# $\pm 15 k$ V ESD-Protected, Low-Voltage, Quad, SPST, CMOS Analog Switches 


#### Abstract

General Description The MAX4620/MAX4630/MAX4640 low-voltage, high-ESD-protected, quad, single-pole/single-throw (SPST) analog switches are pin-compatible replacements for the industry-standard 74HC4066 analog switch. The normally open (NO) and normally closed (NC) pins are protected against $\pm 15 \mathrm{kV}$ electrostatic discharge (ESD) without latchup or damage. Each switch can handle Rail-to-Rail ${ }^{\circledR}$ analog signals. The off-leakage current is 0.5 nA at $+25^{\circ} \mathrm{C}$. These analog switches are suitable for low-distortion audio applications and are the preferred solution over mechanical relays in automated test equipment or applications where current switching is required. They have low power requirements $(0.5 \mu \mathrm{~W})$, require less board space, and are more reliable than mechanical relays. Each device is controlled by TTL/CMOS input voltage levels and is bilateral. These switches feature guaranteed operation from a +2 V to +12 V single supply, making them ideal for use in battery-powered applications. The on-resistance is $70 \Omega$ max, matched between switches to $0.5 \Omega$ (typ), and flat ( $2 \Omega$ typ) over the specified signal range. The MAX4620 has four NO switches, the MAX4630 has four NC switches, and the MAX4640 has two NO and two NC switches. These devices are available in 14-pin TSSOP, SO, and DIP packages.


## Applications

Battery-Powered Systems
Audio and Video Signal Routing
Low-Voltage Data-Acquisition Systems
Sample-and-Hold Circuits
Communications Circuits
Relay Replacement

## Ordering Information

| PART | TEMP. RANGE | PIN-PACKAGE |
| :--- | :--- | :--- |
| MAX4620EUD | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 14 TSSOP |
| MAX4620ESD | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 14 SO |
| MAX4620EPD | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 14 DIP |
| MAX4630EUD | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 14 TSSOP |
| MAX4630ESD | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 14 SO |
| MAX4630EPD | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 14 DIP |

## Ordering Information continued at end of data sheet.

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

- ESD-Protected NO/NC Pins $\pm 15 \mathrm{kV}$ Human Body Model $\pm 15 k V$ IEC 1000-4-2 Air-Gap Discharge $\pm 8 \mathrm{kV}$ IEC 1000-4-2 Contact Discharge
- Pin Compatible with Industry-Standard 74HC4066, MAX4066, MAX4610/MAX4611/MAX4612
- Guaranteed On-Resistance $70 \Omega$ (max) at 5 V $120 \Omega$ (max) at 3 V
- On-Resistance Flatness
$2 \Omega$ (typ) at 5 V $6 \Omega$ (typ) at $3 V$
- On-Resistance Matching $0.5 \Omega$ (typ) at 5 V $0.6 \Omega$ (typ) at 3 V
- Guaranteed $0.5 n \mathrm{~A}$ Leakage Current at $\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}^{\circ} \mathrm{C}$
- +2V to +12V Single-Supply Voltage
- TTL/CMOS-Logic Compatible
- Low Distortion: 0.015\%
- -3dB Bandwidth: >300MHz
- Rail-to-Rail Signal Range

Pin Configurations/Functional Diagrams/Truth Tables

TOP VIEW


| INPUT | SWITCH STATE |
| :---: | :---: |
| LOW | OFF |
| HIGH | ON |

Pin Configurations/Functional Diagrams/Truth Tables continued at end of data sheet.

