


## easyRadio eRIC-LoRa Long Range Datasheet



Product image for illustration Purposes only

The easyRadio eRIC-LoRa (Long Range) RF transceiver module uses Chirped Spread Spectrum (CSS) modulation together with DSP (Digital Signal Processing) to achieve greater range than traditional devices using OOK, FSK or GFSK modulation.

In addition, sensitivity and blocking performance are improved giving high interference immunity whilst still offering low power consumption.

The module is a complete sub-system that combines a high performance low power RF transceiver, a microcontroller and a voltage regulator.

Key operating parameters can be changed and configured by sending simple 'text' (ASCII character) commands to the module.

#### **Features**

Chirped Spread Spectrum technology
Pin compatible with eRIC series RF modules
uFL RF connector for remote antennas
Point to Point communication
Half duplex transparent Serial Data Input and Output
Up to 180 bytes per packet
Familiar easyRadio commands
Built in temperature sensor
'Flash' firmware upgrades. New features and updates can
be quickly programmed using LPRS tools

### **Key Parameters**

Frequency Range: 860 – 1000MHz Frequency Bands: 868/915MHz Receiver sensitivity: down to -137dBm

Multi-channel operation

RF Power output: up to +20dBm (100mW) Receive current consumption: 15mA

RSSI dynamic range: 127dB

Line of Sight (LoS) range - 5km-10km +

## **User Programmable Options:**

Spreading factors 6: to 12 Error correction rate

Selectable Bandwidth: 125, 250, 500kHz

Over air bit rates of up to 300 kbps offer effective 37.5

kbps data rate

Host Data Rate: 2.4kbps - 115.2kbps

The variable spreading factor and error correction rate allow the user to optimise the bandwidth to provide a balance between sensitivity (range) and data rate.

## **Applications**

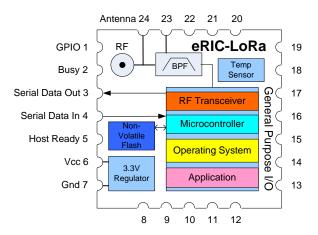
Required range is above 1km or transceiver is in poor RF location

Suburban security alarms - void buildings, caravan or car storage sites, warehouses

Rural security, farm buildings/equipment, livestock monitoring, remote irrigation pumps

Data collection and monitoring over a wide area

eRic\_LoRa\_Datasheet\_VI.3.docx




#### eRIC-LoRa Transceiver

The easyRadio eRIC-LoRa RF transceiver module is a complete sub-system that combines a high performance low power RF transceiver, a microcontroller and a voltage regulator.

The Serial Data Input (SDI) and Serial Data Output (SDO) by default operate at the standard 19,200 Baud and two handshake lines provide optional flow control to and from the host. The easyRadio Transceiver can accept and transmit up to 180 bytes of data, which it buffers internally before transmitting in an efficient over-air code format.

Any other eRIC-LoRa transceiver, within range and on the same settings, that 'hears' the transmission will decode the message and place the recovered data within a receive buffer that can then be downloaded to the receiving host for processing and interpretation. Radio transmission and reception is bi-directional (half duplex) i.e. transmit OR receive but not simultaneously. Extra internal buffers however, allow the user to upload data while a download is in progress giving the appearance of fully duplex data flow.



#### Pin/Pad Description

| Pad No | Name       | Description                  | Notes                                                               |
|--------|------------|------------------------------|---------------------------------------------------------------------|
| 1      | GPIO       | General Purpose digital I/O  |                                                                     |
| 2      | Busy       | Clear to Send (CTS) function | Indicates that transceiver is ready to receive serial data from the |
|        |            | Digital output               | Host.                                                               |
|        |            |                              | Low – Transceiver Ready, High – Transceiver not Ready               |
| 2      | GPIO       | General Purpose digital I/O  | Optional use as GPIO or A-D Input                                   |
| 3      | SDO        | Rx Serial Data Out (Default) | Digital output - Connect to Host serial input                       |
| 4      | SDI        | Tx Serial Data In (Default)  | Digital input - Connect to Host serial output                       |
| 5      | Host Ready | Request to Send (RTS)        | Used to indicate that Host is ready to receive serial data from the |
|        |            | function Digital input       | Transceiver                                                         |
|        |            |                              | Low - Host Ready, High - Host Not Ready                             |
|        |            |                              | Weak (35k) pull down enabled. Optional A-D Input                    |
| 6      | Vcc        | Operating Supply Voltage     | Internal 3.3V regulator operates from +2.4V to +6V Input. Supply    |
|        |            |                              | should be 'clean', noise and ripple free                            |
| 7      | Gnd        | Power Ground                 | 0V Ground                                                           |
| 8 - 22 | GPIO       | General Purpose digital I/O  | Connect as described.                                               |
| 22     | Reset      |                              | Optional hardware Reset pin/pad. TBA                                |
| 23     | RF Gnd     | RF Ground – 0V               | Connect to antenna ground and local ground plane. Internally        |
|        |            |                              | connected to Power Ground 0V                                        |
| 24     | RF         | 50R RF Input/Output          | Connect to suitable antenna via 50R PCB trace or use the            |
|        |            | -                            | alternative UFL connector                                           |

