FEATURES

1.8 V to 5.5 V single supply
5Ω (maximum) on resistance
0.75Ω (typical) on resistance flatness
Automotive temperature range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
-3 dB bandwidth > $\mathbf{2 0 0} \mathbf{~ M H z}$
Rail-to-rail operation
6-lead SC70 package
Fast switching times
$t_{0}=12 \mathrm{~ns}$
$t_{\text {off }}=6 \mathrm{~ns}$
Typical power consumption ($<0.01 \mu \mathrm{~W}$)
TTL/CMOS compatible

APPLICATIONS

Battery-powered systems
Communication systems
Sample-and-hold systems
Audio signal routing
Video switching
Mechanical reed relay replacement

GENERAL DESCRIPTION

The ADG749 is a monolithic CMOS SPDT switch. This switch is designed on a submicron process that provides low power dissipation yet gives high switching speed, low on resistance, and low leakage currents.

The ADG749 can operate from a single-supply range of 1.8 V to 5.5 V , making it ideal for use in battery-powered instruments and with the new generation of DACs and ADCs from Analog Devices, Inc.

Each switch of the ADG749 conducts equally well in both directions when on. The ADG749 exhibits break-before-make switching action.
Because of the advanced submicron process, -3 dB bandwidths of greater than 200 MHz can be achieved.

The ADG749 is available in a 6-lead SC70 package.

FUNCTIONAL BLOCK DIAGRAM

SWITCH SHOWN FOR
A LOGIC 1 INPUT
Figure 1.

PRODUCT HIGHLIGHTS

1. 1.8 V to 5.5 V Single-Supply Operation. The ADG749 offers high performance, including low on resistance and fast switching times, and is fully specified and guaranteed with 3 V and 5 V supply rails.
2. Very Low Ron (5Ω Maximum at 5 V and 10Ω Maximum at 3 V). At 1.8 V operation, Ros is typically 40Ω over the temperature range.
3. Automotive Temperature Range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
4. On Resistance Flatness ($\left.\mathrm{R}_{\mathrm{flat}(\mathrm{ON})}\right)(0.75 \Omega$ typical).
5. -3 dB Bandwidth $>200 \mathrm{MHz}$.
6. Low Power Dissipation. CMOS construction ensures low power dissipation.
7. Fast $\mathrm{t}_{\mathrm{on}} / \mathrm{t}_{\text {off }}$.
8. Tiny, 6-lead SC70 Package.
[^0]
TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 5
ESD Caution 5
Pin Configuration and Function Descriptions. 6
REVISION HISTORY
12/11-Rev. B to Rev. C
Deleted Endnote 1 from Leakage Currents Parameter, Table 1.3
Deleted Endnote 1 from Leakage Currents Parameter, Table 2.4
10/09—Rev. A to Rev. BUpdated FormatUniversal
Added Pb -Free Information to Table 3 5
Added Table 4 6
Updated Outline Dimensions 12
Changes to Ordering Guide 12
7/02-Rev. 0 to Rev. A.
Changes to Features 1
Additions to Product Highlights 1
Changes to Specifications 2
Edits to Absolute Maximum Ratings 4
Changes to Terminology 4
Edits to Ordering Guide 4
Added new TPCs 4 and 5 5
Added TPC 10 6
Test Circuits 6, 7, and 8 replaced 7
Updated KS-6 Package Drawing. 9
Terminology 7
Typical Performance Characteristics 8
Test Circuits 10
Applications Information 11
ADG749 Supply Voltages 11
On Response vs. Frequency 11
Off Isolation 11
Outline Dimensions 12
Ordering Guide 12

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$ and $\mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ unless otherwise stated.
Table 1.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On Resistance Match Between Channels (Δ Ron) On Resistance Flatness (Rflat(on)	$\begin{aligned} & 2.5 \\ & 5 \end{aligned}$ 0.75	$\begin{aligned} & 6 \\ & \\ & 0.1 \\ & 0.8 \\ & \\ & 1.2 \end{aligned}$	0 V to V_{DD} 7 0.8 1.5	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} ; \\ & \text { see Figure } 13 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage IS (Off) Channel On Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{Is}_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \end{aligned}$	$\begin{aligned} & \pm 0.35 \\ & \pm 0.35 \end{aligned}$	1	nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=4.5 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 4.5 \mathrm{~V} ; \end{aligned}$ see Figure 14 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=4.5 \mathrm{~V} \text {; }$ see Figure 15
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current linl or l_{NH}	0.005		$\begin{array}{r} 2.4 \\ 0.8 \\ \\ \pm 0.1 \\ \hline \end{array}$	\vee min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ ton toff Break-Before-Make Time Delay, to Off Isolation Channel-to-Channel Crosstalk Bandwidth -3 dB C_{s} (Off) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$	7 3 8 $\begin{aligned} & -67 \\ & -87 \\ & -62 \\ & -82 \\ & 200 \\ & 7 \\ & 27 \end{aligned}$		12	ns typ ns max ns typ ns max ns typ ns min dB typ dB typ dB typ dB typ MHz typ pF typ pF typ	$\begin{aligned} & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} ; \text { see Figure } 16 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} ; \text { see Figure } 16 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=3 \mathrm{~V} \text {; see Figure } 17 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 18 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 19 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { see Figure } 20 \end{aligned}$
POWER REQUIREMENTS IDD	0.001		1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V} \mathrm{VD}=5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