## 土15kV ESD-Protected, Low-Voltage, Quad, SPST, CMOS Analog Switches

## ABSOLUTE MAXIMUM RATINGS



| Continuous Power Dissipation ( $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ ) |  |
| :---: | :---: |
| 14-Pin TSSOP (derate 6.3mW/ ${ }^{\circ} \mathrm{C}$ above +7 | , |
| 14-Pin DIP (derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ) | 800 mW |
| $14-\mathrm{Pin} \mathrm{SO}$ (derate $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ) | 640 mW |
| Operating Temperature Ranges |  |
| MAX46_ _E_.............................................-4 | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Storage Temperature Range .........................-65 ${ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |  |
| Maximum Die Temperature........................................ $+150^{\circ} \mathrm{C}$ |  |
| Lead Temperature (soldering, 10s) |  |

Note 1: Signals on NO_, NC_, COM_, or IN_ exceeding V+ or GND are clamped by internal diodes. Limit forward current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ELECTRICAL CHARACTERISTICS—SINGLE +5V SUPPLY

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise specified. Typical values are at $\mathrm{V}+=+5 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ANALOG SWITCH |  |  |  |  |  |  |  |
| Input Voltage Range | $\begin{aligned} & \mathrm{VCOM}_{\mathrm{CO}} \\ & \mathrm{~V}_{\mathrm{NO}}, \\ & \mathrm{~V}_{\mathrm{NC}_{-}} \end{aligned}$ |  |  | 0 |  | V+ | V |
| On-Resistance | Ron | $\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}} \text {or } \\ & \mathrm{V}_{\mathrm{NC}_{-}}=3.5 \mathrm{~V} \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 45 | 70 | $\Omega$ |
|  |  |  | $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  | 75 |  |
| On-Resistance Match Between Channels (Note 3) | $\triangle \mathrm{RON}$ | $\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V}, \\ & \mathrm{I}_{+} \mathrm{COM}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \\ & \mathrm{V}_{\mathrm{NC}_{-}}=3.5 \mathrm{~V} \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 0.5 | 2 | $\Omega$ |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  | 3 |  |
| On-Resistance Flatness (Note 4) | RFLAT(ON) | $\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V} ; \\ & \mathrm{I}^{2} \mathrm{COM}=1 \mathrm{~mA} ; \\ & \mathrm{V}_{\text {NO_ }} \text { or } \\ & \mathrm{V}_{\text {NC- }}=1 \mathrm{~V}, 2.25 \mathrm{~V}, 3.5 \mathrm{~V} \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 2 | 4 | $\Omega$ |
|  |  |  | $T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$ |  |  | 5 |  |
| Off-Leakage Current (NO_ or NC_) <br> (Note 5) | $\begin{aligned} & \text { INO_, } \\ & \text { INC } \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{COM}}^{-}= \\ & \mathrm{V}_{\mathrm{NO}_{-}} \text {or } \\ & \mathrm{V}_{\mathrm{NC}_{-}}=4.5 \mathrm{~V}, 4.5 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -0.5 | 0.01 | 0.5 | nA |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | -5 |  | 5 |  |

