Middle Power LED Series

 5630
LM561B Plus

Improved efficacy and performance of LM561B to provide better solution

Features \& Benefits

- 0.3 W class middle power LED
- Mold resin for high reliability
- Standard form factor for design flexibility $(5.6 \times 3.0 \mathrm{~mm})$

Table of Contents

1. Characteristics 3
2. Product Code Information 5
3. Typical Characteristics Graphs 14
4. Outline Drawing \& Dimension 16
5. Reliability Test Items \& Conditions 17
6. Soldering Conditions 18
7. Tape \& Reel 19
8. Label Structure 21
9. Packing Structure 22
10. Precautions in Handling \& Use 27
11. Characteristics
a) Absolute Maximum Rating

Item	Symbol	Rating	Unit	Condition
Ambient / Operating Temperature	T_{a}	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$	-
Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-40 \sim+120$	${ }^{\circ} \mathrm{C}$	-
LED Junction Temperature	T_{i}	110	${ }^{\circ} \mathrm{C}$	-
Forward Current	$I_{\text {F }}$	180	mA	-
Peak Pulsed Forward Current	1 fp	300	mA	Duty $1 / 10$, pulse width 10 ms
Assembly Process Temperature	-	$\begin{aligned} & 260 \\ & <10 \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ \mathrm{~s} \end{gathered}$	-
ESD (HBM)	-	± 5	kV	-

b) Electro-optical Characteristics ($\mathrm{IF}_{\mathrm{F}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

Item	Unit	$\begin{gathered} \text { CRI }\left(R_{R}\right) \\ \text { Min. } \end{gathered}$	Nominal CCT (K)	Rank	Bin	Min.	Typ.	Max.
Forward Voltage (V_{F})	V			WA (WK)	AZ	2.7	-	2.8
					A1	2.8	-	2.9
					A2	2.9	-	3.0
					A3	3.0	-	3.1
					A4	3.1	-	3.2
Luminous Flux ($\Phi_{\text {V }}$)	Im	80	5000		S4	33.0	-	35.0
					S5	35.0	-	37.0
Reverse Voltage (@ 5 mA)	V					0.7	-	1.2
Color Rendering Index (R_{a})	-			5		80	-	-
Special CRI (R9)	-					0	-	-
Thermal Resistance (junction to solder point)	${ }^{\circ} \mathrm{C} / \mathrm{W}$					-	14	20
Beam Angle	-					-	120	-

Note:

Samsung maintains measurement tolerance of: forward voltage $= \pm 0.1 \mathrm{~V}$, luminous flux $= \pm 5 \%, \mathrm{CRI}= \pm 3, R 9= \pm 6.5$

2. Product Code Information

a）Luminous Flux $\operatorname{Bins}\left(I_{F}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}\right)$

$\mathrm{CRI}\left(\mathrm{R}_{\mathrm{a}}\right)$ Min．	$\underset{(\mathrm{K})}{\text { Nominal CCT }}$	Product Code	Flux Bin	Flux Range （ $\Phi_{\mathrm{v}}, \mathrm{Im}$ ）
80	5000	SPMWHT541MP5W S	S4	$33.0 \sim 35.0$
		SPMWHT541MP5W SぇS5	S5	$35.0 \sim 37.0$

Note：

＂${ }^{\text {＂c can be＂A＂}}(2,500 \mathrm{pcs})$ or＂K＂（10，000pcs）of reel taping
＂ヶ九十＂can be＂ 0 ＂（Whole bin），＂M＂（Quarter bin），＂N＂（N Kitting），＂K＂（K Kitting）or＂G＂（G Kitting）of the color binning
b) Kitting rule

1) K Kitting Concept
1. Under agreement between customer and SAMSUNG ELECTRONICS, SAMSUNG can supply kitting bin (VF, Color, Im).
2. A forward voltage (VF) of kitting bin is combined by a pair of same $V F$ rank such as (A1+A1), (A2+A2), (A3+A3), (A4+A4) or (AZ+AZ).
3. A Chromaticity Coordinates of kitting bin is mixed by kitting procedure.(below kitting simulation)
[Kitting example]

[Binning Information]

	Bin \#1	Bin \#2	Priority
VF	AZ	AZ	
	A1	A1	
	A2	A2	
	A3	A3	
	A4	A4	
CIE	W	Z	
	V	V	
	X	Y	
IV	S4	S4	S4^
	S5	S5	S5ヶ

※ Each of $\mathrm{V}, \mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z can be one bin without details division.

