FEATURES

12-channel vertical driver

8 three-level drivers

4 two-level drivers
Substrate clock driver
Input logic supports a 1.6 V to 3.6 V range
Output drivers support a -9.5 V to +15.5 V range $6 \mathrm{~mm} \times 6 \mathrm{~mm}$ CSP_BGA package with 0.65 mm pitch

APPLICATIONS

Digital still cameras

Industrial cameras
Surveillance cameras
Medical imaging

GENERAL DESCRIPTION

The ADDI9023 is a 12-channel vertical driver for charge-coupled device (CCD) imaging applications. It includes eight three-level drivers and four two-level drivers. The input configuration can support up to nine individual vertical timing phases and eight shift gate signals. A separate substrate clock channel (SUBCK) is also included. Typical load drive capability for each channel is 3 nF .
The ADDI9023 is specified over an operating temperature range of $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features 1
Applications. 1
General Description 1
Functional Block Diagram 1
Revision History 2
Specifications 3
Output Driver Specifications 4
Absolute Maximum Ratings 5
Thermal Resistance 5
ESD Caution. 5
Pin Configuration and Function Descriptions 6
Input/Output Logic States 8
Applications Information 10
Power-Up Sequence 10
Power-Down Sequence. 10
Circuit Layout Information. 11
Outline Dimensions 12
Ordering Guide 12

REVISION HISTORY

4/12—Revision 0: Initial Version

ADDI9023

SPECIFICATIONS

Table 1.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
TEMPERATURE RANGE Operating Storage		$\begin{aligned} & -25 \\ & -65 \end{aligned}$		$\begin{aligned} & +85 \\ & +150 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
V-DRIVER POWER SUPPLY VOLTAGES VDD VH VL VM VLL VH to VL, VLL	Input logic supply V-driver high supply V-driver low supply V-driver midsupply SUBCK V-driver low supply Maximum voltage from VH to VL, VLL	$\begin{aligned} & 1.6 \\ & 11.0 \\ & -9.5 \\ & -1.5 \\ & -9.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 15.0 \\ & -7.5 \\ & 0.0 \\ & -7.5 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 15.5 \\ & -5.5 \\ & +1.5 \\ & -5.5 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
DC POWER SUPPLY CURRENTS $I_{\text {VDD }}$ I_{VH} I_{VL} I_{vm} $I_{\text {VLL }}$				0.5 0.5 0.4 3.3 2.1 0.1 0.3 0.2 0.3 0.1	mA mA
DIGITAL INPUTS High Level Input Voltage Low Level Input Voltage High Level Input Current Low Level Input Current Input Capacitance	$\mathrm{VDD}=1.6 \mathrm{~V}$ to 3.6 V	VDD - 0.6	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mathrm{pF} \end{aligned}$

OUTPUT DRIVER SPECIFICATIONS

$\mathrm{VH}=15 \mathrm{~V}, \mathrm{VM}=0 \mathrm{~V}, \mathrm{VL}, \mathrm{VLL}=-7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Table 2.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
V1A TO V5						
Delay Time, VL to VM and VM to VL	$\mathrm{t}_{\text {PLM }}, \mathrm{t}_{\text {PML }}$			37		ns
Delay Time, VM to VH and VH to VM	$\mathrm{t}_{\text {PMH, }} \mathrm{t}_{\text {PHM }}$			43		ns
Rise Time, VL to VM	$\mathrm{t}_{\text {RLM }}$	Load circuit: $20 \Omega+3 \mathrm{nF}$ to GND		110		ns
Rise Time, VM to VH	$\mathrm{t}_{\text {RMH }}$	Load circuit: $20 \Omega+3 \mathrm{nF}$ to GND		240		ns
Fall Time, VM to VL	$\mathrm{t}_{\text {FML }}$	Load circuit: $20 \Omega+3 \mathrm{nF}$ to GND		180		ns
Fall Time, VH to VM	$\mathrm{t}_{\text {FHM }}$	Load circuit: $20 \Omega+3 \mathrm{nF}$ to GND		130		ns
Output Currents						
		V 1 A to $\mathrm{V} 5=-7.25 \mathrm{~V}$		14		mA
		V 1 A to $\mathrm{V} 5=-0.25 \mathrm{~V}$		-23		mA
		V 1 A to $\mathrm{V} 5=+0.25 \mathrm{~V}$		23		mA
		V1A to $\mathrm{V} 5=+14.75 \mathrm{~V}$		-10		mA
On Resistance	$\mathrm{R}_{\text {ON }}$					
VH				23	35	Ω
VM				11	20	Ω
VL				17	25	Ω
V6 TO V9						
Delay Time, VL to VM and VM to VL	$\mathrm{t}_{\text {PLM }}, \mathrm{t}_{\text {PML }}$			37		ns
Rise Time, VL to VM	$\mathrm{t}_{\text {RLM }}$	Load circuit: $20 \Omega+3 \mathrm{nF}$ to GND		110		ns
Fall Time, VM to VL	$\mathrm{t}_{\text {FML }}$	Load circuit: $20 \Omega+3 \mathrm{nF}$ to GND		180		ns
Output Currents						
		V 6 to $\mathrm{V} 9=-7.25 \mathrm{~V}$		14		mA
		V 6 to $\mathrm{V} 9=-0.25 \mathrm{~V}$		-23		mA
On Resistance	$\mathrm{R}_{\text {ON }}$					
VM				11	20	Ω
VL				17	25	Ω
SUBCK OUTPUT						
Delay Time, VLL to VH	$\mathrm{t}_{\text {PLH }}$			47		ns
Delay Time, VH to VLL	$\mathrm{t}_{\text {PHL }}$			47		ns
Rise Time, VLL to VH	$\mathrm{t}_{\text {RLH }}$	Load circuit: 1 nF to GND		45		ns
Fall Time, VH to VLL	$\mathrm{t}_{\text {FHL }}$	Load circuit: 1 nF to GND		45		ns
Output Currents		SUBCK $=-7.25 \mathrm{~V}$		23		mA
		SUBCK $=+14.75 \mathrm{~V}$		-22		mA
VLL On Resistance	$\mathrm{R}_{\text {ON }}$			10	17	Ω