## $\pm 15 k V$ ESD-Protected, Low-Voltage, Quad, SPST, CMOS Analog Switches

## ELECTRICAL CHARACTERISTICS—SINGLE +5V SUPPLY (continued)

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise specified. Typical values are at $\mathrm{V}+=+5 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ANALOG SWITCH |  |  |  |  |  |  |  |
| COM_ Off-Leakage Current (Note 5) | ICOM_(OF) | $\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V} ; \\ & \mathrm{V}_{\text {com }}=1 \mathrm{~V}, 4.5 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\text {NO_ }} \text { or } \\ & \mathrm{V}_{\mathrm{NC}_{-}}=4.5 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -0.5 | 0.01 | 0.5 | nA |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | -5 |  | 5 |  |
| COM_ On-Leakage Current (Note 5) | ICOM_(ON) | $\begin{aligned} & \mathrm{V}_{+}=5.5 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\text {COM }}=1 \mathrm{~V}, 4.5 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{NO}_{-}} \text {or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V} \text {, } \\ & 4.5 \mathrm{~V} \text {, or floating } \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | -1 | 0.02 | 1 | nA |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | -10 |  | 10 |  |
| LOGIC INPUT |  |  |  |  |  |  |  |
| IN_ Input High | $\mathrm{V}_{\mathrm{IH}}$ |  |  | 2.4 |  |  | V |
| IN_ Input Low | $\mathrm{V}_{\text {IL }}$ |  |  |  |  | 0.8 | V |
| Logic Input Leakage Current | IIN | $\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$ |  | -1 |  | 1 | $\mu \mathrm{A}$ |
| SWITCH DYNAMIC CHARACTERISTICS |  |  |  |  |  |  |  |
| Turn-On Time | ton | $\begin{aligned} & V_{C O M}=3 V \\ & R_{L}=300 \Omega, \\ & C_{L}=35 \mathrm{pF}, \end{aligned}$ <br> Figure 1 | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 90 | 150 | ns |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  | 180 |  |
| Turn-Off Time | toff | $\begin{aligned} & V_{C O M}=3 \mathrm{~V}, \\ & C_{L}=35 \mathrm{pF}, \\ & R_{L}=300 \Omega, \end{aligned}$ <br> Figure 1 | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 50 | 80 | ns |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  | 100 |  |
| Break-Before-Make (MAX4640 only) |  | $\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=3 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | 5 | 45 |  | ns |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | 4 |  |  |  |
| On-Channel Bandwidth -3dB | BW | $\begin{aligned} & \text { Signal }=0 \mathrm{dBm}, \text { RIN }=\text { Rout }=50 \Omega, \\ & C_{L}=5 \mathrm{pF}, \text { Figure } 2 \end{aligned}$ |  |  | 300 |  | MHz |
| Charge Injection | Q | $V_{G E N}=2 \mathrm{~V}, \mathrm{CL}_{\text {L }}=1.0 \mathrm{nF}, \mathrm{RGEN}=0$, Figure 4 |  |  | 5 |  | pC |
| NO_ or NC_ On-Capacitance | CofF | $\mathrm{V}_{\text {NO_ }}=\mathrm{V}_{\text {NC_ }}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$, Figure 3 |  |  | 20 |  | pF |
| COM_ Off-Capacitance | Ccom_(Of) | $V_{C O M}=G N D, f=1 \mathrm{MHz}$, Figure 3 |  |  | 12 |  | pF |
| COM_ On-Capacitance | CCOM_(ON) | $V_{C O M}=V_{N O_{-}}, V_{N C}$ <br> Figure 3 | $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz},$ |  | 20 |  | pF |
| Off-Isolation (Note 6) | VISO | $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$, Figure 2 |  |  | -75 |  | dB |
|  |  | $R_{L}=50 \Omega, C_{L}=5 p F, f=10 \mathrm{MHz}$, Figure 2 |  | -45 |  |  |  |

## 士15kV ESD-Protected, Low-Voltage, Quad, SPST, CMOS Analog Switches

ELECTRICAL CHARACTERISTICS—SINGLE +5V SUPPLY (continued)
$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise specified. Typical values are at $\mathrm{V}+=+5 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Crosstalk (Note 7) | $V_{C T}$ | $R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$, Figure 5 |  |  | -90 |  | dB |
|  |  | $R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$, Figure 5 |  |  | -70 |  |  |
| Total Harmonic Distortion | THD | $\mathrm{RL}_{\mathrm{L}}=600 \Omega, \mathrm{f}=20 \mathrm{~Hz}$ to 20kHz |  | 0.015 |  |  | \% |
| ESD Silicon-Controlled Rectifier (SCR) Holding Current | $\mathrm{IH}^{\text {r }}$ |  |  |  | 110 |  | mA |
| ESD SCR Holding Voltage | VH |  |  |  | 3 |  | V |
| POWER SUPPLY |  |  |  |  |  |  |  |
| Power-Supply Range | V+ |  |  | 2 |  | 12 | V |
| Positive Supply Current | I+ | $\begin{aligned} & V_{+}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }}=0 \text { or } \mathrm{V}+ \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  |  | 1 |  |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  | 10 | A |

## ELECTRICAL CHARACTERISTICS—SINGLE +3V SUPPLY

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise specified. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 2)