[^1]$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%$ and $\mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ unless otherwise stated
Table 2.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On Resistance Match Between Channels (Δ Ron) On Resistance Flatness (Rflat(on)	6	$\begin{aligned} & 7 \\ & 10 \\ & \\ & 0.1 \\ & 0.8 \\ & 2.5 \\ & \hline \end{aligned}$	0 V to V_{DD} 12 0.8	V Ω typ Ω max Ω typ Ω max Ω typ	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} ; \\ & \text { see Figure } 13 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage IS (Off) Channel On Leakage Id, Is (On)	$\begin{aligned} & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \end{aligned}$	$\begin{aligned} & \pm 0.35 \\ & \pm 0.35 \end{aligned}$	1 5	nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V} \mathrm{VD}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V} ; \end{aligned}$ see Figure 14 $V_{S}=V_{D}=1 \mathrm{~V} \text { or } V_{S}=V_{D}=3 \mathrm{~V} \text {; }$ see Figure 15
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current linl or $l_{\text {Inh }}$	0.005	$\begin{aligned} & 2.0 \\ & 0.8 \end{aligned}$	± 0.1	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ ton toff Break-Before-Make Time Delay, t_{D} Off Isolation Channel-to-Channel Crosstalk Bandwidth -3 dB C_{s} (Off) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$			15 8 1	ns typ ns max ns typ ns max ns typ ns min dB typ dB typ dB typ dB typ MHz typ pF typ pF typ	
POWER REQUIREMENTS IDD	0.001		1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V} \mathrm{VD}=3.3 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{aligned}$

[^2]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Table 3.

Parameter	Ratings
$V_{\text {DD }}$ to GND	-0.3 V to +7 V
Analog, Digital Input ${ }^{1}$	$-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or } 30 \mathrm{~mA},$ whichever occurs first
Peak Current, S or D	100 mA (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle max)
Continuous Current, S or D	30 mA
Operating Temperature Range Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
SC70 Package, Power Dissipation	315 mW
$\theta_{\text {JA }}$ Thermal Impedance	$332^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {Jc }}$ Thermal Impedance	$120^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering	
Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$
Pb-free Reflow Soldering	
Peak Temperature	$260(+0 /-5)^{\circ} \mathrm{C}$
Time at Peak Temperature	10 sec to 40 sec

[^3]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. Pin Configuration

Table 4. Pin Function Descriptions

Pin Number	Mnemonic	Description
1	IN	Digital control input pin.
2	V $_{\text {DD }}$	Most positive power supply pin.
3	GND	Ground (0V) reference pin.
4	S1	Source terminal of the multiplexer. Can be used as input or output.
5	D	Drain terminal of the multiplexer. Can be used as input or output.
6	S2	Source terminal of the multiplexer. Can be used as input or output.

Table 5. Truth Table

ADG749 IN	Switch S1	Switch S2
0	ON	OFF
1	OFF	ON

TERMINOLOGY

Ron
Ohmic resistance between D and S.

Δ Ron

On resistance match between any two channels, such as: Ron max - Ron min.
$\mathbf{R}_{\text {flat(ON) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.
I_{s} (Off)
Source leakage current with the switch off.

$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathbf{O n})$

Channel leakage current with the switch on.
$V_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$
Analog voltage on Terminals D and S.
Cs (Off)
Off switch source capacitance.
$\mathrm{C}_{\mathrm{D}}, \mathrm{Cs}$ (On)
On switch capacitance.

Insertion Loss

Loss due to on resistance of the switch.

ton

Delay between applying the digital control input and the output switching on.
$t_{\text {off }}$
Delay between applying the digital control input and the output switching off.
$t_{\text {D }}$
Off time or on time measured between the 90% points of both switches, when switching from one address state to another.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Bandwidth

The frequency at which the output is attenuated by -3 dBs .
On Response
The frequency response of the on switch.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance vs. $V_{D}\left(V_{S}\right)$ Single Supplies

Figure 4. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperature, $V_{D D}=3 \mathrm{~V}$

Figure 5. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Different Temperatures, $V_{D D}=5 \mathrm{~V}$

