Thick Film SMD Resistors, 0402, Reel

FEATURES:

Small size and lightweight
Suitable for both flow and re-flow soldering
Matching with placement machines

SPECIFICATION:

Housing type	0402
Rated output	0.0625 W
Resistor type	Thick film
Rated voltage	50 V
Temperature range	$-55 \ldots+155^{\circ} \mathrm{C}$
Dimensions $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$	$1.0 \times 0.5 \times 0.35 \mathrm{~mm}$

Art. Nr.	Resistance	Tolerance	Temperature coefficient
RND 1550402WGF0000TCE REEL	0Ω	0\%	$0 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF1000TCE REEL	100Ω	1\%	$200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF1001TCE REEL	$1 \mathrm{k} \Omega$	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF1002TCE REEL	$10 \mathrm{k} \Omega$	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF1003TCE REEL	$100 \mathrm{k} \Omega$	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF1004TCE REEL	$1 \mathrm{M} \Omega$	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF100JTCE REEL	10Ω	1\%	$200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF100KTCE REEL	1Ω	1\%	$400 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF1102TCE REEL	$11 \mathrm{k} \Omega$	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF1103TCE REEL	$110 \mathrm{k} \Omega$	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF1200TCE REEL	120Ω	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF1201TCE REEL	$1.2 \mathrm{k} \Omega$	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF1202TCE REEL	$12 \mathrm{k} \Omega$	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF1503TCE REEL	$150 \mathrm{k} \Omega$	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF1601TCE REEL	$1.6 \mathrm{k} \Omega$	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF1801TCE REEL	$1.8 \mathrm{k} \Omega$	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF1913TCE REEL	$191 \mathrm{k} \Omega$	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF2000TCE REEL	200Ω	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF2003TCE REEL	$200 \mathrm{k} \Omega$	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF2201TCE REEL	$2.2 \mathrm{k} \Omega$	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF2401TCE REEL	$2.4 \mathrm{k} \Omega$	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF2701TCE REEL	$2.7 \mathrm{k} \Omega$	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF270JTCE REEL	27Ω	1\%	$200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF330JTCE REEL	33Ω	1\%	$200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF3602TCE REEL	$36 \mathrm{k} \Omega$	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF3900TCE REEL	390Ω	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF3901TCE REEL	$3.9 \mathrm{k} \Omega$	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF3902TCE REEL	$39 \mathrm{k} \Omega$	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF3903TCE REEL	$390 \mathrm{k} \Omega$	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF4700TCE REEL	470Ω	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF4701TCE REEL	$4.7 \mathrm{k} \Omega$	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF4751TCE REEL	$4.75 \mathrm{k} \Omega$	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF4992TCE REEL	$49.9 \mathrm{k} \Omega$	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF5102TCE REEL	$51 \mathrm{k} \Omega$	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF510JTCE REEL	51Ω	1\%	$200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF5601TCE REEL	$5.6 \mathrm{k} \Omega$	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF560JTCE REEL	56Ω	1\%	$200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF6491TCE REEL	$6.49 \mathrm{k} \Omega$	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF6800TCE REEL	680Ω	1\%	$100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
RND 1550402WGF680JTCE REEL	68Ω	1\%	$200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

