

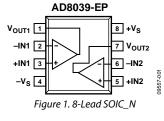
Low Power, 350 MHz Voltage Feedback Amplifier

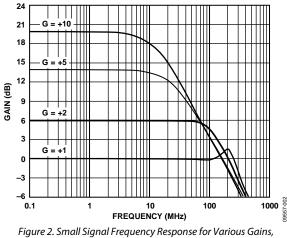
AD8039-EP

FEATURES

Low power: 1 mA quiescent current per amplifier **High speed** -3 dB bandwidth (G = +1): 350 MHz Slew rate: 425 V/µs Low cost Low noise 8 nV/√Hz at 100 kHz 600 fA/√Hz at 100 kHz Low input bias current: 750 nA maximum Low distortion -90 dB SFDR at 1 MHz -65 dB SFDR at 5 MHz Wide supply range: 3 V to 12 V Small packaging: 8-lead SOIC Supports defense and aerospace applications (AQEC standard) Extended temperature range: -55°C to +105°C **Controlled manufacturing baseline** One assembly/test site **One fabrication site Enhanced product change notification** Qualification data available on request

APPLICATIONS


Battery-powered instrumentation Filters ADC drivers Level shifting Buffering Photo multipliers


GENERAL DESCRIPTION

The AD8039-EP dual amplifier is a high speed (350 MHz) voltage feedback amplifier with an exceptionally low quiescent current of 1.0 mA per amplifier typical (1.5 mA maximum). Despite its low power and low cost, the amplifier provides excellent overall performance. Additionally, it offers a high slew rate of 425 V/ μ s and a low input offset voltage of 3 mV maximum.

The Analog Devices, Inc., proprietary XFCB process allows low noise operation (8 nV/ \sqrt{Hz} and 600 fA/ \sqrt{Hz}) at extremely low quiescent currents. Given its wide supply voltage range (3 V to 12 V), wide bandwidth, and small packaging, the AD8039-EP amplifier is designed to work in a variety of applications where power and space are at a premium.

FUNCTIONAL BLOCK DIAGRAM

gure 2. Small Signal Frequency Response for Various Gains, $V_{OUT} = 500 \text{ mV } p\text{-}p$, $V_S = \pm 5 \text{ V}$

The AD8039-EP amplifier has a wide input common-mode range of 1 V from either rail and swings to within 1 V of each rail on the output. This amplifier is optimized for driving capacitive loads up to 20 pF. If driving larger capacitive loads, a small series resistor is needed to avoid excessive peaking or overshoot.

The AD8039-EP amplifier is available in an 8-lead SOIC package and is rated to work over the extended temperature range of -55° C to $+105^{\circ}$ C.

Additional application and technical information can be found in the AD8038/AD8039 data sheet.

Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Revision History	2
Specifications	3

Absolute Maximum Ratings	5
Maximum Power Dissipation	
Output Short Circuit	5
ESD Caution	5
Typical Performance Characteristics	6
Outline Dimensions	7
Ordering Guide	7

REVISION HISTORY

2/11—Revision 0: Initial Version

SPECIFICATIONS

 T_{A} = 25°C, V_{S} = ±5 V, R_{L} = 2 k $\Omega,$ gain = +1, unless otherwise noted.

Table 1.