Figure 6. Leakage Currents vs. Temperature

Figure 7. Leakage Currents vs. Temperature

Figure 8. Supply Current vs. Input Switching Frequency

Figure 9. Off Isolation vs. Frequency

Figure 10. Crosstalk vs. Frequency

Figure 11. On Response vs. Frequency

Figure 12. Charge Injection vs. Source Voltage

ADG749

TEST CIRCUITS

Figure 13．On Resistance

Figure 14．Off Leakage

Figure 15．On Leakage

Figure 16．Switching Times

Figure 17．Break－Before－Make Time Delay，t_{D}

OFF ISOLATION $=20 \log \frac{V_{O U T}}{V_{S}}$

CHANNEL－TO－CHANNEL

INSERTION LOSS $=20 \log \frac{V_{\text {OUT }} \text { WITH SWITCH }}{V_{\text {OUT }} \text { WITHOUT SWITCH }}$ 高

APPLICATIONS INFORMATION

The ADG749 belongs to Analog Devices' new family of CMOS switches. This series of general-purpose switches has improved switching times, offering lower on resistance, higher bandwidths, low power consumption, and low leakage currents.

ADG749 SUPPLY VOLTAGES

Functionality of the ADG749 extends from 1.8 V to 5.5 V single supply, which makes it ideal for battery-powered instruments, where power efficiency and performance are important design parameters.
It is important to note that the supply voltage affects the input signal range, the on resistance, and the switching times of the part. By taking a look at the typical performance characteristics and the specifications, the effects of the power supplies can be clearly seen.

For $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ operation, RoN is typically 40Ω over the temperature range.

ON RESPONSE VS. FREQUENCY

Figure 21 illustrates the parasitic components that affect the ac performance of CMOS switches (the switch is shown surrounded by a box). Additional external capacitances will further degrade some performance. These capacitances affect feedthrough, crosstalk, and system bandwidth.

Figure 21. Switch Represented by Equivalent Parasitic Components
The transfer function that describes the equivalent diagram of the switch (Figure 21) is of the form $A(s)$ shown below.

$$
A(s)=R_{T}\left[\frac{s\left(R_{O N} C_{D S}\right)+1}{s\left(R_{T} R_{O N} C_{D S}\right)+1}\right]
$$

where:

$$
\begin{aligned}
& R_{T}=R_{L O A D} /\left(R_{L O A D}+R_{O N}\right) \\
& C_{T}=C_{L O A D}+C_{D}+C_{D S}
\end{aligned}
$$

The signal transfer characteristic is dependent on the switch channel capacitance, $C_{D S}$. This capacitance creates a frequency
zero in the numerator of the transfer function $A(s)$. Because the switch on resistance is small, this zero usually occurs at high frequencies. The bandwidth is a function of the switch output capacitance combined with $C_{D S}$ and the load capacitance. The frequency pole corresponding to these capacitances appears in the denominator of $A(s)$.
The dominant effect of the output capacitance, C_{D}, causes the pole breakpoint frequency to occur first. Therefore, in order to maximize bandwidth, a switch must have a low input and output capacitance and low on resistance. The on response vs. frequency plot for the ADG749 is shown in Figure 11.

OFF ISOLATION

Off isolation is a measure of the input signal coupled through an off switch to the switch output. The capacitance, $C_{D S}$, couples the input signal to the output load when the switch is off, as shown in Figure 22.

Figure 22. Off Isolation is Affected by External Load Resistance and Capacitance

The larger the value of CDS, the larger the values of feedthrough that will be produced. The typical performance characteristic graph of Figure 9 illustrates the drop in off isolation as a function of frequency. From dc to roughly 200 kHz , the switch shows better than -95 dB isolation. Up to frequencies of 10 MHz , the off isolation remains better than -67 dB . As the frequency increases, more and more of the input signal is coupled through to the output. Off isolation can be maximized by choosing a switch with the smallest $C_{D S}$ possible. The values of load resistance and capacitance also affect off isolation, since they contribute to the coefficients of the poles and zeros in the transfer function of the switch when open.

$$
A(s)=\left[\frac{s\left(R_{L O A D} C_{D S}\right)}{s\left(R_{L O A D}\right)\left(C_{L O A D}+C_{D}+C_{D S}\right)+1}\right]
$$

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-203-AB

Figure 23. 6-Lead Thin Shrink Small Outline Transistor Package [SC70] (KS-6)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature range	Package Description	Package Option	Branding 2
ADG749BKSZ-R2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6-Lead Thin Shrink Small Outline Transistor Package $[\mathrm{SC} 70]$	$\mathrm{KS}-6$	S1M
ADG749BKSZ-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6-Lead Thin Shrink Small Outline Transistor Package $[\mathrm{SC} 70]$	$\mathrm{KS}-6$	S1M
ADG749BKSZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	6-Lead Thin Shrink Small Outline Transistor Package $[\mathrm{SC} 70]$	KS-6	S1M

${ }^{1} Z=$ RoHS Compliant Part.
${ }^{2}$ Branding on this package is limited to three characters due to space constraints.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Analog Devices Inc.:
ADG749BKSZ-REEL ADG749BKSZ-REEL7

[^0]: Rev. C
 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

[^1]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^2]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^3]: ${ }^{1}$ Overvoltage at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

