2 } \end{aligned}$	USARTO chip select input / output.
US0_CTS	$\begin{aligned} & \text { 0: PA4 } \\ & \text { 1: PA5 } \\ & \text { 2: PB11 } \\ & \text { 3: PB12 } \end{aligned}$	4: PB13   5: PB14   6: PB15   7: PC6	8: PC7   9: PC8   10: PC9   11: PC10	12: PC11   13: PD9   14: PD10   15: PD11	16: PD12   17: PD13   18: PD14   19: PD15	$\begin{aligned} & \text { 20: PF0 } \\ & \text { 21: PF1 } \\ & \text { 22: PF2 } \\ & \text { 23: PF3 } \end{aligned}$	24: PF4   25: PF5   26: PF6   27: PF7	$\begin{aligned} & \text { 28: PA0 } \\ & \text { 29: PA1 } \\ & \text { 30: PA2 } \\ & \text { 31: PA3 } \end{aligned}$	USARTO Clear To   Send hardware flow control input.


Alternate	LOCATION								
Functionality	0-3	4-7	8-11	12-15	16-19	20-23	24-27	28-31	Description
US0_RTS	$\begin{aligned} & \text { 0: PA5 } \\ & \text { 1: PB11 } \\ & \text { 2: PB12 } \\ & \text { 3: PB13 } \end{aligned}$	$\begin{aligned} & \text { 4: PB14 } \\ & \text { 5: PB15 } \\ & \text { 6: PC6 } \\ & \text { 7: PC7 } \end{aligned}$	8: PC8   9: PC9   10: PC10   11: PC11	12: PD9   13: PD10   14: PD11   15: PD12	16: PD13   17: PD14   18: PD15   19: PFO	$\begin{aligned} & \text { 20: PF1 } \\ & \text { 21: PF2 } \\ & \text { 22: PF3 } \\ & \text { 23: PF4 } \end{aligned}$	24: PF5   25: PF6   26: PF7   27: PAO	$\begin{aligned} & \text { 28: PA1 } \\ & \text { 29: PA2 } \\ & \text { 30: PA3 } \\ & \text { 31: PA4 } \end{aligned}$	USARTO Request To Send hardware flow control output.
US0_RX	$\begin{aligned} & \text { 0: PA1 } \\ & \text { 1: PA2 } \\ & \text { 2: PA3 } \\ & \text { 3: PA4 } \end{aligned}$	$\begin{aligned} & \text { 4: PA5 } \\ & \text { 5: PB11 } \\ & \text { 6: PB12 } \\ & \text { 7: PB13 } \end{aligned}$	8: PB14   9: PB15   10: PC6   11: PC7	12: PC8   13: PC9   14: PC10   15: PC11	16: PD9   17: PD10   18: PD11   19: PD12	$\begin{aligned} & \text { 20: PD13 } \\ & \text { 21: PD14 } \\ & \text { 22: PD15 } \\ & \text { 23: PF0 } \end{aligned}$	24: PF1   25: PF2   26: PF3   27: PF4	$\begin{aligned} & \text { 28: PF5 } \\ & \text { 29: PF6 } \\ & 30: \text { PF7 } \\ & 31: \text { PA0 } \end{aligned}$	USARTO Asynchronous Receive.   USARTO Synchronous mode Master Input / Slave Output (MISO).
USO_TX	$\begin{aligned} & \text { 0: PAO } \\ & \text { 1: PA1 } \\ & \text { 2: PA2 } \\ & \text { 3: PA3 } \end{aligned}$	$\begin{aligned} & \text { 4: PA4 } \\ & \text { 5: PA5 } \\ & \text { 6: PB11 } \\ & \text { 7: PB12 } \end{aligned}$	8: PB13   9: PB14   10: PB15   11: PC6	12: PC7   13: PC8   14: PC9   15: PC10	16: PC11   17: PD9   18: PD10   19: PD11	$\begin{aligned} & \text { 20: PD12 } \\ & \text { 21: PD13 } \\ & \text { 22: PD14 } \\ & \text { 23: PD15 } \end{aligned}$	24: PFO   25: PF1   26: PF2   27: PF3	$\begin{aligned} & \text { 28: PF4 } \\ & \text { 29: PF5 } \\ & \text { 30: PF6 } \\ & \text { 31: PF7 } \end{aligned}$	USARTO Asynchronous Transmit. Also used as receive input in half duplex communication.   USARTO Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	$\begin{aligned} & \text { 0: PA2 } \\ & \text { 1: PA3 } \\ & \text { 2: PA4 } \\ & \text { 3: PA5 } \end{aligned}$	$\begin{aligned} & \text { 4: PB11 } \\ & \text { 5: PB12 } \\ & \text { 6: PB13 } \\ & \text { 7: PB14 } \end{aligned}$	8: PB15   9: PC6   10: PC7   11: PC8	12: PC9   13: PC10   14: PC11   15: PD9	16: PD10   17: PD11   18: PD12   19: PD13	$\begin{aligned} & \text { 20: PD14 } \\ & \text { 21: PD15 } \\ & \text { 22: PF0 } \\ & \text { 23: PF1 } \end{aligned}$	24: PF2   25: PF3   26: PF4   27: PF5	$\begin{aligned} & \text { 28: PF6 } \\ & \text { 29: PF7 } \\ & \text { 30: PA0 } \\ & 31: \text { PA1 } \end{aligned}$	USART1 clock input / output.
US1_CS	$\begin{aligned} & \text { 0: PA3 } \\ & \text { 1: PA4 } \\ & \text { 2: PA5 } \\ & \text { 3: PB11 } \end{aligned}$	$\begin{aligned} & \text { 4: PB12 } \\ & \text { 5: PB13 } \\ & \text { 6: PB14 } \\ & \text { 7: PB15 } \end{aligned}$	$\begin{aligned} & \text { 8: PC6 } \\ & \text { 9: PC7 } \\ & \text { 10: PC8 } \\ & \text { 11: PC9 } \end{aligned}$	12: PC10   13: PC11   14: PD9   15: PD10	16: PD11   17: PD12   18: PD13   19: PD14	$\begin{aligned} & \text { 20: PD15 } \\ & \text { 21: PF0 } \\ & \text { 22: PF1 } \\ & \text { 23: PF2 } \end{aligned}$	24: PF3   25: PF4   26: PF5   27: PF6	$\begin{aligned} & \text { 28: PF7 } \\ & \text { 29: PA0 } \\ & \text { 30: PA1 } \\ & \text { 31: PA2 } \end{aligned}$	USART1 chip select input / output.
US1_CTS	$\begin{aligned} & \text { 0: PA4 } \\ & \text { 1: PA5 } \\ & \text { 2: PB11 } \\ & \text { 3: PB12 } \end{aligned}$	$\begin{aligned} & \text { 4: PB13 } \\ & \text { 5: PB14 } \\ & \text { 6: PB15 } \\ & \text { 7: PC6 } \end{aligned}$	8: PC7   9: PC8   10: PC9   11: PC10	12: PC11   13: PD9   14: PD10   15: PD11	16: PD12   17: PD13   18: PD14   19: PD15	20: PFO   21: PF1   22: PF2   23: PF3	24: PF4   25: PF5   26: PF6   27: PF7	$\begin{aligned} & \text { 28: PA0 } \\ & \text { 29: PA1 } \\ & \text { 30: PA2 } \\ & \text { 31: PA3 } \end{aligned}$	USART1 Clear To Send hardware flow control input.
US1_RTS	$\begin{aligned} & \text { 0: PA5 } \\ & \text { 1: PB11 } \\ & \text { 2: PB12 } \\ & \text { 3: PB13 } \end{aligned}$	$\begin{aligned} & \text { 4: PB14 } \\ & \text { 5: PB15 } \\ & \text { 6: PC6 } \\ & \text { 7: PC7 } \end{aligned}$	8: PC8   9: PC9   10: PC10   11: PC11	12: PD9   13: PD10   14: PD11   15: PD12	16: PD13   17: PD14   18: PD15   19: PFO	$\begin{aligned} & \text { 20: PF1 } \\ & \text { 21: PF2 } \\ & \text { 22: PF3 } \\ & \text { 23: PF4 } \end{aligned}$	24: PF5   25: PF6   26: PF7   27: PA0	$\begin{aligned} & \text { 28: PA1 } \\ & \text { 29: PA2 } \\ & \text { 30: PA3 } \\ & \text { 31: PA4 } \end{aligned}$	USART1 Request To Send hardware flow control output.
US1_RX	$\begin{aligned} & \text { 0: PA1 } \\ & \text { 1: PA2 } \\ & \text { 2: PA3 } \\ & \text { 3: PA4 } \end{aligned}$	$\begin{aligned} & \text { 4: PA5 } \\ & \text { 5: PB11 } \\ & \text { 6: PB12 } \\ & \text { 7: PB13 } \end{aligned}$	8: PB14   9: PB15   10: PC6   11: PC7	12: PC8   13: PC9   14: PC10   15: PC11	16: PD9   17: PD10   18: PD11   19: PD12	$\begin{aligned} & \text { 20: PD13 } \\ & \text { 21: PD14 } \\ & \text { 22: PD15 } \\ & \text { 23: PF0 } \end{aligned}$	24: PF1   25: PF2   26: PF3   27: PF4	$\begin{aligned} & \text { 28: PF5 } \\ & \text { 29: PF6 } \\ & \text { 30: PF7 } \\ & 31: \text { PA0 } \end{aligned}$	USART1 Asynchronous Receive.   USART1 Synchronous mode Master Input / Slave Output (MISO).


Alternate	LOCATION								
Functionality	0-3	4-7	8-11	12-15	16-19	20-23	24-27	28-31	Description
US1_TX	$\begin{aligned} & \text { 0: PA0 } \\ & \text { 1: PA1 } \\ & \text { 2: PA2 } \\ & \text { 3: PA3 } \end{aligned}$	$\begin{aligned} & \text { 4: PA4 } \\ & \text { 5: PA5 } \\ & \text { 6: PB11 } \\ & \text { 7: PB12 } \end{aligned}$	8: PB13   9: PB14   10: PB15   11: PC6	12: PC7   13: PC8   14: PC9   15: PC10	16: PC11   17: PD9   18: PD10   19: PD11	$\begin{aligned} & \text { 20: PD12 } \\ & \text { 21: PD13 } \\ & \text { 22: PD14 } \\ & \text { 23: PD15 } \end{aligned}$	24: PFO   25: PF1   26: PF2   27: PF3	$\begin{aligned} & \text { 28: PF4 } \\ & \text { 29: PF5 } \\ & \text { 30: PF6 } \\ & \text { 31: PF7 } \end{aligned}$	USART1 Asynchronous Transmit. Also used as receive input in half duplex communication.   USART1 Synchronous mode Master Output / Slave Input (MOSI).
US2_CLK	$\begin{aligned} & \text { 0: PA7 } \\ & \text { 1: PA8 } \\ & \text { 2: PA9 } \\ & \text { 3: PIO } \end{aligned}$	$\begin{aligned} & \text { 4: } \mathrm{PI} 1 \\ & \text { 5: } \mathrm{PI} 2 \\ & \text { 6: } \mathrm{PI} 3 \\ & \text { 7: } \mathrm{PB6} \end{aligned}$	8: PB7   9: PB8   10: PB9   11: PB10	12: PFO   13: PF1   14: PF3   15: PF4	16: PF5   17: PF6   18: PF7   19: PF8	20: PF9   21: PF10   22: PF11   23: PF12	24: PF13   25: PF14   26: PF15   27: PK0	$\begin{aligned} & \text { 28: PK1 } \\ & \text { 29: PK2 } \\ & \text { 30: PA5 } \\ & \text { 31: PA6 } \end{aligned}$	USART2 clock input / output.
US2_CS	$\begin{aligned} & \text { 0: PA8 } \\ & \text { 1: PA9 } \\ & \text { 2: PI0 } \\ & \text { 3: PI1 } \end{aligned}$	$\begin{aligned} & \text { 4: PI2 } \\ & \text { 5: } \mathrm{PI} 3 \\ & \text { 6: } \mathrm{PB} 6 \\ & \text { 7: } \mathrm{PB} 7 \end{aligned}$	8: PB8   9: PB9   10: PB10   11: PF0	12: PF1   13: PF3   14: PF4   15: PF5	16: PF6   17: PF7   18: PF8   19: PF9	$\begin{aligned} & \text { 20: PF10 } \\ & \text { 21: PF11 } \\ & \text { 22: PF12 } \\ & \text { 23: PF13 } \end{aligned}$	24: PF14   25: PF15   26: PKO   27: PK1	$\begin{aligned} & \text { 28: PK2 } \\ & \text { 29: PA5 } \\ & \text { 30: PA6 } \\ & \text { 31: PA7 } \end{aligned}$	USART2 chip select input / output.
US2_CTS	$\begin{aligned} & \text { 0: PA9 } \\ & \text { 1: PI0 } \\ & \text { 2: } \mathrm{PI} 1 \\ & \text { 3: } \mathrm{PI} 2 \end{aligned}$	$\begin{aligned} & \text { 4: PI3 } \\ & \text { 5: PB6 } \\ & \text { 6: PB7 } \\ & \text { 7: PB8 } \end{aligned}$	$\begin{aligned} & \text { 8: PB9 } \\ & \text { 9: PB10 } \\ & \text { 10: PF0 } \\ & \text { 11: PF1 } \end{aligned}$	12: PF3   13: PF4   14: PF5   15: PF6	16: PF7   17: PF8   18: PF9   19: PF10	20: PF11   21: PF12   22: PF13   23: PF14	24: PF15   25: PKO   26: PK1   27: PK2	$\begin{aligned} & \text { 28: PA5 } \\ & \text { 29: PA6 } \\ & \text { 30: PA7 } \\ & \text { 31: PA8 } \end{aligned}$	USART2 Clear To   Send hardware flow control input.
US2_RTS	0: PIO   1: Pl1   2: PI2   3: PI3	$\begin{aligned} & \text { 4: PB6 } \\ & \text { 5: PB7 } \\ & \text { 6: PB8 } \\ & \text { 7: PB9 } \end{aligned}$	8: PB10   9: PFO   10: PF1   11: PF3	12: PF4   13: PF5   14: PF6   15: PF7	16: PF8   17: PF9   18: PF10   19: PF11	$\begin{aligned} & \text { 20: PF12 } \\ & \text { 21: PF13 } \\ & \text { 22: PF14 } \\ & \text { 23: PF15 } \end{aligned}$	24: PKO   25: PK1   26: PK2   27: PA5	$\begin{aligned} & \text { 28: PA6 } \\ & \text { 29: PA7 } \\ & \text { 30: PA8 } \\ & \text { 31: PA9 } \end{aligned}$	USART2 Request To Send hardware flow control output.
US2_RX	$\begin{aligned} & \text { 0: PA6 } \\ & \text { 1: PA7 } \\ & \text { 2: PA8 } \\ & \text { 3: PA9 } \end{aligned}$	$\begin{aligned} & \text { 4: } \mathrm{PIO} \\ & \text { 5: } \mathrm{PI} 1 \\ & \text { 6: } \mathrm{PI} 2 \\ & \text { 7: } \mathrm{PI} 3 \end{aligned}$	$\begin{aligned} & \text { 8: PB6 } \\ & \text { 9: PB7 } \\ & \text { 10: PB8 } \\ & \text { 11: PB9 } \end{aligned}$	12: PB10   13: PFO   14: PF1   15: PF3	16: PF4   17: PF5   18: PF6   19: PF7	$\begin{aligned} & \text { 20: PF8 } \\ & \text { 21: PF9 } \\ & \text { 22: PF10 } \\ & \text { 23: PF11 } \end{aligned}$	24: PF12   25: PF13   26: PF14   27: PF15	$\begin{aligned} & \text { 28: PK0 } \\ & \text { 29: PK1 } \\ & \text { 30: PK2 } \\ & \text { 31: PA5 } \end{aligned}$	USART2 Asynchronous Receive.   USART2 Synchronous mode Master Input / Slave Output (MISO).
US2_TX	$\begin{aligned} & \text { 0: PA5 } \\ & \text { 1: PA6 } \\ & \text { 2: PA7 } \\ & \text { 3: PA8 } \end{aligned}$	$\begin{aligned} & \text { 4: PA9 } \\ & \text { 5: PI0 } \\ & \text { 6: PI1 } \\ & \text { 7: PI2 } \end{aligned}$	$\begin{aligned} & \text { 8: PI3 } \\ & \text { 9: PB6 } \\ & \text { 10: PB7 } \\ & \text { 11: PB8 } \end{aligned}$	12: PB9   13: PB10   14: PF0   15: PF1	16: PF3   17: PF4   18: PF5   19: PF6	20: PF7   21: PF8   22: PF9   23: PF10	24: PF11   25: PF12   26: PF13   27: PF14	$\begin{aligned} & \text { 28: PF15 } \\ & \text { 29: PK0 } \\ & \text { 30: PK1 } \\ & \text { 31: PK2 } \end{aligned}$	USART2 Asynchronous Transmit. Also used as receive input in half duplex communication.   USART2 Synchronous mode Master Output / Slave Input (MOSI).