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ANALOG SWITCH |  |  |  |  |  |  |  |
| Input Voltage Range | VCOM_, VNO_, $\mathrm{V}_{\mathrm{NC}}$ |  |  | 0 |  | V+ | V |
| On-Resistance | Ron | $\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \\ & \mathrm{I}_{+} \mathrm{COM}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {NO_ }} \text { or } \\ & \mathrm{V}_{\mathrm{NC}_{-}=1}=1.5 \mathrm{~V} \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 70 | 120 | $\Omega$ |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  | 150 |  |
| On-Resistance Match Between Channels (Notes 3, 8) | $\Delta \mathrm{RoN}$ | $\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V}, \\ & \mathrm{I}^{2} \mathrm{COM}_{-}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}_{-} \text {or }} \\ & \mathrm{V}_{\mathrm{NC}_{-}=1.5 \mathrm{~V}} \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 0.6 | 3 | $\Omega$ |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  | 4 |  |
| On-Resistance Flatness (Notes 4, 8) | RFLAt(ON) | $\begin{aligned} & \mathrm{V}+=2.7 \\ & \mathrm{I}^{\text {COM_ }}=1 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{NO}_{-}} \text {or } \\ & \mathrm{V}_{\mathrm{NC}_{-}}=0.5 \mathrm{~V}, 1.5 \mathrm{~V}, 2.2 \mathrm{~V} \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 6 | 12 | $\Omega$ |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  | 15 |  |
| LOGIC INPUT |  |  |  |  |  |  |  |
| IN_ Input High | $\mathrm{V}_{\mathrm{IH}}$ |  |  | 2.0 |  |  | V |
| IN_ Input Low | $\mathrm{V}_{\text {IL }}$ |  |  |  |  | 0.6 | V |
| Logic Input Leakage Current | IIN | V IN $=0$ or $\mathrm{V}+$ |  | -1 |  | 1 | $\mu \mathrm{A}$ |

# $\pm 15 k$ V ESD-Protected, Low-Voltage, Quad, SPST, CMOS Analog Switches 

## ELECTRICAL CHARACTERISTICS—SINGLE +3V SUPPLY (continued)

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise specified. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SWITCH DYNAMIC CHARACTERISTICS |  |  |  |  |  |  |  |
| Turn-On Time | ton | $\begin{aligned} & V_{\text {COM }}=1.5 \mathrm{~V}, \\ & R_{L}=300 \Omega, \\ & C_{L}=35 \mathrm{pF}, \end{aligned}$ <br> Figure 1 | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 150 | 250 | ns |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  | 300 |  |
| Turn-Off Time | toff | $\begin{aligned} & \mathrm{V}_{\mathrm{COM}}^{-}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \\ & \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF}, \end{aligned}$ <br> Figure 1 | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  | 60 | 100 | ns |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  | 150 |  |
| Break-Before-Make (MAX4640 only) |  | $\begin{aligned} & \mathrm{VCOM}_{-}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \\ & \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ | 5 |  |  | ns |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ | 4 |  |  |  |
| Charge Injection | Q | $\mathrm{V}_{\mathrm{GEN}}=1.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{R}_{\mathrm{GEN}}=0$, Figure 4 |  | 5 |  |  | pC |
| ESD SCR Holding Current | $\mathrm{l}_{\mathrm{H}}$ |  |  |  | 110 |  | mA |
| ESD SCR Holding Voltage | $\mathrm{V}_{\mathrm{H}}$ |  |  |  | 3 |  | V |
| POWER SUPPLY |  |  |  |  |  |  |  |
| Power-Supply Range | V+ |  |  | 2 |  | 12 | V |
| Positive Supply Current | I+ | $\begin{aligned} & V_{+}=3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \text { or } \mathrm{V}+ \end{aligned}$ | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ |  |  | 1 | $\mu \mathrm{A}$ |
|  |  |  | $\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ |  |  | 10 |  |

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value is a maximum, is used in this data sheet.
Note 3: $\Delta \operatorname{RON}=\operatorname{RON}(M A X)-\operatorname{RON}(M I N)$.
Note 4: Flatness is defined as the difference between the maximum and the minimum values of on-resistance as measured over the specified analog signal ranges.
Note 5: Leakage parameters are $100 \%$ tested at $\mathrm{T}_{\mathrm{A}}(\max )$, and guaranteed by correlation at $+25^{\circ} \mathrm{C}$.
Note 6: Off-Isolation = 20log ${ }_{10}\left(\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}}\right), \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.
Note 7: Between any two switches.
Note 8: Guaranteed by design.