#### Notes

3.3V Regulator will function (no regulation) below drop out voltage. Internal RF IC can operate down to 2.4V and still provide rated RF power output.

GPIO Pins/pads are configured (by default) on power up or upon 'Reset' as inputs with internal weak pull downs. Therefore, exercise caution when connecting to external circuitry.

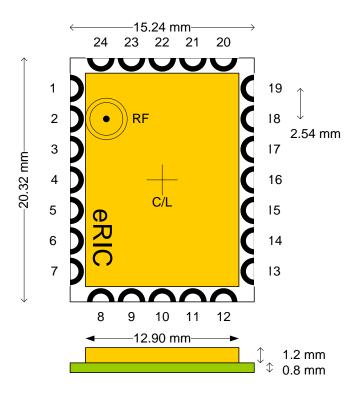
eRic\_LoRa\_Datasheet\_V1.3.docx Page 2 of 10

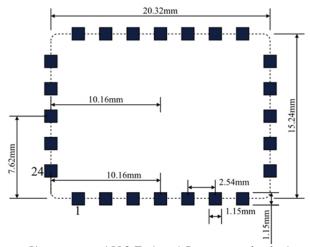


Pins/Pads I-7 are physically (Pin/pad sequence) and electrically compatible with easyRadio eRA400/900 Transceivers.

Interrupt function available on Pins/pad 1, 2, 5, 17, 18, 19

### Mechanical





Figure I Mechanical Drawing

### **PCB Layout Notes**

Pitch of the castellated connection pads is 2.54mm. Pads 4 & 16 and 10 & 22 are on centre line (C/L) of module

It is recommended that the module is mounted on a double sided PCB and that the area below the module be flooded with additional copper ground plane. This should be connected to pad 23 (RF Ground) and pad 7 (Power Gnd).

The recommended pad layout is shown below. Pads should be solid with no hole.



eRIC is designed for reflow soldering. Please contact LPRS Technical Department for further details and the suggested thermal profiles.

eRic\_LoRa\_Datasheet\_V1.3.docx Page 3 of 10



## **Absolute Maximum Ratings**

 $\begin{array}{lll} \mbox{Operating Temperature Range} & -40^{\circ} \mbox{ C to } +85^{\circ} \mbox{ C} \\ \mbox{Storage Temperature Range} & -40^{\circ} \mbox{ C to } +85^{\circ} \mbox{ C} \\ \mbox{Vcc} & -0.3 \mbox{ to } +5.5 \mbox{ Volts} \\ \mbox{All Other Pins (N.B.)} & -0.3 \mbox{ to } +3.3 \mbox{ Volts} \\ \end{array}$ 