Alternate	LOCATION								
Functionality	0-3	4-7	8-11	12-15	16-19	20-23	24-27	28-31	Description
US3_CLK	$\begin{aligned} & \text { 0: PD10 } \\ & \text { 1: PD11 } \\ & \text { 2: PD12 } \\ & \text { 3: PD13 } \end{aligned}$	$\begin{aligned} & \text { 4: PD14 } \\ & \text { 5: PD15 } \\ & \text { 6: PI2 } \\ & \text { 7: PI3 } \end{aligned}$	$\begin{aligned} & \text { 8: PB6 } \\ & \text { 9: PB7 } \\ & \text { 10: PB8 } \\ & \text { 11: PB9 } \end{aligned}$	12: PB10   13: PB11   14: PJ14   15: PJ15	16: PC0   17: PC1   18: PC2   19: PC3	$\begin{aligned} & \text { 20: PC4 } \\ & \text { 21: PC5 } \\ & \text { 22: PF11 } \\ & \text { 23: PF12 } \end{aligned}$	24: PF13   25: PF14   26: PF15   27: PK0	$\begin{aligned} & \text { 28: PK1 } \\ & \text { 29: PK2 } \\ & \text { 30: PD8 } \\ & \text { 31: PD9 } \end{aligned}$	USART3 clock input / output.
US3_CS	0: PD11   1: PD12   2: PD13   3: PD14	4: PD15 5: PI2 6: PI3 7: PB6	8: PB7   9: PB8   10: PB9   11: PB10	12: PB11   13: PJ14   14: PJ15   15: PC0	16: PC1   17: PC2   18: PC3   19: PC4	$\begin{aligned} & \text { 20: PC5 } \\ & \text { 21: PF11 } \\ & \text { 22: PF12 } \\ & \text { 23: PF13 } \end{aligned}$	24: PF14   25: PF15   26: PKO   27: PK1	28: PK2   29: PD8   30: PD9   31: PD10	USART3 chip select input / output.
US3_CTS	$\begin{aligned} & \text { 0: PD12 } \\ & \text { 1: PD13 } \\ & \text { 2: PD14 } \\ & \text { 3: PD15 } \end{aligned}$	$\begin{aligned} & \text { 4: PI2 } \\ & \text { 5: PI3 } \\ & \text { 6: PB6 } \\ & \text { 7: PB7 } \end{aligned}$	8: PB8   9: PB9   10: PB10   11: PB11	12: PJ14   13: PJ15   14: PC0   15: PC1	16: PC2   17: PC3   18: PC4   19: PC5	$\begin{aligned} & \text { 20: PF11 } \\ & \text { 21: PF12 } \\ & \text { 22: PF13 } \\ & \text { 23: PF14 } \end{aligned}$	24: PF15   25: PKO   26: PK1   27: PK2	$\begin{aligned} & \text { 28: PD8 } \\ & \text { 29: PD9 } \\ & \text { 30: PD10 } \\ & \text { 31: PD11 } \end{aligned}$	USART3 Clear To Send hardware flow control input.
US3_RTS	0: PD13   1: PD14   2: PD15   3: PI2	$\begin{aligned} & \text { 4: PI3 } \\ & \text { 5: PB6 } \\ & \text { 6: PB7 } \\ & \text { 7: PB8 } \end{aligned}$	8: PB9   9: PB10   10: PB11   11: PJ14	12: PJ15   13: PC0   14: PC1   15: PC2	16: PC3   17: PC4   18: PC5   19: PF11	20: PF12   21: PF13   22: PF14   23: PF15	24: PKO   25: PK1   26: PK2   27: PD8	$\begin{aligned} & \text { 28: PD9 } \\ & \text { 29: PD10 } \\ & \text { 30: PD11 } \\ & \text { 31: PD12 } \end{aligned}$	USART3 Request To Send hardware flow control output.
US3_RX	0: PD9   1: PD10   2: PD11   3: PD12	$\begin{aligned} & \text { 4: PD13 } \\ & \text { 5: PD14 } \\ & \text { 6: PD15 } \\ & \text { 7: PI2 } \end{aligned}$	$\begin{aligned} & \text { 8: PI3 } \\ & \text { 9: PB6 } \\ & \text { 10: PB7 } \\ & \text { 11: PB8 } \end{aligned}$	12: PB9   13: PB10   14: PB11   15: PJ14	16: PJ15   17: PC0   18: PC1   19: PC2	20: PC3   21: PC4   22: PC5   23: PF11	24: PF12   25: PF13   26: PF14   27: PF15	$\begin{aligned} & \text { 28: PK0 } \\ & \text { 29: PK1 } \\ & \text { 30: PK2 } \\ & \text { 31: PD8 } \end{aligned}$	USART3 Asynchronous Receive.   USART3 Synchronous mode Master Input / Slave Output (MISO).
US3_TX		4: PD12 5: PD13 6: PD14 7: PD15	$\begin{aligned} & \text { 8: PI2 } \\ & \text { 9: PI3 } \\ & \text { 10: PB6 } \\ & \text { 11: PB7 } \end{aligned}$	12: PB8   13: PB9   14: PB10   15: PB11	16: PJ14   17: PJ15   18: PC0   19: PC1	$\begin{aligned} & \text { 20: PC2 } \\ & \text { 21: PC3 } \\ & \text { 22: PC4 } \\ & \text { 23: PC5 } \end{aligned}$	24: PF11   25: PF12   26: PF13   27: PF14	$\begin{aligned} & \text { 28: PF15 } \\ & \text { 29: PK0 } \\ & \text { 30: PK1 } \\ & \text { 31: PK2 } \end{aligned}$	USART3 Asynchronous Transmit. Also used as receive input in half duplex communication.   USART3 Synchronous mode Master Output / Slave Input (MOSI).
VDAC0_EXT	$0:$ PA1								Digital to analog converter VDAC0 external reference input pin.
VDACO_OUTO / OPAO_OUT	$0: ~ P A 3$								Digital to Analog Converter DAC0 output channel number 0 .
VDACO OUTOAL T / OPAO_OUTALT	0: PA5   1: PD13   2: PD15								Digital to Analog Converter DAC0 alternative output for channel 0.


Alternate	LOCATION								
Functionality	0-3	4-7	8-11	12-15	16-19	20-23	24-27	28-31	Description
VDACO_OUT1/ OPA1_OUT	0: PD14								Digital to Analog Converter DAC0 output channel number 1.
VDAC0_OUT1AL T / OPA1_OUTALT	$\begin{aligned} & \text { 0: PD12 } \\ & \text { 1: PA2 } \\ & \text { 2: PA4 } \end{aligned}$								Digital to Analog Converter DAC0 alternative output for channel 1.
WTIMO_CC0	$\begin{aligned} & \text { 0: PA0 } \\ & \text { 1: PA1 } \\ & \text { 2: PA2 } \\ & \text { 3: PA3 } \end{aligned}$	$\begin{aligned} & \text { 4: PA4 } \\ & \text { 5: PA5 } \\ & \text { 6: PA6 } \\ & \text { 7: PA7 } \end{aligned}$	8: PA8   9: PA9   10: PB6   11: PB7	12: PB8   13: PB9   14: PB10   15: PB11	16: PB12   17: PB13   18: PB14   19: PB15	$\begin{aligned} & \text { 20: PC0 } \\ & \text { 21: PC1 } \\ & \text { 22: PC2 } \\ & \text { 23: PC3 } \end{aligned}$	$\begin{aligned} & \text { 24: PC4 } \\ & \text { 25: PC5 } \\ & \text { 26: PC6 } \\ & \text { 27: PC7 } \end{aligned}$	$\begin{aligned} & \text { 28: PC8 } \\ & \text { 29: PC9 } \\ & \text { 30: PC10 } \\ & \text { 31: PC11 } \end{aligned}$	Wide timer 0 Capture Compare input / output channel 0.
WTIM0_CC1	$\begin{aligned} & \text { 0: PA2 } \\ & \text { 1: PA3 } \\ & \text { 2: PA4 } \\ & \text { 3: PA5 } \end{aligned}$	$\begin{aligned} & \text { 4: PA6 } \\ & \text { 5: PA7 } \\ & \text { 6: PA8 } \\ & \text { 7: PA9 } \end{aligned}$	$\begin{aligned} & \text { 8: PB6 } \\ & \text { 9: PB7 } \\ & \text { 10: PB8 } \\ & \text { 11: PB9 } \end{aligned}$	12: PB10   13: PB11   14: PB12   15: PB13	16: PB14   17: PB15   18: PCO   19: PC1	$\begin{aligned} & \text { 20: } \mathrm{PC} 2 \\ & \text { 21: } \mathrm{PC} 3 \\ & \text { 22: } \mathrm{PC} 4 \\ & \text { 23: } \mathrm{PC} 5 \end{aligned}$	24: PC6   25: PC7   26: PC8   27: PC9	$\begin{aligned} & \text { 28: PC10 } \\ & \text { 29: PC11 } \\ & \text { 30: PD8 } \\ & \text { 31: PD9 } \end{aligned}$	Wide timer 0 Capture Compare input / output channel 1.
WTIM0_CC2	$\begin{aligned} & \text { 0: PA4 } \\ & \text { 1: PA5 } \\ & \text { 2: PA6 } \\ & \text { 3: PA7 } \end{aligned}$	$\begin{aligned} & \text { 4: PA8 } \\ & \text { 5: PA9 } \\ & \text { 6: PB6 } \\ & \text { 7: PB7 } \end{aligned}$	8: PB8   9: PB9   10: PB10   11: PB11	12: PB12   13: PB13   14: PB14   15: PB15	16: PC0   17: PC1   18: PC2   19: PC3	$\begin{aligned} & \text { 20: PC4 } \\ & \text { 21: PC5 } \\ & \text { 22: PC6 } \\ & \text { 23: PC7 } \end{aligned}$	24: PC8   25: PC9   26: PC10   27: PC11	$\begin{aligned} & \text { 28: PD8 } \\ & \text { 29: PD9 } \\ & \text { 30: PD10 } \\ & \text { 31: PD11 } \end{aligned}$	Wide timer 0 Capture Compare input / output channel 2.
WTIMO_CDTIO	$\begin{aligned} & \text { 0: PA8 } \\ & \text { 1: PA9 } \\ & \text { 2: PB6 } \\ & \text { 3: PB7 } \end{aligned}$	$\begin{aligned} & \text { 4: PB8 } \\ & \text { 5: PB9 } \\ & \text { 6: PB10 } \\ & \text { 7: PB11 } \end{aligned}$	8: PB12   9: PB13   10: PB14   11: PB15	12: PC0   13: PC1   14: PC2   15: PC3	16: PC4   17: PC5   18: PC6   19: PC7	$\begin{aligned} & \text { 20: PC8 } \\ & \text { 21: PC9 } \\ & \text { 22: PC10 } \\ & \text { 23: PC11 } \end{aligned}$	24: PD8   25: PD9   26: PD10   27: PD11	$\begin{aligned} & \text { 28: PD12 } \\ & \text { 29: PD13 } \\ & \text { 30: PD14 } \\ & \text { 31: PD15 } \end{aligned}$	Wide timer 0 Complimentary Dead Time Insertion channel 0.
WTIMO_CDTI1	$\begin{aligned} & \text { 0: PB6 } \\ & \text { 1: PB7 } \\ & \text { 2: PB8 } \\ & \text { 3: PB9 } \end{aligned}$	$\begin{aligned} & \text { 4: PB10 } \\ & \text { 5: PB11 } \\ & \text { 6: PB12 } \\ & \text { 7: PB13 } \end{aligned}$	8: PB14   9: PB15   10: PC0   11: PC1	12: PC2   13: PC3   14: PC4   15: PC5	16: PC6   17: PC7   18: PC8   19: PC9	$\begin{aligned} & \text { 20: PC10 } \\ & \text { 21: PC11 } \\ & \text { 22: PD8 } \\ & \text { 23: PD9 } \end{aligned}$	24: PD10   25: PD11   26: PD12   27: PD13	$\begin{aligned} & \text { 28: PD14 } \\ & \text { 29: PD15 } \\ & \text { 30: PF0 } \\ & \text { 31: PF1 } \end{aligned}$	Wide timer 0 Complimentary Dead Time Insertion channel 1.
WTIMO_CDTI2	$\begin{aligned} & \text { 0: PB8 } \\ & \text { 1: PB9 } \\ & \text { 2: PB10 } \\ & \text { 3: PB11 } \end{aligned}$	$\begin{aligned} & \text { 4: PB12 } \\ & \text { 5: PB13 } \\ & \text { 6: PB14 } \\ & \text { 7: PB15 } \end{aligned}$	$\begin{aligned} & \text { 8: PC0 } \\ & \text { 9: PC1 } \\ & \text { 10: PC2 } \\ & \text { 11: PC3 } \end{aligned}$	12: PC4   13: PC5   14: PC6   15: PC7	16: PC8   17: PC9   18: PC10   19: PC11	20: PD8   21: PD9   22: PD10   23: PD11	24: PD12   25: PD13   26: PD14   27: PD15	$\begin{aligned} & \text { 28: PF0 } \\ & \text { 29: PF1 } \\ & \text { 30: PF2 } \\ & \text { 31: PF3 } \end{aligned}$	Wide timer 0 Complimentary Dead Time Insertion channel 2.
WTIM1_CC0	$\begin{aligned} & \text { 0: PB12 } \\ & \text { 1: PB13 } \\ & \text { 2: PB14 } \\ & \text { 3: PB15 } \end{aligned}$	$\begin{aligned} & \text { 4: PC0 } \\ & \text { 5: PC1 } \\ & \text { 6: PC2 } \\ & \text { 7: PC3 } \end{aligned}$	$\begin{aligned} & \text { 8: PC4 } \\ & \text { 9: PC5 } \\ & \text { 10: PC6 } \\ & \text { 11: PC7 } \end{aligned}$	12: PC8   13: PC9   14: PC10   15: PC11	16: PD8   17: PD9   18: PD10   19: PD11	$\begin{aligned} & \text { 20: PD12 } \\ & \text { 21: PD13 } \\ & \text { 22: PD14 } \\ & \text { 23: PD15 } \end{aligned}$	$\begin{aligned} & \text { 24: PF0 } \\ & \text { 25: PF1 } \\ & \text { 26: PF2 } \\ & \text { 27: PF3 } \end{aligned}$	$\begin{aligned} & \text { 28: PF4 } \\ & \text { 29: PF5 } \\ & \text { 30: PF6 } \\ & \text { 31: PF7 } \end{aligned}$	Wide timer 1 Capture Compare input / output channel 0.