2.0 Ratings \& Dimension:

0201, 0402	0603, 0805, 1206, 1210, 1812, 2010, 2512

2.1 Dimension \& Resistance Range :

Type	$70^{\circ} \mathrm{C}$ Power	Dimension(mm)					Resistance Range			
		L	w	H	A	B	0.5\%	1.0\%	2.0\%	5.0\%
0201	1/20W	0.60 ± 0.03	0.30 ± 0.03	0.23 ± 0.03	0.10 ± 0.05	0.15 ± 0.05	--	$1 \Omega-10 \mathrm{M} \Omega$	$1 \Omega-10 \mathrm{M} \Omega$	$1 \Omega-10 \mathrm{M} \Omega$
0402	1/16W	1.00 ± 0.10	0.50 ± 0.05	0.35 ± 0.05	0.20 ± 0.10	0.25 ± 0.10	$1 \Omega-10 \mathrm{M} \Omega$	$0.1 \Omega \sim 22 \mathrm{M} \Omega$	$0.1 \Omega \sim 22 \mathrm{M} \Omega$	$0.1 \Omega \sim 22 \mathrm{M} \Omega$
0603	$\begin{aligned} & \text { 1/16W } \\ & \text { 1/10WS } \end{aligned}$	1.60 ± 0.10	$\begin{gathered} +0.15 \\ 0.80 \\ -0.10 \end{gathered}$	0.45 ± 0.10	0.30 ± 0.20	0.30 ± 0.20	$1 \Omega-10 \mathrm{M} \Omega$	$0.1 \Omega \sim 33 \mathrm{M} \Omega$	$0.1 \Omega \sim 33 \mathrm{M} \Omega$	$0.1 \Omega \sim 100 \mathrm{M} \Omega$
0805	1/10W 1/8WS	2.00 ± 0.15	$\begin{gathered} +0.15 \\ 1.25 \\ -0.10 \end{gathered}$	0.55 ± 0.10	0.40 ± 0.20	0.40 ± 0.20	$1 \Omega-10 \mathrm{M} \Omega$	$0.1 \Omega \sim 33 \mathrm{M} \Omega$	$0.1 \Omega \sim 33 \mathrm{M} \Omega$	$0.1 \Omega \sim 100 \mathrm{M} \Omega$
1206	$\begin{gathered} 1 / 8 \mathrm{~W} \\ 1 / 4 \mathrm{WS} \end{gathered}$	3.10 ± 0.15	$\begin{gathered} +0.15 \\ 1.55 \\ -0.10 \end{gathered}$	0.55 ± 0.10	0.45 ± 0.20	0.45 ± 0.20	$1 \Omega-10 \mathrm{M} \Omega$	$0.1 \Omega \sim 33 \mathrm{M} \Omega$	$0.1 \Omega \sim 33 \mathrm{M} \Omega$	$0.1 \Omega \sim 100 \mathrm{M} \Omega$
1210	$\begin{gathered} 1 / 4 \mathrm{~W} \\ 1 / 3 \mathrm{WS} \\ 1 / 2 \mathrm{WSS} \end{gathered}$	3.10 ± 0.10	2.60 ± 0.20	0.55 ± 0.10	0.50 ± 0.25	0.50 ± 0.20	$1 \Omega-10 \mathrm{M} \Omega$	$0.1 \Omega \sim 10 \mathrm{M} \Omega$	$0.1 \Omega \sim 22 \mathrm{M} \Omega$	$0.1 \Omega \sim 100 \mathrm{M} \Omega$
1812	$\begin{gathered} 1 / 2 \mathrm{~W} \\ 3 / 4 \mathrm{WS} \end{gathered}$	4.50 ± 0.20	3.20 ± 0.20	0.55 ± 0.20	0.50 ± 0.20	0.50 ± 0.20	$1 \Omega-10 \mathrm{M} \Omega$	0.1 $\Omega-10 \mathrm{M} \Omega$	0.1 $\Omega-10 \mathrm{M} \Omega$	$0.1 \Omega-10 \mathrm{M} \Omega$
2010	$\begin{gathered} 1 / 2 \mathrm{~W} \\ 3 / 4 \mathrm{WS} \end{gathered}$	5.00 ± 0.10	2.50 ± 0.20	0.55 ± 0.10	0.60 ± 0.25	0.50 ± 0.20	$1 \Omega-10 \mathrm{M} \Omega$	$0.1 \Omega \sim 22 \mathrm{M} \Omega$	$0.1 \Omega \sim 22 \mathrm{M} \Omega$	$0.1 \Omega \sim 22 \mathrm{M} \Omega$
2512	1W	6.35 ± 0.10	3.20 ± 0.20	0.55 ± 0.10	0.60 ± 0.25	0.50 ± 0.20	1 $\Omega-10 \mathrm{M} \Omega$	$0.1 \Omega \sim 33 \mathrm{M} \Omega$	$0.1 \Omega \sim 33 \mathrm{M} \Omega$	$0.1 \Omega \sim 33 \mathrm{M} \Omega$