Antenna +10dBm - Should be protected to prevent damage from ESD

Performance Data: eRIC-LoRa. Supply +5.0 Volt ± 5%, Temperature 20° C

| DC Parameters           | Pin | Min  | Typical       | Max   | Units | Notes                             |
|-------------------------|-----|------|---------------|-------|-------|-----------------------------------|
| Supply Voltage (Vcc)    | 6   | 2.5  | 3.3-5.0       | 6.0   | Volts |                                   |
|                         |     |      |               |       |       | 40mA at +10dBm                    |
| Transmit supply current | 6   | 18   | 90            | 125   | mΑ    | 90mA at +17dBm                    |
| ,                       |     |      |               |       |       | I25mA at +20dBm                   |
| Receive supply current  | 6   |      | 10            | 11.2  | mA    | 2                                 |
| Interface Levels        |     |      |               |       |       |                                   |
| Data Output Logic I     |     |      | 3.1           |       | Volts | 10k load to +Vcc supply           |
| Data Output Logic 0     |     |      | 0.1           |       | Volts | 10k load to +Vcc supply           |
| Logic Output Current    |     |      |               | 25    | mA    |                                   |
| Data Input Logic I      |     | 2.0  |               | 3.6   | Volts | See Notes                         |
| Data Input Logic 0      |     |      |               | 0.2   | Volts |                                   |
| Input Pull-ups          |     |      | 100           |       | ΚΩ    | I                                 |
| RF Parameters           |     |      |               |       |       |                                   |
| Antenna Impedance       | 24  |      | 50            |       | Ohms  |                                   |
|                         |     |      |               |       |       | Please refer to local ISM licence |
| Frequency Range         |     | 860  | -             | 1000  | MHz   | free radio regulations.           |
|                         |     |      |               |       |       | See ER Frequency commands         |
| Frequency Regional      | EU  | 868  | 869.85        | 870   | MHz   | See ER Configuration commands     |
| rrequericy Regional     | USA | 902  | 915           | 928   | MHz   | See Lix Configuration commands    |
|                         |     |      |               |       |       | <u> </u>                          |
| RF Power Output         | 24  |      | +7            | +7    | dBm   | 868MHz - 50Ω load                 |
| Ni Tower Output         | 24  |      | +17           | +20   | dBm   | 915MHz - 50Ω load                 |
| Frequency accuracy      |     |      | ±10           |       | ppm   | Overall                           |
| Harmonics/Spurious      |     |      | -47           | < -36 | dBm   | Meets EN 300 220-3                |
| Emissions               |     |      | /             | \ -30 |       | rieets Livi 300 220-3             |
| Over Air Bit Rate       |     |      |               | 300   | Kbps  |                                   |
| Receiver                |     | SF6  |               | SF12  |       | <u> </u>                          |
|                         |     | -122 |               | -137  | dBm   | At 125kHz bandwidth (SF 6 - 12)   |
| Sensitivity             |     | -119 |               | -134  | dBm   | At 250kHz bandwidth               |
|                         |     | -116 |               | -131  | dBm   | At 500kHz bandwidth               |
| Serial Data Rate        |     | 2.4  | 19.2          | 115.2 | Kbps  | Host interface                    |
| Logic Timing            |     |      |               |       |       |                                   |
| Initial Power Up Time   |     |      | I             |       | mS    | 2,3                               |
| Mechanical              |     |      |               |       |       |                                   |
| Size                    |     |      | 15 x 20 x 2.2 |       | mm    |                                   |
| Pin Pitch               |     |      | 2.54          |       | mm    | (Standard 0.1 Inches)             |
| Weight                  |     |      | 1.5           |       | grams |                                   |

## Notes:

- 1. The 'Host Ready Input' and the 'Serial Data Input' have 'weak' internal pull-ups enabled.
- 2. The transceiver will then be ready to receive (default) or transmit. It would normally be left in this powered state ready to receive data.
- 3. During power up the 'Busy' Output line goes high and then goes low when ready for use.

eRic\_LoRa\_Datasheet\_VI.3.docx Page 4 of 10



#### Notes

The module operates internally from the output of an on-board 3.3 Volt low drop regulator. This regulator will still provide an (unregulated) output below its drop out voltage, down to the minimum operating voltage (1.8V) of the RF IC which at 2.4V allows up to +20dBm RF output.

The logic levels of the input/output pins are therefore between 0 Volt and the actual output voltage of the internal regulator. Outputs will drive external logic operating at 3.3 Volts. Resistors (10k typical) should be fitted in series with input data lines when interfacing to external 5V logic outputs to prevent driving excess current into inputs and thus damaging them.

The internal Vreg is not brought out to a specific pin/pad. Should there be need to connect external pull up resistors then connection should be made to a spare GPIO pin/pad configured as a 'High' output.

The serial inputs and outputs are intended for connection to a UART or similar low voltage logic device. Do not connect any of the inputs or outputs directly to an RS232 port. The transceiver module may be permanently damaged by the voltages (+/- I2V) present on RS232 signal lines.

When handshaking is enabled the 'Host Ready' Input should be held at 0 Volt (Ground) in the idle state.

On power up the transceiver is, by default configured to receive data.