Figure 2. Definition of V-Driver Timing Specifications

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
VDD to VSS	-0.3 V to +3.9 V
VH to VL, VLL	-0.3 V to +25.0 V
VH to VSS	-0.3 V to +17.0 V
VL to VSS	-17.0 V to +0.3 V
VM to VSS	-6.0 V to +3.0 V
VMM to VSS	-6.0 V to +3.0 V
VLL to VSS	-17.0 V to +0.3 V
V1A to V9 to VSS	$\mathrm{VL}-0.3 \mathrm{~V}$ to $\mathrm{VH}+0.3 \mathrm{~V}$
VDREN to VSS	-0.3 V to VDD +0.3 V
Junction Temperature	$150^{\circ} \mathrm{C}$
Lead Temperature	$350^{\circ} \mathrm{C}$
(Soldering, 10 sec)	

Stresses above those listed under Absolute Maximum Ratings

THERMAL RESISTANCE

θ_{IA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 4. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	Unit
40-Lead CSP_BGA	46	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

ESD (electrostatic discharge) sensitive device.
Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Type ${ }^{1}$	Description
A1	VM	P	V-Driver Midsupply.
A2	VL	P	V-Driver Low Supply.
A3	VH	P	V-Driver High Supply.
A4	VDREN	DI	V-Driver Enable. Active high.
A5	XSG8	DI	Vertical Input.
A6	XSG5	DI	Vertical Input.
A7	XSG6	DI	Vertical Input.
B1	V8	VO2	CCD Vertical Transfer Clock.
B2	V7	VO2	CCD Vertical Transfer Clock.
B3	V9	VO2	CCD Vertical Transfer Clock.
B4	XSG7	DI	Vertical Input.
B5	XSG2	DI	Vertical Input.
B6	XSG3	DI	Vertical Input.
B7	XSG4	DI	Vertical Input.
C1	V6	VO2	CCD Vertical Transfer Clock.
C2	V5	VO3	CCD Vertical Transfer Clock (XV5 + XSG8).
C6	XV8	DI	Vertical Input.
C7	XSG1	DI	Vertical Input.
D1	V4	VO3	CCD Vertical Transfer Clock (XV4 + XSG7).
D2	V3B	VO3	CCD Vertical Transfer Clock (XV3 + XSG6).
D6	XV7	DI	Vertical Input.
D7	XV9	DI	Vertical Input.
E1	V2B	VO3	CCD Vertical Transfer Clock (XV2 + XSG4).
E2	V3A	VO3	CCD Vertical Transfer Clock (XV3 + XSG5).
E6	XV5	DI	Vertical Input.
E7	XV6	DI	Vertical Input.

