3.3-V PHASE-LOCK LOOP CLOCK DRIVER WITH POWER DOWN MODE

Check for Samples: CDCVF2509A

FEATURES

- Designed to Meet and Exceed PC133 SDRAM Registered DIMM Specification
Rev. 1.1
- Spread Spectrum Clock Compatible
- Operating Frequency 20 MHz to 175 MHz
- Static Phase Error Distribution at 66 MHz to 166 MHz Is ± 125 ps
- Jitter (cyc - cyc) at 60 MHz to 175 MHz Is Typ = 65 ps
- Advanced Deep Submicron Process Results in More Than 40\% Lower Power Consumption Versus Current Generation PC133 Devices
- Auto Frequency Detection to Disable Device (Power-Down Mode)
- Available in Plastic 24-Pin TSSOP
- Phase-Lock Loop Clock Distribution for Synchronous DRAM Applications
- Distributes One Clock Input to One Bank of Five and One Bank of Four Outputs
- Separate Output Enable for Each Output Bank
- External Feedback (FBIN) Terminal Is Used to Synchronize the Outputs to the Clock Input
- 25- Ω On-Chip Series Damping Resistors
- No External RC Network Required
- Operates at 3.3 V

APPLICATIONS

- DRAM Applications
- PLL Based Clock Distributors
- Non-PLL Clock Buffer

PW PACKAGE (TOP VIEW)			
		U	
AGND	1	24	CLK
$V_{C C}$	2	23	$\mathrm{AV}_{\mathrm{CC}}$
1Y0	3	22	$] \mathrm{V}_{\mathrm{CC}}$
1Y1	4	21	2Y0
1Y2	5	20	2Y1
GND	6	19	$]$ GND
GND	7	18	GND
1Y3	8	17	2Y2
1Y4	9	16	2 Y 3
$V_{C C}$	10	15	$] \mathrm{V}_{\mathrm{CC}}$
1G	11	14	2G
FBOUT [[12	13	FBIN

DESCRIPTION

The CDCVF2509A is a high-performance, low-skew, low-jitter, phase-lock loop (PLL) clock driver. It uses a PLL to precisely align, in both frequency and phase, the feedback (FBOUT) output to the clock (CLK) input signal. It is specifically designed for use with synchronous DRAMs. The CDCVF2509A operates at a 3.3-V V V_{Cc}. It also provides integrated series-damping resistors that make it ideal for driving point-to-point loads.

One bank of five outputs and one bank of four outputs provide nine low-skew, low-jitter copies of CLK. Output signal duty cycles are adjusted to 50%, independent of the duty cycle at CLK. Each bank of outputs is enabled or disabled separately via the control ($1 G$ and $2 G$) inputs. When the G inputs are high, the outputs switch in phase and frequency with CLK; when the G inputs are low, the outputs are disabled to the logic-low state. The device automatically goes into power-down mode when no input signal ($<1 \mathrm{MHz}$) is applied to CLK; the outputs go into a low state.
Unlike many products containing PLLs, the CDCVF2509A does not require external RC networks. The loop filter for the PLL is included on-chip, minimizing component count, board space, and cost.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

DESCRIPTION CONTINUED

For application information, see application reports High Speed Distribution Design Techniques for CDC509/516/2509/2510/2516 (SLMA003) and Using CDC2509A/2510A PLL with Spread Spectrum Clocking (SSC) (SCAA039).

The CDCVF2509A is characterized for operation from $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Because it is based on PLL circuitry, the CDCVF2509A requires a stabilization time to achieve phase lock of the feedback signal to the reference signal. This stabilization time is required following power up and application of a fixed-frequency, fixed-phase signal at CLK, and following any changes to the PLL reference or feedback signals. The PLL can be bypassed by strapping $\mathrm{AV}_{\mathrm{CC}}$ to ground to use as a simple clock buffer.

FUNCTION TABLE

Inputs			Outputs		PLL
AVCC	$\mathbf{1 G} / \mathbf{2 G}$	CLK	$\mathbf{1 Y / 2 Y}$	FBOUT	
GND	L	Signal	L	Signal (delayed)	Bypassed / Off
GND	H	Signal	Signal (delayed)	Signal (delayed)	Bypassed / Off
$3.3 V$ (nom)	L	CLK $>1 \mathrm{MHz}$	L	CLK (in phase)	On
3.3 V (nom)	H	CLK $>1 \mathrm{MHz}$	CLK (in phase)	CLK (in phase)	On
3.3 V (nom)	X	CLK $<1 \mathrm{MHz}$	L	L	Off

FUNCTIONAL BLOCK DIAGRAM

AVAILABLE OPTIONS

$\mathbf{T}_{\mathbf{A}}$	PACKAGE
	SMALL OUTLINE (PW)
$0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	CDCVF2509APWR
	CDCVF2509APW

PACKAGE THERMAL RESISTANCE ${ }^{(1)}$

CDCVF2509APW 24-PIN TSSOP			THERMAL AIRFLOW (CFM)				UNIT
			0	150	250	500	
$\mathrm{R}_{\text {өJA }}$	High K		88	83	81	77	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJC }}$	High K	26.5					

(1) The package thermal impedance is calculated in accordance with JESD 51 and JEDEC2S2P (high-k board).

