

Qualcomm Technologies, Inc.

WCD9335 Audio Codec

Device Specification

LM80-P2751-29 Rev. A February 8, 2018

> For additional information or to submit technical questions, go to: https://www.96boards.org/product/dragonboard820c/

Qualcomm Snapdragon and Qualcomm Snapdragon Voice Activation are products of Qualcomm Technologies, Inc. Other Qualcomm products referenced herein are products of Qualcomm Technologies, Inc. or its other subsidiaries.

DragonBoard, Qualcomm, and Snapdragon are trademarks of Qualcomm Incorporated, registered in the United States and other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners.

Use of this document is subject to the license set forth in Exhibit 1.

Qualcomm Technologies, Inc. 5775 Morehouse Drive San Diego, CA 92121 U.S.A.

© 2018 Qualcomm Technologies, Inc. All rights reserved.

Contents

1	Intr	oduction	7
	1.1	Device description	7
	1.2	Summary of key features	7
	1.3	WCD9335 detailed functional block diagram	9
	1.4	Supply voltage summary	. 10
	1.5	Features	. 10
	1.6	Terms and acronyms	. 12
2	Pad	definitions	. 15
	2.1	I/O parameter definitions	. 16
	2.2	Pad descriptions	. 16
3	Elec	ctrical specifications	. 21
	3.1	Absolute maximum ratings	. 21
	3.2	Operating conditions	. 22
	3.3	DC power characteristics	. 23
		3.3.1 Peak current	. 23
	3.4	Digital logic characteristics	. 23
	3.5	Audio inputs and Tx processing	. 23
		3.5.1 Analog input through digital serial interface	
		3.5.2 DMIC input through digital serial interface	
	3.6	Audio outputs and Rx processing	
		3.6.1 Digital serial interface through earpiece analog output	
		3.6.2 Digital serial interface through HPH output	
		3.6.3 Digital serial interface through stereo hi-fi differential line outputs	
		3.6.4 Digital serial interface through single-ended line output	
	3.7	Digital I/Os and digital processing	
		3.7.1 SLIMbus	. 34
		3.7.2 Inter-IC sound (I^2S)	. 34
		3.7.3 Inter-integrated circuit (I ² C)	. 35
		3.7.4 Digital microphone PDM interface	. 36
		3.7.5 Master clock (MCLK)	. 37
		3.7.6 SoundWire	. 37
	3.8	Support circuits – analog	. 39

		3.8.1	Microphone bias	39
4	Dev	rice mark	king and ordering information	40
	4.1	Device of	ordering information	42
		4.1.1	Specification-compliant devices	42
5	Car	rier, stor	rage, & handling information	43
	5.1			
		5.1.1	Tape and reel information	43
	5.2			
		5.2.1	Bagged storage conditions	44
			Out-of-bag duration	
	5.3	Handling	g	44
		5.3.1	Baking	44
		5.3.2	Electrostatic discharge	45
6	PCE	3 mounti	ing guidelines	46
	6.1	RoHS co	ompliance	46
7	Dev	ice relial	bility	47
	7.1		ty qualifications summary	
			· · · ·	

Figures

Figure 1-1	WCD9335 high-level block diagram	8
Figure 1-2	WCD9335 detailed functional block diagram	9
Figure 2-1	WCD9335 pad assignments (top view)	. 15
Figure 3-1	Received clock signal constraints	. 34
Figure 3-2	WCD9335 digital microphone PDM interface timing	. 36
Figure 3-3	PHY timing – clock output/input and data input	. 37
Figure 3-4	PHY timing – clock output/input and data input	. 38
Figure 4-1	113 FOWPSP (4.17 × 3.91 × 0.65 mm) package outline drawing	. 41
Figure 4-2	Device identification code	. 42
Figure 5-1	Carrier tape drawing with part orientation	. 43
Figure 5-2	Tane handling	44