Type	$70^{\circ} \mathrm{C}$ Power	Max。 Working Voltage	Max Overload Voltage	Dielectric withstanding Voltage	Resistance Value of Jumper	Rated Current of Jumper	Max。Rated Current of Jumper	Operating Temperature
0201	1/20W	25 V	50 V	--	$<50 \mathrm{~m} \Omega$	0.5A	1A	$-55^{\circ} \mathrm{C} \sim 155^{\circ} \mathrm{C}$
0402	1/16W	50 V	100 V	100V	$<50 \mathrm{~m} \Omega$	1A	2 A	$-55^{\circ} \mathrm{C} \sim 155^{\circ} \mathrm{C}$
0603	$\begin{gathered} \text { 1/16W } \\ \text { 1/10WS } \end{gathered}$	75 V	150 V	300 V	$<50 \mathrm{~m} \Omega$	1A	2A	$-55^{\circ} \mathrm{C} \sim 155^{\circ} \mathrm{C}$
0805	$\begin{aligned} & 1 / 10 \mathrm{~W} \\ & 1 / 8 \mathrm{WS} \end{aligned}$	150V	300 V	500 V	$<50 \mathrm{~m} \Omega$	2A	5A	$-55^{\circ} \mathrm{C} \sim 155^{\circ} \mathrm{C}$
1206	$\begin{gathered} 1 / 8 \mathrm{~W} \\ 1 / 4 \mathrm{WS} \end{gathered}$	200V	400 V	500V	$<50 \mathrm{~m} \Omega$	2A	10A	$-55^{\circ} \mathrm{C} \sim 155^{\circ} \mathrm{C}$
1210	$\begin{gathered} 1 / 4 \mathrm{~W} \\ \text { 1/3WS } \\ \text { 1/2WSS } \end{gathered}$	200V	500 V	500 V	$<50 \mathrm{~m} \Omega$	2A	10A	$-55^{\circ} \mathrm{C} \sim 155^{\circ} \mathrm{C}$
1812	$\begin{gathered} 1 / 2 \mathrm{~W} \\ 3 / 4 \mathrm{WS} \end{gathered}$	200V	500 V	500 V	$<50 \mathrm{~m} \Omega$	2A	10A	$-55^{\circ} \mathrm{C} \sim 155^{\circ} \mathrm{C}$
2010	$\begin{gathered} 1 / 2 \mathrm{~W} \\ 3 / 4 \mathrm{WS} \end{gathered}$	200V	500 V	500 V	$<50 \mathrm{~m} \Omega$	2A	10A	$-55^{\circ} \mathrm{C} \sim 155^{\circ} \mathrm{C}$
2512	1W	200 V	500 V	500 V	$<50 \mathrm{~m} \Omega$	2.5A	10A	$-55^{\circ} \mathrm{C} \sim 155^{\circ} \mathrm{C}$

3.0 Structure:

4.0 Marking:

(1) For 0201 and 0402 size. Due to the very small size of the resistor's body, there is no marking on the body.
Example:

(2) $\pm 2 \%, \pm 5 \%$ Tolerance:The first two digits are significant figures of resistance and the third denotes number of zeros following
Example:

$333 \rightarrow 33 \mathrm{~K} \Omega$
(3) $\pm 2 \%, \pm 5 \%$ Tolerance: Below 10Ω show as following, read alphabet"R" as decimal point. Example:

$2 R 2 \rightarrow 2.2 \Omega$
(4) $\pm 0.5 \%, \pm 1 \%$ Tolerance: 4 digits, first three digits are significant; forth digit is number of zeros. Letter r is decimal point.

