

TL082, TL082A, TL082B

General purpose JFET dual operation amplifiers

Datasheet - production data

Description

The TL082, TL082A and TL082B are high speed JFET input dual operational amplifiers incorporating well-matched, high voltage JFET and bipolar transistors in a monolithic integrated circuit.

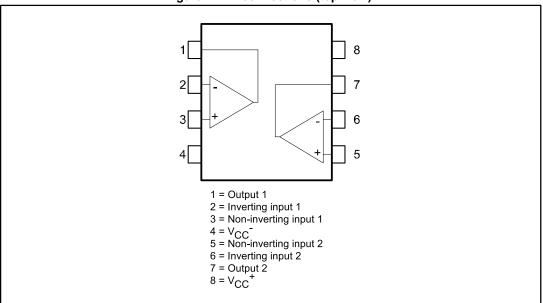
The devices feature high slew rates, low input bias and offset current, and low offset voltage temperature coefficient.

Features

- Wide common-mode (up to Vcc+) and differential voltage range
- Low input bias and offset current
- Output short-circuit protection
- High input impedance JFET input stage
- Internal frequency compensation
- Latch up free operation
- High slew rate: 16 V/µs (typical)

Contents

1	Schema	atic diagram	3
2	Pin con	nections	4
3	Absolut	e maximum ratings and operating conditions	5
4	Electric	al characteristics	6
5	Electric	al characteristic curves	8
6	Parame	ter measurement information	11
7	Typical	applications	12
8	Packag	e information	13
	8.1	SO8 package information	14
	8.2	TSSOP8 package information	15
9	Orderin	g information	16
10	Revisio	n history	17


1 Schematic diagram

V_{c c}⁺ □ Non-inverting input Inverting input 10 0Ω 200Ω Output 100Ω 30k 1/2 TL082 **→** 8.2k 100Ω 1.3k 35k 1.3k 35k V_{c c}[−] □

Figure 1: Schematic diagram

2 Pin connections

Figure 2: Pin connections (top view)

3 Absolute maximum ratings and operating conditions

Table 1: Absolute maximum ratings

Symbol	Parameter	TL082I, AI, BI	TL082C, AC, BC	Unit	
Vcc	Supply voltage (1)		=	±18	
Vin	Input voltage (2)		=	±15	٧
V_{id}	Differential input voltage (3)		=	±30	
P _{tot}	Power dissipation		(680	mW
Б	Thermal resistance	SO8	125		
R _{thja}	junction-to-ambient (4)	TSSOP8	120		°C/W
Г	Thermal resistance	SO8		40	- 0,44
R _{thjc}	junction-to-case	TSSOP8		37	
	Output short-circuit duration (5)		In	finite	
T _{stg}	Storage temperature range		-65 to 150		°C
	HBM: human body model (6)			1	kV
ESD	MM: machine model (7)	200		.,	
	CDM: charged device model (8)	1	500	V	

Notes:

Table 2: Operating conditions

S	ymbol	Parameter	TL082I, AI, BI	TL082C, AC, BC	Unit
	Vcc	Supply voltage	6	to 36	V
	Toper	Operating free-air temperature range	-40 to 105	0 to 70	°C

⁽¹⁾All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between V_{CC}⁺ and V_{CC}⁻.

⁽²⁾The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.

⁽³⁾Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.

⁽⁴⁾Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuit on all amplifiers.

⁽⁵⁾The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded

⁽⁶⁾Human body model: 100 pF discharged through a 1.5 k Ω resistor between two pins of the device, done for all couples of pin combinations with other pins floating.

⁽⁷⁾Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.

⁽⁸⁾Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.