Pin Functions

NAME	PIN	TYPE	
CLK			

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted) ${ }^{(1)}$

	UNIT
$\mathrm{AV}_{\mathrm{CC}}$ Supply voltage range ${ }^{(2)}$	$\mathrm{AV}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{CC}}+0.7 \mathrm{~V}$
$\mathrm{V}_{\text {CC }} \quad$ Supply voltage range	-0.5 V to 4.3 V
$\mathrm{V}_{\mathrm{I}} \quad$ Input voltage range ${ }^{(3)}$	-0.5 V to 4.6 V
$\mathrm{V}_{\mathrm{O}} \quad$ Voltage range applied to any output in the high or low state ${ }^{(3)}$ (4)	-0.5 V to $\mathrm{V}_{C C}+0.5 \mathrm{~V}$
$\mathrm{I}_{\mathrm{IK}} \quad$ Input clamp current $\left(\mathrm{V}_{\mathrm{I}}<0\right)$	-50 mA
$\mathrm{I}_{\mathrm{OK}} \quad$ Output clamp current ($\mathrm{V}_{\mathrm{O}}<0$ or $\left.\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}\right)$	$\pm 50 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{O}} \quad$ Continuous output current ($\mathrm{V}_{\mathrm{O}}=0$ to V_{CC})	$\pm 50 \mathrm{~mA}$
Continuous current through each $\mathrm{V}_{\text {CC }}$ or GND	$\pm 100 \mathrm{~mA}$
Maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ (in still air) ${ }^{(5)}$	0.7 W
$\mathrm{T}_{\text {stg }} \quad$ Storage temperature range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) $A V_{C C}$ must not exceed $\mathrm{V}_{\mathrm{CC}}+0.7 \mathrm{~V}$
(3) The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
(4) This value is limited to 4.6 V maximum.
(5) The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils. For more information, see the Package Thermal Considerations application note in the ABT Advanced BiCMOS Technology Data Book (SCBD002).

Texas
InSTRUMENTS

RECOMMENDED OPERATING CONDITIONS ${ }^{(1)}$

		MIN	MAX
$\mathrm{V}_{\mathrm{CC}}, \mathrm{AV}_{\mathrm{CC}}$	Supply voltage	3	3.6
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	V	
V_{IL}	Low-level input voltage	2	
$\mathrm{~V}_{\mathrm{I}}$	Input voltage	V	
I_{OH}	High-level output current	0.8	V
I_{OL}	Low-level output current	V	V
T_{A}	Operating free-air temperature	-12	mA

(1) Unused inputs must be held high or low to prevent them from floating.

TIMING REQUIREMENTS

over recommended ranges of supply voltage and operating free-air temperature

	MIN	MAX	UNIT
$\mathrm{f}_{\text {Clk }}$	Clock frequency	20	175
Input clock duty cycle	40%	60%	
Stabilization time ${ }^{(1)}$		1	ms

(1) The time required for the integrated PLL circuit to obtain phase lock of its feedback signal to its reference signal. For phase lock to be obtained, a fixed-frequency, fixed-phase reference signal must be present at CLK. Until phase lock is obtained, the specifications for propagation delay, skew and jitter parameters given in the switching characteristics table are not applicable. This parameter does not apply for input modulation under SSC application.