(5) standard E-24 and not belong to E-96 series values(in $\pm 0.5 \%$, $\pm 1 \%$ tolerance) of 0603 size the marking is the same as 5% tolerance but marking as underline

(6) Product below 1Ω,show as following, the first digit is " R " which as decimal point.
$R 300 \rightarrow 0.3 \Omega$
(7) Standard E-96 series values ($\pm 0.5 \%, ~ \pm 1 \%$ tolerance) of 0603 size. Due the small size of the resistor's body, 3 digits marking will be used to indicate the accurate resistance value by using the following multiplier \& resistance code.

Multiplier code:

Code	A	B	C	D	E	F	G	H	X	Y	Z
Multiplier	10^{0}	10^{1}	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{-1}	10^{-2}	10^{-3}

Coding formula
First two digits \qquad -Resistance code

Third digit -Multiplier code

STANDARD E-96 VALUES AND 0603 RESISTANCE CODE

Ω VALUE	CODE	Ω VALUE	CODE	Ω VALUE	CODE	Ω VALUE	CODE
100	01	178	25	316	49	562	73
102	02	182	26	324	50	576	74
105	03	187	27	332	51	590	75
107	04	191	28	340	52	604	76
110	05	196	29	348	53	619	77
113	06	200	30	357	54	634	78
115	07	205	31	365	55	649	79
118	08	210	32	374	56	665	80
121	09	215	33	383	57	681	81
124	10	221	34	392	58	698	82
127	11	226	35	402	59	715	83
130	12	232	36	412	60	732	84
133	13	237	37	422	61	750	85
137	14	243	38	432	62	768	86
140	15	249	39	442	63	787	87
143	16	255	40	453	64	806	88
147	17	261	41	464	65	825	89
150	18	267	42	475	66	845	90
154	19	274	43	487	67	866	91
158	20	280	44	499	68	887	92
162	21	287	45	511	69	909	93
165	22	294	46	523	70	931	94
169	23	301	47	536	71	953	95
174	24	309	48	549	72	976	96

(8) 0Ω Marking:

Normally for 0201 and 0402 size, no marking on the body:

Normally, the making of $0 \Omega 0603,0 \Omega 0805,0 \Omega 1206,0 \Omega 1210,0 \Omega 1812,0 \Omega 2010,0 \Omega 2512$ resistors as following

5.0 Derating Curve:

Resistors shall have a power rating based on continuous load operation at an ambient temperature from $-55{ }^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. For temperature in excess of $70^{\circ} \mathrm{C}$, the load shall be derate as shown in figure 1

Figure 1

5.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working
Voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$
R C W V=\sqrt{P \times R}
$$

Where: RCWV commercial-line frequency and waveform (Volt.)

$$
P=\text { power rating (WATT.) } \quad R=\text { nominal resistance }(O H M)
$$

In no case shall the rated DC or RMS AC continuous working voltage be greater than the applicable maximum value.

The overload voltage is 2.5 times RCWV or Max. Overload voltage whichever is less.

