
Overview

The Pico-10DOF-IMU is an IMU sensor expansion module specialized for Raspberry Pi

Pico. It incorporates sensors including a gyroscope, accelerometer, magnetometer,

and baroceptor, and uses an I2C bus for communication.

Combined with the Raspberry Pi Pico, it can be used to collect environment sensing

data like temperature and barometric pressure or to easily DIY a robot that detects

motion gestures and orientations.

Feature

• Standard Raspberry Pi Pico header supports Raspberry Pi Pico series.

• Onboard MPU9250 (3-axis gyroscope, 3-axis accelerometer, and 3-axis

magnetometer) for detecting motion gesture, orientation, and magnetic field.

• Onboard LPS22HB barometric pressure sensor, for sensing the atmospheric pressure

of the environment.

• Provides online complete manual and resources (example programs such as

Raspberry Pi Pico C/C++ and Micro Python).

Specifications
Sensor Parameters

Acceslerometer

Resolution: 16 bits

Measuring range (optional): ±2, ±4, ±8, ±16g

Operating current: 450uA

Gyroscope

Resolution: 16 bits

Measuring range (optional): ±250, ±500, ±1000, ±2000°/sec

Operating current: 3.2mA

Magnetometer

Resolution: 14 bits

Measuring range: ±4800µT

Operating current: 280uA

Baroceptor

Measuring range: 260 ~ 1260hPa

Measuring accuracy (ordinary temperature): ±0.025hPa

Measuring speed: 1Hz - 75Hz

Electric Parameters

Operating voltage 5V

Hardware Description

• Pico-10DOF-IMU has three revisions:

o 1. USB silkscreen update, add XYZ axis silkscreen and add 0R resistor for power

management.

o 2. The FSYNC, ICM.INT, and LPS.INT pins are respectively connected to two

groups of GPIOs with 0-ohm resistors to avoid GPIO conflicts when sharing with

other modules.

o 3. Use MPU9250 instead of ICM20948, and change the silkscreen name to Pico-

10DOF-IMU Rev2.1.

Hardware Connection

1. Note that the USB Logo on the Pico-10DOF-IMU Rev2.1 corresponds to the USB

connection direction of the Raspberry Pi Pico.

2. When downloading the C program, be sure to press and hold the BOOT key before

connecting the USB cable.

Axial Description

The axes of the accelerometer, gyroscope, and magnetometer on the MPU9250 are

shown in the figure below. The magnetometer on the MPU9250 will be interfered with

by hard magnetic, so when the data read by the magnetometer is fitted with an

https://www.waveshare.com/wiki/File:Pico-gps-l76b.jpg
https://www.waveshare.com/wiki/File:Pico-gps-l76b.jpg�

ellipsoid, the sphere is off-center and does not Circle. This will bring an initial magnetic

field offset to the magnetometer, making the magnetometer data eccentric. The

magnetometer needs to be initialized when the power is turned on. Please refer to the

initialization chapter below.

Pinout

https://www.waveshare.com/wiki/File:Pico_10DOF_IMU_Spe01.jpg

1. Pico-10DOF-IMU Rev2.1 uses GPIO as shown in the figure above, in which SDA

(GPIO6), SCL (GPIO7) pins are fixedly connected, MPU9250 INT (GPIO4), FSYNC

(GPIO22), LPS22HB INT (GPIO5) can be connected through 0R The resistance change

connection pins are MPU9250 INT (GPIO22), FSYNC (GPIO16), LPS22HB INT (GPIO3),

click to view the schematic diagram for details.

2. The 40Pin of Pico-10DOF-IMU Rev2.1 is powered by the VSYS pin of Raspberry Pi

Pico by default. If you want to turn off the 10DOS power supply, you can solder the 0R

of R13 to R15 so that you can use the GPIO14 of Raspberry Pi Pico to turn on /off the

10DOF power supply. Please click to view the schematic diagram for details.

3. If you want to use the 3.3V of Pico as the power supply, you can solder the 0R of

R13 to R12. Please click to view the schematic diagram for details.

4. If you want to remove the LED of Pico-10DOF-IMU Rev2.1 and the 0R on the R11,

you can click to view the schematic diagram for details.