#### **Power Supply**

The supply used to power the transceiver should be 'clean' and free from ripple and noise (<20mV p-p total). It is suggested that 100nF ceramic capacitors be used to de-couple the supply close to the power pins of the transceiver. The use of 'switch mode' power supplies should generally be avoided as they can generate both conducted and radiated high frequency noise that can be very difficult to eliminate. This noise may considerably reduce the performance of any radio device that is connected or adjacent to such a supply.

#### **Antennas**

The eRIC transceiver can be used with the various common types of antenna that match the  $50\Omega$  RF Input/Output such as a monopole (whip), a tuned helical antenna, a PCB loop antenna or a ceramic 'chip' antenna.

Monopole antennas are resonant with a length corresponding to one quarter of the electrical wavelength (Lambda/4). They are very easy to implement and can simply be a 'piece of wire' or PCB track which at 434MHz should be I.6.4cms in length. This should be kept straight, in 'free space' and well away from all other circuitry, conducting objects and metalwork and should preferably be connected directly to the Antenna pin (24) of the eRIC transceiver.

If the antenna needs to be remote it should be connected via a  $50\Omega$  coaxial feeder cable or transmission line. A  $50\Omega$  transmission line can be constructed on FR4 board material by using a 3mm wide PCB track over a ground plane and this should be kept as short as possible.

The eRIC transceiver is also fitted with UFL (U.FL) RF Connector wired in parallel with pin 23 (RF Gnd) and pin 24 (RF In/Out). LPRS can supply suitable antennas fitted with matching connectors and low loss cable assemblies.

Helical antennas are also resonant and generally chosen for their more compact dimensions. They are more difficult to optimise than monopole antennas and are critical with regard to any surrounding conducting objects that can easily 'de-tune' them. They operate most efficiently when there is a substantial ground plane for them to radiate against.

PCB loop antennas are the most compact antennas but are less effective than the other types. They are also more difficult to design and must be carefully 'tuned' for best performance.

Chip antennas are attractive as they are compact and if used in accordance with the manufacturer's specifications can provide very good performance.

The Internet can provide much useful information on the design of Short Range Device (SRD) Antennas.

Please Note: To meet US FCC requirements the modules must be used with the specified antennas (TBA) that were used for testing.

eRic\_LoRa\_Datasheet\_V1.3.docx Page 5 of 10



### easyRadio eRA Configuration Command Set

Key operating parameters of eRA module can be changed and configured by sending the 'text' (ASCII character) commands detailed below. These commands can be executed using 'easyRadio Companion' software, any 'Terminal' software operating on a PC or from the host microcontroller.

The commands should be sent exactly as shown: i.e. case sensitive with no spaces between characters. Commands are not executed until the Acknowledgement sequence (ACK) is sent to and processed by the module.

To send the commands follow this procedure:

Send Command from host: e.g. ER\_CMD#U5 (Set UART BAUD to 38400)
Wait for the completion of the echo of the Command from the module. e.g. ER\_CMD#U5
Send the ACK command as the three upper case ASCII characters 'A' 'C' 'K' in sequence with no spaces

Commands ending with '?' (see below) do not require any ACK.