Alternate	LOCATION								
Functionality	0-3	4-7	8-11	12-15	16-19	20-23	24-27	28-31	Description
WTIM1_CC1	$\begin{aligned} & \text { 0: PB14 } \\ & \text { 1: PB15 } \\ & \text { 2: PC0 } \\ & \text { 3: PC1 } \end{aligned}$	$\begin{aligned} & \text { 4: PC2 } \\ & \text { 5: PC3 } \\ & \text { 6: PC4 } \\ & \text { 7: PC5 } \end{aligned}$	8: PC6   9: PC7   10: PC8   11: PC9	12: PC10   13: PC11   14: PD8   15: PD9	16: PD10   17: PD11   18: PD12   19: PD13	20: PD14   21: PD15   22: PFO   23: PF1	24: PF2   25: PF3   26: PF4   27: PF5	$\begin{aligned} & \text { 28: PF6 } \\ & \text { 29: PF7 } \\ & \text { 30: PF8 } \\ & \text { 31: PF9 } \end{aligned}$	Wide timer 1 Capture Compare input / output channel 1.
WTIM1_CC2	$\begin{aligned} & \text { 0: PC0 } \\ & \text { 1: PC1 } \\ & \text { 2: PC2 } \\ & \text { 3: PC3 } \end{aligned}$	$\begin{aligned} & \text { 4: PC4 } \\ & \text { 5: PC5 } \\ & \text { 6: PC6 } \\ & \text { 7: PC7 } \end{aligned}$	8: PC8   9: PC9   10: PC10   11: PC11	12: PD8   13: PD9   14: PD10   15: PD11	16: PD12   17: PD13   18: PD14   19: PD15	$\begin{aligned} & \text { 20: PF0 } \\ & \text { 21: PF1 } \\ & \text { 22: PF2 } \\ & \text { 23: PF3 } \end{aligned}$	24: PF4   25: PF5   26: PF6   27: PF7	28: PF8   29: PF9   30: PF10   31: PF11	Wide timer 1 Capture Compare input / output channel 2.
WTIM1_CC3	$\begin{aligned} & \text { 0: PC2 } \\ & \text { 1: PC3 } \\ & \text { 2: PC4 } \\ & \text { 3: PC5 } \end{aligned}$	$\begin{aligned} & \text { 4: PC6 } \\ & \text { 5: PC7 } \\ & \text { 6: PC8 } \\ & \text { 7: PC9 } \end{aligned}$	8: PC10   9: PC11   10: PD8   11: PD9	12: PD10   13: PD11   14: PD12   15: PD13	16: PD14   17: PD15   18: PFO   19: PF1	$\begin{aligned} & \text { 20: PF2 } \\ & \text { 21: PF3 } \\ & \text { 22: PF4 } \\ & \text { 23: PF5 } \end{aligned}$	24: PF6   25: PF7   26: PF8   27: PF9	28: PF10   29: PF11   30: PF12   31: PF13	Wide timer 1 Capture Compare input / output channel 3.

### 6.11 Analog Port (APORT) Client Maps

The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs, DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal routing. Figure 6.9 APORT Connection Diagram on page 199 shows the APORT routing for this device family (note that available features may vary by part number). A complete description of APORT functionality can be found in the Reference Manual.


Figure 6.9. APORT Connection Diagram
Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins.

In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin connection in the table and then combining the value in the Port column (APORT $\qquad$ , and the channel identifier ( $\mathrm{CH}^{-}$ $\qquad$ ). For example, if pin

PF7 is available on port APORT2X as CH 23 ，the register field enumeration to connect to PF7 would be APORT2XCH23．The shared bus used by this connection is indicated in the Bus column．

Table 6．11．ACMPO Bus and Pin Mapping

t	$\stackrel{\infty}{\infty}$	$\left\lvert\, \frac{\bar{m}}{\frac{1}{O}}\right.$	$\begin{aligned} & \frac{\mathrm{O}}{\mathrm{~T}} \\ & \hline \mathrm{O} \end{aligned}$	$\frac{\mathrm{N}}{\frac{\mathrm{I}}{0}}$	$\begin{aligned} & \infty \\ & \frac{\mathbb{N}}{\mathbf{O}} \end{aligned}$	$\frac{\mathrm{N}}{\mathrm{~N}}$	$\begin{aligned} & 00 \\ & \frac{1}{O} \end{aligned}$	$\begin{array}{\|l\|l} \text { Li } \\ \hline \mathbf{N} \end{array}$	$\frac{\mathrm{N}}{\mathbf{N}}$	$\frac{\mathbb{N}}{\frac{1}{O}}$	$\frac{\mathrm{N}}{\mathrm{~N}}$	$\frac{N}{N}$	$\frac{\mathrm{N}}{\mathbf{N}}$	$\frac{\text { 욘 }}{\frac{1}{O}}$	$\left\lvert\, \begin{aligned} & \infty \\ & \frac{\infty}{\mathbf{I}} \\ & \hline \end{aligned}\right.$	$\frac{\text { N }}{\frac{1}{O}}$	$\left\lvert\, \begin{aligned} & \text { 은 } \\ & \frac{1}{\prime} \end{aligned}\right.$	$\begin{array}{\|l\|l} \hline \frac{18}{1} \\ \hline 10 \end{array}$	$\frac{\text { I }}{\frac{1}{U}}$	$\left\lvert\, \begin{aligned} & \text { m } \\ & \frac{1}{O} \end{aligned}\right.$	$\frac{\mathrm{N}}{\mathbf{T}}$	$\frac{\text { 동 }}{\text { I }}$	$\frac{\text { 을 }}{\frac{1}{U}}$	$\frac{\text { 인 }}{10}$	$\stackrel{\infty}{\frac{\infty}{0}}$	봉	$\left\lvert\, \begin{aligned} & \text { © } \\ & \hline \mathbf{O} \end{aligned}\right.$	$\frac{18}{1}$	吉	$\frac{\text { 웅 }}{0}$	$\frac{\mathrm{N}}{\mathbf{O}}$	퐁	웅
																																$\stackrel{9}{\square}$	$\stackrel{\infty}{\text { ¢ }}$
																																ষ্ণ	$\stackrel{\infty}{\text { ¢ }}$
	$\begin{aligned} & \times \\ & \stackrel{x}{\omega} \\ & \underset{\sim}{0} \end{aligned}$		$\frac{\underset{\rightharpoonup}{u}}{\underline{L}}$		$\stackrel{N}{\underset{\sim}{x}}$		$\frac{o}{\stackrel{\circ}{\mathrm{~L}}}$		$\stackrel{\text { ® }}{\stackrel{1}{2}}$		$\begin{aligned} & \text { e } \\ & \stackrel{1}{2} \end{aligned}$		$\frac{\underset{1}{4}}{4}$		$\underset{\underline{L}}{\underline{1}}$		$\stackrel{\circ}{1}$						$\begin{aligned} & \mathrm{O} \\ & \mathrm{U} \\ & \hline \end{aligned}$		$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		U		N		O
		$\frac{\stackrel{1}{4}}{\stackrel{1}{2}}$		$\frac{m}{\dot{L}}$		$\frac{\underset{\sim}{\mathrm{L}}}{\underline{2}}$		$\frac{\stackrel{\rightharpoonup}{1}}{1}$		$\stackrel{\text { 슴 }}{ }$		$\frac{\stackrel{4}{1}}{\mathrm{a}}$		$\frac{\text { !́ㅁ }}{}$		$\stackrel{\bar{⿺}}{\square}$						$\stackrel{\rightharpoonup}{\bar{L}}$		$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \hat{0} \\ & 0 \end{aligned}$		$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \end{aligned}$		N		ভ	
	$\begin{aligned} & \times \\ & \infty \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\frac{\stackrel{1}{4}}{\stackrel{1}{2}}$		$\frac{\stackrel{m}{\grave{L}}}{\stackrel{1}{2}}$		$\frac{\underset{\rightharpoonup}{u}}{\stackrel{\rightharpoonup}{2}}$		$\frac{9}{4}$		$\stackrel{\mathrm{N}}{\mathrm{a}}$		$\frac{\stackrel{4}{\mathrm{~L}}}{\mathrm{a}}$		$\underset{\stackrel{1}{2}}{2}$		$\stackrel{\Gamma}{⿺ 𠃊}$						듬		$\begin{aligned} & 8 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \hat{O} \\ & \mathrm{Q} \end{aligned}$		$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\overline{\mathrm{O}}$	
	$\begin{aligned} & i \\ & \infty \\ & 0 \\ & \underset{\sim}{\infty} \end{aligned}$		$\frac{\underset{\pi}{4}}{\stackrel{\pi}{2}}$		$\stackrel{N}{\underset{\sim}{2}}$		$\frac{\stackrel{ }{ㄴ}}{\underline{1}}$		$\stackrel{\text { ® }}{\stackrel{1}{2}}$		$\stackrel{\circ}{\stackrel{e}{a}}$		$\frac{\underset{\sim}{a}}{\square}$		$\underset{\underline{L}}{\underline{1}}$		음						O		$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { O } \\ & \hline 0 \end{aligned}$		U		N		O
	$\begin{aligned} & x \\ & 0 \\ & \mathscr{0} \\ & \underset{\sim}{n} \end{aligned}$		$\stackrel{\rightharpoonup}{\mathrm{m}}$		$\stackrel{N}{\underset{\sim}{\mathrm{a}}}$		$\stackrel{\mathrm{O}}{\mathrm{~m}}$		$\begin{aligned} & \infty \\ & \mathrm{@} \\ & \mathrm{Q} \end{aligned}$		$\begin{aligned} & \mathrm{O} \\ & \mathrm{Q} \\ & \mathrm{Q} \end{aligned}$								$\underset{\Delta}{\square}$		$\underset{\Delta}{\pi}$		$\underset{\sim}{\mathbb{Z}}$		$\frac{9}{\square}$		$\stackrel{\pi}{\mathrm{a}}$		$\stackrel{N}{\mathrm{~N}}$		$\stackrel{\circ}{0}$		م
	$\begin{aligned} & \grave{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\frac{\mathrm{n}}{\mathrm{~m}}$		$\stackrel{m}{\underset{\alpha}{\mathrm{~m}}}$		$\stackrel{\stackrel{\rightharpoonup}{\mathrm{m}}}{\mathrm{~L}}$		$\begin{aligned} & \mathrm{O} \\ & \mathrm{Q} \\ & \hline \end{aligned}$		$\widehat{\mathrm{m}}$										$\frac{10}{1}$		$\stackrel{M}{〔}$		$\underset{\square}{\Sigma}$		$\frac{n}{2}$		$\stackrel{m}{\square}$		$\stackrel{r}{i}$		og	
	$\begin{aligned} & x \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{2} \end{aligned}$	$\frac{\mathrm{L}}{\mathrm{~m}}$		$\stackrel{m}{\infty}$		$\stackrel{\stackrel{\rightharpoonup}{\mathrm{m}}}{\mathrm{~L}}$		$\begin{aligned} & \text { ® } \\ & \mathrm{Q} \\ & \hline \end{aligned}$		$\widehat{\mathrm{m}}$								$\stackrel{\star}{\alpha}$		$\frac{10}{1}$		$\underset{\alpha}{\mathbb{M}}$		$\frac{\pi}{a}$		$\begin{aligned} & \text { n } \\ & \frac{1}{2} \end{aligned}$		$\stackrel{m}{\square}$		$\stackrel{r}{i}$		or	
¢	$\begin{aligned} & \text { l } \\ & \text { On } \\ & \underset{\sim}{2} \end{aligned}$		$\stackrel{\rightharpoonup}{\mathrm{m}}$		$\stackrel{N}{\underset{\sim}{n}}$		$\frac{\mathrm{O}}{\mathrm{D}}$		$\begin{aligned} & \mathrm{@} \\ & \mathrm{@} \end{aligned}$		$\begin{aligned} & 00 \\ & 0 \\ & 0 \end{aligned}$								$\stackrel{\circ}{1}$		$\frac{\pi}{a}$		$\underset{\sim}{\mathbb{Z}}$		임		$\stackrel{\rightharpoonup}{\mathrm{a}}$		$\stackrel{N}{\mathrm{~N}}$		$\stackrel{\circ}{\mathrm{a}}$		－