I2C Bus

• The Pico-10DOF-IMU onboard MPU9250 uses the I2C bus for communication. The

read and write timing diagram is shown in the figure below. For more details, please

refer to datasheet.

https://www.waveshare.com/w/upload/e/ec/Pico-10DOF-IMU_Sch.pdf
https://www.waveshare.com/w/upload/e/ec/Pico-10DOF-IMU_Sch.pdf
https://www.waveshare.com/w/upload/e/ec/Pico-10DOF-IMU_Sch.pdf
https://www.waveshare.com/w/upload/e/ec/Pico-10DOF-IMU_Sch.pdf
https://www.waveshare.com/w/upload/a/aa/MPU9250.PDF
https://www.waveshare.com/wiki/File:Pico-10DOF-IMU-details.jpg

1. Raspberry Pi Pico, as the Master device, pulls down SDA successively, and the SCL

pin initiates the START condition of the I2C bus, and then writes the device

address (7bits) and write command (1bit) with a total of 8 bits of data. If the pin is

connected correctly, 10ODF is used as the slave device. Send an ACK response.

https://www.waveshare.com/wiki/File:Pico_10DOF_IMU_Spec001.jpg

2. Raspberry Pi Pico continues to write the register address (RA) and register value

(DATA) respectively and waits for the ACK response. After writing, the Raspberry

Pi Pico pulls up SCL successively, and the SDA pin sends a STOP condition.

3. If the Raspberry Pi Pico reads the DATA of the register (RA), when writing RA and

waiting for the ACK response, it re-initiates the START condition, and then writes

the device address (7bits) and the read command (1bit) for a total of 8bits and

waits for the ACK response. 10DOF returns to DATA. After Pico receives DATA,

keep SDA high.

4. Please refer to the burst Read/Write Sequence in the figure above for the

continuous write register value.

Outline Dimensions

Environment Building

• We test the code with Arduino IDE and Thony, click to download the related IDE, and

open them after installation.

1. Install Pico SDK on Arduino IDE, click Tools->Board->Boards Manager, then search

"Raspberry Pi Pico", and find the corresponding libraries to install.

https://www.arduino.cc/
https://thonny.org/
https://www.waveshare.com/wiki/File:Pico-10DOF-IMU-details-size02.jpg

2. Please refer to Micropython official document and set up python environment,

select the Raspberry Pi Pico device in Thonny's Tools->Options->Interprete, as shown

as below.

https://www.raspberrypi.com/documentation/microcontrollers/micropython.html
https://www.waveshare.com/wiki/File:Pico_10dof_imu_spec40.jpg
https://www.waveshare.com/wiki/File:Pico-GPS-002.jpg
https://www.waveshare.com/wiki/File:Pico_10dof_imu_spec40.jpg
https://www.waveshare.com/wiki/File:Pico-GPS-002.jpg

Demo Download

1. Click to download sample demo.

2. Unzip the sample demo, click .ino directly to open the Arduino sample demo, and

upload the Micorpython sample demo to the Pico file system, as shown in the

figure.

Demo Usage

Arduino

1. Press and hold the BOOT button on the Pico and then connect the USB cable, open

the .ino sample demo, click the menu bar and select Tools->Board->Raspberry Pi Pico.

As shown in the figure below.

https://www.waveshare.com/w/upload/a/aa/Pico-10dof-imu_code.zip
https://www.waveshare.com/wiki/File:Thonny03.jpg

2. Click upload under Edit to download the code to Pico. After downloading, open the

device manager to view the virtual COM number of Pico, and then select the

corresponding COM number in Tools->Ports.

3. Click to open Monitor Serial at the top right of the Arduino IDE, and follow the serial

port prompts to initialize the Pico-10DOF-IMU. For details, please refer to the Pico-

https://www.waveshare.com/wiki/File:Pico-GPS-003.jpg

10DOF-IMU initialization chapter.

Micropython

• Open the mpu9250.py, lps22hb.py scripts in the Pico file system, and click Run to run,

where mpu9250.py will output relevant information to initialize the configuration of

Pico-10DOF-IMU, as shown in the figure below, please refer to Pico-10DOF for the

detailed process -IMU initialization chapter.

https://www.waveshare.com/wiki/File:Pico-GPS-004.jpg

Initialization

• The magnetometer on the MPU9250 will be interfered with by the hard magnetic

field. When the ellipsoid fitting is performed on the data read by the magnetometer,

the sphere is off-center and not round. This will bring an initial magnetic field offset to

the magnetometer, making the magnetometer Data eccentricity, as shown in the

figure below:

https://www.waveshare.com/wiki/File:Pico-GPS-005.jpg

• After power-on, initialize according to the prompt information sent by the serial port.