Parameter	Test Conditions/Comments	Min	Тур	Мах	Unit
DYNAMIC PERFORMANCE					
–3 dB Bandwidth	$G = +1$, $V_{OUT} = 0.5 V p-p$, T_{MIN} to T_{MAX}	300	350		MHz
	G = +2, V _{OUT} = 0.5 V p-p		175		MHz
	G = +1, V _{OUT} = 2 V p-p		100		MHz
Bandwidth for 0.1 dB Flatness	G = +2, V _{OUT} = 0.2 V p-p		45		MHz
Slew Rate	$G = +1$, $V_{OUT} = 2 V$ step, $R_L = 2 k\Omega$	400	425		V/µs
		300	325		V/µs
Overdrive Recovery Time	G = +2, 1 V overdrive		50		ns
Settling Time to 0.1%	$G = +2$, $V_{OUT} = 2 V$ step		18		ns
NOISE/HARMONIC PERFORMANCE					
SFDR					
Second Harmonic	$f_c = 1 \text{ MHz}$, $V_{OUT} = 2 \text{ V p-p}$, $R_L = 2 \text{ k}\Omega$		-90		dBc
Third Harmonic	$f_c = 1 \text{ MHz}, V_{OUT} = 2 \text{ V p-p}, R_L = 2 \text{ k}\Omega$		-92		dBc
Second Harmonic	$f_c = 5 \text{ MHz}, V_{OUT} = 2 \text{ V p-p}, R_L = 2 \text{ k}\Omega$		-65		dBc
Third Harmonic	$f_c = 5 \text{ MHz}, V_{OUT} = 2 \text{ V } \text{ p-p}, \text{ RL} = 2 \text{ K}\Omega$		-70		dBc
	f = 5 MHz, $G = +2$		-70 -70		dB
Crosstalk, Output-to-Output					
Input Voltage Noise	f = 100 kHz		8		nV/√Hz
Input Current Noise	f = 100 kHz		600		fA/√Hz
DC PERFORMANCE					
Input Offset Voltage	$T_A = 25^{\circ}C$		0.5	3	mV
	T _{MIN} to T _{MAX}			4.5	mV
Input Offset Voltage Drift			4.5		μV/°C
Input Bias Current	$T_A = 25^{\circ}C$		400	750	nA
	T _{MIN} to T _{MAX}			2.0	μΑ
Input Bias Current Drift			3		nA/°C
Input Offset Current			±25		nA
Open-Loop Gain	$V_{OUT} = \pm 2.5 V$		70		dB
INPUT CHARACTERISTICS					
Input Resistance			10		MΩ
Input Capacitance			2		pF
Input Common-Mode Voltage Range	$R_L = 1 \ k\Omega$		±4		v
Common-Mode Rejection Ratio	$V_{CM} = \pm 2.5 V, T_A = 25^{\circ}C$	61	67		dB
	$V_{CM} = \pm 2.5 \text{ V}, \text{T_{MIN} to T_{MAX}}$	59			dB
OUTPUT CHARACTERISTICS					
DC Output Voltage Swing	$R_L = 2 k\Omega$, saturated output		±4		v
Capacitive Load Drive	30% overshoot, G = +2		20		pF
POWER SUPPLY	50% 6761511660; G = 12		20		P1
Operating Range		3		12	v
Quiescent Current per Amplifier	$T_A = 25^{\circ}C$	5	1.0		
Quiescent Current per Ampliner			1.0	1.5	mA
Deuron Cumphy Deigetiers Detie	Tmin to Tmax			2.6	mA
Power Supply Rejection Ratio					-
–Supply	$T_A = 25^{\circ}C$	71	77		dB
	T _{MIN} to T _{MAX}	63			dB
+Supply	$T_A = 25^{\circ}C$	64	70		dB
	T _{MIN} to T _{MAX}	63			dB

 T_{A} = 25°C, V_{S} = 5 V, R_{L} = 2 k Ω to V_{\text{S}}/2, gain = +1, unless otherwise noted.