Table 6．12．ACMP1 Bus and Pin Mapping

t	－	$\overline{\bar{m}}$	$\begin{array}{\|l} \hline \stackrel{\otimes}{\mathrm{m}} \\ \frac{1}{0} \end{array}$	$\frac{\mathbf{2}}{\frac{1}{0}}$	$\begin{aligned} & \infty \\ & \frac{\pi}{0} \\ & \hline \end{aligned}$	$\frac{\mathrm{N}}{\mathbf{N}}$	$\begin{aligned} & \stackrel{\circ}{\leftrightarrows} \\ & \stackrel{1}{0} \end{aligned}$	$\begin{aligned} & 4 \\ & \frac{1}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{N}{N} \\ & \frac{1}{0} \end{aligned}$	$\frac{\mathbb{N}}{\frac{1}{0}}$	$\begin{aligned} & \text { N } \\ & \frac{1}{0} \end{aligned}$	$\frac{\bar{y}}{\frac{1}{0}}$	$\begin{aligned} & \text { 픙 } \\ & \hline 1 \end{aligned}$			$\frac{\stackrel{\rightharpoonup}{5}}{\mathbf{5}}$		$\frac{\stackrel{6}{5}}{\frac{1}{0}}$	$\left\lvert\, \frac{\mathrm{t}}{\frac{1}{3}}\right.$	$\frac{\frac{m}{工}}{\frac{1}{0}}$	$\frac{\mathrm{N}}{\frac{\mathrm{I}}{0}}$	$\frac{\stackrel{5}{5}}{5}$	$\frac{\text { 웅 }}{\frac{1}{3}}$	$\left\|\frac{9}{3}\right\|$	$\frac{\infty}{\frac{\infty}{0}}$	충	$\mid$	$\left\|\frac{18}{0}\right\|$	$\frac{\mathbf{I}_{3}^{3}}{}$	$\frac{\infty}{\mathbf{m}}$	$\frac{\mathrm{N}}{\mathbf{3}}$	동	웅
																										$\stackrel{\omega}{\square}$	$\stackrel{\rightharpoonup}{a}$						
$\begin{aligned} & \underset{2}{0} \\ & \stackrel{\rightharpoonup}{x} \\ & \underset{O}{2} \\ & \frac{2}{4} \end{aligned}$																										$\stackrel{\infty}{2}$	$\stackrel{\underset{\sim}{j}}{\stackrel{\rightharpoonup}{2}}$						
					$\frac{\underset{⿺}{\mathrm{~L}}}{\stackrel{N}{2}}$		$\begin{aligned} & \text { 은 } \\ & \hline \frac{1}{2} \\ & \hline \end{aligned}$		品		음		$\stackrel{\text { ti }}{\mathrm{L}}$		$\underset{\stackrel{\rightharpoonup}{⿺}}{\text { N }}$		임						$\begin{array}{\|l} \hline 0 \\ \hline 0 \\ \hline \end{array}$		$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 8 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { I } \\ & 0 \\ & \hline \end{aligned}$		N		O
$\begin{aligned} & \underset{\sim}{z} \\ & \underset{r}{r} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { n } \\ & \stackrel{n}{2} \end{aligned}$		$\frac{m}{\stackrel{m}{a}}$		$\underset{\stackrel{\rightharpoonup}{L}}{\stackrel{\rightharpoonup}{L}}$		욤		늠		道		씀		$\overline{⿺ 𠃊}$						$\bar{U}$		$8$		$\hat{0}$		$\begin{aligned} & 8 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 8 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{J} \\ & \hline \end{aligned}$	
${ }_{2}^{\alpha}$		$\stackrel{\text { n }}{\stackrel{n}{2}}$		$\frac{\text { m }}{\stackrel{\rightharpoonup}{\mathrm{L}}}$				욤		$\stackrel{\text { 님 }}{ }$		$\frac{42}{1}$		$\stackrel{\text { 씸 }}{2}$		듬						$\bar{U}$		$\begin{aligned} & 80 \\ & 0 \end{aligned}$		ì		$\begin{aligned} & 8 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { O} \\ & \hline \end{aligned}$		¢	
$\begin{aligned} & \stackrel{N}{\underset{O}{0}} \\ & \underset{y}{0} \end{aligned}$			$\underset{\stackrel{t}{⿺}}{\stackrel{\rightharpoonup}{2}}$		$\frac{\underset{⿺}{\mathrm{~L}}}{}$		$\frac{\stackrel{\rightharpoonup}{4}}{\stackrel{1}{2}}$		$\underset{\substack{\infty \\ \stackrel{\infty}{1} \\ \hline}}{ }$		음		$\stackrel{\text { ti }}{\mathrm{L}}$		츰		임						$\begin{aligned} & \circ \\ & \hline 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		It		$\begin{aligned} & \text { N } \\ & \hline \end{aligned}$		O
$\begin{aligned} & \underset{\sim}{x} \\ & \underset{\sim}{\alpha} \\ & \underset{0}{0} \\ & \frac{1}{4} \end{aligned}$	$\begin{array}{l\|l} 0 & \times \\ \\ \hline \end{array}$		$\underset{\underset{\mathrm{a}}{2}}{\stackrel{t}{2}}$		$\stackrel{N}{\mathrm{~m}}$		$\frac{\circ}{\mathrm{m}}$		$\begin{aligned} & \mathrm{\infty} \\ & \mathrm{Q} \end{aligned}$		$\begin{aligned} & \mathrm{O} \\ & \mathrm{Q} \end{aligned}$								$\stackrel{̣}{\alpha}$		$\frac{d}{d}$		$\underset{1}{\text { y }}$		$\frac{9}{1}$		$\stackrel{\rightharpoonup}{\mathrm{a}}$		$\stackrel{N}{\mathrm{o}}$		$0$		음
$\begin{aligned} & \text { M} \\ & \frac{0}{x} \\ & 0 \\ & 0 \\ & \frac{1}{4} \end{aligned}$	U   0   0	$\begin{aligned} & \mathrm{n} \\ & \stackrel{n}{\mathrm{n}} \end{aligned}$		$\begin{gathered} \stackrel{m}{\mathrm{~m}} \\ \hline \end{gathered}$		$\stackrel{\tau}{\dot{m}}$		$\left\lvert\, \begin{aligned} & \mathrm{O} \\ & \mathrm{Q} \\ & \hline \end{aligned}\right.$		$\widehat{\mathrm{m}}$								$\stackrel{\rightharpoonup}{\mathrm{d}}$		$\frac{88}{1}$		$\underset{\alpha}{\underset{1}{2}}$		$\underset{\Delta}{\square}$		$\frac{6}{2}$		$\frac{m}{a}$		$\underset{\square}{\dot{a}}$		암	
		$\begin{array}{\|l\|l} \stackrel{n}{\mathrm{~m}} \\ \hline \end{array}$		$\begin{gathered} \frac{\mathrm{m}}{\mathrm{~m}} \\ \hline \end{gathered}$		$\stackrel{\rightharpoonup}{\dot{\infty}}$		$\begin{aligned} & \text { ® } \\ & \mathrm{Q} \\ & \hline \end{aligned}$		$\widehat{\mathrm{m}}$								$\stackrel{\lambda}{\mathrm{a}}$		$\frac{80}{1}$		$\underset{\alpha}{\underset{a}{2}}$		$\bar{d}$		$\stackrel{\circ}{\square}$		$\stackrel{m}{\square}$		$\underset{a}{z}$		암	
－	$\begin{array}{l\|l} \substack{y \\ r} \\ 0 \\ 0 \\ 0 \\ n \end{array}$		$\underset{\mathrm{m}}{\underset{\mathrm{~m}}{2}}$		$\stackrel{N}{\mathrm{~m}}$		$\stackrel{\circ}{\mathrm{m}}$		$\begin{aligned} & \mathrm{\infty} \\ & \mathrm{Q} \\ & \hline \end{aligned}$		$$								$\frac{9}{1}$		$\frac{t}{d}$		$\underset{\mathrm{I}}{\mathrm{I}}$		임		$\stackrel{\rightharpoonup}{\mathrm{a}}$		$\stackrel{N}{\mathrm{~N}}$		$\stackrel{\circ}{\mathrm{a}}$		음

Table 6．13．ADCO Bus and Pin Mapping

$\stackrel{\text { t }}{0}$	¢	$\overline{\bar{m}}$	$\begin{aligned} & \text { 옹 } \\ & \hline \end{aligned}$	$\begin{array}{\|} \frac{2}{3} \\ \frac{1}{0} \end{array}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\top} \\ & \hline \end{aligned}$	$\frac{\mathrm{N}}{\mathbf{N}}$	$\begin{aligned} & \stackrel{\circ}{7} \\ & \stackrel{5}{0} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \frac{18}{0} \\ \frac{1}{2} \end{array}$	$\begin{aligned} & \text { I } \\ & \frac{5}{0} \end{aligned}$	$\begin{array}{\|c} \mathbb{N} \\ \frac{1}{0} \end{array}$	$\frac{\mathbb{N}}{\frac{1}{0}}$	$\frac{\grave{N}}{\frac{1}{0}}$	$\begin{aligned} & \text { İ } \\ & \text { 푸 } \end{aligned}$	$\stackrel{\stackrel{\circ}{7}}{\frac{I}{0}}$	$\stackrel{\infty}{\frac{\infty}{5}}$	$\frac{\text { N}}{\frac{1}{0}}$	$\stackrel{\bullet}{5}$	$\begin{array}{\|l\|} \hline \frac{10}{5} \\ \hline \end{array}$	$\frac{\mathrm{t}}{\frac{\mathrm{t}}{\mathbf{3}}}$	$\frac{\mathbf{m}}{\frac{1}{0}}$	$\begin{aligned} & \text { N } \\ & \frac{1}{O} \end{aligned}$	$\frac{\Gamma}{5}$		웅	$\stackrel{\infty}{\frac{\infty}{5}}$	$\frac{1}{3}$	$\stackrel{\circ}{\mathbf{1}}$	$\frac{\text { 年 }}{0}$	$\left\|\frac{\text { 寺 }}{}\right\|$	$\frac{\infty}{3}$	$\left\|\frac{\mathrm{N}}{\mathbf{3}}\right\|$	동	웅
¢																														$\frac{m}{\square}$	N	듬	음
																														$\frac{m}{\square}$	N	$\bar{\square}$	음
$\begin{aligned} & \underset{\sim}{x} \\ & \underset{0}{0} \end{aligned}$			$\underset{\Delta}{\stackrel{t}{2}}$		$\frac{\mathrm{N}}{\stackrel{\rightharpoonup}{\mathrm{~L}}}$		$$		$\stackrel{\text { 름 }}{ }$		$\stackrel{\circ}{\mathrm{o}} \mathrm{i}$		몀				염						$\begin{aligned} & \circ \\ & \hline 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \mathrm{O} \\ & \mathrm{Q} \end{aligned}$		N		O
$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{r}} \\ & \underset{\mathrm{O}}{\mathrm{O}} \\ & \mathrm{Q} \end{aligned}$		$\underset{\text { n }}{\stackrel{n}{L}}$		$\frac{\text { m }}{\stackrel{\rightharpoonup}{L}}$		$\underset{\text { 들 }}{\text { 근 }}$		욤		늠		$\frac{\stackrel{\leftrightarrow}{2}}{\mathrm{a}}$		쓤		$\stackrel{\check{1}}{\mathrm{~L}}$						$\overline{\mathrm{j}}$		$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \hat{0} \\ & \hline \end{aligned}$		荅		$\begin{aligned} & \text { Non } \\ & \hline \end{aligned}$		$\overline{0}$	
$\begin{aligned} & \text { O} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{l\|l} x & \times \\ \frac{x}{r} & 0 \\ 0 & 0 \\ \frac{1}{v} & \infty \end{array}$	$\stackrel{\text { n }}{\stackrel{n}{L}}$		$\frac{m}{\stackrel{m}{a}}$		$\underset{\stackrel{\rightharpoonup}{\mathrm{L}}}{\stackrel{\rightharpoonup}{2}}$		욤		슴		$\frac{\text { ! ! }}{\square}$		$\stackrel{\text { ! }}{\square}$		$\stackrel{\check{1}}{\mathrm{~L}}$						$\underset{\sim}{\Sigma}$		$\begin{aligned} & 8 \\ & 0 \end{aligned}$		$\begin{aligned} & \hat{0} \\ & \hline \end{aligned}$		莒		$\begin{aligned} & \text { N} \\ & \hline \end{aligned}$		ָ	
$\stackrel{\stackrel{1}{0}}{\substack{0}}$			$\stackrel{t}{\grave{1}}$		$\underset{\stackrel{N}{⿺}}{\stackrel{N}{2}}$		$\frac{\stackrel{\rightharpoonup}{4}}{\stackrel{1}{2}}$		$\stackrel{\text { 름 }}{ }$		$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \stackrel{1}{2} \\ \hline \end{array}$		혐		$\frac{\mathrm{N}}{\mathrm{I}}$		염						$\begin{aligned} & \circ \\ & \hline 0 \\ & \hline \end{aligned}$		oin		O		I		N		O
	$\begin{array}{l\|l} x & \times \\ \frac{x}{r} & 0 \\ 0 & 0 \\ \frac{1}{1} & 0 \end{array}$		$\underset{\underset{\sim}{\mathrm{m}}}{\stackrel{t}{2}}$		$\stackrel{N}{\mathrm{~m}}$		$\stackrel{\circ}{\mathrm{m}}$		$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$		$\begin{aligned} & \mathrm{O} \\ & \mathrm{Q} \end{aligned}$								$\stackrel{\otimes}{\alpha}$		$\frac{d}{d}$		$\underset{\alpha}{\mathrm{a}}$		$\frac{9}{1}$		$\stackrel{t}{a}$		$\stackrel{N}{\mathrm{a}}$		음		م
		$\begin{aligned} & \frac{n}{\mathrm{~m}} \\ & \mathrm{~m} \end{aligned}$		$\frac{m}{\dot{m}}$		$\stackrel{\stackrel{\rightharpoonup}{\mathrm{m}}}{ }$		$\begin{aligned} & \mathbb{\otimes} \\ & \mathrm{Q} \end{aligned}$		$\widehat{\mathrm{m}}$								$\stackrel{\rightharpoonup}{\mathrm{d}}$		$\left\lvert\, \begin{aligned} & \text { M } \\ & \mathbf{1} \end{aligned}\right.$		$\stackrel{m}{\alpha}$		$\bar{d}$		$\frac{n}{\square}$		$\frac{m}{a}$		$\underset{a}{\bar{a}}$		욤	
免		$\begin{array}{\|l\|l} \hline \frac{n}{2} \\ \dot{Q} \end{array}$		$\frac{m}{\dot{m}}$		$\stackrel{\bar{m}}{\mathrm{~m}}$		$\begin{aligned} & \otimes \underset{\mathrm{Q}}{\mathrm{a}} \end{aligned}$		$\hat{\mathrm{m}}$								$\stackrel{\lambda}{\mathrm{d}}$		$\frac{88}{2}$		$\frac{\underset{1}{2}}{2}$		$\bar{d}$		$\stackrel{n}{\square}$		$\stackrel{m}{a}$		$\overline{\mathrm{a}}$		욤	
¢	$\begin{aligned} & \frac{c}{c} \\ & \frac{y}{c} \\ & \substack{2 \\ 0} \\ & \substack{0} \\ & \hline \end{aligned}$		$\underset{\mathrm{m}}{\mathrm{~m}}$		$\stackrel{N}{\mathrm{~m}}$		$\frac{\circ}{\mathrm{m}}$		$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$		$\begin{aligned} & \mathrm{Q} \\ & \mathrm{Q} \end{aligned}$								$\stackrel{̣}{\alpha}$		$\frac{d}{d}$		$\underset{\alpha}{\mathrm{a}}$		$\frac{9}{1}$		$\frac{\partial}{a}$		$\underset{\mathrm{a}}{\mathrm{~N}}$		$\stackrel{\circ}{\mathrm{a}}$		$\stackrel{\infty}{\square}$