2) N Kitting Concept

1. Under agreement between customer and SAMSUNG ELECTRONICS, SAMSUNG can supply kitting bin (VF, Color, Im).
2. A forward voltage (VF) of kitting bin is combined by a pair of same $V F$ rank such as (A1+A1), (A2+A2), (A3+A3), (A4+A4) or (AZ+AZ).
3. A Chromaticity Coordinates of kitting bin is mixed by kitting procedure.(below kitting simulation)

[Kitting example]

$R U$	$R V$	$R W$	$S T$
$R E$	$R F$	$R G$	$S D$
$R A$	$R B$	$R C$	$S 9$
$R 6$	$R 7$	$R 8$	$S 5$

[Binning Information]

	Bin\#1	Bin\#2	Priority
	AZ	AZ	
	A1	A1	
	A2	A2	
CIE	A3	A3	
	A	G	
	C	F	S4

}

3) G Kitting Concept

1. Under agreement between customer and SAMSUNG ELECTRONICS, SAMSUNG can supply kitting bin (VF, Color, Im).
2. A forward voltage (VF) of kitting bin is combined by a pair of same $V F$ rank such as (A1+A1), (A2+A2), (A3+A3), (A4+A4) or (AZ+AZ).
3. A Chromaticity Coordinates of kitting bin is mixed by kitting procedure.(below kitting simulation)
[Kitting example]

$R U$	$R V$	$R W$	$S T$
$R E$	$R F$	$R G$	$S D$
$R A$	$R B$	$R C$	$S 9$
$R 6$	$R 7$	$R 8$	$S 5$

[Binning Information]

	Bin \#1	Bin \#2	Priority
VF	AZ	AZ	
	A1	A1	
	A2	A2	
	A3	A3	
	A4	A4	
CIE	R6	ST	
	R7	RW	
	R8	RV	
	S5	RU	
	RA	SD	
	RB	RG	
	RC	RF	
	S9	RE	
IV	S4	S4	S4^
	S5	S5	S5ヶ

Each of $\mathrm{V}, \mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z can be one bin without details division.
c) Color Bins ($\mathrm{IF}_{\mathrm{F}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

$\operatorname{CRI}\left(R_{\mathrm{a}}\right)$ Min.	Nominal CCT (K)	Product Code	Color Rank	Chromaticity Bins
80	5000	SPMWHT541MP5W SOS	SO (Whole bin)	R6, R7, R8, S5, RA, RB, RC, S9, RE, RF, RG, SD, RU, RV, RW, ST
		SPMWHT541MP5W SGS*	SG (S Kitting)	
		SPMWHT541MP5W SMS \star	SM (Quarter bin)	RB, RC, RF, RG
		SPMWHT541MP5W SKS	SK (K Kitting)	SV, SW, SX, SY, SZ
		SPMWHT541MP5W SNS \star	SN (N Kitting)	RB, RC, RF, RG

Note:

" $\stackrel{\text { " can be "A" }}{ }(2,500 \mathrm{pcs})$ or "K" (10,000pcs) of reel taping
" \star " can be "S4" or "S5" of luminous flux bin
d) Voltage Bins ($\mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

e) Chromaticity Region \& Coordinates ($\mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

e) Chromaticity Region \& Coordinates ($\mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