Table 2.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
DYNAMIC PERFORMANCE					
–3 dB Bandwidth	$G = +1$, $V_{OUT} = 0.2 V p-p$, T_{MIN} to T_{MAX}	275 300			MHz
	G = +2, V _{OUT} = 0.2 V p-p		150		MHz
	G = +1, V _{OUT} = 2 V p-p		30		MHz
Bandwidth for 0.1 dB Flatness	$G = +2, V_{OUT} = 0.2 V p-p$		45		MHz
Slew Rate	$G = +1$, $V_{OUT} = 2 V$ step, $R_L = 2 k\Omega$	340	365		V/µs
	T _{MIN} to T _{MAX}	275	305		V/µs
Overdrive Recovery Time	G = +2, 1 V overdrive		50		ns
Settling Time to 0.1%	$G = +2$, $V_{OUT} = 2 V$ step		18		ns
NOISE/HARMONIC PERFORMANCE					
SFDR					
Second Harmonic	$f_c = 1 \text{ MHz}$, $V_{OUT} = 2 \text{ V p-p}$, $R_L = 2 \text{ k}\Omega$		-82		dBc
Third Harmonic	$f_c = 1 \text{ MHz}$, $V_{OUT} = 2 \text{ V } p$ - p , $R_L = 2 \text{ k}\Omega$		-79		dBc
Second Harmonic	$f_c = 5 \text{ MHz}$, $V_{OUT} = 2 \text{ V p-p}$, $R_L = 2 \text{ k}\Omega$		-60		dBc
Third Harmonic	$f_c = 5 \text{ MHz}$, $V_{OUT} = 2 \text{ V } p$ - p , $R_L = 2 \text{ k}\Omega$		-67		dBc
Crosstalk, Output-to-Output	f = 5 MHz, G = +2		-70		dB
Input Voltage Noise	f = 100 kHz		8		nV/√Hz
Input Current Noise	f = 100 kHz		600		fA/√Hz
DC PERFORMANCE					
Input Offset Voltage	$T_A = 25^{\circ}C$		0.8	3	mV
	T _{MIN} to T _{MAX}			4.5	mV
Input Offset Voltage Drift			3		μV/°C
Input Bias Current	$T_A = 25^{\circ}C$		400	750	nA
	T _{MIN} to T _{MAX}			2.0	μA
Input Bias Current Drift			3		nA/°C
Input Offset Current			±30		nA
Open-Loop Gain	$V_{OUT} = \pm 2.5 V$	70			dB
INPUT CHARACTERISTICS					
Input Resistance			10		MΩ
Input Capacitance		2			pF
Input Common-Mode Voltage Range	$R_L = 1 \ k\Omega$		1.0 to 4.	0	V
Common-Mode Rejection Ratio	$V_{CM} = \pm 1 V, T_A = 25^{\circ}C$	59 65			dB
-	$V_{CM} = \pm 1 V$, T_{MIN} to T_{MAX}	59			dB
OUTPUT CHARACTERISTICS					
DC Output Voltage Swing	$R_{L} = 2 k\Omega$, saturated output	0.9 to 4.1		V	
Capacitive Load Drive	30% overshoot, G = +2	20			pF
POWER SUPPLY			-		
Operating Range		3		12	v
Quiescent Current per Amplifier	$T_A = 25^{\circ}C$		0.9	1.5	mA
Power Supply Rejection Ratio		65	71		dB

ABSOLUTE MAXIMUM RATINGS

Table 3.

1 4010 01			
Parameter	Rating		
Supply Voltage	12.6 V		
Power Dissipation	See Figure 3		
Common-Mode Input Voltage	±Vs		
Differential Input Voltage	±4 V		
Storage Temperature Range	–65°C to +125°C		
Operating Temperature Range	–55°C to +105°C		
Lead Temperature (Soldering, 10 sec)	300°C		

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

MAXIMUM POWER DISSIPATION

The maximum safe power dissipation in the AD8039-EP package is limited by the associated rise in junction temperature (T_j) on the die. The plastic encapsulating the die locally reaches the junction temperature. At approximately 150°C, which is the glass transition temperature, the plastic changes its properties. Even temporarily exceeding this temperature limit may change the stresses that the package exerts on the die, permanently shifting the parametric performance of the AD8039-EP. Exceeding a junction temperature of 175°C for an extended time can result in changes in the silicon devices, potentially causing failure.