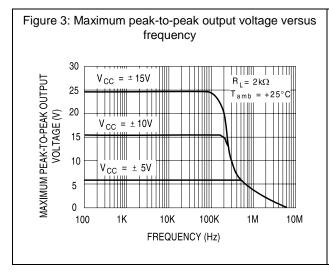
4 Electrical characteristics

Table 3: VCC = $\pm 15V$, Tamb = $+25^{\circ}$ C (unless otherwise specified)

0	B	TL082I,	TL082I, AC, AI, BC, BI			TL082C			
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	
	Input offset voltage, R_s = 50 Ω , T_{amb} = 25 °C, TL082		3	10		3	10		
	Input offset voltage, R_s = 50 Ω , T_{amb} = 25 °C, TL082A		3	6					
\ \ \/	Input offset voltage, R_s = 50 Ω , T_{amb} = 25 °C, TL082B		1	3				mV	
V _{io}	Input offset voltage, $R_s = 50 \Omega$, $T_{min} \le T_{amb} \le T_{max}$, TL082			13			13	IIIV	
	Input offset voltage, $R_s = 50 \Omega$, $T_{min} \le T_{amb} \le T_{max}$, TL082A			7					
	Input offset voltage, $R_s = 50 \Omega$, $T_{min} \le T_{amb} \le T_{max}$, TL082B			5					
DVio	Input offset voltage drift		10			10		μV/°C	
1.	Input offset current, T _{amb} = 25 °C ⁽¹⁾		5	100		5	100	pА	
l _{io}	Input offset current, $T_{min} \le T_{amb} \le T_{max}$ (1)			4			10	nA	
l	Input bias current, T _{amb} = 25 °C		20	200		20	400	pА	
l _{ib}	Input bias current, T _{min} ≤ T _{amb} ≤ T _{max}			20			20	nA	
A _{vd}	Large signal voltage gain, $R_L = 2 \text{ k}\Omega$, $V_o = \pm 10 \text{ V}$, $T_{amb} = 25 \text{ °C}$	50	200		25	200		V/mV	
Ava	Large signal voltage gain, $R_L = 2 \text{ k}\Omega$, $V_o = \pm 10 \text{ V}$, $T_{min} \le T_{amb} \le T_{max}$	25			15			۷/۱۱۱۷	
SVR	Supply voltage rejection ratio, $R_S = 50 \Omega$, $T_{amb} = 25 ^{\circ}C$	80	86		70	86		dB	
SVK	Supply voltage rejection ratio, $R_S = 50 \Omega$, $T_{min} \le T_{amb} \le T_{max}$	80			70			αв	
laa	Supply current, no load, T _{amb} = 25 °C		1.4	2.5		1.4	2.5	mA	
Icc	Supply current, no load, $T_{min} \le T_{amb} \le T_{max}$			2.5			2.5	IIIA	
V _{icm}	Input common mode voltage range	±11	15		.11	15		\/	
V icm	Input common mode voltage range	±11	-12		±11	-12		V	
CMR	Common mode rejection ratio, Rs = 50 Ω , T _{amb} = 25 °C	80	86		70	86		٩D	
CIVIR	Common mode rejection ratio, Rs = 50 Ω , T _{min} \leq T _{amb} \leq T _{max}	80			70			- dB	
	Output short-circuit current, T _{amb} = 25 °C	10	40	60	10	40	60		
los	Output short-circuit current, $T_{min} \le T_{amb} \le T_{max}$	10		60	10		60	mA	