## 土15kV ESD-Protected, Low-Voltage, Quad, SPST, CMOS Analog Switches

$\left(\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise specified. $)$



TURN-ON/TURN-OFF TIME
vs. $\left.\mathbf{V C O M}^{\left(V_{+}=+3 V\right.}\right)$


ON-RESISTANCE vs. VCOM AND TEMPERATURE


TURN-ON/TURN-OFF TIME
vs. TEMPERATURE


TURN-ON/TURN-OFF TIME
vs. $\mathbf{V C O M}^{\left(\mathrm{V}_{+}=+5 \mathrm{~V}\right)}$


ON/OFF-LEAKAGE CURRENT vs. TEMPERATURE


TURN-ON/TURN-OFF TIME
vs. SUPPLY VOLTAGE


CHARGE INJECTION vs. VCOM


## 士15kV ESD-Protected, Low-Voltage, Quad, SPST, CMOS Analog Switches

Typical Operating Characteristics (continued)
( $\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.)



Pin Description

| PIN |  |  | NAME | FUNCTION |
| :---: | :---: | :---: | :---: | :--- |
| MAX4620 | MAX4630 | MAX4640 |  |  |
| 1 | - | 1 | NO1 | Analog Switch 1 - Normally Open |
| - | 1 | - | NC1 | Analog Switch 1 - Normally Closed |
| 2 | 2 | 2 | COM1 | Analog Switch 1 - Common |
| 3 | - | 3 | NO2 | Analog Switch 2 - Normally Open |
| - | 3 | - | NC2 | Analog Switch 2 - Normally Closed |
| 4 | 4 | 4 | COM2 | Analog Switch 2 - Common |
| 5 | 5 | 5 | IN2 | Digital Control Input 2 |
| 6 | 6 | 6 | IN3 | Digital Control Input 3 |
| 7 | 7 | 7 | GND | Ground |
| 8 | - | - | NO3 | Analog Switch 3 - Normally Open |
| - | 8 | 8 | NC3 | Analog Switch 3 - Normally Closed |
| 9 | 9 | 9 | COM3 | Analog Switch 3 - Common |
| 10 | 10 | 10 | COM4 | Analog Switch 4 - Common |
| 11 | - | - | NO4 | Analog Switch 4 - Normally Open |
| - | 11 | 11 | NC4 | Analog Switch 4 - Normally Closed |
| 12 | 12 | 12 | IN4 | Digital Control Input 4 |
| 13 | 13 | 13 | IN1 | Digital Control Input 1 |
| 14 | 14 | 14 | V+ | Positive Supply Voltage Input |

## 土15kV ESD-Protected, Low-Voltage, Quad, SPST, CMOS Analog Switches

## МИХINI

MAX4620
MAX4630
MAX4640
SWITCH
INPUT


C INCLUDES FIXTURE AND STRAY CAPACITANCE.
$V_{\text {OUT }}=V_{\text {COM }}\left(\frac{R_{L}}{R_{L}+R_{\text {ON }}}\right)$

Figure 1. Switching Time


Figure 2. Off-Isolation/On-Channel Bandwidth


Figure 3. Channel Off/On-Capacitance

## $\pm 15 k V$ ESD-Protected, Low-Voltage, Quad, SPST, CMOS Analog Switches



Figure 4. Charge Injection


Figure 5. Crosstalk

## Detailed Description

The MAX4620/MAX4630/MAX4640 are quad SPST CMOS analog switches with circuitry providing $\pm 15 \mathrm{kV}$ ESD protection on the NO and NC pins. The CMOS switch construction provides rail-to-rail signal handling while consuming virtually no power. Each of the four switches is independently controlled by a TTL/CMOS-level-compatible digital input.