Table 6．14．CSEN Bus and Pin Mapping

$\stackrel{\circ}{\circ}$	$\stackrel{0}{\square}$	$\begin{aligned} & \bar{\omega} \\ & \frac{5}{0} \end{aligned}$	$\begin{array}{\|c} \frac{0}{\mathrm{~m}} \\ \hline \mathbf{5} \end{array}$	$\frac{2}{\mathbf{T}}$	$\begin{array}{\|c} \infty \\ \frac{\sim}{3} \\ \hline \end{array}$	$\frac{\mathrm{N}}{\mathbf{N}}$	$$	$\begin{array}{\|l\|} \hline 18 \\ \frac{1}{0} \end{array}$	$\frac{\text { N }}{\frac{1}{0}}$	$\begin{array}{\|l\|} \hline \frac{刃}{3} \\ \hline \end{array}$	$\frac{\mathbb{N}}{\mathbf{N}}$	$\frac{\bar{N}}{\frac{1}{3}}$	$\begin{array}{\|c\|c} \hline \stackrel{\circ}{\mathrm{I}} \\ \hline \frac{\mathrm{I}}{\mathbf{T}} \end{array}$	$\begin{array}{l\|l} \hline \text { 읻 } & \frac{\infty}{\bar{T}} \\ \hline \end{array}$	$\frac{\text { N}}{5}$		$\begin{aligned} & \text { 농 } \\ & \frac{1}{O} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \hline \frac{\mathrm{d}}{\mathrm{I}} & \frac{\mathrm{I}}{\mathrm{I}} \end{array}$		$\begin{aligned} & \frac{\Gamma}{5} \\ & \hline \frac{1}{0} \end{aligned}$	$\begin{aligned} & \text { 울 } \\ & \frac{1}{3} \end{aligned}$	$\frac{\stackrel{1}{0}}{1}$	$\stackrel{\infty}{\frac{\infty}{0}}$	송	$\left\|\begin{array}{\|c} \circ \\ \frac{1}{0} \end{array}\right\|$	$\frac{\text { 옹 }}{}$	$\left\|\frac{士 口 1}{0}\right\|$	$\left\|\frac{\mathbb{m}}{\frac{1}{0}}\right\|$	$\left\|\frac{\Upsilon}{\mathbf{O}}\right\|$	동	웅
CEXT																															
年			$\frac{\underset{H}{L}}{\frac{\pi}{a}}$		$\frac{\mathrm{N}}{\stackrel{\mathrm{~N}}{\mathrm{~L}}}$		$\frac{\stackrel{ }{4}}{\stackrel{1}{a}}$		$\stackrel{\infty}{\underline{\circ}}$		$\frac{\circ}{\mathrm{L}}$		$\frac{\underset{1}{1}}{1}$	N		임					O		$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		J		N		O
哭	$\begin{aligned} & \stackrel{\rightharpoonup}{\gtrless} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\stackrel{1}{a}} \\ & \hline \end{aligned}$		$\frac{m}{\stackrel{m}{a}}$		$\underset{\stackrel{\rightharpoonup}{⿺}}{\stackrel{\rightharpoonup}{2}}$		$\stackrel{\ddot{1}}{\underline{\circ}}$		$\stackrel{\text { ㄴ́ㄴ }}{ }$		$\frac{\stackrel{!}{2}}{1}$		$\stackrel{\text { ® }}{\underline{\alpha}}$	$\bar{⿺}$					$\bar{\vdots}$		$\begin{aligned} & 80 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { A } \\ & \hline \end{aligned}$		$\begin{aligned} & 8 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { O} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{J} \\ & \hline \end{aligned}$	
$$	$\begin{aligned} & \times \\ & \text { x } \\ & 0 \\ & 0 \end{aligned}$		$\stackrel{\stackrel{\rightharpoonup}{\mathrm{o}}}{\stackrel{\mathrm{~m}}{2}}$		$\stackrel{\sim}{\stackrel{N}{\mathrm{~m}}}$		$\frac{\mathrm{o}}{\mathrm{~m}}$		$\begin{aligned} & \infty \\ & \mathrm{m} \end{aligned}$		$\begin{aligned} & \mathrm{O} \\ & \mathrm{Q} \end{aligned}$							$\stackrel{9}{\alpha}$	告		$\underset{\sim}{2}$		염		$\stackrel{\rightharpoonup}{\mathrm{a}}$		$\underset{\mathrm{a}}{\mathrm{a}}$		음		0
$\frac{0}{4}$	$\begin{aligned} & \bar{U} \\ & 0 \\ & \end{aligned}$	$\frac{\stackrel{\circ}{\infty}}{\stackrel{\circ}{\alpha}}$		$\frac{m}{\dot{m}}$		$\stackrel{\underset{\mathrm{m}}{\mathrm{~L}}}{ }$		$\stackrel{\otimes}{\mathrm{Q}}$		$\hat{\mathrm{m}}$							$\stackrel{1}{\mathrm{~d}}$		$\stackrel{8}{0}$	$\underset{\alpha}{\infty}$		$\overline{\mathrm{a}}$		$\stackrel{\mathrm{n}}{\mathrm{n}} \mathrm{a}$		$\stackrel{m}{a}$		$\stackrel{\rightharpoonup}{\mathrm{a}}$		영	
	EXt＿	SEN	NSE																												
－	$\begin{aligned} & x \\ & \infty \\ & \substack{x \\ \underset{\infty}{2} \\ \hline} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{n}{2} \end{aligned}$		$\frac{m}{\grave{L}}$		$\underset{\stackrel{\rightharpoonup}{\mathrm{L}}}{\text { I }}$				늠		$\frac{\stackrel{4}{⿺}}{1}$		$\stackrel{\text { ® }}{\alpha}$	듬					$\bar{\vdots}$		$\begin{aligned} & 80 \\ & 0 \end{aligned}$		$\begin{aligned} & \hat{0} \\ & \hline \end{aligned}$		$\begin{aligned} & 8 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { § } \\ & \hline \end{aligned}$		$\begin{aligned} & \bar{\alpha} \\ & \hline \end{aligned}$	
－	$\begin{aligned} & \underset{\infty}{\infty} \\ & 0 \\ & \underset{\sim}{2} \end{aligned}$		$\stackrel{\underset{\rightharpoonup}{\Delta}}{\stackrel{\rightharpoonup}{a}}$		$\begin{aligned} & \stackrel{N}{⿺ 辶} \\ & \hline \mathbf{L} \end{aligned}$		$\frac{\text { 은 }}{}$		$\frac{\infty}{\circ}$		$\frac{0}{2}$		㟧	끔		음					음		O		$\begin{aligned} & 8 \\ & 0 \end{aligned}$		$\begin{aligned} & \mathrm{O} \\ & \mathrm{Q} \end{aligned}$		$\begin{aligned} & \text { N} \\ & \hline \end{aligned}$		O
－	$\begin{aligned} & x \\ & 0 \\ & 0 \\ & \underset{\infty}{n} \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{n} \\ & \mathrm{~m} \\ & \mathrm{a} \end{aligned}\right.$		$\frac{m}{\dot{m}}$		$\stackrel{\underset{\mathrm{m}}{\mathrm{~L}}}{ }$		$\begin{aligned} & \text { ®a } \\ & \mathrm{Q} \end{aligned}$		$\hat{\mathrm{m}}$							침		$\frac{1}{2}$	$\underset{\alpha}{\infty}$		$\overline{\mathrm{a}}$		$\stackrel{n}{\mathrm{a}}$		$\frac{m}{a}$		$\stackrel{F}{\mathrm{a}}$		吴	
¢	$\begin{aligned} & > \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\stackrel{\underset{\sim}{\mathrm{m}}}{\stackrel{\rightharpoonup}{\mathrm{~m}}}$		$\begin{aligned} & \stackrel{N}{\mathrm{~m}} \\ & \hline \end{aligned}$		$\stackrel{\circ}{\mathrm{m}}$		$\begin{aligned} & \infty \\ & \mathrm{m} \\ & \hline \end{aligned}$		$\begin{aligned} & \circ \\ & \mathrm{Q} \end{aligned}$							$\stackrel{0}{0}$	d		$\underset{\sim}{\mathbb{N}}$		임		$\stackrel{\rightharpoonup}{\dot{a}}$		$\stackrel{N}{\mathrm{a}}$		$\stackrel{\circ}{\mathrm{a}}$		Q

Table 6．15．IDACO Bus and Pin Mapping

$\stackrel{\square}{\circ}$	$\stackrel{n}{\text { m }}$	$\frac{\bar{m}}{\frac{1}{0}}$	$\begin{array}{\|l\|} \hline \frac{\mathrm{m}}{\mathrm{~m}} \\ \hline \mathrm{t} \end{array}$	$\frac{2}{\mathbf{T}}$	$\stackrel{\infty}{\frac{\infty}{\top}}$	$\begin{array}{\|c} \text { Nㅗㅇ } \\ \hline \end{array}$	$\begin{aligned} & \stackrel{2}{7} \\ & \frac{1}{0} \end{aligned}$	$\begin{array}{\|l\|l\|l\|l\|} \hline \frac{1}{3} \\ \hline \end{array}$	$\frac{ \pm}{\mathbf{~}}$	$\stackrel{\infty}{\infty}$	$\frac{\mathbb{N}}{\frac{1}{0}}$	$\frac{\text { N }}{\frac{1}{0}}$	$\frac{\text { 퐁 }}{}$	$\frac{\stackrel{\circ}{7}}{\square}$	$\stackrel{\infty}{\frac{\infty}{\top}}$	$\begin{aligned} & \text { N } \\ & \frac{1}{0} \end{aligned}$	$\stackrel{\circ}{\frac{\pi}{3}}$	$\begin{array}{\|l\|l\|} \hline \frac{18}{5} \\ \hline \end{array}$		$\frac{\mathbf{m}}{\frac{m}{J}}$	$\begin{aligned} & \text { N } \\ & \frac{5}{0} \end{aligned}$	$\begin{array}{\|l\|} \hline \frac{\Gamma}{工} \\ \hline \end{array}$	$\begin{aligned} & \text { 울 } \\ & \hline \frac{1}{3} \end{aligned}$	$\frac{\stackrel{1}{3}}{\circ}$	$\frac{\infty}{\boldsymbol{\infty}}$	송	$\frac{\oplus}{3}$	$\left\|\frac{5}{0}\right\|$	$\frac{\stackrel{y}{\prime}}{0}$	$\frac{\text { m }}{0}$	$\frac{\mathrm{N}}{\mathbf{3}}$	등	웅
	$\begin{aligned} & \times \\ & 0 \\ & 0 \\ & \text { D } \end{aligned}$		$\stackrel{\underset{\sim}{\mathrm{m}}}{\stackrel{\rightharpoonup}{2}}$		$\begin{aligned} & \stackrel{N}{\dot{p}} \\ & \hline \end{aligned}$		$\frac{\circ}{\mathrm{m}}$		$\begin{aligned} & \infty \\ & \mathrm{m} \end{aligned}$		$\begin{aligned} & \circ \\ & \mathrm{Q} \\ & \mathrm{Q} \end{aligned}$								$\frac{9}{1}$		$\frac{\mathrm{t}}{\mathrm{~d}}$		$\underset{\sim}{\mathrm{N}}$		임		$\stackrel{\rightharpoonup}{a}$		$\underset{\alpha}{\mathrm{a}}$		$\stackrel{\circ}{\mathrm{a}}$		$\stackrel{\infty}{\circ}$
$\begin{aligned} & \underset{y}{l} \\ & \underset{y}{r} \\ & 0 \\ & 0 \\ & \end{aligned}$	$\begin{aligned} & \text { U} \\ & 0 \\ & \text { D } \end{aligned}$	$\left\|\begin{array}{l} \stackrel{\circ}{\infty} \\ \dot{\sim} \end{array}\right\|$		$\frac{m}{\bar{m}}$				$\stackrel{\otimes}{\mathrm{Q}}$		$\hat{\mathrm{m}}$								$\stackrel{\rightharpoonup}{\mathbf{a}}$		$\frac{8}{2}$		㔽		$\bar{d}$		$\stackrel{n}{a}$		$\stackrel{m}{a}$		$\overline{\mathrm{I}}$		$\begin{aligned} & \mathrm{g} \\ & \mathrm{Q} \end{aligned}$	

Table 6．16．VDACO／OPA Bus and Pin Mapping

${ }_{0}^{\circ}$	－	$\frac{\bar{m}}{\frac{1}{0}}$		$\begin{aligned} & \frac{2}{3} \\ & \frac{1}{0} \end{aligned}$	$\begin{array}{\|} \infty \\ \stackrel{y}{\mathrm{I}} \\ \hline \end{array}$	$\frac{\mathrm{N}}{\mathrm{~N}}$	$\begin{aligned} & \mathscr{y} \\ & \text { 둥 } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 18 \\ \frac{1}{6} \end{array}$	$\frac{ \pm}{\frac{1}{3}}$	$\frac{\mathbb{N}}{\frac{1}{0}}$	$\frac{\mathbb{N}}{\frac{1}{0}}$	$\begin{array}{\|c} \bar{N} \\ \frac{1}{0} \end{array}$	$\begin{aligned} & \text { 옹 } \\ & \hline \end{aligned}$	$\stackrel{\circ}{\stackrel{\circ}{ㄷ}}$	$\stackrel{\infty}{\frac{\infty}{5}}$	$\begin{array}{l\|l} \stackrel{ }{ } & \stackrel{\circ}{ } \\ \hline \end{array}$	$\begin{aligned} & \frac{10}{5} \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{\pi}{5} \\ & \frac{I}{O} \end{aligned}$	$\frac{m}{\frac{m}{5}}$	$\begin{aligned} & \frac{\mathrm{N}}{\mathrm{I}} \\ & \hline \end{aligned}$	$\stackrel{\Gamma}{5}$	$\begin{array}{\|l\|} \hline \text { 옫 } \end{array}$	$\mid$	$\mid$	송	$\mid$	$\left\|\frac{10}{0}\right\|$	$\frac{\stackrel{y}{3}}{\frac{1}{0}}$	$\frac{\mathbf{m}}{0}$	$\frac{\mathrm{N}}{\mathbf{3}}$	동	웅
OPAO＿N																																
	$\begin{aligned} & \underset{\sim}{\gtrless} \\ & \underset{\infty}{\infty} \\ & \underset{\sim}{2} \end{aligned}$	$\left\lvert\, \begin{array}{\|l\|l} \stackrel{n}{L} \\ \hline \end{array}\right.$		$\frac{m}{\stackrel{m}{L}}$		$\underset{\text { 듬 }}{\text { г }}$		$\frac{\ddot{2}}{\stackrel{\circ}{2}}$		늘		$\frac{\leftrightarrow 2!}{1}$		$\frac{\ddot{n}}{1}$		$\stackrel{\boxed{1}}{\alpha}$					$\underset{\sim}{\mathrm{U}}$		$\begin{aligned} & 0 \\ & 0 \\ & \hline 0 \end{aligned}$		$\begin{aligned} & \hat{0} \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { N } \\ & 0 \end{aligned}$		¢	
	$\begin{aligned} & \bar{\infty} \\ & 0 \\ & \underset{\sim}{\infty} \end{aligned}$		$\underset{\stackrel{t}{4}}{\stackrel{\rightharpoonup}{4}}$		$\underset{\underset{L}{\mathrm{~L}}}{\stackrel{N}{2}}$		은		$\frac{\infty}{\circ}$		음		$\frac{\underset{1}{2}}{1}$		츰	$\frac{\stackrel{1}{2}}{2}$						O		$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$		$8$		U		N		O
	$\begin{aligned} & \grave{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{n} \\ & \mathrm{~m} \\ & \mathrm{~L} \end{aligned}\right.$		$\begin{aligned} & \mathrm{m} \\ & \dot{\alpha} \end{aligned}$		$\underset{\text { un }}{\stackrel{\tau}{2}}$		$\begin{aligned} & \text { ®a } \\ & \mathrm{Q} \end{aligned}$		$\hat{\mathrm{m}}$							$\stackrel{\lambda}{d}$		$\frac{8}{1}$		$\underset{\alpha}{\underset{\alpha}{2}}$		$\bar{d}$		$\frac{n}{2}$		$\overline{\mathrm{m}}$		$\stackrel{\rightharpoonup}{\mathrm{a}}$		名	
	$\begin{aligned} & \grave{y} \\ & 0 \\ & 0 \\ & \infty \end{aligned}$		$\underset{\mathrm{m}}{\mathrm{~m}}$		$\stackrel{\mathrm{N}}{\mathrm{~m}}$		$\stackrel{\circ}{\mathrm{m}}$		$\begin{aligned} & \infty \\ & \mathrm{m} \end{aligned}$		$\begin{aligned} & \mathrm{O} \\ & \mathrm{Q} \\ & \hline \end{aligned}$							$\underset{\square}{\square}$		$\frac{\pi}{d}$		$\frac{\underset{1}{\mathrm{a}}}{}$		임		$\stackrel{\rightharpoonup}{\mathrm{a}}$		$\stackrel{N}{\mathrm{a}}$		$\stackrel{\circ}{\mathrm{a}}$		Q
	PAO																															
	$\begin{aligned} & \underset{\sim}{㐅} \\ & \underset{\infty}{\infty} \\ & \underset{\sim}{2} \end{aligned}$		$\underset{\underset{a}{t}}{\stackrel{t}{4}}$		$\underset{\stackrel{N}{\mathrm{~L}}}{\stackrel{N}{2}}$		$\stackrel{\stackrel{\rightharpoonup}{⿺}}{\underline{L}}$		$\frac{\infty}{2}$		음		$\frac{\underset{1}{1}}{2}$		츰	$\stackrel{\circ}{\mathrm{L}}$						O		$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { J } \\ & 0 \\ & \hline \end{aligned}$		N		8
	$\begin{aligned} & x \\ & \infty \\ & 0 \\ & \underset{\infty}{x} \end{aligned}$	$\left\lvert\, \begin{aligned} & \stackrel{n}{\check{L}} \\ & \stackrel{1}{2} \end{aligned}\right.$		$\frac{m}{\grave{L}}$		$\underset{\stackrel{\rightharpoonup}{L}}{\underset{\sim}{\mid}}$		$\stackrel{\ddot{\circ}}{\stackrel{\ddot{2}}{2}}$		늠		毕		$\frac{\ddot{n}}{1}$		듬					$\bar{U}$		$\begin{aligned} & 8 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { O} \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		O		¢	
	$\begin{aligned} & \times \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\underset{\mathrm{m}}{\underset{\mathrm{~m}}{2}}$		$\stackrel{\mathrm{N}}{\mathrm{~m}}$		$\stackrel{\circ}{\mathrm{m}}$		$\begin{aligned} & \infty \\ & \mathrm{m} \end{aligned}$		$\begin{aligned} & \text { O} \\ & \mathrm{Q} \end{aligned}$							$\underset{\alpha}{9}$		$\frac{\pi}{d}$		$\underset{\sim}{2}$		영		$\stackrel{y}{a}$		$\stackrel{N}{\mathrm{a}}$		$\stackrel{\circ}{a}$		Q
$\begin{aligned} & \times \times \\ & \hline \stackrel{y}{\sqrt{2}} \\ & \frac{\alpha}{0} \\ & \frac{0}{4} \end{aligned}$	$\begin{aligned} & x \\ & 0 \\ & 0 \\ & \underset{\infty}{x} \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{n} \\ & \mathrm{~m} \\ & \mathrm{Q} \end{aligned}\right.$		$\frac{m}{\dot{\alpha}}$				$\stackrel{\otimes}{\mathrm{O}}$		$\hat{\mathrm{m}}$							id		$\frac{8}{2}$		$\frac{m}{d}$		$\bar{d}$		$\stackrel{n}{\mathrm{a}}$		$\frac{m}{a}$		$\stackrel{\rightharpoonup}{\mathrm{a}}$		영	