Region	CIE x	CIE y	Region	CIE x	CIE y
S rank (5000K)					
R6	0.3407	0.346	RE	0.3415	0.3587
	0.3411	0.3522		0.342	0.3652
	0.3451	0.3554		0.3463	0.3687
	0.3446	0.3491		0.3457	0.3621
R7	0.3446	0.3491	RF	0.3457	0.3621
	0.3451	0.3554		0.3463	0.3687
	0.3492	0.3587		0.3507	0.3724
	0.3485	0.3522		0.35	0.3655
R8	0.3485	0.3522	RG	0.35	0.3655
	0.3492	0.3587		0.3507	0.3724
	0.3533	0.362		0.3551	0.376
	0.3524	0.3554		0.3542	0.369
S5	0.3524	0.3554	SD	0.3542	0.369
	0.3533	0.362		0.3551	0.376
	0.3571	0.3655		0.359	0.3792
	0.3562	0.3586		0.358	0.3723
RA	0.3415	0.3587	RU	0.342	0.3652
	0.3411	0.3522		0.3424	0.3715
	0.3451	0.3554		0.3469	0.3752
	0.3457	0.3622		0.3463	0.3687
RB	0.3451	0.3554	RV	0.3463	0.3687
	0.3457	0.3621		0.3469	0.3752
	0.35	0.3655		0.3515	0.379
	0.3492	0.3587		0.3507	0.3724
RC	0.3492	0.3587	RW	0.3507	0.3724
	0.35	0.3655		0.3515	0.379
	0.3542	0.369		0.356	0.3827
	0.3533	0.362		0.3551	0.376
S9	0.3533	0.362	ST	0.3551	0.376
	0.3542	0.369		0.356	0.3827
	0.358	0.3723		0.3599	0.3859
	0.3571	0.3655		0.359	0.3792

f) Kitting Chromaticity Region \& Coordinates

Region	CIE x	CIE y	Region	CIE x	CIE y
S rank (5000 K)					
SV	0.3451	0.3554	SY	0.3415	0.3588
	0.3463	0.3687		0.35	0.3655
	0.3551	0.376		0.3515	0.379
	0.3533	0.362		0.3424	0.3715
SW	0.3407	0.346	SZ	0.358	0.3723
	0.3415	0.3588		0.35	0.3655
	0.35	0.3655		0.3515	0.379
	0.3485	0.3524		0.3599	0.3859
SX	0.3485	0.3524			
	0.35	0.3655			
	0.358	0.3723			
	0.3562	0.3586			

Note:

Samsung maintains measurement tolerance of: $\mathrm{Cx}, \mathrm{Cy}= \pm 0.005$

3. Typical Characteristics Graphs

a) Spectrum Distribution ($\mathrm{IF}_{\mathrm{F}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

CCT: 5000 K (80 CRI)

b) Forward Current Characteristics $\left(\mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}\right)$

c) Temperature Characteristics ($\mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}$)

Relative Forward Voltage vs. Temperature

e) Derating Curve

f) Beam Angle Characteristics ($\mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$)

4. Outline Drawing \& Dimension

Notes:

1) This LED has built-in ESD protection device(s) connected in parallel to LED chip(s).
2) T_{s} point and measurement method:
(1) Measure one point at the cathode pad, if necessary remove PSR of $P C B$ to reach T_{s} point.
(2) All pads must be soldered to the PCB to dissipate heat properly, otherwise the LED can be damaged.

Precautions:

1) Pressure on the LEDs will influence to the reliability of the LEDs. Precautions should be taken to avoid strong pressure on the LEDs. Do not put stress on the LEDs during heating.
2) Re-soldering should not be done after the LEDs have been soldered. If re-soldering is unavoidable, LED`s characteristics should be carefully checked before and after such repair.
3) Do not stack assembled PCBs together. Since materials of LEDs is soft, abrasion between two PCB assembled with LED might cause catastrophic failure of the LEDs.

5. Reliability Test Items \& Conditions

a) Test Items

Test Item	Test Condition	Test Hour / Cycle	Sample No.
Room Temperature Life Test	$25^{\circ} \mathrm{C}, \mathrm{DC} 180 \mathrm{~mA}$	1000 h	22
High Temperature Life Test	$85^{\circ} \mathrm{C}, \mathrm{DC} 180 \mathrm{~mA}$	1000 h	22
High Temperature Humidity Life Test	$85^{\circ} \mathrm{C}, 85 \% \mathrm{RH}, \mathrm{DC} 180 \mathrm{~mA}$	1000 h	22
Low Temperature Life Test	$-40^{\circ} \mathrm{C}, \mathrm{DC} 180 \mathrm{~mA}$	1000 h	22
Powered Temperature Cycle Test	$-45^{\circ} \mathrm{C} / 20 \mathrm{~min} \leftrightarrow 85^{\circ} \mathrm{C} / 20 \mathrm{~min}$, sweep 100 min cycle on/off: each 5 min, DC 180 mA	100 cycles	22
Thermal Cycle	$\begin{gathered} -45^{\circ} \mathrm{C} / 15 \min \leftrightarrow 125^{\circ} \mathrm{C} / 15 \mathrm{~min} \\ \rightarrow \text { Hot plate } 180^{\circ} \mathrm{C} \end{gathered}$	500 cycles	100
High Temperature Storage	$120^{\circ} \mathrm{C}$	1000 h	11
Low Temperature Storage	$-40^{\circ} \mathrm{C}$	1000 h	11
ESD (HBM)		5 times	30
ESD (MM)	$R_{1}: 10 \mathrm{M} \Omega$ R_{2} : 0 C: 200 pF V: $\pm 0.5 \mathrm{kV}$	5 times	30
Vibration Test	$20 \sim 2000 \sim 20 \mathrm{~Hz}, 200 \mathrm{~m} / \mathrm{s}^{2}$, sweep 4 min $\mathrm{X}, \mathrm{Y}, \mathrm{Z} 3$ direction, each 1 cycle	4 cycles	11
Mechanical Shock Test	$1500 \mathrm{~g}, 0.5 \mathrm{~ms}$ 3 shocks each $X-Y-Z$ axis	5 cycles	11