## Applications Information

Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the device.
Proper power-supply sequencing is recommended for all CMOS devices. Always sequence $V_{+}$on first, followed by the logic inputs, NO/NC, or COM.

## Operating Considerations for High-Voltage Supply

The MAX4620/MAX4630/MAX4640 are capable of +12 V single-supply operation with some precautions. The absolute maximum rating for $\mathrm{V}+$ is 13 V (referenced to GND). When operating near this region, bypass $\mathrm{V}_{+}$ with a minimum $0.1 \mu \mathrm{~F}$ capacitor to ground as close to the IC as possible.

# ※15kV ESD-Protected, Low-Voltage, Quad, SPST, CMOS Analog Switches 

## 土15kV ESD Protection

The MAX4620/MAX4630/MAX4640 are $\pm 15 \mathrm{kV}$ ESD-protected at the NC/NO terminals. To accomplish this, bidirectional SCRs are included on-chip between these terminals. When the voltages at these terminals go Beyond-the-Rails ${ }^{\text {TMM }}$, the corresponding SCR turns on in a few nanoseconds and bypasses the surge safely to ground. This method is superior to using diode clamps to the supplies because unless the supplies are very carefully decoupled through low ESR capacitors, the ESD current through the diode clamp could cause a significant spike in the supplies. This may damage or compromise the reliability of any other chip powered by those same supplies.
There are diodes from NC/NO to the supplies in addition to the SCRs. There is a resistance in series with each of these diodes to limit the current into the supplies during an ESD strike. The diodes protect these terminals from overvoltages that are not a result of ESD strikes. These diodes also protect the device from improper power-supply sequencing.
Once the SCR turns on because of an ESD strike, it continues to be on until the current through it falls below its "holding current." The holding current is typically 110 mA in the positive direction (current flowing into the NC/NO terminal) at room temperature (see Supply Current vs. Temperature in the Typical Operating Characteristics). Design the system so that any sources connected to NC/NO are current limited to a value below the holding current to ensure the SCR turns off when the ESD event is finished and normal operation is resumed. Also, keep in mind that the holding current varies significantly with temperature. The worst case is at $+85^{\circ} \mathrm{C}$ when the holding currents drop to 70 mA . Since this is a typical number to guarantee turn-off of the SCRs under all conditions, the sources connected to these terminals should be current limited to not more than half this value. When the SCR is latched, the voltage across it is approximately 3 V , depending on the polarity of the pin current. The supply voltages do not appreciably affect the holding current. The sources connected to the COM side of the switches do not need to be current limited since the switches turn off internally when the corresponding SCR(s) latches.
Even though most of the ESD current flows to GND through the SCRs, a small portion of it goes into $\mathrm{V}+$. Therefore, it is a good idea to bypass the $\mathrm{V}+$ with $0.1 \mu \mathrm{~F}$ capacitors directly to the ground plane.

ESD protection can be tested in various ways. Transmitter outputs and receiver inputs are characterized for protection to the following:

- $\pm 15 \mathrm{kV}$ using the Human Body Model
- $\pm 8 \mathrm{kV}$ using the Contact Discharge method specified in IEC 1000-4-2 (formerly IEC 801-2)
- $\pm 15 \mathrm{kV}$ using the Air-Gap Discharge method specified in IEC 1000-4-2 (formerly IEC 801-2)


## ESD Test Conditions

Contact Maxim Integrated Products for a reliability report that documents test setup, methodology, and results.

## Human Body Model

Figure 6 shows the Human Body Model, and Figure 7 shows the waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which can be discharged into the test device through a $1.5 \mathrm{k} \Omega$ resistor.