$\stackrel{t}{\circ}$	$\stackrel{\infty}{\infty}$	$\frac{\bar{m}}{\frac{1}{O}}$	$\begin{aligned} & \text { O } \\ & \frac{9}{\mathrm{I}} \end{aligned}$	$\begin{aligned} & \text { ® } \\ & \frac{\mathrm{I}}{\mathrm{I}} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\sim}{\mathrm{I}} \\ & \hline \mathbf{O} \end{aligned}$	$\frac{\mathrm{N}}{\mathrm{~N}}$	$\begin{aligned} & \circ \\ & \stackrel{N}{\mathrm{~N}} \\ & \hline \mathbf{O} \end{aligned}$	$\begin{aligned} & 18 \\ & \frac{1}{0} \\ & \hline \end{aligned}$	$\frac{\mathrm{N}}{\mathbf{N}}$	$\frac{\cong}{\mathbf{N}}$	$\frac{\mathrm{N}}{\mathrm{~N}}$	$\frac{\bar{N}}{\mathbf{N}}$	$\begin{aligned} & \text { O} \\ & \text { N } \\ & \hline \end{aligned}$	$\frac{\text { 요 }}{\mathbf{I}}$	$\frac{\infty}{\frac{\infty}{\mathbf{T}}}$	$\begin{aligned} & \text { 픙 } \\ & \frac{1}{O} \end{aligned}$	$\begin{aligned} & \circ \\ & \hline \frac{1}{\mathbf{T}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ᄂ? } \\ & \frac{7}{\mathbf{T}} \\ & \hline \end{aligned}$	$\frac{\dot{I}}{\frac{I}{0}}$	$\frac{\text { m }}{\frac{1}{1}}$	$\frac{\mathrm{N}}{\mathrm{I}}$	$\frac{\text { 동 }}{}$	읖	옹	$\begin{array}{\|l\|} \infty \\ \hline \frac{1}{1} \\ \hline \end{array}$	$\frac{\text { N }}{\mathbf{O}}$	$\stackrel{\oplus}{\mathbf{O}}$	$\frac{18}{\frac{18}{1}}$	$\frac{\mathrm{I}}{\mathrm{O}}$	$\frac{\mathbf{M}}{ \pm}$	$\frac{\mathrm{N}}{\mathrm{O}}$	동	웅
OPA1＿N																																	
	$\begin{aligned} & \underset{〔}{\gtrless} \\ & \underset{\sim}{\infty} \end{aligned}$	$\frac{\stackrel{L}{4}}{\stackrel{1}{2}}$		$\frac{m}{\stackrel{m}{L}}$		$\underset{\underset{\sim}{u}}{\stackrel{\rightharpoonup}{u}}$		$\frac{\underset{1}{1}}{1}$		$\stackrel{\mathrm{N}}{\mathrm{~L}}$		$\frac{\stackrel{4}{1}}{\square}$		$\stackrel{\text { M }}{\stackrel{1}{2}}$		$\stackrel{\Gamma}{⿺ 𠃊}$						$\underset{N}{\bar{L}}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		U		$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { N} \\ & \hline \end{aligned}$		$\overline{0}$	
$\begin{aligned} & \underset{\sim}{\lambda} \\ & \underset{\sim}{r} \\ & 0 \\ & \text { O} \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\infty}{\infty} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{2} \end{aligned}$		$\frac{\underset{\rightharpoonup}{\grave{L}}}{2}$		$\underset{\underset{\sim}{L}}{\stackrel{N}{2}}$		$\frac{ㅇ ㅡ ㄴ ~}{\grave{L}}$		$\underset{\sim}{\underset{\sim}{\square}}$		$\left\lvert\, \begin{aligned} & \text { e } \\ & \stackrel{1}{\mathrm{a}} \end{aligned}\right.$		$\stackrel{\text { t }}{\text { a }}$		$\stackrel{\text { N }}{\underline{1}}$		$\stackrel{\mathrm{O}}{\mathrm{a}}$						O		$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { J } \\ & 0 \end{aligned}$		N		O
	$\begin{aligned} & \grave{\succ} \\ & 0 \\ & \underset{\sim}{0} \end{aligned}$	$\frac{\mathrm{L}}{\mathrm{D}}$		$\frac{m}{\dot{\alpha}}$		$\underset{\mathrm{Q}}{\stackrel{\rightharpoonup}{\mathrm{~m}}}$		$\begin{aligned} & \mathrm{O} \\ & \mathrm{Q} \\ & \hline \end{aligned}$		$\stackrel{\rightharpoonup}{\mathrm{m}}$								$\underset{\Delta}{\grave{a}}$		只		$\underset{\square}{\underset{\alpha}{2}}$		$\underset{a}{\pi}$		$\stackrel{L}{\square}$		$\stackrel{m}{\square}$		$\underset{\alpha}{\bar{\alpha}}$		or	
	$\begin{aligned} & \underset{\sim}{2} \\ & \underset{\sim}{0} \\ & \hline \end{aligned}$		$\underset{\mathrm{d}}{\underset{\mathrm{a}}{\prime}}$		$\stackrel{N}{\mathrm{~N}}$		$\stackrel{\mathrm{O}}{\mathrm{~m}}$		$\begin{aligned} & \infty \\ & \mathrm{m} \\ & \mathrm{Q} \end{aligned}$		$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$								$\stackrel{̣}{\boxed{\alpha}}$		$\frac{\pi}{a}$		$\underset{\sim}{\mathbb{Z}}$		$\frac{9}{1}$		$\stackrel{\rightharpoonup}{\mathrm{a}}$		$\stackrel{N}{\mathrm{~N}}$		$\frac{0}{2}$		¢
OPA1＿P																																	
	$\begin{aligned} & x \\ & \underset{\sim}{6} \\ & \underset{\sim}{0} \end{aligned}$		$\frac{\pi}{\stackrel{\rightharpoonup}{L}}$		$\underset{\stackrel{N}{\mathrm{~L}}}{\stackrel{N}{2}}$		$\frac{ㅇ ㅡ ㄴ ~}{\grave{2}}$		$\underset{\sim}{\stackrel{\infty}{\square}}$		$\begin{aligned} & \text { Q } \\ & \stackrel{1}{\mathrm{~L}} \end{aligned}$		㟧		$\stackrel{N}{\stackrel{1}{\mathrm{~L}}}$		음						O		$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		U		N		O
	$\begin{aligned} & \times \\ & \infty \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{2} \end{aligned}$	$\frac{\stackrel{L}{4}}{\stackrel{1}{2}}$		$\frac{m}{\dot{L}}$		$\underset{\stackrel{\tau}{\grave{L}}}{ }$		$\frac{\underset{1}{1}}{1}$		$\frac{\mathrm{N}}{\mathrm{a}}$		$\frac{\stackrel{4}{1}}{\square}$		$\stackrel{m}{\stackrel{1}{2}}$		$\overline{\stackrel{1}{a}}$						$\underset{N}{N}$		$\begin{aligned} & 8 \\ & 0 \end{aligned}$		Ò		$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \end{aligned}$		Oid			
	$\begin{aligned} & \times \\ & 0 \\ & 0 \\ & \underset{\sim}{0} \end{aligned}$		$\stackrel{\rightharpoonup}{\mathrm{a}}$		$\stackrel{\mathrm{N}}{\mathrm{~N}}$		$\frac{\mathrm{o}}{\mathrm{D}}$		$\begin{aligned} & \infty \\ & \mathrm{m} \\ & \mathrm{Q} \end{aligned}$		$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \\ & \hline \end{aligned}$								$\stackrel{̣}{\boxed{\alpha}}$		$\underset{a}{\square}$		$\underset{\sim}{\mathbb{Z}}$		$\frac{9}{\mathbf{a}}$		$\stackrel{\rightharpoonup}{\mathrm{a}}$		$\stackrel{N}{\mathrm{~N}}$		$\stackrel{\circ}{0}$		¢
	$\begin{aligned} & \times \\ & \stackrel{x}{0} \\ & \underset{\sim}{0} \end{aligned}$	$\frac{\mathrm{L}}{\mathrm{~m}}$		$\frac{\mathrm{m}}{\mathrm{~m}}$		$\stackrel{\stackrel{\rightharpoonup}{\mathrm{m}}}{\substack{2}}$		$\begin{aligned} & \mathrm{O} \\ & \mathrm{Q} \end{aligned}$		$\stackrel{\mathrm{m}}{\mathrm{Q}}$								$\underset{\alpha}{\mathbb{\alpha}}$		只		$\underset{\alpha}{\underset{\alpha}{2}}$		$\bar{\square}$		$\frac{10}{2}$		$\stackrel{m}{\square}$		$\stackrel{\tau}{\dot{\alpha}}$		or	
OPA2＿N																																	
	$\begin{aligned} & \underset{\substack{c}}{\stackrel{1}{6}} \end{aligned}$	$\frac{\stackrel{L}{\mu}}{\stackrel{1}{2}}$		$\frac{m}{\dot{L}}$		$\underset{\stackrel{\tau}{\grave{L}}}{ }$		$\frac{\underset{1}{1}}{1}$		$\frac{\mathrm{N}}{\mathrm{a}}$		$\stackrel{\stackrel{4}{\mathrm{n}}}{\mathrm{a}}$		$\underset{\stackrel{m}{\mathrm{a}}}{2}$		$\stackrel{\Gamma}{⿺ 𠃊}$						$\bar{ভ}$		$\begin{aligned} & 8 \\ & 0 \\ & \hline \end{aligned}$		N		$\begin{aligned} & \text { n } \\ & 0 \\ & \hline \end{aligned}$		Oid			
	$\begin{aligned} & \underset{\infty}{\sim} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{n} \end{aligned}$		$\frac{\underset{\rightharpoonup}{\mathrm{L}}}{2}$		$\frac{N}{\dot{M}}$		$\frac{\stackrel{0}{\mathrm{~L}}}{\mathrm{~L}}$		$\underset{\sim}{\stackrel{\infty}{\square}}$		$\stackrel{0}{\mathrm{~L}}$		㟧		$\underset{\stackrel{N}{\mathrm{~L}}}{ }$		음						O		$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		J		N		O
	$\begin{aligned} & \grave{\grave{n}} \\ & 0 \\ & \underset{\sim}{0} \end{aligned}$	$\frac{\mathrm{L}}{\mathrm{~m}}$		$\frac{\mathrm{m}}{\mathrm{~m}}$		$\underset{\mathrm{Q}}{\stackrel{\rightharpoonup}{\mathrm{~L}}}$		$\begin{aligned} & \mathrm{O} \\ & \mathrm{Q} \end{aligned}$		$\stackrel{\mathrm{m}}{\mathrm{o}}$								$\underset{\alpha}{\mathbb{L}}$		只		$\underset{\square}{\underset{\alpha}{2}}$		$\underset{\square}{\Sigma}$		$\stackrel{10}{\square}$		$\stackrel{m}{\square}$		$\stackrel{\tau}{\mathrm{a}}$		$\begin{aligned} & \text { or } \\ & \text { a } \end{aligned}$	
	$\begin{aligned} & \grave{\tau} \\ & 0 \\ & \underset{\sim}{0} \end{aligned}$		$\frac{\underset{\mathrm{m}}{\mathrm{~L}}}{}$		$\stackrel{N}{\mathrm{~N}}$		$\frac{\mathrm{o}}{\mathrm{~m}}$		$\begin{aligned} & \infty \\ & \mathrm{m} \\ & \mathrm{Q} \end{aligned}$		$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$								$\stackrel{̣}{\boxed{\alpha}}$		$\frac{t}{d}$		$\underset{\sim}{\mathbb{Z}}$		$\frac{9}{\square}$		$\stackrel{\rightharpoonup}{\mathrm{a}}$		$\stackrel{N}{\mathrm{~N}}$		$\stackrel{\circ}{0}$		¢