b) Criteria for Judging the Damage

Item	Symbol	Test Condition$\left(T_{s}=25^{\circ} \mathrm{C}\right)$	Limit	
			Min	Max
Forward Voltage	V_{F}	$\mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}$	Init. Value * 0.9	Init. Value * 1.1
Luminous Flux	Φ_{v}	$\mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}$	Init. Value * 0.7	Init. Value * 1.1

6. Soldering Conditions
a) Reflow Conditions (Pb free)

Reflow frequency: 2 times max.

b) Manual Soldering Conditions

Not more than 5 seconds @ max. $300^{\circ} \mathrm{C}$, under soldering iron.
7. Tape \& Reel
a) Taping Dimension

Taping Direction

b-1) Reel Dimension (Max 2,500 pcs)

b-2) Reel Dimension (Max 10,000 pcs)

Symbol	A	B	C	W1	W2
Spec (mm)	$\varnothing 330 \pm 1$	80 ± 1	13 ± 0.5	13 ± 0.3	17.5 ± 1

Notes:

1) Quantity: The quantity/reel is 2,500 or $10,000 \mathrm{pcs}$
2) Cumulative Tolerance: Cumulative tolerance / 10 pitches is $\pm 0.2 \mathrm{~mm}$
3) Adhesion Strength of Cover Tape: Adhesion strength is $0.1-0.7 \mathrm{~N}$ when the cover tape is turned off from the carrier tape at 10° angle to the carrier tape
4) Packaging: P/N, Manufacturing data code no. and quantity are indicated on the aluminum packing bag
8. Label Structure
a) Label Structure

Note: Denoted bin code and product code above is only an example (see description on page 5)

Bin Code:

(a) (b): Forward Voltage bin (refer to page 8)
(c)(d): Chromaticity bin (refer to page 10-13)
(e) \dagger : Luminous Flux bin (refer to page 8)
b) Lot Number

The lot number is composed of the following characters:

${ }^{\text {ch }}{ }^{\text {vs }}$
 A1R6S4

SPMWHT541MP5WASOS4 A1R6S4 01 || (1)(2)(3)(4)(5)(7)(8)(9/1 (a)(b) $/ 2,500 \mathrm{pcs}$ II

```
mmsuy*
```

(1)(2)(3)(4)(5)(6)(7)(8) $/ 1$ (a)(b)(c) $/ 2,500 \mathrm{pcs}$
(1) : Production site (S: Giheung, Korea, G: Tianjin, China)
(2) : L (LED)
(3) : Product state (A: Normal, B: Bulk, C: First Production, R: Reproduction, S: Sample)
(4) : Year (Z: 2015, A: 2016, B: 2017...)
(5) : Month (1~9, A, B, C)
(6)(7)(8) : Day $(1 \sim 9, A, B \sim V)$
(a)(b) : Product serial number (001~999)

9. Packing Structure

a-1) Packing Process (The quantity of PKG on the Reel to be Max 2,500pcs)