The still-air thermal properties of the package and PCB (θ_{JA}), ambient temperature (T_A), and total power dissipated in the package (P_D) determine the junction temperature of the die. The junction temperature can be calculated as

$$T_J = T_A + (P_D \times \theta_{JA})$$

The power dissipated in the package (P_D) is the sum of the quiescent power dissipation and the power dissipated in the package due to the load drive for all outputs. The quiescent power is the voltage between the supply pins (V_S) multiplied by the quiescent current (I_S). Assuming the load (R_L) is referenced to midsupply, the total drive power is $V_S/2 \times I_{OUT}$, some of which is dissipated in the package and some in the load ($V_{OUT} \times I_{OUT}$). The difference between the total drive power and the load power is the drive power dissipated in the package.

 $P_{D} = quiescent power + (total drive power - load power)$ $P_{D} = [V_{S} \times I_{S}] + [(V_{S}/2) \times (V_{OUT}/R_{L})] - [V_{OUT}^{2}/R_{L}]$

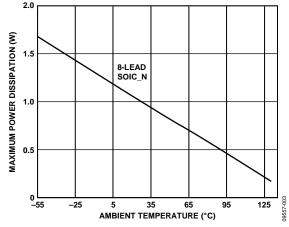


Figure 3. Maximum Power Dissipation vs. Temperature for a 4-Layer Board

RMS output voltages should be considered. If R_L is referenced to $-V_S$, as in single-supply operation, then the total drive power is $V_S \times I_{OUT}$. If the rms signal levels are indeterminate, consider the worst case, when $V_{OUT} = V_S/4$ for R_L to midsupply.

$$P_D = (V_S \times I_S) + (V_S/4)^2 / R_L$$

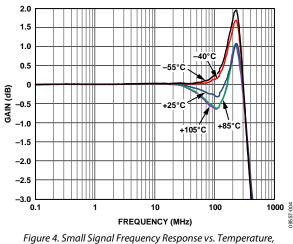
In single-supply operation with $R_{\rm L}$ referenced to $-V_{\text{S}}$, worst case is $V_{\rm OUT}$ = $V_{\text{S}}/2.$

Airflow increases heat dissipation, effectively reducing θ_{JA} . In addition, more metal directly in contact with the package leads from metal traces, throughholes, ground, and power planes reduces θ_{JA} .

Figure 3 shows the maximum safe power dissipation in the package vs. the ambient temperature for the 8-lead SOIC_N (125°C/W) on a JEDEC standard 4-layer board. θ_{JA} values are approximations.

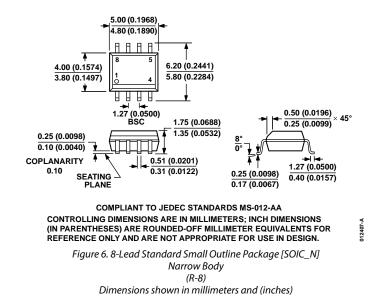
OUTPUT SHORT CIRCUIT

Shorting the output to ground or drawing excessive current from the AD8039-EP will likely cause a catastrophic failure.


ESD CAUTION


ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS


 $V_{S}=\pm 5 \text{ V}, C_{L}=5 \text{ pF}, R_{G}=R_{F}=1 \text{ k}\Omega, R_{L}=2 \text{ k}\Omega, \text{ frequency}=1 \text{ MHz}, T_{A}=-55^{\circ}\text{C} \text{ to }+105^{\circ}\text{C}, \text{ unless otherwise noted}.$

 $Gain = +1, V_s = \pm 5 V, V_{OUT} = 500 \text{ mV } p-p$

OUTLINE DIMENSIONS

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
AD8039SRZ-EPR7	–55°C to +105°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8

 1 Z = RoHS Compliant Part.

NOTES

©2011 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D09557-0-2/11(0)

www.analog.com

Rev. 0 | Page 8 of 8

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

AD8039ARZ AD8039ARTZ-REEL7 AD8039ARZ-REEL7 AD8039ARZ-REEL AD8039ART-EBZ AD8039SRZ-EPR7