$\stackrel{t}{\circ}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \bar{m} \\ & \frac{1}{\top} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \frac{\mathrm{m}}{\mathrm{I}} \end{aligned}$	$\begin{aligned} & \text { ® } \\ & \frac{\mathrm{I}}{\mathrm{I}} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\sim}{\mathbf{N}} \\ & \hline \mathbf{O} \end{aligned}$	$\frac{\mathrm{N}}{\mathrm{~N}}$	$\begin{aligned} & \circ \\ & \stackrel{N}{\mathrm{~N}} \\ & \hline \mathbf{O} \end{aligned}$	$\begin{aligned} & \text { LP } \\ & \frac{1}{\mathrm{I}} \\ & \hline \end{aligned}$	$\frac{\mathrm{N}}{\frac{\mathrm{I}}{\mathrm{O}}}$	$\frac{\cong}{\mathbf{N}}$	$\frac{\mathrm{N}}{\mathrm{~N}}$	$\frac{\bar{N}}{\mathbf{N}}$	$\begin{aligned} & \text { O} \\ & \text { N } \\ & \hline \end{aligned}$	$\frac{\text { 요 }}{\mathbf{I}}$	$\frac{\infty}{\frac{\infty}{\mathbf{T}}}$	$\stackrel{\text { N }}{\text { 풍 }}$	$\stackrel{\ominus}{\mathbf{I}}$	$\begin{array}{\|l\|l\|} \hline \frac{18}{7} \\ \hline \mathbf{T} \\ \hline \end{array}$	$\frac{\dot{I}}{\frac{I}{0}}$	$\frac{\text { m }}{\frac{1}{1}}$	$\frac{N}{\mathbb{I}}$	$\frac{\text { 동 }}{}$	$\begin{aligned} & \circ \\ & \hline \frac{\mathrm{I}}{\mathrm{O}} \end{aligned}$	옹	$\left\lvert\, \frac{\infty}{\frac{1}{O}}\right.$	$\frac{\text { N }}{\mathbf{O}}$	$\stackrel{\oplus}{\mathbf{O}}$	$\left\lvert\, \begin{aligned} & \text { 노 } \\ & \hline \mathbf{0} \end{aligned}\right.$	$\frac{\mathrm{I}}{\mathrm{O}}$	$\frac{\mathbf{\infty}}{\frac{1}{0}}$	$\frac{\mathrm{N}}{\mathrm{O}}$	동	웅
OPA2＿OUT																																	
	$\begin{aligned} & \underset{\sim}{\gtrless} \\ & \stackrel{\rightharpoonup}{\infty} \\ & \hline \end{aligned}$	$\frac{\stackrel{n}{\dot{L}}}{2}$		$\frac{m}{\stackrel{m}{L}}$		$\frac{\underset{\rightharpoonup}{u}}{\underset{\sim}{2}}$		$\frac{9}{4}$		$\stackrel{\wedge}{\mathrm{L}}$		$\frac{10}{1}$		$\stackrel{\text { M }}{\stackrel{1}{2}}$		$\stackrel{\Gamma}{⿺ 𠃊}$						$\underset{N}{\bar{L}}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		U		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { N} \\ & \hline \end{aligned}$		$\overline{0}$	
$\begin{aligned} & \underset{\sim}{\lambda} \\ & \underset{\sim}{r} \\ & 0 \\ & \text { O} \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\infty}{\infty} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{2} \end{aligned}$		$\frac{\underset{\rightharpoonup}{\dot{L}}}{2}$		$\stackrel{N}{\underset{\sim}{\mathrm{~L}}}$		$\frac{ㅇ ㅡ ㄴ ~}{\grave{L}}$		$\underset{\sim}{\underset{\sim}{\square}}$		$\left\lvert\, \begin{aligned} & \text { e } \\ & \stackrel{1}{\mathrm{a}} \end{aligned}\right.$		$\stackrel{\text { t }}{\text { a }}$		$\underset{\text { Nㅡㄴ }}{ }$		$\stackrel{\mathrm{O}}{\mathrm{a}}$						O		$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { J } \\ & 0 \end{aligned}$		N		O
	$\begin{aligned} & \grave{\succ} \\ & 0 \\ & \underset{\sim}{0} \end{aligned}$	$\frac{\mathrm{n}}{\mathrm{~m}}$		$\frac{\mathrm{m}}{\mathrm{~m}}$		$\stackrel{\stackrel{\rightharpoonup}{\mathrm{m}}}{\mathrm{~L}}$		$\begin{aligned} & \text { © } \\ & \mathrm{Q} \end{aligned}$		$\stackrel{\widehat{m}}{\mathrm{o}}$								$\underset{\alpha}{\mathbb{L}}$		只		$\underset{\sim}{\mathbb{L}}$		$\underset{a}{\pi}$		$\stackrel{L}{\square}$		$\stackrel{m}{\dot{Q}}$		$\stackrel{\Gamma}{\mathrm{a}}$		or	
	$\begin{aligned} & \underset{\sim}{2} \\ & \underset{\sim}{0} \\ & \hline \end{aligned}$		$\frac{\underset{\sim}{\mathrm{a}}}{\stackrel{\rightharpoonup}{2}}$		$\stackrel{\mathrm{N}}{\mathrm{~N}}$		$\stackrel{\mathrm{O}}{\mathrm{~m}}$		$\begin{aligned} & \infty \\ & \mathrm{m} \\ & \mathrm{Q} \end{aligned}$		$\begin{aligned} & \mathrm{O} \\ & \mathrm{@} \end{aligned}$								$\stackrel{̣}{\boxed{\alpha}}$		$\frac{\pi}{a}$		$\underset{\text { ® }}{\mathbb{Z}}$		$\stackrel{9}{\mathbf{a}}$		$\stackrel{\rightharpoonup}{\mathrm{a}}$		$\stackrel{N}{\mathrm{~N}}$		$\frac{0}{2}$		¢
OPA2＿P																																	
	$\begin{aligned} & x \\ & \underset{\sim}{6} \\ & \underset{\sim}{0} \end{aligned}$		$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{u}}$		$\frac{N}{\stackrel{N}{L}}$		$\frac{\mathrm{O}}{\mathrm{~L}}$		$\underset{\sim}{\stackrel{\infty}{\square}}$		$\stackrel{0}{\mathrm{~L}}$		㟧		$\underset{\text { Nㅡㄴ }}{ }$		음						O		$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { J } \\ & \text { Q } \end{aligned}$		N		O
	$\begin{aligned} & \times \\ & \infty \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{2} \end{aligned}$	$\frac{n}{4}$		$\frac{m}{\dot{L}}$		$\underset{\underset{\sim}{u}}{\stackrel{\rightharpoonup}{L}}$		$\frac{9}{4}$		$\frac{\mathrm{N}}{\mathrm{a}}$		$\frac{10}{1}$		$\stackrel{m}{\stackrel{1}{2}}$		$\stackrel{\bar{⿺}}{\square}$						$\underset{N}{N}$		$\begin{aligned} & 8 \\ & 0 \end{aligned}$		Ò		$0$		O			
	$\begin{aligned} & \times \\ & 0 \\ & 0 \\ & \underset{\sim}{0} \end{aligned}$		$\underset{\mathrm{Q}}{\stackrel{\rightharpoonup}{\mathrm{a}}}$		$\stackrel{N}{\mathrm{D}}$		$\frac{\mathrm{o}}{\mathrm{D}}$		$\begin{aligned} & \infty \\ & \mathrm{m} \\ & \mathrm{Q} \end{aligned}$		$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \\ & \hline \end{aligned}$								$\stackrel{̣}{\boxed{\alpha}}$		$\underset{\square}{\pi}$		$\underset{\text { § }}{\text { N }}$		$\frac{9}{\mathbf{a}}$		$\stackrel{\rightharpoonup}{\mathrm{a}}$		$\underset{\sim}{\mathrm{Q}}$		$\stackrel{\circ}{0}$		－
	$\begin{aligned} & \times \\ & \stackrel{x}{0} \\ & \underset{\sim}{0} \end{aligned}$	$\frac{\mathrm{n}}{\mathrm{~m}}$		$\frac{\mathrm{m}}{\mathrm{~m}}$		$\underset{\mathrm{m}}{\stackrel{\rightharpoonup}{\mathrm{~L}}}$		$\begin{aligned} & \text { ®o } \\ & \mathrm{@} \end{aligned}$		$\stackrel{\mathrm{m}}{\mathrm{Q}}$								$\underset{\alpha}{\grave{\alpha}}$		只		$\underset{\sim}{\underset{\alpha}{2}}$		$\bar{\square}$		$\frac{10}{2}$		$\stackrel{m}{\square}$		$\stackrel{\Gamma}{\mathrm{a}}$		or	
VDACO＿OUTO／OPAO＿OUT																																	
	$\begin{aligned} & \underset{\substack{c}}{\stackrel{1}{6}} \end{aligned}$	$\frac{\stackrel{n}{\dot{L}}}{2}$		$\frac{m}{\dot{L}}$		$\underset{\underset{\sim}{u}}{\stackrel{\tau}{L}}$		$\frac{8}{4}$		$\frac{\mathrm{N}}{\mathrm{a}}$		$\stackrel{\leftrightarrow}{1}$		$\stackrel{m}{\stackrel{1}{\mathrm{a}}}$		$\stackrel{\Gamma}{⿺ 𠃊}$						$\bar{ভ}$		$\begin{aligned} & 8 \\ & 0 \\ & \hline \end{aligned}$		N		$0$		$\begin{aligned} & \text { N} \\ & \hline \end{aligned}$			
	$\begin{aligned} & \underset{\infty}{\sim} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{n} \end{aligned}$		$\frac{\underset{\rightharpoonup}{\dot{L}}}{2}$		$\frac{N}{\grave{L}}$		$\frac{\stackrel{0}{\mathrm{~L}}}{\mathrm{~L}}$		$\underset{\sim}{\stackrel{\infty}{\square}}$		$\stackrel{0}{\mathrm{~L}}$		㟧		$\underset{\text { Nㅡㄴ }}{ }$		음						O		$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { U } \\ & \text { Q } \end{aligned}$		N		O
	$\begin{aligned} & \grave{\grave{n}} \\ & 0 \\ & \underset{\sim}{0} \end{aligned}$	$\frac{\mathrm{n}}{\mathrm{~m}}$		$\frac{\mathrm{m}}{\mathrm{~m}}$		$\underset{\mathrm{Q}}{\stackrel{\rightharpoonup}{\mathrm{~L}}}$		$\begin{aligned} & \text { O } \\ & \mathrm{O} \end{aligned}$		$\stackrel{\mathrm{m}}{\mathrm{o}}$								$\underset{\Delta}{\grave{a}}$		这		$\underset{\sim}{\mathbb{L}}$		$\underset{\boxed{\pi}}{\pi}$		$\stackrel{10}{\square}$		$\stackrel{m}{\square}$		$\stackrel{\rightharpoonup}{\mathrm{a}}$		or	
	$\begin{aligned} & \grave{\imath} \\ & \underset{\sim}{0} \\ & \underset{\sim}{2} \end{aligned}$		$\underset{\sim}{\underset{\alpha}{\alpha}}$		$\stackrel{\mathrm{N}}{\mathrm{~N}}$		$\frac{\mathrm{o}}{\mathrm{~m}}$		$\begin{aligned} & \infty \\ & \mathrm{m} \\ & \mathrm{Q} \end{aligned}$		$\begin{aligned} & \mathrm{O} \\ & \mathrm{~m} \end{aligned}$								$\stackrel{̣}{\boxed{\alpha}}$		$\underset{\Delta}{\pi}$		$\underset{\sim}{\mathbb{Z}}$		$\frac{9}{\square}$		$\stackrel{\rightharpoonup}{\mathrm{a}}$		$\stackrel{N}{\mathrm{~N}}$		$\stackrel{\circ}{0}$		¢


	$\stackrel{n}{\square}$	彦	$\begin{array}{\|l\|} \hline \stackrel{\text { on}}{0} \end{array}$		$\begin{aligned} & \infty \\ & \stackrel{\sim}{5} \end{aligned}$			$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$		$\begin{array}{\|c} \mathbb{N} \\ \frac{1}{0} \end{array}$	$\bar{\Sigma}$	$\begin{array}{l\|l} \frac{2}{5} \\ \frac{\circ}{3} \\ \hline \end{array}$	$\stackrel{\infty}{\bar{I}} \mid$	$\begin{aligned} & \text { N } \\ & \hline 5 \end{aligned}$	$\begin{array}{\|l\|l} \hline 0 \\ \hline \frac{10}{5} \\ \hline \mathbf{5} \\ \hline \end{array}$	$\begin{aligned} & \frac{\mathrm{J}}{5} \\ & \hline \end{aligned}$	$\frac{m}{\frac{m}{J}}$	$\begin{aligned} & N \\ & \cline { 2 - 2 } \\ & \hline \end{aligned}$		$\frac{\stackrel{\rightharpoonup}{3}}{3}$	$\begin{aligned} & \infty \\ & \hline \frac{1}{0} \end{aligned}$	꿍	¢	哭	¢	끙	웅
	VDAC0＿OUT1／OPA1＿OUT																										
$\begin{aligned} & \underset{y}{z} \\ & \vdots \\ & \cline { 1 - 1 } \\ & 0 \\ & 0 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \grave{㐅} \\ & \mathfrak{0} \\ & \stackrel{\rightharpoonup}{\infty} \end{aligned}$	$\begin{array}{\|c} \stackrel{n}{\grave{1}} \\ \hline \mathbf{L} \end{array}$		$\begin{array}{\|c} \frac{m}{⿺ 𠃊} \\ \hline \stackrel{y}{4} \\ \hline \end{array}$		$\underset{\text { 들 }}{\text { I }}$	$\stackrel{18}{4}$		䓘		范	丧		픈						$8$		N	\％		$\begin{aligned} & \text { O} \\ & 0 \end{aligned}$		
$\begin{aligned} & \grave{\rightharpoonup} \\ & \stackrel{\rightharpoonup}{x} \\ & \underset{O}{0} \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{\omega}{\infty} \\ & \underset{\sim}{2} \end{aligned}$		$\stackrel{\underset{1}{L}}{\stackrel{t}{L}}$		$\frac{\stackrel{N}{4}}{\frac{1}{2}}$	른		呰		$\stackrel{\circ}{\stackrel{\circ}{2}}$	$\frac{\text { t }}{\Delta}$		ㅊ⿺ㅁ		$\frac{\stackrel{\circ}{1}}{2}$				$\stackrel{\circ}{0}$		$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$			S		N	O
$\begin{aligned} & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{y}{0} \\ & \stackrel{y}{0} \\ & \frac{0}{4} \end{aligned}$	$\begin{aligned} & \grave{0} \\ & 0 \\ & \mathrm{D} \end{aligned}$	$\begin{array}{\|c} \frac{n}{\mathrm{~m}} \\ \hline \mathrm{D} \end{array}$		$\left\lvert\, \begin{aligned} & \mathrm{m} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}\right.$		$\stackrel{\Gamma}{\mathrm{a}}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{Q} \end{aligned}$		$\widehat{\mathrm{m}}$						x		$\frac{8}{\alpha}$			¢		$\left\lvert\, \begin{aligned} & \stackrel{n}{0} \\ & \vdots \\ & \hline \end{aligned}\right.$	$\stackrel{m}{2}$		$\overline{\mathrm{a}}$		
	$\begin{aligned} & \grave{c} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\frac{\mathrm{t}}{\mathrm{~d}}$		$\stackrel{N}{\mathrm{~m}}$	©		$\stackrel{\infty}{\text { ® }}$		\％						$\stackrel{9}{1}$		罗	¢		¢			$\underset{\alpha}{N}$		$\stackrel{\circ}{\vdots}$	$\stackrel{\circ}{\circ}$

## 7. BGA125 Package Specifications

### 7.1 BGA125 Package Dimensions



Figure 7.1. BGA125 Package Drawing

Table 7.1. BGA125 Package Dimensions

Dimension	Min	Typ	Max
A	0.80	0.87	0.94
A1	0.16	0.21	0.26
A2	0.61	0.66	0.71
c	0.17	0.21	0.25
D	6.90	7.00	7.10
E	6.90	7.00	7.10
D1	-	6.00	-
E1	-	6.00	-
e	-	0.50	-
b	0.25	0.30	0.35
aaa		0.10	
bbb		0.10	
ddd		0.08	
eee		0.15	
fff		0.05	
Note:   1. All dimensions shown are in millimeters (mm) unless otherwise noted.   2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.			