Reel

- ${ }^{(T)}$
 A1R6S4

SPMWHT541MP5WAS0S4 A1R6S4 01 ||I|| GLAZC4001 / 1001 / 2,500 pcs ||| - कीय 5uy

Aluminum Vinyl Packing Bag

${ }^{\text {c }} \mathrm{N}_{\mathrm{us}}$
 A1R6S4

SPMWHT541MP5WAS0S4A1R6S4 01 II GLAZC4001 / 1001 / 2,500 pcs ||| - An mux

Outer Box

Material: Paper (SW3B(B))

Type	Size (mm)			Note
	L	W	H	
7 inch L	245 ± 5	220 ± 5	182 ± 5	Up to 10 reels
7 inch S	245 ± 5	220 ± 5	86 ± 5	Up to 5 reels

. ${ }^{(4)}$

A1R6S4
SPMWHT541MP5WAS0S4 A1R6S4 01 ||| GLAZC4001 / 1001 / 25,000 pcs || [Box Label]

a-2) Packing Process (The quantity of PKG on the Reel to be Max 10,000pcs)

Reel

- ${ }^{(T)}$

A1R6S4
SPMWHT541MP5WKS0S4 A1R6S4 01 ||| GLAZC4001 / 1001 / 10,000 pcs
 Mr 5ux

Aluminum Vinyl Packing Bag

${ }^{-74}$
 A1R6S4

SPMWHT541MP5WKS0S4A1R6S4 0 ||| GLAZC4001 / 1001 / 10,000 pcs ||| -ansuy

SAMSUNG
b-1) Packing Process for kitting (The quantity of PKG on the Reel to be Max 2,500pcs)

Reel

Kitting ' A '

- ${ }^{(1)}$

SPMWHT541MP5WA \diamond KS4 A1 \diamond WS4 01 || GLAW94001 / 1001 / 2,500 pcs |||

Kitting ' B '

${ }^{-1} \mathrm{~N}_{\mathrm{us}}$

SPMWHT541MP5WA \diamond KS4 A1 \diamond ZS4 01

GLAW94001 / 1001 / 2,500 pcs ||

Kitting ' A '

Kitting ' B '

Aluminum Vinyl Packing Bag

Kitting ' A '
. ${ }^{2}{ }^{4}$
SPMWHT541MP5WA \diamond KS4 A1 \diamond WS4 01 ||I||| GLAW94001 / 1001 / 2,500 pcs |||

Kitting ' B '

.9415

SPMWHT541MP5WA \diamond KS4 A1 \diamond ZS4 01 |II GLAW94001 / 1001 / 2,500 pcs |||

Kitting ' A '

Kitting ' B '

${ }^{\text {. }} \mathrm{SN}_{\text {vs }} \quad$ A1 \diamond ZS4

SPMWHT541MP5WA \diamond KS4 A1 \diamond ZS4 01
||
GLAW94001 / 1001 / 2,500 pcs ||||||||||||||||||||||||||||||||||||||
[BOX Label]

Note: " \diamond " can be Nominal CCT code.

Outer Box

Material: \quad Paper (SW3B(B))

Type	Size (mm)			Note
	L	W	H	
7 inch L	245 ± 5	220 ± 5	182 ± 5	Up to 10 reels

snmsuna
b-2) Packing Process for kitting (The quantity of PKG on the Reel to be Max 10,000pcs)

Reel																																																																																															
Kitting ' A '	Kitting 'B'																																																																																														
$c=I_{u s}$ A1 \vee WS4	cilus \quad A1 2 SS4																																																																																														
SPMWHT541MP5WK \checkmark KS4 A1 \diamond WS4 01	SPMWHT541MP5WK \diamond KS4 A1 \downarrow ZS4 01																																																																																														
\|	I																																														\|	I																																															
GLAW94001 / 1001 / 10,000 pcs	GLAW94001 / 1001 / 10,000 pcs																																																																																														
\|	I																																						\|																																																								
	-ansuy																																																																																														

Aluminum Vinyl Packing Bag

Kitting ' A '

${ }^{-1} \mathrm{H}_{\text {vs }} \quad$ A1 \diamond WS 4

SPMWHT541MP5WK \diamond KS4 A1 \diamond WS4 01 || GLAW94001 / 1001 / 10,000 pcs |||

Kitting ' B '

. ${ }^{(1)}$

SPMWHT541MP5WK \diamond KS4 A1 \diamond ZS4 01 || GLAW94001 / 1001 / 10,000 pcs ||

Kitting ' A '

c ${ }^{7} \mathrm{~N}_{\text {us }}$
A1 \vee WS 4
SPMWHT541MP5WK \diamond KS4 A1 \diamond WS4 01
||
GLAW94001 / 1001 / 10,000 pcs
|||l|l|l|
[BOX Label]

Note: " \diamond " can be Nominal CCT code.