6/18 DocID2300 Rev 11

TL082, TL082A, TL082B

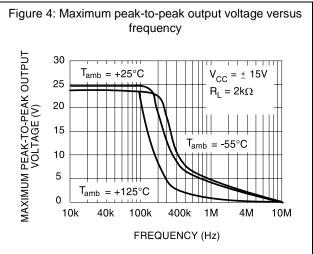
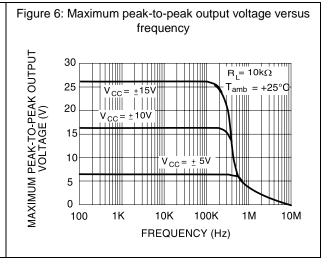
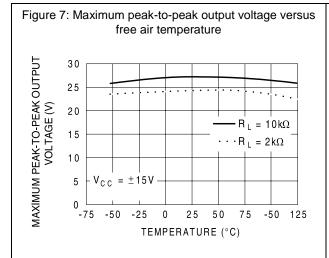
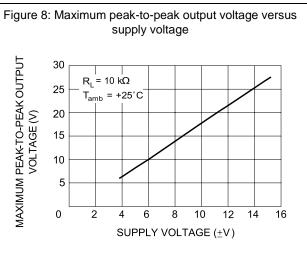

Electrical characteristics

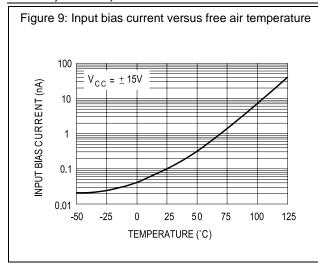
Symbol	Dovernator	TL082I, AC, AI, BC, BI			TL082C			Unit
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
	Output voltage swing, $T_{amb} = 25 ^{\circ}C$, $R_L = 2 k\Omega$	10	12		10	12		
/	Output voltage swing, $T_{amb} = 25 ^{\circ}C$, $R_{L} = 10 k\Omega$	12	13.5		12	13.5		V
±V _{opp}	Output voltage swing, $T_{min} \le T_{amb} \le T_{max}$, $R_L = 2 k\Omega$	10			10			V
	Output voltage swing, $T_{min} \le T_{amb} \le T_{max}$, $R_L = 10 \text{ k}\Omega$	12			12			
SR	Slew rate, $T_{amb} = 25$ °C, $V_{in} = 10$ V, $R_L = 2$ k Ω , $C_L = 100$ pF, unity gain	8	16		8	16		V/µs
tr	Rise time, $T_{amb} = 25$ °C, $V_{in} = 20$ mV, $R_L = 2$ k Ω , $C_L = 100$ pF, unity gain		0.1			0.1		μs
Kov	Overshoot, T_{amb} = 25 °C, V_{in} = 20 mV, R_L = 2 k Ω , C_L = 100 pF, unity gain		10			10		%
GBP	Gain bandwidth product, T_{amb} = 25 °C, V_{in} = 10 mV, R_L = 2 k Ω , C_L = 100 pF, F = 100 kHz	2.5	4		2.5	4		MHz
Ri	Input resistance		10 ¹²			10 ¹²		Ω
THD	Total harmonic distortion, T_{amb} = 25 °C, F = 1 kHz, R_L = 2 k Ω , C_L = 100 pF, A_V = 20 dB, V_O = 2 V_{pp}		0.01			0.01		%
en	Equivalent input noise voltage, Rs = 100 Ω , F = 1 kHz		15			15		nV/√Hz
Øm	Phase margin		45			45		degrees
V_{o1}/V_{o2}	Channel separation, A _v = 100		120			120		dB

Notes:

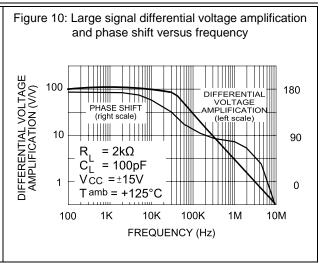
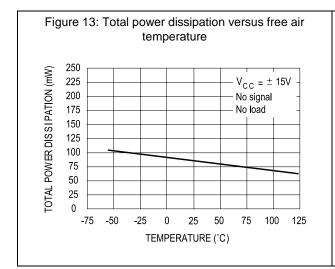
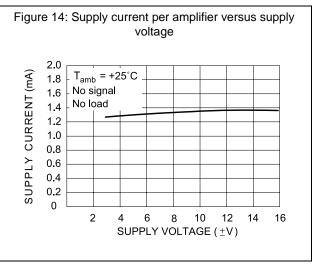
 $^{^{(1)}}$ The input bias currents are junction leakage currents which approximately double for every 10° C increase in the junction temperature.