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	$\mathrm{V}_{\mathrm{cc}}, \mathrm{AV}_{\mathrm{cc}}$	MIN TYP ${ }^{(1)}$ MAX	UNIT
V_{IK}	Input clamp voltage	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$	3 V	-1.2	V
$\mathrm{V}_{\text {OH }}$	High-level output voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	MIN to MAX	$\mathrm{V}_{\mathrm{CC}}-0.2$	V
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	3 V	2.1	
		$\mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA}$	3 V	2.4	
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	MIN to MAX	0.2	V
		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$	3 V	0.8	
		$\mathrm{l}_{\mathrm{OL}}=6 \mathrm{~mA}$	3 V	0.55	
IOH	High-level output current	$\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}$	3 V	-28	mA
		$\mathrm{V}_{\mathrm{O}}=1.65 \mathrm{~V}$	3.3 V	-36	
		$\mathrm{V}_{\mathrm{O}}=3.135 \mathrm{~V}$	3.6 V	-8	
lob	Low-level output current	$\mathrm{V}_{\mathrm{O}}=1.95 \mathrm{~V}$	3 V	30	mA
		$\mathrm{V}_{\mathrm{O}}=1.65 \mathrm{~V}$	3.3 V	40	
		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$	3.6 V	10	
$1 /$	Input current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND	3.6 V	± 5	$\mu \mathrm{A}$
$\mathrm{ICC}^{(2)}$	Supply current (static, output not switching)	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \mathrm{I}_{\mathrm{O}}=0,$ Outputs: low or high	$3.6 \mathrm{~V}, 0 \mathrm{~V}$	40	$\mu \mathrm{A}$
$\Delta l_{\text {CC }}$	Change in supply current	One input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$, Other inputs at $V_{C C}$ or GND	3.3 V to 3.6 V	500	$\mu \mathrm{A}$
C_{i}	Input capacitance	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND	3.3 V	2.5	pF
C_{0}	Output capacitance	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or GND	3.3 V	2.8	pF

(1) For conditions shown as MIN or MAX, use the appropriate value specified under the recommended operating conditions section.
(2) For dynamic $I_{C C}$ vs Frequency, see Figure 9 and Figure 10.

SWITCHING CHARACTERISTICS

over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$ (see Figure 1 and Figure 2) ${ }^{(1)}{ }^{(2)}$

PARAMETER		$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{Cc}}, \mathrm{AV}_{\mathrm{cc}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		UNIT	
		MIN		TYP MAX			
$\mathrm{t}_{(\phi)}$	Phase error time-static (normalized) (see		$\mathrm{CLK} \uparrow=25 \mathrm{MHz}$ to 65 MHz	FBIN \uparrow	-150	150	ps
	Figure 4 through Figure 7)	$\mathrm{CLK} \uparrow=66 \mathrm{MHz}$ to 166 MHz	-125		125		
$\mathrm{t}_{\text {sk(0) }}$	Output skew time ${ }^{(3)}$	Any Y	Any Y		100	ps	
	Phase error time-jitter ${ }^{(4)}$	CLK $=66 \mathrm{MHz}$ to 100 MHz	Any Y or FBOUT	-50	50	ps	
	$\mathrm{Jitter}_{\text {(cycle-cycle) }}$ (see Figure 8)	CLK $=25 \mathrm{MHz}$ to 40 MHz	Any Y or FBOUT		500	ps	
		CLK $=41 \mathrm{MHz}$ to 59 MHz			200		
		CLK $=60 \mathrm{MHz}$ to 175 MHz			$65 \quad 125$		
$\mathrm{t}_{\mathrm{d}(0)}$	Dynamic phase offset ${ }^{(5)}$	$\mathrm{CLK} \uparrow=25 \mathrm{MHz}$ to 65 MHz	FBIN \uparrow		1.5	ns	
		$\mathrm{CLK} \uparrow=66 \mathrm{MHz}$ to 166 MHz			0.4		
	Duty cycle	$\mathrm{f}_{(\mathrm{CLK})}>60 \mathrm{MHz}$	Any Y or FBOUT	45\%	55\%		
t_{r}	Rise time	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$ to 2 V	Any Y or FBOUT	0.3	1.1	ns/V	
t_{f}	Fall time	$\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}$ to 0.4 V	Any Y or FBOUT	0.3	1.1	ns/V	
tPLH	Low-to-high propagation delay time, bypass mode	CLK	Any Y or FBOUT	1.8	3.9	ns	
$\mathrm{t}_{\text {PHL }}$	High-to-low propagation delay time, bypass mode	CLK	Any Y or FBOUT	1.8	3.9	ns	

(1) The specifications for parameters in this table are applicable only after any appropriate stabilization time has elapsed.
(2) These parameters are not production tested.
(3) The $\mathrm{t}_{\mathrm{sk}(\mathrm{o})}$ specification is only valid for equal loading of all outputs.
(4) Calculated per PC DRAM SPEC ($t_{\text {phase error }}$, static-jitter ${ }_{\text {(cycle-to-cycle) }}$).
(5) The parameter is assured by design but cannot be 100% production tested.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_{L} includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 133 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 1.2 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 1.2 \mathrm{~ns}$.
C. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 2. Skew Calculations

PARAMETER MEASUREMENT INFORMATION (continued)

$$
t_{(\Phi)}=\frac{\sum_{1}^{n=N} t_{(\Phi) n}}{N} \quad(N \text { is a large number of samples) }
$$

a) Static Phase Offset

b) Dynamic Phase Offset

Figure 3. Static and Dynmaic Phase Offset

InSTRUMENTS

TYPICAL CHARACTERISTICS

Figure 4.
STATIC PHASE ERROR
vs
SUPPLY VOLTAGE AT FBOUT

Figure 6.