6.0 Performance Specification:

Characteristic	Limits		Test Method (JIS-C-5201\& JIS-C-5202)
© Temperature Coefficient	0201:$\begin{aligned} & 1 \Omega \leqq R \leq 10 \Omega: \pm 400 \text { PPM } /{ }^{\circ} \mathrm{C} \\ &>10 \Omega: \pm 200 \mathrm{PPM} /{ }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		4.8 Natural resistance changes per temp. Degree centigrade $\frac{\mathrm{R}_{2}-\mathrm{R}_{1}}{\mathrm{R}_{1}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)} \times 10^{6}\left(\mathrm{PPM} /{ }^{\circ} \mathrm{C}\right)$ R1: Resistance value at room temperature. (T_{1}) R2: Resistance value at room temp. plus $100^{\circ} \mathrm{C} \quad\left(\mathrm{T}_{2}\right)$
	```0402~2512:``````1\Omega\leqqR\leqq10\Omega: }\pm400\mathrm{ PPM/}/\mp@subsup{}{}{\circ}\textrm{C 10\Omega<R\leqq100\Omega: }\pm200\mathrm{ PPM / }\mp@subsup{}{}{\circ}\textrm{C 100\Omega<R<10M\Omega: }\pm100PPM/\mp@subsup{}{}{\circ}\textrm{C 10M }\leqq\textrm{R}\leqq100\textrm{M}\Omega:\pm200PPM/\mp@subsup{}{}{\circ}\textrm{C```		
	Provided Specially:   0603:1 $\Omega \sim 10 \Omega: \pm 200 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$   0805,1206:1 $\Omega \sim 10 \Omega: \pm 100 P^{2} /{ }^{\circ} \mathrm{C}$		
© *Short-time overload	$\pm 0.5 \%, \pm 1 \%$	$\pm(1 \%+0.1 \Omega)$	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV for 5 seconds.
	$\pm 2 \%, \pm 5 \%$	$\pm(2 \%+0.1 \Omega)$	
	* $<50 \mathrm{~m} \Omega$		Apply max Overload current for $0 \Omega$
* Dielectric withstanding voltage	No evidence damage, arc down.	hover mechanical insulation breaks	4.7 Resistors shall be clamped in the trough of a $90^{\circ} \mathrm{C}$ metallic $v$-block and shall be tested at ac potential respectively specified in the given list of each product type for 1 minute.



The standard Part No. includes 14 digits with the following explanation:
$7.11^{\text {st }} \sim 4^{\text {th }}$ digits
This is to indicate the Chip Resistor.
Example: 0201, 0402,0603,0805,1206,1210,2010,1812,2512
7.2 5th~6th digits:
7.2.1 This is to indicate the wattage or power rating. To dieting the size and the numbers, The following codes are used; and please refer to the following chart for detail:
W=Normal Size; S=Small Size; U= Ultra Small Size; "1" ~ "G" to denotes "1" ~"16" as Hexadecimal:
1/16W~1W:

Wattage	$1 / 32$	$3 / 4 \mathrm{~W}$	$1 / 2$	$1 / 3$	$1 / 4$	$1 / 8$	$1 / 10$	$1 / 16$	$1 / 20 \mathrm{~W}$	1
Normal Size	WH	07	W 2	W 3	W 4	W 8	WA	WG	WM	1 W
Small Size	$/$	07	S 2	S 3	S 4	S 8	SA	SG	$/$	1 S

7.2.2 For power rating less or equal to 1 watt, the 5 th digit will be the letters $W$ or $S$ to represent the size required \& the 6th digit will be a number or a letter code.

Example: WA=1/10W; S4=1/4W-S
7.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance.

$$
D= \pm 0.5 \% \quad F= \pm 1 \% \quad G= \pm 2 \% \quad J= \pm 5 \% \quad K= \pm 10 \%
$$

7.4 The 8th to 11th digits is to denote the Resistance Value.