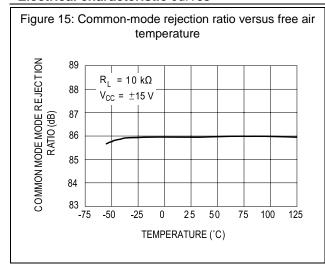
5 Electrical characteristic curves

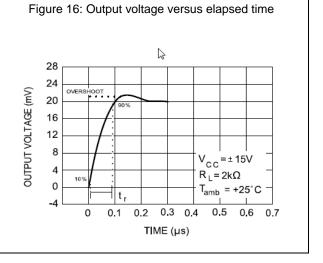





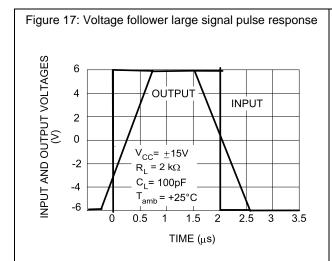

Figure 5: Maximum peak-to-peak output voltage versus load resistance 30 MAXIMUM PEAK-TO-PEAK OUTPUT $V_{CC} = \pm 15V$ 25 $T_{amb} = +25^{\circ}C$ VOLTAGE (V) 20 15 10 0 0.1 0.2 0.4 0.7 1 4 10 LOAD RESISTANCE ($k\Omega$)

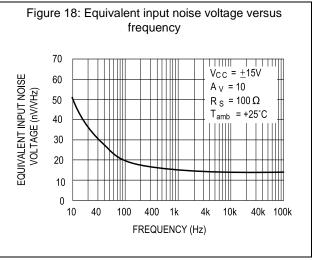
8/18 DocID2300 Rev 11

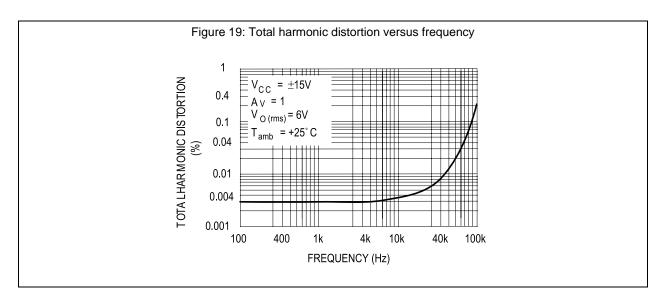





Figure 11: Supply current per amplifier versus free air temperature 2.0 1.8 $V_{CC} = \pm 15V$ SUPPLY CURRENT (mA) 1.6 No signal No load 1.4 1.2 1.0 8.0 0.6 0.4 0.2 -75 -50 -25 0 50 75 100 125 25 TEMPERATURE (°C)


Figure 12: Large signal differential voltage amplification versus free air temperature 1000 400 DIFFER ENTIAL VOLTAGE AMPLIFICATION (V/V) 200 100 40 20 $V_{CC} = \pm 15V$ 10 $V_0 = \pm 10V$ 4 $R_{\perp} = 2k\Omega$ 2 -75 -50 -25 0 25 50 75 100 125 TEMPERATURE (°C)






5//

10/18 DocID2300 Rev 11

6 Parameter measurement information

Figure 20: Voltage follower

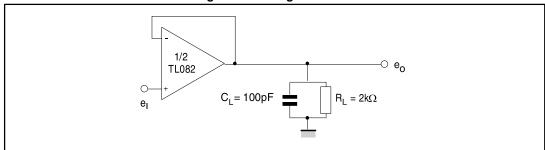
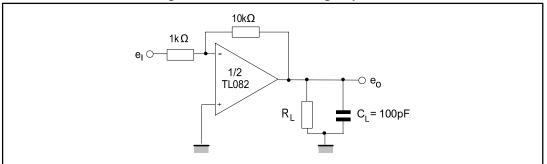



