

Thyristor High Voltage, Phase Control SCR, 50 A

PRIMARY CHARACTERISTICS						
I _{T(AV)}	50 A					
V _{DRM} /V _{RRM}	1200 V					
V _{TM} (typ.)	1.2 V					
I _{GT} (typ.)	45 mA					
T _J max.	150 °C					
Package	TO-247AD 3L					
Circuit configuration	Single SCR					

FEATURES

- AEC-Q101 qualified, meets JESD 201 class 1A whisker test
- Flexible solution for reliable AC power rectification

- Easy control peak current at charger power up to reduce passive / electromechanical components
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- On-board and off-board EV / HEV battery chargers
- Renewable energy inverters

DESCRIPTION

The VS-50TPS12 high voltage series of silicon controlled rectifiers are specifically designed for medium power switching, and phase control applications.

MAJOR RATINGS AND CHARACTERISTICS						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Peak repetitive reverse voltage	V _{RRM} / V _{DRM}		1200	V		
On-state voltage	V _T	50 A, T _J = 125 °C	1.2	V		
Average rectified forward current	I _{T(AV)}		50			
Maximum continuous RMS on-state current	I _{RMS}		79	Α		
Non-repetitive peak surge current	I _{TSM}		630			
Maximum rate of rise	dv/dt		1000	V/µs		
Operating junction and storage temperature range	T _J , T _{Stq}		-40 to +150	°C		

VOLTAGE RATINGS							
PART NUMBER	V _{RRM} / V _{DRM} , MAXIMUM REPETITIVE PEAK AND OFF-STATE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} / I _{DRM} AT 150 °C mA				
VS-50TPS12LHM3	1200	1300	70				

ABSOLUTE MAXIMUM RATINGS								
PARAMETER	SYMBOL	TEST CONDITIONS	TYP.	MAX.	UNITS			
Maximum average on-state current	I _{T(AV)}	T _C = 112 °C, 180° conduction half sine v	vave	-	50			
Maximum continuous RMS on-state current as AC switch	I _{T(RMS)}							
Peak, one-cycle non-repetitive surge current	l	10 ms sine pulse, rated V _{RRM} applied		-	530			
reak, one-cycle non-repetitive surge current	I _{TSM}	10 ms sine pulse, no voltage reapplied	Initial $T_J = T_J$	-	630			
12t for fusing	I ² t	10 ms sine pulse, rated V _{RRM} applied	maximum	-	1405	A ² s		
I ² t for fusing	I-L	10 ms sine pulse, no voltage reapplied		-	1986			
$I^2\sqrt{t}$ for fusing	l²√t	t = 0.1 ms to 10 ms, no voltage reapplie	-	19 850	A²√s			
Low level value of threshold voltage	V _{T(TO)1}				0.89	V		
High level value of threshold voltage	V _{T(TO)2}	T 405.00		-	0.97	\ \ \		
Low level value of on-state slope resistance	r _{t1}	T _J = 125 °C			6.77	0		
High level value of on-state slope resistance	r _{t2}			-	6.32	mΩ		
On-state voltage	V	50 A, T _J = 25 °C		1.2	1.32	V		
On-State Voltage	V _T	100 A, T _J = 25 °C		1.4	1.6	V		
Rate of rise of turned-on current	di/dt	T _J = 25 °C		-	150	A/µs		
Holding current	I _H	Anada augusti. 6 V registiva land T	DE °C	-	300			
Latching current	ΙL	Anode supply = 6 V, resistive load, $T_J = 25$ °C		-	350	A		
Deverge and direct leakage august	1 /1	T _J = 25 °C		-	0.05	mA		
Reverse and direct leakage current	I _{RRM} /I _{DRM}	T _J = 150 °C		-	70			
Rate of rise of off-state voltage	dv/dt	$T_J = T_J$ maximum, linear to 80 % V_{DRM} ,	R_g -k = 100 Ω	-	1000	V/µs		

TRIGGERING						
PARAMETER	SYMBOL		TEST CONDITIONS	TYP.	MAX.	UNITS
Peak gate power	P _{GM}	10 ma aina nula	se, no voltage reapplied	-	10	W
Average gate power	P _{G(AV)}	TO THS SITIE PUIS	se, no voltage reapplied	-	2.5	l vv
Peak gate current	I _{GM}					
Peak negative gate voltage	-V _{GM}			-	10	
		T _J = -40 °C	Anode supply = 6 V resistive load	-	1.6	V
Required DC gate voltage to trigger	V_{GT}	T _J = 25 °C		=	1.5]
		T _J = 150 °C		=	1	
		T _J = -40 °C		-	160	
Required DC gate to trigger	I_{GT}	T _J = 25 °C	Anode supply = 6 V resistive load	45	100	mA
		T _J = 150 °C		-	60	
DC gate voltage not to trigger	V_{GD}	T _J = 150 °C, V _{DRM} = rated value			0.2	V
DC gate current not to trigger	I_{GD}	$I_{\rm J} = 150^{\circ} \rm C, V_{\rm D}$	_{DRM} = rated value	-	3	mA