7.4.1 For the standard resistance values of $5 \% \& 10 \%$ series, the 8 th digit is " 0 " ,the 9 th \& 10 th digits are to denote the significant figures of the resistance and the 11th digit is the number of zeros following;

For the standard resistance values of $\leq 2 \%$ series in, the 8th digit to the 10th digits is to denote the significant figures of the resistance and the 11th digit is the zeros following.
7.4.2 The following number s and the letter codes are to be used to indicate the number of zeros in the 11th digit:

$$
0=10^{0} \quad 1=10^{1} \quad 2=10^{2} \quad 3=10^{3} \quad 4=10^{4} \quad 5=10^{5} \quad 6=10^{6} \quad \mathrm{~J}=10^{-1} \quad \mathrm{~K}=10^{-2} \quad \mathrm{~L}=10^{-3} \quad \mathrm{M}=10^{-4}
$$

7.4.3 The 12th, 13 th \& 14 th digits.

The 12th digit is to denote the Packaging Type with the following codes:
C=Bulk in (Chip Product) T=Tape/Reel
7.4.4 The 13th digit is normally to indicate the Packing Quantity of Tape/Reel packaging types. The following letter code is to be used for some packing quantities:

$$
4=4000 \text { pcs } 5=5000 \text { pcs } C=10000 \mathrm{pcs} \quad D=20000 \text { pcs } \quad E=15000 \text { pcs }
$$

Chip Product: BD=B/B-20000pcs TC=T/R-10000pcs
7.4.5 For some items, the 14th digit alone can use to denote special features of additional information with the following codes:
E= For "Environmental Protection, Lead Free type".
S= Provided Specially.
8.0 Ordering Procedure: (Example: RND155 0805 1/8W $\pm 5 \% 470 \mathrm{~K} \Omega$ T/R-5000)



Packing Type:
T=Tape/Reel


## Resistance Value:

 5\% series:The 1st digit will be " 0 "; the $2^{\text {nd }} \& 3^{\text {rd }}$ digits are for the significant figures of the resistance and the $4^{\text {th }}$ digit indicate the numbers of zeros following.
$0.5 \%$, $1 \%$, $2 \%$ series: The 1 st to $3^{\text {rd }}$ digits are for the significant figures of the resistance and 4th digit denotes number of zeros following. $\mathrm{J}=10^{-1} ; \mathrm{K}=10^{-2} ; \mathrm{L}=10^{-3}$

Packing quantity:
1=1000PCS
2=2000PCS
3=3000PCS
4=4000PCS
5=5000PCS
C=10000PCS
D=20000PCS
The amount of packaging product type, please refer to 9.3

Special Feature:
E= Lead Free
$S=$ Provided Specially

### 9.0 Packaging:

### 9.1 Tapping Dimension:



Unit: mm

Type	$\mathbf{A}$	$\mathbf{B}$	$\mathbf{C} \pm 0.05$	$\mathbf{+ 0 . 1}$   $-\mathbf{0}$	$\mathbf{E} \pm \mathbf{0 . 1}$	$\mathrm{F} \pm 0.05$	$\mathbf{G} \pm \mathbf{0 . 1}$	$\mathbf{W} \pm 0.2$	$\mathbf{T} \pm \mathbf{0 . 1}$
0201	$0.40 \pm 0.05$	$0.70 \pm 0.05$	2.00	1.50	1.75	3.50	4.00	8.00	0.42
0402	$0.65 \pm 0.20$	$1.15 \pm 0.20$	2.00	1.50	1.75	3.50	4.00	8.00	0.45



Unit: mm

Type	$\mathbf{A} \pm \mathbf{0 . 2}$	$\mathbf{B} \pm \mathbf{0 . 2}$	$\mathbf{C} \pm \mathbf{0 . 0 5}$	$\boldsymbol{+ 0 . 1}$   $-\mathbf{0}$	$\mathbf{E} \pm \mathbf{0 . 1}$	$\mathbf{F} \pm 0.05$	$\mathbf{G} \pm \mathbf{0 . 1}$	$\mathbf{W} \pm 0.2$	$\mathbf{T} \pm \mathbf{0 . 1}$
0603	1.10	1.90	2.00	1.50	1.75	3.50	4.00	8.00	0.67