Figure 21: Gain-of-10 inverting amplifier

7 Typical applications

 $18k\Omega$ ⁽¹⁾ 1N 4148 -○ -15V 18pF $1k\Omega$ 18pF $88.4 k\Omega$ 1/2 TL082 1/2 88.4kΩ -O 6 cos ωt TL082 6 sin ωt 1kΩ **1**8pF

1N 4148

 $18k\Omega^{(1)}$

└ +15V

Figure 22: 100 kHz quadruple oscillator

1. These resistor values may be adjusted for a symmetrical output

88.4kΩ

47/

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

8.1 SO8 package information

SEATING PLANE

O 25 mm

GAGE PLANE

1 4 4

Figure 23: SO8 package outline

Table 4: SO8 mechanical data

		Dimensions								
Ref.		Millimeters			Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max				
А			1.75			0.069				
A1	0.10		0.25	0.004		0.010				
A2	1.25			0.049						
b	0.28		0.48	0.011		0.019				
С	0.17		0.23	0.007		0.010				
D	4.80	4.90	5.00	0.189	0.193	0.197				
E	5.80	6.00	6.20	0.228	0.236	0.244				
E1	3.80	3.90	4.00	0.150	0.154	0.157				
е		1.27			0.050					
h	0.25		0.50	0.010		0.020				
L	0.40		1.27	0.016		0.050				
L1		1.04			0.040					
k	1°		8°	1°		8°				
ccc			0.10			0.004				

477

8.2 TSSOP8 package information

PIN 1 DENIFICATION

PIN 1

Figure 24: TSSOP8 package outline

Table 5: TSSOP8 mechanical data

	Dimensions						
Ref.	Millimeters						
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.2			0.047	
A1	0.05		0.15	0.002		0.006	
A2	0.80	1.00	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.008	
D	2.90	3.00	3.10	0.114	0.118	0.122	
Е	6.20	6.40	6.60	0.244	0.252	0.260	
E1	4.30	4.40	4.50	0.169	0.173	0.177	
е		0.65			0.0256		
k	0°		8°	0°		8°	
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1		1			0.039		
aaa		0.1			0.004		

9 Ordering information

Table 6: Order codes

Order code	Temperature range	Package	Packing	Marking
TL082ID		SO8	Tube or tope and real	
TL082IDT	-40 °C to 105 °C	300	Tube or tape and reel	082I
TL082IPT		TSSOP8	Tape and reel	
TL082CD		SO8	Tube or tope and real	
TL082CDT		300	Tube or tape and reel	082C
TL082CPT	0 °C to 70 °C	TSSOP8	Tape and reel	
TL082ACDT		SO8		082AC
TL082BCDT		300		082BC
TL082IYDT (1)			Tube or tape and reel	082IY
TL082AIYDT (1)	-40 °C to 105 °C	SO8 (automotive grade)		82AIY
TL082BIYDT (1)				82BIY

Notes:

 $^{^{(1)}}$ Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q 002 or equivalent.

10 Revision history

Table 7: Document revision history

Date	Revision	Changes
02-Apr-2001	1	Initial release.
2002-2003	2-7	Internal revisions.
30-Apr-2004	8	Format update.
06-Mar-2007	9	Added ESD information in Table 1 on page 4. Expanded order codes table and added automotive grade order codes. See Table 7 on page 16. Added Table 2: Operating conditions on page 4. Updated package information to make it compliant with the latest JEDEC standards.
12-Jun-2008	10	Removed information concerning military temperature range (TL082M*, TL082AM*, TL082BM*).
10-Jun-2016	11	Removed DIP8 package and all obsolete order codes Updated document layout Table 4: added L1 dimension Figure 24: removed silhouette and added package outline

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