| Host Serial Co           | mmunication Settings                   | s |                                                                                                                    |               |               |              |
|--------------------------|----------------------------------------|---|--------------------------------------------------------------------------------------------------------------------|---------------|---------------|--------------|
| Command                  | UART Data Rate                         | ✓ | Tick Indicates Factory Default set                                                                                 | tting         |               |              |
| ER CMD#UI                | 2400                                   |   | ,                                                                                                                  |               |               |              |
| ER_CMD#U2                | 4800                                   |   |                                                                                                                    |               |               |              |
| ER CMD#U3                | 9600                                   |   |                                                                                                                    |               |               |              |
| ER CMD#U4                | 19200                                  | ✓ |                                                                                                                    |               |               |              |
| ER_CMD#U5                | 38400                                  |   |                                                                                                                    |               |               |              |
| ER_CMD#U6                | 31250                                  |   | MIDI - Musical Instrument Digital                                                                                  | Interface (No | ot supported  | by PC UARTS) |
| ER CMD#U7                | 76800                                  |   | (Not supported by PC UARTS)                                                                                        | ,             | ••            | ,            |
| ER CMD#U8                | 115200                                 |   |                                                                                                                    |               |               |              |
| ER_CMD#U?                | Get UART Value                         |   | The module replies with the curr E.g: ER_CMD#U2 - No 'ACK' is                                                      |               | ta rate value |              |
| ED CMD#470               | N. D                                   |   |                                                                                                                    | •             |               |              |
| ER_CMD#A70<br>ER_CMD#A71 | No Parity                              | ✓ | Data = 1 Start, 8 Data, No Parity                                                                                  |               |               |              |
|                          | Even Parity                            |   | Data = I Start, 8 Data, I Parity, I                                                                                |               |               |              |
| ER_CMD#A72               | Odd Parity                             |   | Data = I Start, 8 Data, I Parity, I                                                                                | Stop          |               |              |
| ER_CMD#A40               | Disable Fast ACK                       | ✓ |                                                                                                                    |               |               |              |
| ER_CMD#A41               | Enable Fast ACK                        |   | See notes below                                                                                                    |               |               |              |
| Transmit RF P            | ower Output Settings                   | 3 |                                                                                                                    |               |               |              |
|                          |                                        |   |                                                                                                                    | eRIC-         | -LoRa         | Units        |
|                          |                                        |   |                                                                                                                    | 868           | 902-928       | MHz          |
| ER_CMD#P0                |                                        |   |                                                                                                                    | -2            | -1            | dBm          |
| ER_CMD#PI                |                                        |   |                                                                                                                    | -1            | I             | dBm          |
| ER_CMD#P2                |                                        |   |                                                                                                                    | 0             | 3             | dBm          |
| ER_CMD#P3                |                                        |   |                                                                                                                    | I             | 5             | dBm          |
| ER_CMD#P4                |                                        |   |                                                                                                                    | 2             | 7             | dBm          |
| ER_CMD#P5                |                                        |   |                                                                                                                    | 3             | 9             | dBm          |
| ER_CMD#P6                |                                        |   |                                                                                                                    | 4             | П             | dBm          |
| ER_CMD#P7                |                                        |   |                                                                                                                    | 5             | 13            | dBm          |
| ER_CMD#P8                |                                        |   |                                                                                                                    | 6             | 15            | dBm          |
| ER_CMD#P9                |                                        | ✓ |                                                                                                                    | 7             | 17            | dBm          |
|                          |                                        |   | N.B. RF Power Output is restrict                                                                                   |               |               |              |
| ER_CMD#P?                | Get Power Value                        |   | The module replies with the curr                                                                                   |               | lue.          |              |
|                          |                                        |   | e.g: ER_CMD#P9 - No ACK is re                                                                                      | equired.      |               |              |
| RF Channel Se            |                                        |   |                                                                                                                    |               |               |              |
| ER_CMD#Cx                | Where x = Channel<br>Number in decimal |   | E.g. For Channel 1:  ER_CMD#C1 or  ER_CMD#C01 (leading zero) or  ER_CMD#C001  Uppercase 'C' stores value in EEPROM |               |               |              |
| ER CMD#cx                | As uppercase C                         |   | Lowercase 'c' does not store value in EEPROM                                                                       |               |               |              |
| ER_CMD#C?                | Get Channel Value                      |   | The module replies with the current channel setting E.g. ER_CMD#C9 - No ACK is required.                           |               |               |              |
| Signal Bandwid           |                                        | 1 | 10 110 / 101 101                                                                                                   | - 7           |               |              |