SWITCHING					
PARAMETER	SYMBOL	TEST CONDITIONS	TYP.	MAX.	UNITS
Turn-on time	t _{gt}	$I_T = 50 \text{ A}, V_D = 50 \% V_{DRM}, I_{gt} = 300 \text{ mA}, T_J = 25 \text{ °C}$	1.5	1	
Turn-off time	tq	$I_T = 50$ A, $V_D = 80$ % V_{DRM} , $dV/dt = 20$ V/µs, $t_p = 200$ µs $I_{gt} = 100$ mA, $dI/dt = 10$ A/µs, $V_R = 100$ V, $T_J = 150$ °C	92	-	μs

THERMAL AND MECHANICAL SPECIFICATIONS									
PARAMETER		SYMBOL	TEST CONDITIONS	TYP.	MAX.	UNITS			
Maximum junction and storage te	emperature range	T _J , T _{Stg}		-40	150	°C			
Maximum thermal resistance, junction to case		R_{thJC}		-	0.35				
Maximum thermal resistance, jun	Maximum thermal resistance, junction to ambient			-	40	°C/W			
Typical thermal resistance, case t	Typical thermal resistance, case to heatsink		Mounting surface, smooth, and greased	0.2	-				
Mounting torque	minimum			6 (5)		kgf · cm			
Mounting torque	maximum			12 (10)		(lbf · in)			
Marking device			Case style Super TO-247AD 3L	50TPS12LF		Н			

△R _{thJ-HS} CONDUCTION PER JUNCTION											
DEVICE	SINE HALF-WAVE CONDUCTION RECTANGULAR WAVE CO				CONDUCT	NDUCTION					
DEVICE	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	UNITS
VS-50TPS12LHM3	0.143	0.166	0.208	0.299	0.490	0.099	0.168	0.223	0.311	0.494	°C/W