Data Sheet ADDI9023

Pin No.	Mnemonic	Type 1	Description
F1	V1B	VO3	CCD Vertical Transfer Clock (XV1 + XSG2).
F2	V2A	VO3	CCD Vertical Transfer Clock (XV2 + XSG3).
F3	XSUBCK	DI	XSUBCK Input to SUBCK Buffer.
F4	XV1	DI	Vertical Input.
F5	XV2	DI	Vertical Input.
F6	XV3	DI	Vertical Input.
F7	XV4	DI	Vertical Input.
G1	V1A	VO3	CCD Vertical Transfer Clock (XV1 + XSG1).
G2	SUBCK	VO2	CCD Substrate Clock Output.
G3	VMM	P	SUBCK Output Driver Ground.
G4	VLL	P	V-Driver Low Supply for SUBCK Output.
G5	VDD	P	Digital Logic Supply.
G6	VSS	P	Digital Logic Ground.
G7	VSS	P	Digital Logic Ground.

[^0]
ADDI9023

INPUT/OUTPUT LOGIC STATES

Table 6. V1A Output Polarity

Vertical Driver Input		
XV1	XSG1	V1A Output
L	L	
L	H	VM
H	L	VL
H	H	VL

Table 7. V1B Output Polarity

Vertical Driver Input		
XV1	XSG2	V1B Output
L	L	VH
L	H	VM
H	L	VL
H	H	VL

Table 8. V2A Output Polarity

Vertical Driver Input		
XV2	XSG3	V2A Output
L	L	
L	H	VM
H	L	VL
H	H	VL

Table 9. V2B Output Polarity

Vertical Driver Input		
XV2	XSG4	V2B Output
L	L	VH
L	H	VM
H	L	VL
H	H	VL

Table 10. V3A Output Polarity

Vertical Driver Input		
XV3	XSG5	
L	L	VH
L	H	VM
H	L	VL
H	H	VL

Table 11. V3B Output Polarity

Vertical Driver Input		
XV3	XSG6	V3B Output
L	L	VH
L	H	VM
H	L	VL
H	H	VL

Table 12. V4 Output Polarity

Vertical Driver Input		
XV4	XSG7	V4 Output
L	L	VH
L	H	VM
H	L	VL
H	H	VL

Table 13. V5 Output Polarity

Vertical Driver Input		
XV5	XSG8	V5 Output
L	L	VH
L	H	VM
H	L	VL
H	H	VL

Table 14. V6 to V9 Output Polarity

Vertical Driver Input	
XV6, XV7, XV8, or XV9	
L	VM
H	VL

Table 15. SUBCK Output Polarity

Vertical Driver Input	
XSUBCK	
L	VHBCK Output
H	VLL

ADDI9023

APPLICATIONS INFORMATION

POWER-UP SEQUENCE

When the ADDI9023 is powered up, the following sequence is recommended (refer to Figure 7 for each step). Note that VH is powered on before VL but, depending on CCD restrictions, VH and VL can also be powered on simultaneously.

1. Turn on the VDD power supply, either 1.8 V or 3.3 V . After VDD settles, the logic inputs from the timing generator (XV, XSG, XSUBCK) can become active. Keep VDREN low during this time.
2. Turn on the VH power supply, typically +12 V to +15 V .
3. Turn on the VL/VLL power supply, typically -6 V to -9 V .
4. Take the VDREN pin high to enable the V-driver outputs. VDREN must remain high throughout normal vertical timing operation.

POWER-DOWN SEQUENCE

When the ADDI9023 is powered down, reverse the procedure shown in Figure 7.

1. Take the VDREN pin low to disable the V-driver outputs.
2. Turn off the VL/VLL and VH power supplies.
3. Turn off the VDD power supply.

Figure 7. Recommended Power-Up Sequence

CIRCUIT LAYOUT INFORMATION

The recommended circuit configuration is shown in Figure 8. Each supply pin should have a high quality $0.1 \mu \mathrm{~F}$ capacitor connected to ground. The VH and VL supplies should have an
additional bypass capacitor, such as a $1.0 \mu \mathrm{~F}$ to $22 \mu \mathrm{~F}$ capacitor, depending on CCD and performance requirements. Connect the ground pins (VSS, VM, and VMM) to a common ground plane.

Figure 8. Typical Circuit Configuration

OUTLINE DIMENSIONS

*COMPLIANT TO JEDEC STANDARDS MO-225 WITH THE
EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.
Figure 9. 40-Ball Chip Scale Package Ball Grid Array [CSP_BGA] BC-40-1
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADDI9023BBCZ $_{\text {ADDI9023BBCZRL }}$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$40-$ Lead CSP_BGA	$\mathrm{BC}-40-1$

[^1]
[^0]: ${ }^{1} \mathrm{DI}=$ digital input; $\mathrm{P}=$ power; $\mathrm{VO} 2=$ vertical driver output, two-level; $\mathrm{VO} 3=$ vertical driver output, three-level.

[^1]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