eRic\_LoRa\_Datasheet\_V1.3.docx



|                    |                    |             |          | Band                                                                                      | dwidth                             | Data Rate        | e @ S/F = 12                 | After sending these              |
|--------------------|--------------------|-------------|----------|-------------------------------------------------------------------------------------------|------------------------------------|------------------|------------------------------|----------------------------------|
| ER CMD#B0          | Set Signal B       | andwidth    |          | 125                                                                                       | kHz                                | 300              | bps                          | commands the Channel             |
| ER CMD#BI          |                    |             |          | 250                                                                                       | kHz                                | 600              | bps                          | number will be reset to          |
| ER CMD#B2          |                    |             | ✓        | 500                                                                                       | kHz                                | 1200             | bps                          | Channel 0                        |
| Band Plan          |                    |             |          |                                                                                           |                                    |                  |                              |                                  |
| ER CMD#b0          | 0                  |             | ✓        |                                                                                           | 869.850                            |                  | MHz                          | Band base/start frequency        |
| ER CMD#b1          | T î                |             |          |                                                                                           | 903.000                            |                  | MHz                          | Europe/ USA                      |
| Frequency Set      | tings              |             |          |                                                                                           | 705.000                            |                  | 1 11 12                      |                                  |
| ER CMD#F           | Set Abso           | lute        |          | Sets the a                                                                                | ibsolute frequ                     | iency to xxxx    | xxxx in Hex                  | Frequency of Channel 0           |
| LIC_CI ID#I        | Frequenc           |             |          |                                                                                           |                                    | C20 sets the     |                              | Trequency of Chairner o          |
|                    | Trequenc           | 7           |          |                                                                                           |                                    | 00Hz. This wi    |                              |                                  |
|                    |                    |             |          |                                                                                           | her 'b' comm                       |                  | 07011100                     |                                  |
| ER_CMD#F?          | Get curre          | ent         |          |                                                                                           |                                    |                  | as 8 bytes of                | Frequency of Channel 0           |
| 211_011157711      | Frequenc           |             |          |                                                                                           |                                    |                  | CAC20 which                  | Trequency of Chamiler o          |
|                    |                    | , , , , , , |          | is 870100                                                                                 |                                    |                  |                              |                                  |
| Spreading Fact     | or                 |             |          |                                                                                           |                                    |                  |                              | 1                                |
| op. ca.ag . acc    | S/F                | Chips       |          |                                                                                           | Bandwidth                          | kHz              | Data                         |                                  |
|                    | J                  | Jp3         |          |                                                                                           |                                    |                  | Rate                         |                                  |
|                    |                    |             |          | 125                                                                                       | 250                                | 500              |                              |                                  |
| ER CMD#s0          | 6                  | 64          |          | 9375                                                                                      | 18750                              | 37500            | bps                          | Coding Rate = I                  |
| ER CMD#s1          | 7                  | 128         |          | 5469                                                                                      | 10938                              | 21875            | bps                          |                                  |
| ER CMD#s2          | 8                  | 256         | <b> </b> | 3125                                                                                      | 6250                               | 12500            | bps                          |                                  |
| ER CMD#s3          | 9                  | 512         |          | 1758                                                                                      | 3516                               | 7031             | bps                          |                                  |
| ER CMD#s4          | 10                 | 1024        | 1        | 977                                                                                       | 1953                               | 3906             | bps                          |                                  |
| ER CMD#s5          | 11                 | 2048        | <u> </u> | 537                                                                                       | 1074                               | 2148             | bps                          |                                  |
| ER CMD#s6          | 12                 | 4096        |          | 293                                                                                       | 586                                | 1171             | bps                          |                                  |
| Miscellaneous      | 12                 | 7070        |          | 273                                                                                       | 300                                | 1171             | υps                          |                                  |
| ER CMD#R0          | Reset Mo           | odulo.      |          | Roset mo                                                                                  | dule and retr                      | rieve all Powe   | r On Reset valu              | 100                              |
| LIX_CI ID#IN       | (POR)              | dule        |          | ixeset iiio                                                                               | dule and reci                      | ieve all i owe   | i Oli Reset valt             | ies                              |
| ER CMD#RI          | Reset to           | Defaults    |          | Restores                                                                                  | all factory de                     | fault settings   |                              |                                  |
| ER CMD#AI0         | Encryptic          |             | 1        |                                                                                           |                                    | yption for P2I   | D                            |                                  |
| ER CMD#AII         | Encryption         |             | Ľ        | LINSTIO                                                                                   | prietary Life                      | yption for 1 Zi  | •                            |                                  |
| ER CMD#A11         | Handshal           |             | 1        |                                                                                           |                                    |                  |                              |                                  |
| ER_CMD#A51         | Handshal           |             | Ě        |                                                                                           |                                    |                  |                              |                                  |
| ER CMD#a00         | RSSI Off           | ding On     | 1        | Passivad                                                                                  | Received Signal Strength Indicator |                  |                              |                                  |
|                    | RSSI On            |             | Ľ        |                                                                                           |                                    |                  |                              |                                  |
| ER_CMD#a01         | K33i Oli           |             |          | Each received packet delivered is preceded by the 8 bit RSSI value of the received packet |                                    |                  |                              |                                  |
| Test Modes         |                    |             |          | раскес                                                                                    |                                    |                  |                              |                                  |
| ER_CMD#T3          | Get Firm           | waro        |          | Poturns                                                                                   | nodule firm                        | are revision s   | tring                        |                                  |
| EK_CMD#13          | _                  | ware        |          |                                                                                           | 400TRS V3.6                        | are revision s   | string                       |                                  |
| ER_CMD#T4          | Revision<br>RAW Da | to Out      |          |                                                                                           |                                    |                  |                              |                                  |
| ER_CMD#T7          |                    |             |          |                                                                                           | n the CTS pi<br>reply: -15.0'C     |                  |                              |                                  |
| LN_CIID#17         | Read on-           | •           |          | Example                                                                                   | еріу13.0 С                         | . OI 23./ C      |                              |                                  |
|                    | temperat<br>Sensor | ui E        |          |                                                                                           |                                    |                  |                              |                                  |
| ER CMD#T8          | Last Pack          | of RCCI     |          | Returns                                                                                   | ha Hay valu                        | a of the DCCI    | I (Received C:-              | nal Strength Indicator) register |
| LV_CLID#10         | Last Fack          | EL 1/331    |          |                                                                                           |                                    |                  | i (veceived 318              | nai strength indicator) register |
| ER CMD#T9          | CMD#T9 RSSI Value  |             |          | measured on the last valid packet  Return current live RSSI in HEX string                 |                                    |                  |                              |                                  |
| Other Special      |                    |             |          | Neturn Ct                                                                                 | in rent live N3                    | 51 III 1 ILA 3U1 | ш <u>б</u>                   |                                  |
| ER_CMD#L8?         | Get Sei            | rial        |          | Roturns                                                                                   | he unique 4 l                      | ovte module s    | orial number in              | Hex. E.g. 40 00 00 56            |
| LIV_CITID#LO!      | Numbe              |             |          | No ACK                                                                                    |                                    | Tre module S     | eriai ilulliDel III          | 11 ICA, L.g. TO 00 00 30         |
| Group ID Setti     |                    |             |          | IND ACK                                                                                   | i equii eu                         |                  |                              |                                  |
| ER_CMD#L7          |                    | Group ID    |          | E a ED C                                                                                  | MD#I 74570                         | sots the are:    | ıp ID as 0x4578              | 3                                |
|                    | Enable             | GI Oup ID   |          | E.g. EK_C                                                                                 | רו∪#L/43/8µ.וו                     | sets the grot    | as טx <del>4</del> 5/8 טו קו | ,                                |
| ER CMD#L7          | Disable            | - Crou-     |          | -                                                                                         |                                    |                  |                              |                                  |
| ER_CMD#L7          |                    | Group       |          |                                                                                           |                                    |                  |                              |                                  |
| 0000<br>EB CMD#L72 | ID<br>Cat. C       | ` ID        |          | D a tr 1                                                                                  | ha 1 h:::- C:                      | aus ID access    | an in Ue                     |                                  |
| ER_CMD#L7?         | _                  | Group ID    |          | Keturns t                                                                                 | ne <del>a</del> byte Gr            | oup ID numbe     | ei iii ⊓ex                   |                                  |
|                    | value              |             | I        | Ì                                                                                         |                                    |                  |                              |                                  |