### 7.2 BGA125 PCB Land Pattern



Figure 7.2. BGA125 PCB Land Pattern Drawing

Table 7.2. BGA125 PCB Land Pattern Dimensions

Dimension	Min	Nom	Max
X		0.25	
C1		6.00	
C2		6.00	
E1		0.5	
E2		0.5	
Note:   1. All dimensions shown are in millimeters ( mm ) unless otherwise noted.   2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.   3. This Land Pattern Design is based on the IPC-7351 guidelines.   4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \mu \mathrm{~m}$ minimum, all the way around the pad.   5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.   6 . The stencil thickness should be 0.125 mm ( 5 mils).   7. The ratio of stencil aperture to land pad size should be 1:1.   8. A No-Clean, Type-3 solder paste is recommended.   9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.			



Figure 7.3. BGA125 Package Marking
The package marking consists of:

- PPPPPPPPP - The part number designation.

1. Family Code (B|M|F)
2. G (Gecko)
3. Series (1, 2,...)
4. Device Configuration (1, 2,...)
5. Performance Grade ( $\mathrm{P}|\mathrm{B}| \mathrm{V}$ )
6. Feature Code (1, 2,...)
7. $\operatorname{TRX}$ Code ( $3=\operatorname{TXRX}|2=R X| 1=T X)$
8. Band ( $1=$ Sub-GHz | $2=2.4 \mathrm{GHz} \mid 3=$ Dual-band)
9. Flash ( $\mathrm{J}=1024 \mathrm{~K}|\mathrm{H}=512 \mathrm{~K}| \mathrm{G}=256 \mathrm{~K}|\mathrm{~F}=128 \mathrm{~K}| \mathrm{E}=64 \mathrm{~K} \mid \mathrm{D}=32 \mathrm{~K}$ )
10. Temperature Grade ( $G=-40$ to $85 \mid I=-40$ to 125)

- $Y Y$ - The last 2 digits of the assembly year.
- WW - The 2-digit workweek when the device was assembled.
- TTTTTT - A trace or manufacturing code. The first letter is the device revision.


## 8. QFN48 Package Specifications

### 8.1 QFN48 Package Dimensions



Figure 8.1. QFN48 Package Drawing

Table 8.1. QFN48 Package Dimensions

Dimension	Min	Typ	Max
A	0.80	0.85	0.90
A1	0.00	0.02	0.05
A3	0.20 REF		
b	0.18	0.25	0.30
D	6.90	7.00	7.10
E	6.90	7.00	7.10
D2	5.15	5.30	5.45
E2	5.15	5.30	5.45
e	0.50 BSC		
L	0.30	0.40	0.50
K	0.20	-	-
R	0.09	-	-
aaa	0.15		
bbb	0.10		
ccc	0.10		
ddd	0.05		
eee	0.08		
fff	0.10		
Note:   1. All dimensions shown are in millimeters ( mm ) unless otherwise noted.   2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.   3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4.   4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.			



Figure 8.2. QFN48 PCB Land Pattern Drawing

Table 8.2. QFN48 PCB Land Pattern Dimensions

Dimension	Typ
S1	6.01
S	6.01
L1	4.70
W1	4.70
e	0.50
W	0.26
L	0.86
Note:   1. All dimensions shown are in millimeters ( mm ) unless otherwise noted.   2. This Land Pattern Design is based on the IPC-7351 guidelines.   3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \mu \mathrm{~m}$ minimum, all the way around the pad.   4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.   5 . The stencil thickness should be 0.125 mm ( 5 mils).   6. The ratio of stencil aperture to land pad size can be $1: 1$ for all perimeter pads.   7. A $4 \times 4$ array of 0.75 mm square openings on a 1.00 mm pitch can be used for the center ground pad.   8. A No-Clean, Type-3 solder paste is recommended.   9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.	

### 8.3 QFN48 Package Marking



Figure 8.3. QFN48 Package Marking

The package marking consists of:

- PPPPPPPPP - The part number designation.

1. Family Code (B|M|F)
2. G (Gecko)
3. Series (1, 2,...)
4. Device Configuration (1, 2,...)
5. Performance Grade ( $\mathrm{P}|\mathrm{B}| \mathrm{V}$ )
6. Feature Code (1, 2,...)
7. $\operatorname{TRX}$ Code ( $3=\operatorname{TXRX}|2=R X| 1=T X)$
8. Band ( $1=$ Sub-GHz | $2=2.4 \mathrm{GHz} \mid 3=$ Dual-band)
9. Flash ( $\mathrm{J}=1024 \mathrm{~K}|\mathrm{H}=512 \mathrm{~K}| \mathrm{G}=256 \mathrm{~K}|\mathrm{~F}=128 \mathrm{~K}| \mathrm{E}=64 \mathrm{~K} \mid \mathrm{D}=32 \mathrm{~K}$ )
10. Temperature Grade ( $G=-40$ to $85 \mid I=-40$ to 125)

- $Y Y$ - The last 2 digits of the assembly year.
- WW - The 2-digit workweek when the device was assembled.
- TTTTTT - A trace or manufacturing code. The first letter is the device revision.


## 9. QFN68 Package Specifications

### 9.1 QFN68 Package Dimensions



Figure 9.1. QFN68 Package Drawing

Table 9.1. QFN68 Package Dimensions

Dimension	Min	Typ	Max
A	0.80	0.85	0.90
A1	0.00	0.02	0.05
A3	0.20 REF		
b	0.15	0.20	0.25
D	7.90	8.00	8.10
E	7.90	8.00	8.10
D2	6.05	6.20	6.35
E2	6.05	6.20	6.35
e	0.40 BSC		
L	0.30	0.40	0.50
K	0.20	-	-
R	0.075	-	-
aaa	0.10		
bbb	0.07		
ccc	0.10		
ddd	0.05		
eee			
fff	0.10		
Note:   1. All dimensions shown are in millimeters ( mm ) unless otherwise noted.   2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.   3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4.   4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.			

### 9.2 QFN68 PCB Land Pattern



Figure 9.2. QFN68 PCB Land Pattern Drawing

Table 9.2. QFN68 PCB Land Pattern Dimensions

Dimension	Typ
L	0.86
W	0.22
e	0.40
S	7.01
S1	7.01
L1	6.35
W1	6.35
Ny:\|	

## Note:

1. All dimensions shown are in millimeters ( mm ) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm .
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \mu \mathrm{~m}$ minimum, all the way around the pad.
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

6 . The stencil thickness should be 0.100 mm ( 4 mils).
7. The ratio of stencil aperture to land pad size can be 1:1 for all pads.
8. A $3 \times 3$ array of 1.50 mm square openings on a 1.80 mm pitch can be used for the center ground pad.
9. A No-Clean, Type-3 solder paste is recommended.
10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

### 9.3 QFN68 Package Marking



Figure 9.3. QFN68 Package Marking

The package marking consists of:

- PPPPPPPPPP - The part number designation.
- TTTTTT - A trace or manufacturing code. The first letter is the device revision.
- YY - The last 2 digits of the assembly year.
- WW - The 2-digit workweek when the device was assembled.


## 10. Revision History

## Revision 1.4

July, 2019

- In Feature List, removed wake on radio.
- In System Overview:
- Replaced reference to "modules" with "peripherals" or "blocks"
- Renamed GPCRC section
- In Electrical Specifications, reordered footnotes according to order of appearance in the table.
- In General Operating Conditions for fCORE :
- Added conditions for all usable wait state settings
- Corrected maximum specification from 20 MHz to 7 MHz for test condition VSCALEO, MODE = WSO
- In sub-GHz specifications, replaced references to "PAVDD" with "External PA Supply" for clarity.
- In RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4GHz Band, updated parameter for EVM.
- In Sub-GHz RF Transmitter characteristics for 915 MHz Band:
- Corrected test conditions for:
- SPUR HARM_FCC_14, in non-restricted bands
- SPUR ${ }_{\text {OOB_FCC_14, }}$, in non-restricted bands
- SPUR HARM_FCC_20, in non-restricted bands
- SPUR ${ }_{\text {OOB_FCC_20, in }}$ in non-restricted bands
- Updated typical specification from -52 dBm to -62 dBm and maximum specification from -46 dBm to -56 dBm for:
- SPUROOB_FCC_20, in restricted bands ( $30-88 \mathrm{MHz}$ )
- SPUROOB_FCC_14, in restricted bands ( $30-88 \mathrm{MHz}$ )
- Added footnote to PSD.
- In 4.1.10.2 Sub-GHz RF Receiver Characteristics for 915 MHz Band, updated typical specification from -60 dBm to -61 dBm and maximum specification from -54 dBm to -55 dBm for SPUR $_{\text {RX_ARIB }}, 930-1000 \mathrm{MHz}$, RBW=100 kHz.
- Corrected units for FRANGE in:
- Sub-GHz RF Receiver Characteristics for 490 MHz Band
- Sub-GHz RF Receiver Characteristics for 315 MHz Band
- Sub-GHz RF Receiver Characteristics for 169 MHz Band
- In LFRCO, updated test conditions for flFRCO.
- In GPIO, added footnotes to $\mathrm{V}_{\mathrm{IL}}$ and $\mathrm{V}_{\mathrm{IH}}$.
- In VMON, updated test conditions for IVMON.
- In VDAC, updated test conditions for $\mathrm{I}_{\mathrm{DAC}}, 200 \mathrm{~Hz}$ refresh rate.
- In CSEN, updated test conditions for:
- Cextmax
- ICSEN_BOND
- ICSEN_EM2
- ICSEN_ACtive
- In Pin Definitions, updated pin descriptions for DECOUPLE and RESETn.
- Updated feature code in:
- 7.3 BGA125 Package Marking
- 8.3 QFN48 Package Marking


## Revision 1.3

June, 2018

- 4.1.5.4 Current Consumption Using Radio 3.3 V with DC-DC: Updated typical 802.15 .4 receive current specifications.
- Table 6.9 GPIO Functionality Table on page 141: Changed presentation to order table by pin name instead of pin location.


## Revision 1.2

February, 2018

- Added new orderable part numbers for QFN68 variants and associated packaging and pinout information.
- Absolute Maximum Ratings Table: Added footnote to clarify IOVDD over-voltage operation conditions.
- APORT Connection Diagram: Corrected OPA output connections to route through "Y" buses.


## Revision 1.1

October, 2017

- Updated Ordering Table to revision-C OPNs.
- Added high-temperature part numbers to Ordering Table and added associated specifications / content throughout document.
- Updated product highlights on Front Page and Feature List for consistency across EFR32xG1x family documentation.
- System Overview Updates
- Expanded Receiver Architecture section.
- Clarified / corrected energy mode mentions in RTCC and Opamp sections.
- Memory maps updated with LE peripherals and new formatting.
- Absolute Maximum Ratings Table:
- Removed redundant Ivssmax line.
- Added footnote to clarify $\mathrm{V}_{\text {DIGPIN }}$ specification for 5 V tolerant GPIO.
- General Operating Conditions Table:
- Removed redundant footnote about shorting VREGVDD and AVDD together.
- Added footnote about IOVDD voltage restriction when CSEN peripheral is used with chopping enabled.
- Added footnote for additional information on peak current during voltage scaling operations.
- RF Receiver Characteristics for 2GFSK in the 2.4GHz Band, 1 Mbps Data Rate Table:
- Sensitivity, Co-channel interferer and Selectivity typical numbers updated to latest phy characterization data.
- $\mathrm{BLOCK}_{\mathrm{OOB}}$ specifications changed to show Min values instead of Typ.
- RF Receiver Characteristics for 2GFSK in the 2.4GHz Band, 2 Mbps Data Rate Table:
- SAT Typical value corrected from 5 to 10 dBm .
- BLOCK $_{\text {OOB }}$ specifications removed.
- RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band Table: Footnote added to BLOCK $_{80211 \mathrm{G}}$ specification to clarify blocker signal definition.
- Sub-GHz RF Receiver Characteristics for 915 MHz Band Table: Added O-QPSK DSSS phy specifications.
- Sub-GHz RF Transmitter Characteristics for 868 MHz Band Table: SPURoob_ETsı below 1 GHz Typ corrected from -60 to -42 dBm.
- Sub-GHz RF Receiver Characteristics for 490 MHz Band Table: Corrected 10 kbps 2GFSK reference signal bandwidth to 20.038 kHz.
- Flash Memory Characteristics Table:
- Added timing measurement clarification for Device Erase and Mass Erase.
- Device Erase Time typical values corrected from 69 to 82 ms .
- Analog to Digital Converter (ADC) Table:
- Added header text for general specification conditions.
- Added footnote for clarification of input voltage limits.
- Digital to Analog Converter (VDAC) Table: Gain Error min/max specifications relaxed for REFSEL on 1V25LN, VDD, and EXT settings.
- Current Digital to Analog Converter (IDAC) Table: Total accuracy STEPSEL value setting corrected from $0 \times 80$ to $0 \times 10$.
- Analog Port (APORT) Table: Operation in EM2/EM3 supply current changed from 915 to 67 nA (silicon fix from rev B to C).
- 2.4 GHz RF Transmitter Output Power Figure: Extended temperature range to 125 C.
- 2.4 GHz RF Receiver Sensitivity Figure: Updated with latest characterization data and added 125 C operational plots.
- Typical Sub-GHz Impedance-matching network circuits Figure: Corrected split between two examples from 450 MHz to 500 MHz.
- Minor typographical corrections, including capitalization, mis-spellings and punctuation marks, throughout document.
- Minor formatting and styling updates, including table formats, TOC location, and boilerplate information throughout document.


## Revision 1.0

2017-04-14

- Added Thermal Characteristics table.
- Finalized specification tables. All tables were updated with latest characterization data and production test limits.
- Updated typical performance graphs for DC-DC.
- Minor typographical, clarity, and consistency improvements.
- Condensed pin function tables with new formatting.


## Revision 0.6

2017-02-23

- Updated 2 Mbps 2GFSK receiver specifications with latest characteriztion data.
- Added table-wide conditions to 2GFSK 1 Mbps and 2 Mbps receiver tables.
- Clarified opamp noise measurement conditions in electrical spec table.


## Revision 0.5

2017-02-03

- New corporate stylesheet applied.
- Updated device block diagrams on front page and in System Overview.
- Updated Feature List with latest characterization numbers.
- "Bluetooth Smart" changed to "Bluetooth Low Energy" throughout document.
- All OPNs changed to revision B.
- Minor typographical corrections and clarifications in System Overview.
- Electrical Characteristics Table Changes
- All specification tables updated with latest characterization data and production test limits.
- Split 2.4 GHz 2GFSK tables into separate tables for 1 Mbps and 2 Mbps data rates.
- Split HFRCO/AUXHFRCO table into separate tables for HFRCO and AUXHFRCO.
- OPAMP, CSEN, and VDAC specification line items updated to match test conditions.
- Added tables for Analog Port (APORT) and Pulse Counter (PCNT).
- Added Typical Performance Curves for supply current, DCDC, and RF parameters.
- Added missing alternate functions and descriptions to Pinout and Alternate Function tables.
- Added APORT Connection Diagram.
- Corrected Package Marking description for QFN48 and BGA125.
- Corrected Package Marking diagram for QFN48.


## Revision 0.2

2016-09-21
Initial release.



IoT Portfolio www.silabs.com/loT


SW/HW
www.silabs.com/simplicity


Quality
www.silabs.com/quality


Support and Community community.silabs.com

## Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.

## Trademark Information

 EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.


Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
http://www.silabs.com