IEC 1000-4-2
The IEC 1000-4-2 standard covers ESD testing and performance of finished equipment; it does not specifically refer to ICs. The MAX4620/MAX4630/MAX4640 enable the design of equipment that meets Level 4 (the highest level) of IEC 1000-4-2, without additional ESD protection components.
The major difference between tests done using the Human Body Model and IEC 1000-4-2 is higher peak current in IEC 1000-4-2. Because series resistance is lower in the IEC 1000-4-2 ESD test model (Figure 8), the ESD withstand voltage measured to this standard is generally lower than that measured using the Human Body Model. Figure 9 shows the current waveform for the $\pm 8 \mathrm{kV}$ IEC 1000-4-2 Level 4 ESD Contact Discharge test.
The Air-Gap test involves approaching the device with a charged probe. The Contact Discharge method connects the probe to the device before the probe is energized.

Chip Information
TRANSISTOR COUNT: 156
PROCESS: CMOS

# 土15kV ESD-Protected, Low-Voltage, Quad, SPST, CMOS Analog Switches 



Figure 6. Human Body ESD Test Model


Figure 8. IEC 1000-4-2 ESD Test Model


Figure 7. Human Body Model Current Waveform


Figure 9. IEC 1000-4-2 ESD Generator Current Waveform

# $\pm 15 k V$ ESD-Protected, Low-Voltage, Quad, SPST, CMOS Analog Switches 

Pin Configurations/Functional Diagrams/Truth Tables (continued)
TOP VIEW


TSSOP/SO/DIP

| INPUT | SWITCH STATE |
| :---: | :---: |
| LOW | ON |
| HIGH | OFF |



## Ordering Information (continued)

| PART | TEMP. RANGE | PIN-PACKAGE |
| :---: | :--- | :--- |
| MAX4640EUD | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 14 TSSOP |
| MAX4640ESD | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 14 SO |
| MAX4640EPD | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 14 DIP |

# $\pm 15 k V$ ESD-Protected, Low-Voltage, Quad, SPST, CMOS Analog Switches 



## 土15kV ESD-Protected, Low-Voltage, Quad, SPST, CMOS Analog Switches



|  | INCHES |  | MILLIMETERS |  |
| :---: | :--- | :--- | :--- | :--- |
|  | MIN | MAX | MIN | MAX |
| A | 0.053 | 0.069 | 1.35 | 1.75 |
| A1 | 0.004 | 0.010 | 0.10 | 0.25 |
| B | 0.014 | 0.019 | 0.35 | 0.49 |
| C | 0.007 | 0.010 | 0.19 | 0.25 |
| $e$ | 0.050 |  | 1.27 |  |
| E | 0.150 | 0.157 | 3.80 | 4.00 |
| $H$ | 0.228 | 0.244 | 5.80 | 6.20 |
| $h$ | 0.010 | 0.020 | 0.25 | 0.50 |
| $L$ | 0.016 | 0.050 | 0.40 | 1.27 |


|  | INCHES |  | MILLIMETERS |  |  |  |  |
| :---: | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
|  | MIN | MAX | MIN | MAX | N | MSO12 |  |
| $D$ | 0.189 | 0.197 | 4.80 | 5.00 | 8 | A |  |
| $D$ | 0.337 | 0.344 | 8.55 | 8.75 | 14 | B |  |
| D | 0.386 | 0.394 | 9.80 | 10.00 | 16 | C |  |

NOTES:

1. D\&E DU NUT INCLUDE MILD FLASH
2. MILD FLASH RR PRITRUSIUNS NUT TI EXCEED .15 mm (.006")
3. LEADS TI BE CDPLANAR WITHIN .102 mm (.004")
. CDNTRZLLING DIMENSIDN: MILLIMETER
4. MEETS JEDEC MSO12-XX AS SHLWN IN ABCVE TABLE
5. $N=$ NUMBER $\square F$ PINS

# $\pm 15 k$ V ESD-Protected, Low-Voltage, Quad, SPST, CMOS Analog Switches 

# 土15kV ESD-Protected, Low-Voltage, Quad, SPST, CMOS Analog Switches 

## NOTES

# Mouser Electronics 

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Maxim Integrated:
$\underline{M A X 4620 E P D+}$ MAX4620ESD + MAX4620ESD + T MAX4620EUD + MAX4620EUD + T MAX4640ESD +
MAX4640ESD+T