Outer Box

Material: Paper (SW3B(B))

Type	Size (mm)			Note
	L	W	H	
13 inch L	345 ± 5	378 ± 5	405 ± 5	Up to 10 reels

c) Aluminum Vinyl Packing Bag

d) Silica Gel \& Humidity Indicator Card inside Aluminum Vinyl Bag

10. Precautions in Handling \& Use

1) For over-current protection, users are recommended to apply resistors connected in series with the LEDs to mitigate sudden change of the forward current caused by shift of forward voltage.
2) This device should not be used in any type of fluid such as water, oil, organic solvent, etc. When cleaning is required, IPA is recommended as the cleaning agent. Some solvent-based cleaning agent may damage the silicone resins used in the device.
3) When the device is in operation, the forward current should be carefully determined considering the maximum ambient temperature and corresponding junction temperature.
4) LEDs must be stored in a clean environment. If the LEDs are to be stored for three months or more after being shipped from Samsung, they should be packed with a nitrogen-filled container (shelf life of sealed bags is 12 months at temperature $\left.0 \sim 40^{\circ} \mathrm{C}, 0 \sim 90 \% \mathrm{RH}\right)$.
5) After storage bag is opened, device subjected to soldering, solder reflow, or other high temperature processes must be:
a. Mounted within 672 hours (28 days) at an assembly line with a condition of no more than $30^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$, or
b. Stored at <10 \% RH
6) Repack unused devices with anti-moisture packing, fold to close any opening and then store in a dry place.
7) Devices require baking before mounting, if humidity card reading is $>60 \%$ at $23 \pm 5^{\circ} \mathrm{C}$.
8) Devices must be baked for $10 \sim 24$ hours at $60 \pm 5^{\circ} \mathrm{C}$, if baking is required.
9) The LEDs are sensitive to the static electricity and surge current. It is recommended to use a wrist band or antielectrostatic glove when handling the LEDs. If voltage exceeding the absolute maximum rating is applied to LEDs, it may cause damage or even destruction to LED devices. Damaged LEDs may show some unusual characteristics such as increase in leakage current, lowered turn-on voltage, or abnormal lighting of LEDs at low current.
10) VOCs (Volatile Organic Compounds) can be generated from adhesives, flux, hardener or organic additives used in luminaires (fixtures). Transparent LED silicone encapsulant is permeable to those chemicals and they may lead to a discoloration of encapsulant when they exposed to heat or light. This phenomenon can cause a significant loss of light emitted (output) from the luminaires. In order to prevent these problems, we recommend users to know the physical properties of materials used in luminaires and they must be carefully selected
11) Risk of sulfurization (or tarnishing)

The LED from Samsung uses a silver-plated lead frame and its surface color may change to black (or dark colored) when it is exposed to sulfur (S), chlorine (CI) or other halogen compound. Sulfurization of lead frame may cause intensity degradation, change of chromaticity coordinates and, in extreme cases, open circuit. It requires caution. Due to possible sulfurization of lead frame, LED should not be used and stored together with oxidizing substances made of materials such as rubber, plain paper, lead solder cream, etc.

Legal and additional information.

About Samsung Electronics Co., Ltd.
Samsung Electronics Co. Ltd inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and semiconductor and LED solutions. For the latest news, please visit the Samsung Newsroom at http://news.samsung.com.

Copyright © 2015 Samsung Electronics Co., Ltd. All rights reserved.
Samsung is a registered trademark of Samsung Electronics Co., Ltd
Specifications and designs are subject to change without notice. Non-metric
weights and measurements are approximate. All data were deemed correct at time of creation. Samsung is not liable for errors or omissions. All brand, product, service names and logos are trademarks and/or registered trademarks of their respective owners and are hereby recognized and acknowledged.

Samsung Electronics Co., Ltd.
95 , Samsung 2-ro
Giheung-gu
Yongin-si, Gyeonggi-do, 446-711
KOREA
www.samsungled.com