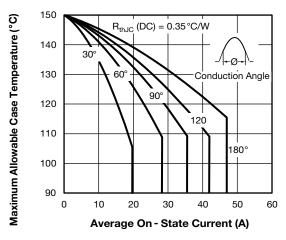


Fig. 1 - Current Rating Characteristics

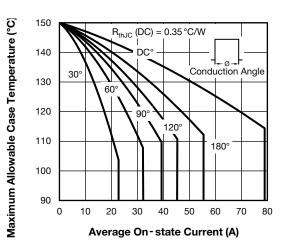


Fig. 2 - Current Rating Characteristics

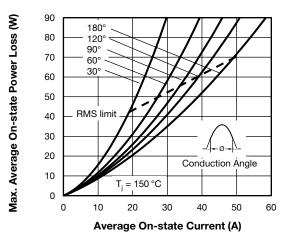


Fig. 3 - On-State Power Loss Characteristics

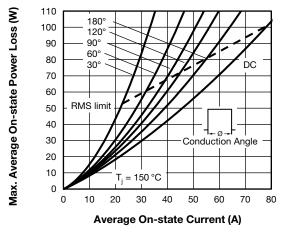


Fig. 4 - On-State Power Loss Characteristics

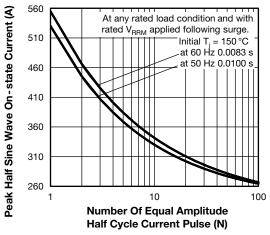


Fig. 5 - Maximum Non-Repetitive Surge Current

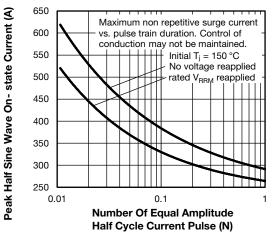


Fig. 6 - Maximum Non-Repetitive Surge Current

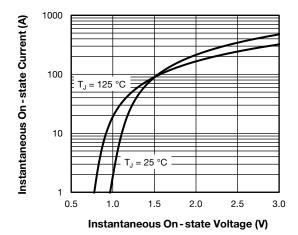


Fig. 7 - On-State Voltage Drop Characteristics

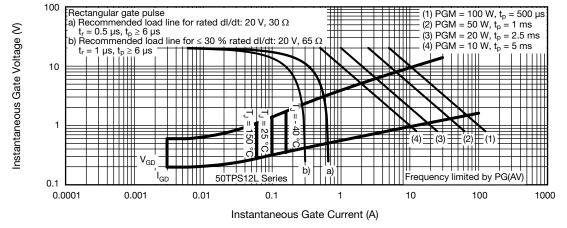


Fig. 8 - Gate Characteristics

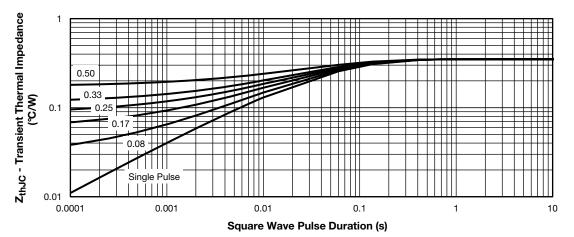
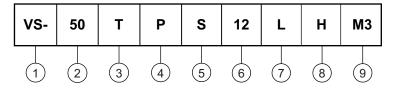



Fig. 9 - Thermal Impedance Z_{thJC} Characteristics

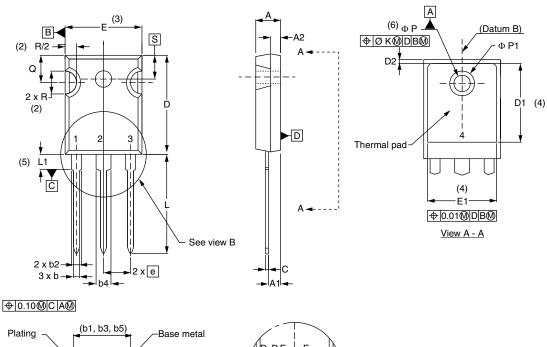
ORDERING INFORMATION TABLE

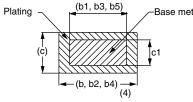
Dev	/ice	code	_

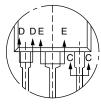
- 1 Vishay Semiconductors product
- 2 Current code (50 = 50 A)
- 3 Circuit configuration:
 - T = thyristor
- 4 P = TO-247AD package
- 5 Type of silicon:

S = standard recovery rectifier

- Voltage code (12 = 1200 V)
- 7 Package L = long lead
- 11 450 0404 155
- 8 H = AEC-Q101 qualified
- 9 M3 = halogen-free, RoHS-compliant, and terminations lead (Pb)-free


ORDERING INFORMATION (example)							
PREFERRED P/N	QUANTITY PER TUBE	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION				
VS-50TPS12LHM3	25	contact factory	Antistatic plastic tubes				


LINKS TO RELATED DOCUMENTS						
Dimensions	TO-247AD 3L	www.vishay.com/doc?95626				
Part marking information	TO-247AD 3L	www.vishay.com/doc?95007				


TO-247AD 3L

DIMENSIONS in millimeters and inches

Section C - C, D - D, E - E

View B

SYMBOL	MILLIN	IETERS	INC	HES	NOTES
STWIBOL	MIN.	MAX.	MIN.	MAX.	NOTES
Α	4.65	5.31	0.183	0.209	
A1	2.21	2.59	0.087	0.102	
A2	1.50	2.49	0.059	0.098	
b	0.99	1.40	0.039	0.055	
b1	0.99	1.35	0.039	0.053	
b2	1.65	2.39	0.065	0.094	
b3	1.65	2.34	0.065	0.092	
b4	2.59	3.43	0.102	0.135	
b5	2.59	3.38	0.102	0.133	
С	0.38	0.89	0.015	0.035	
c1	0.38	0.84	0.015	0.033	
D	19.71	20.70	0.776	0.815	3
D1	13.08	-	0.515	-	4

SYMBOL	MILLIMETERS		INCHES		NOTES
	MIN.	MAX.	MIN.	MAX.	NOTES
D2	0.51	1.30	0.020	0.051	
E	15.29	15.87	0.602	0.625	3
E1	13.46	-	0.53	-	
е	5.46 BSC		0.215 BSC		
ØK	0.254		0.010		
L	19.81	20.32	0.780	0.800	
L1	3.71	4.29	0.146	0.169	
ØΡ	3.56	3.66	0.14	0.144	
Ø P1	-	6.98	-	0.275	
Q	5.31	5.69	0.209	0.224	
R	4.52	5.49	0.178	0.216	
S	5.51 BSC		0.217 BSC		
	-		-	-	-

Notes

- (1) Dimensioning and tolerancing per ASME Y14.5M-1994
- (2) Contour of slot optional
- (3) Dimension D and E do not include mold flash. These dimensions are measured at the outermost extremes of the plastic body
- (4) Thermal pad contour optional with dimensions D1 and E1
- (5) Lead finish uncontrolled in L1
- (6) Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")
- (7) Outline conforms to JEDEC® outline TO-247 with exception of dimension A min., D, E min., Q min., S, and note 4

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.