eRic\_LoRa\_Datasheet\_V1.3.docx Page 7 of 10



## **Channel Frequencies**

Each channel frequency is calculated relative to the Start Frequency of the channel, the Channel Number and the Channel Spacing/Band width.

Three commands control the values of each of these parameters:

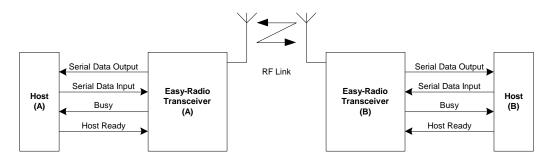
| ER_CMD#bn | Where n is the Start Frequency in MHz of the Band Plan being used | b |
|-----------|-------------------------------------------------------------------|---|
| ER_CMD#Cn | Where n is the integer Channel Number                             | С |
| ER_CMD#Bn | Where n is the Channel Spacing/Bandwidth in kHz                   | S |

The centre frequency of each channel is calculated using the formula:

Centre Frequency (f) = b + cs +  $\frac{s}{2}$ 

Where Example

 $\begin{array}{lll} \text{Band plan Start Frequency} & b = 0 \\ \text{Channel Number} & c = 1 \\ \text{Channel Spacing/Bandwidth} & s = 500 \text{kHz} \end{array}$ 


 $f = 869.850MHz + 1 \times 500kHz + 500kHz/2 = 870.600MHz$ 

eRic\_LoRa\_Datasheet\_VI.3.docx Page 8 of 10



### Application & Operation of eRIC-LoRa Transceiver

The diagram below shows a typical system block diagram comprising hosts (user's application) connected to easyRadio transceivers. The hosts (A & B) will be monitoring (collecting data) and/or controlling (sending data) to some real world application.