Calculate the eccentric offset value of the magnetometer, as shown in the following

figure:

Demo Analysis

This section briefly analyzes the mpu9250.py sample program.

• mpu9250 = MPU9250() instantiates the MPU9250 class. The instantiation process will

include gyroscope initialization and geomagnetic calibration.

https://www.waveshare.com/wiki/File:Pico-GPS-006.png
https://www.waveshare.com/wiki/File:Pico-GPS-007.jpg
https://www.waveshare.com/wiki/File:Pico-GPS-006.png
https://www.waveshare.com/wiki/File:Pico-GPS-007.jpg

• mpu9250.readAccel() , mpu9250.readGyro() , mpu9250.readMagnet() respectively read

raw data such as accelerometer, gyroscope, geomagnetometer, etc.

• mpu9250.imuAHRSupdate() is the mahony algorithm used to convert the values of

the accelerometer, gyroscope and geomagnetometer into Euler angles (pitch, roll,

yaw). Please click the link to view the detailed process of the mahony algorithm

• Euler angles are shown in the figure below:

mpu9250 = MPU9250()

try:

 while True:

 mpu9250.readAccel()

 mpu9250.readGyro()

 mpu9250.readMagnet()

 mpu9250.imuAHRSupdate(Gyro[0]/32.8*0.0175, Gyro[1]/32.8*0.0175,Gyro[2]/3
2.8*0.0175,

 Accel[0],Accel[1],Accel[2], Mag[0], Mag[0], Mag[2])

 pitch = math.asin(-2 * q1 * q3 + 2 * q0* q2)* 57.3

 roll = math.atan2(2 * q2 * q3 + 2 * q0 * q1, -2 * q1 * q1 - 2 * q2* q2
+ 1)* 57.3

https://ahrs.readthedocs.io/en/latest/filters/mahony.html
https://www.waveshare.com/wiki/File:Pico-GPS-008.jpg

 yaw = math.atan2(-2 * q1 * q2 - 2 * q0 * q3, 2 * q2 * q2 + 2 * q3 * q3
- 1) * 57.3

 print("\r\n /---
--/ \r\n")

 print('\r\n Roll = %.2f , Pitch = %.2f , Yaw = %.2f\r\n'%(roll,pitch,yaw
))

 print('\r\nAcceleration: X = %d , Y = %d , Z = %d\r\n'%(Accel[0],Accel[
1],Accel[2]))

 print('\r\nGyroscope: X = %d , Y = %d , Z = %d\r\n'%(Gyro[0],Gyro[1]
,Gyro[2]))

 print('\r\nMagnetic: X = %d , Y = %d , Z = %d'%((Mag[0]),Mag[1],Mag
[2]))

 time.sleep(0.1)

except KeyboardInterrupt:

 sys.exit()

Resource

Documents

• Schematic Disgram

• ICM20948 Datasheet

• LPS22HB Specification

• LSF0204d Specification

• MPU9250

Demo Codes

• Demo code

Software

• Thonny-3.3.3.zip

https://www.waveshare.com/w/upload/f/f1/Pico-10DOF-IMU_Sch2.pdf
https://www.waveshare.com/w/upload/5/57/ICM-20948-v1.3.pdf
https://www.waveshare.com/w/upload/2/20/Lps22hb.pdf
https://www.waveshare.com/w/upload/c/cc/Lsf0204d.pdf
https://www.waveshare.com/w/upload/a/aa/MPU9250.PDF
https://www.waveshare.com/w/upload/a/aa/Pico-10dof-imu_code.zip
https://www.waveshare.com/w/upload/7/73/Thonny-3.3.3.zip

• Zimo221.7z

• Image2Lcd

Download Firmware

https://www.waveshare.com/w/upload/c/c6/Zimo221.7z
https://www.waveshare.com/w/upload/b/bd/Image2Lcd2.9.zip

	Overview
	Feature
	Specifications
	Hardware Description
	Hardware Connection
	Axial Description
	Pinout
	I2C Bus

	Outline Dimensions
	Environment Building
	Demo Download
	Demo Usage
	Arduino
	Micropython
	Initialization
	Demo Analysis

	Resource
	Documents
	Demo Codes
	Software
	Download Firmware