STATIC PHASE ERROR
LOAD CAPACITANCE

Figure 5.
STATIC PHASE ERROR
VS
CLOCK FREQUENCY

Figure 7.
a. Trace length FBOUT to $\mathrm{FBIN}=5 \mathrm{~mm}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$
b. $\mathrm{C}_{(\mathrm{LY})}=$ Lumped capacitive load Y_{1-n}
c. $\mathrm{C}_{(\mathrm{LFx})}=$ Lumped feedback capacitance at $\mathrm{FBOUT}=\mathrm{FBIN}$

TYPICAL CHARACTERISTICS (continued)

Figure 8.

ANALOG SUPPLY CURRENT
vs
CLOCK FREQUENCY

Figure 9.

Figure 10.
a. Trace length FBOUT to $\mathrm{FBIN}=5 \mathrm{~mm}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$
b. $\mathrm{C}_{(\mathrm{LY})}=$ Lumped capacitive load $\mathrm{Y}_{1-\mathrm{n}}$
c. $\quad \mathrm{C}_{(\mathrm{LFx})}=$ Lumped feedback capacitance at $\mathrm{FBOUT}=\mathrm{FBIN}$
d. $\mathrm{C}_{(\mathrm{LFx})}=$ Lumped feedback capacitance at $\mathrm{FBOUT}=\mathrm{FBIN}$.

REVISION HISTORY

Changes from Original (April 2004) to Revision A Page

- Changed the AVAILABLE OPTIONS table layout 3
Changes from Revision A (July 2004) to Revision B Page
- Changed Features bullet - From: Jitter (cyc - cyc) at 66 MHz to 166 MHz Is Typ $=70 \mathrm{ps}$ To: Jitter (cyc - cyc) at 60 MHz to 175 MHz Is Typ = 65 ps 1
- Added Phase error time- static - CLK $\uparrow=25 \mathrm{MHz}$ to 65 MHz - to the SWITCHING CHARACTERISTICS table 6
- Changed Jitter values in the SWITCHING CHARACTERISTICS table 6
- Added Dynamic phase offset to the SWITCHING CHARACTERISTICS table 6
- Changed Figure 2, Skew Calculations 7
- Added Figure 3, Static and Dynmaic Phase Offset 8
Changes from Revision B (June 2005) to Revision C Page
- Changed the FUNCTION TABLE - replaced with new table entries for clarity 2
Changes from Revision C (January 2009) to Revision D Page
- Changed the FUNCTION TABLE column 1 label From: AVDD To: AVCC 2
- Added the PACKAGE THERMAL RESISTANCE table 3
Changes from Revision D (February 2010) to Revision E Page
- Changed the FUNCTION TABLE CLK column for 3.3 V (nom) L and H entries From: CLK $<1 \mathrm{MHz}$ To: CLK > 1 MHz 2

INSTRUMENTS

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
CDCVF2509APW	ACTIVE	TSSOP	PW	24	60	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	0 to 85	CKV2509A	Samples
CDCVF2509APWG4	ACTIVE	TSSOP	PW	24	60	TBD	Call TI	Call TI	0 to 85		Samples
CDCVF2509APWR	ACTIVE	TSSOP	PW	24	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	0 to 85	CKV2509A	Samples
CDCVF2509APWRG4	ACTIVE	TSSOP	PW	24	2000	TBD	Call TI	Call TI	0 to 85		Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free",
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000$ ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	$\begin{gathered} \text { A0 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { B0 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{KO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { P1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{W} \\ (\mathrm{~mm}) \end{gathered}$	Pin1 Quadrant
CDCVF2509APWR	TSSOP	PW	24	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CDCVF2509APWR	TSSOP	PW	24	2000	356.0	356.0	35.0

TUBE

- B - Alignment groove width
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	$\mathbf{L}(\mathbf{m m})$	$\mathbf{W}(\mathbf{m m})$	$\mathbf{T}(\boldsymbol{\mu m})$	$\mathbf{B}(\mathbf{m m})$
CDCVF2509APW	PW	TSSOP	24	60	530	10.2	3600	3.5

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL SCALE: 10X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