0805	1.65	2.40	2.00	1.50	1.75	3.50	4.00	8.00	0.81
1206	2.00	3.60	2.00	1.50	1.75	3.50	4.00	8.00	0.81
1210	2.80	3.50	2.00	1.50	1.75	3.50	4.00	8.00	0.75



Unit: mm

Type	$\mathrm{A} \pm 0.2$	$\mathrm{B} \pm 0.2$	$\mathrm{C} \pm 0.05$		$\phi D 1{ }^{+0.1}$	$\mathrm{E} \pm 0.1$	$F \pm 0.05$	$\mathrm{G} \pm 0.1$	$\mathrm{W} \pm 0.2$	T $\pm 0.1$
1812	3.50	4.80	2.00	1.50	1.50	1.75	5.50	4.00	12.00	1.00
2010	2.90	5.60	2.00	1.50	1.50	1.75	5.50	4.00	12.00	1.00
2512	3.50	6.70	2.00	1.50	1.50	1.75	5.50	4.00	12.00	1.00

### 9.2 Peeling Strength of Top Cover Tape:

Test Condition: 0.1 to 0.7 N at a peel-off speed of $300 \mathrm{~mm} / \mathrm{min}$.


### 9.3 Dimension:



Unit: mm

Type	Taping	$\mathbf{Q t y / R e e l}$	$\mathbf{A} \pm \mathbf{0 . 5}$	$\mathbf{B} \pm \mathbf{0 . 5}$	$\mathbf{C} \pm \mathbf{0 . 5}$	$\mathbf{D} \pm \mathbf{1}$	$\mathbf{M} \pm \mathbf{2}$	$\mathbf{W} \pm \mathbf{1}$
0201	Paper	$10,000 \mathrm{pcs}$	2.0	13.0	21.0	60.0	178.0	10.0
0402	Paper	$10,000 \mathrm{pcs}$	2.0	13.0	21.0	60.0	178.0	10.0
0603	Paper	$5,000 \mathrm{pcs}$	2.0	13.0	21.0	60.0	178.0	10.0
0805	Paper	$5,000 \mathrm{pcs}$	2.0	13.0	21.0	60.0	178.0	10.0
1206	Paper	$5,000 \mathrm{pcs}$	2.0	13.0	21.0	60.0	178.0	10.0
1210	Paper	$5,000 \mathrm{pcs}$	2.0	13.0	21.0	60.0	178.0	10.0
2010	Paper or Embossed	$4,000 \mathrm{pcs}$	2.0	13.0	21.0	60.0	178.0	13.8
1812	Embossed	$4,000 \mathrm{pcs}$	2.0	13.0	21.0	60.0	178.0	13.8
2512	Embossed	$4,000 \mathrm{pcs}$	2.0	13.0	21.0	60.0	178.0	13.8

10.1 Environment Related Substance.

This product complies to EU RoHS directive, EU PAHs directive, EU PFOS directive and Halogen free.
10.2 Ozone layer depleting substances.

Ozone depleting substances are not used in our manufacturing process of this product. This product is not manufactured using Chloro fluorocarbons (CFCs), Hydrochlorofluorocarbons (HCFCs), Hydrobromofluorocarbons (HBFCs) or other ozone depleting substances in any phase of the manufacturing process.
10.3 Storage Condition

The performance of these products, including the solderability, is guaranteed for a year from the date of arrival at your company, provided that they remain packed as they were when delivered and stored at a temperature of $5^{\circ} \mathrm{C} \sim 35^{\circ} \mathrm{C}$ and a relative humidity of $25 \% \sim 75 \% \mathrm{RH}$.

Even within the above guarantee periods, do not store these products in the following conditions.Otherwise, their electrical performance and/or solderability may be deteriorated, and the packaging materials (e.g. taping materials) may be deformed or deteriorated, resulting in mounting failures.

1. In salty air or in air with a high concentration of corrosive gas, such as $\mathrm{Cl} 2, \mathrm{H} 2 \mathrm{~S}, \mathrm{NH} 3, \mathrm{SO}$, or NO2.
2. In direct sunlight.
10.4 The products are used in circuit board thickness greater than 1.6 mm . If customers use less than the thickness of the circuit board that you should confirm with the company, in order to recommend a more suitable product.