Typical System Block Diagram

The hosts provide serial data input and output lines and two 'handshaking' lines that control the flow of data to and from the easyRadio Transceivers. The 'Busy' output line, when active, indicates that the transceiver is undertaking an internal task and is not ready to receive serial data. The 'Host Ready' input is used to indicate that the host is ready to receive the data held in the buffer of the easyRadio Transceiver.

The host should check before sending data that the 'Busy' line is not high, as this would indicate that the transceiver is unable to reliably receive further data. It should also pull the 'Host Ready' line low and check that no data appears on the Serial Data Output line.

The Busy output is active all the time regardless of handshaking setting. The host Ready is enabled by the handshaking setting command.

| Timing Specifications    |                                                              | Units | Notes |
|--------------------------|--------------------------------------------------------------|-------|-------|
|                          |                                                              |       |       |
| Host Serial Input/Output | 2400, 4800, 9600, 19200, 38400, 31250 (MIDI), 76800 & 115200 | baud  | I     |
| Host Character Format    | I Start, 8 Data, No Parity, I Stop                           | Bits  | 2     |
|                          |                                                              |       |       |
| End of Data Delay        | 2 x BAUD Byte Duration                                       | mS    | 3     |
| RF Transmit duration     | Depends on Bandwidth and data rate setting                   | mS    | 4     |
| Buffer Size              | 180                                                          | Bytes | 5     |

### Notes

- 1. Data is inverted i.e. Start Bit is logic low. The inputs are intended for direct connection to a microcontroller UART or to RS232 inputs and outputs via an RS232 Level translator such as a Maxim MAX232, which invert the logic of the RS232 signals. This allows direct connection to, for example a microcontroller UART. The data rate is user programmable (Default 19200 baud) and may differ between individual units within a system.
- 2. I start, 8 data, I stop = 10 bits @ 104uS/bit = 0.52mS/character at 19200 Baud. (Default)
- 3. The 'End of Data' delay is fixed at twice the character time.
- 4. A fixed package overhead of xx is added to all packets.
- 5. The buffer size is limited to 180 bytes. Sending more than 180 bytes will cause loss of data.
- 6. CTS pin will go high 2 bytes before the buffer is full. This allows characters already sent to be accepted by the ER module.

eRic\_LoRa\_Datasheet\_V1.3.docx Page 9 of 10



### **Product Order Code**

| Name      | Description                      | Order Code |
|-----------|----------------------------------|------------|
| eRIC-LoRa | CE/FCC/IC Certified Radio Module | ERIC-LORA  |
|           |                                  |            |

Please contact the sales office for availability of other variants of the standard product. The software interface can be customised to specific requirements for high volume applications.

## easyRadio Advanced Firmware Versions

| Version   | Date         | Revision        | Known Issues |
|-----------|--------------|-----------------|--------------|
|           |              |                 |              |
| 4.1.11XXX | January 2016 | Initial Release |              |
|           |              |                 |              |

## **Document History**

| Issue | Date          | Revision                                       |
|-------|---------------|------------------------------------------------|
| 0.1   | February 2017 | Provisional datasheet                          |
| 0.2   | May 2017      | Minor corrections                              |
| 1.0   | May 2017      | Release                                        |
| 1.1   | June 2017     | Typo corrections                               |
| 1.2   | November 2017 | Clarification of Min / Max operating frequency |
| 1.3   | January 2018  | Corrections and clarifications                 |

Changes to this Document This data sheet has been updated to reflect changes throughout the range of LPRS modules.

Specific changes are recorded in the documentation history above.

Copyright See: www.lprs.co.uk
Disclaimer See: www.lprs.co.uk
Terms and Conditions of Use See: www.lprs.co.uk

**Contact Information** For further information or technical assistance please contact:



Low Power Radio Solutions Ltd. Tel: +44 (0)1993 709418
Two Rivers Industrial Estate Fax: +44 (0)1993 708575
Station Lane, Witney Web: http://www.lprs.co.uk
Oxon, OX28 4BH Email: info@lprs.co.uk
England Technical: technical@lprs.co.uk

eRic\_LoRa\_Datasheet\_V1.3.docx Page 10 of 10