Tables

Table 1-1	Summary of WCD9335 device features	10
Table 1-2	Terms and acronyms	12
Table 2-1	I/O description (pad type) parameters	16
Table 2-2	Pad descriptions – analog inputs	17
Table 2-3	Pad descriptions – analog outputs	17
Table 2-4	Pad descriptions – digital I/Os (other than host interfaces)	18
Table 2-5	Pad descriptions – host digital interfaces	18
Table 2-6	Pad descriptions – support circuits	19
	Pad descriptions – do not connect pads	
	Pad descriptions – power supply pads	
	Pad descriptions – ground pads	
Table 3-1	Absolute maximum ratings	21
Table 3-2	Operating conditions	22
Table 3-3	Power supply peak current	23
	Digital I/O characteristics	
Table 3-5	Analog input through digital serial interface performance	24
Table 3-6	Digital microphone input through digital serial interface performance	25
	Serial interface through mono EAR output	
	Serial interface through HPH output	
	Serial interface through stereo-differential line outputs	
	Serial interface through stereo line output	
	Clock input timing requirements	
	2 Data output timing characteristics	
Table 3-13	B Data input timing requirements	34
Table 3-14	4 Supported I ² S standards and exceptions	34
Table 3-15	Master transmitter with data rate of 16 MHz	35
Table 3-16	Slave receiver with clock rate of 16 MHz	35
Table 3-17	7 Supported I ² C standards and exceptions	35
Table 3-18	B Digital microphone timing	36
Table 3-19	Master clock (MCLK)	37
Table 3-20	PHY timing parameters (1.8 V systems)	38
Table 3-21	Microphone bias performance	39
Table 7-1	Silicon reliability results	47
Table 7-2	Package reliability results	48

Revision history

Revision	Date	Description
Α	February 2018	Initial release

1 Introduction

1.1 Device description

This document contains a description of the chipset capabilities. Not all features are available, nor are all features supported in the software.

NOTE Enabling some features may require additional licensing fees.

The WCD9335 is a stand-alone high fidelity (hi-fi) audio codec IC that supports the Qualcomm Technologies, Inc. (QTI) multimedia solutions, including the APQ8096SGE chipset. The key WCD9335 functions include the following:

- Serial low-power interchip media bus (SLIMbus) for access to all on-chip digital audio channels; inter-IC sound (I²S) accesses fewer paths, but maintains compatibility with earlier integrated circuits (ICs).
- SoundWire interface for driving WSA8810 or WSA8815 speaker amplifiers
- Six analog input ports and seven analog output ports
- Six audio analog-to-digital converters (ADCs) and seven digital-to-analog converters (DACs)
- Six digital microphone inputs (three clock/data pairs)
- Multibutton headset control (MBHC) for smart accessory detection
- Digital processing includes the following:
 - □ Microphone activity detection (MAD) detecting audio, ultrasound, and beacon activity
 - □ Qualcomm[®] Voice Activation subsystem
 - □ Active noise cancellation (ANC)
- Integrated analog support reduces bill of materials (BOM) and area:
 - \Box Microphone bias outputs (x4)

1.2 Summary of key features

WCD9335 features are listed in Table 1-1.

- Lower cost, smaller footprint while enabling high-percentage digital content
- Ultra low-power voice activation engine for keyword detection and user identification
- Low-power, high-performance ultrasound support, including analog microphone (MIC) and line output

- Hi-fi audio recording and playback 109 dB ADC and 130 dB DAC signal-to-noise ratio (SNR)
- 32-bit/384 kHz, 44.1 kHz processing
- Supports external smart speaker amplifiers such as WSA8810/WSA8815 with 2-wire SoundWire signaling to provide configuration flexibility and reduce printed circuit board (PCB) design complexity.
- Class-H headphone amplifier 122 dB dynamic range and -105 dB THD+N
- MBHC, including an additional pad to support both tip and ground insertion/removal
- Ground reference pad for line outputs to improve signal integrity for docking stations.
- Only two external supplies are required; all other required voltages are generated by the WCD9335 support circuits.
- Highly integrated 4.17 × 3.91 mm fan out wafer-level picoscale package (FOWPSP)

See Section 1.5 for a complete list of the WCD9335 features.

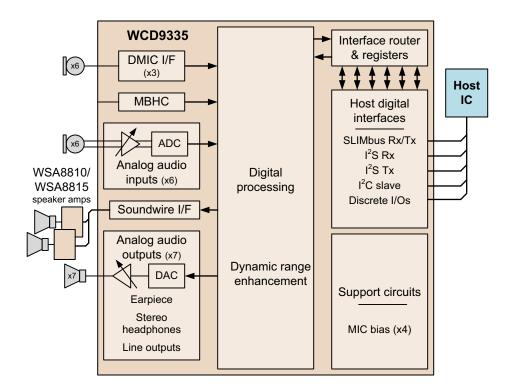


Figure 1-1 WCD9335 high-level block diagram

1.3 WCD9335 detailed functional block diagram

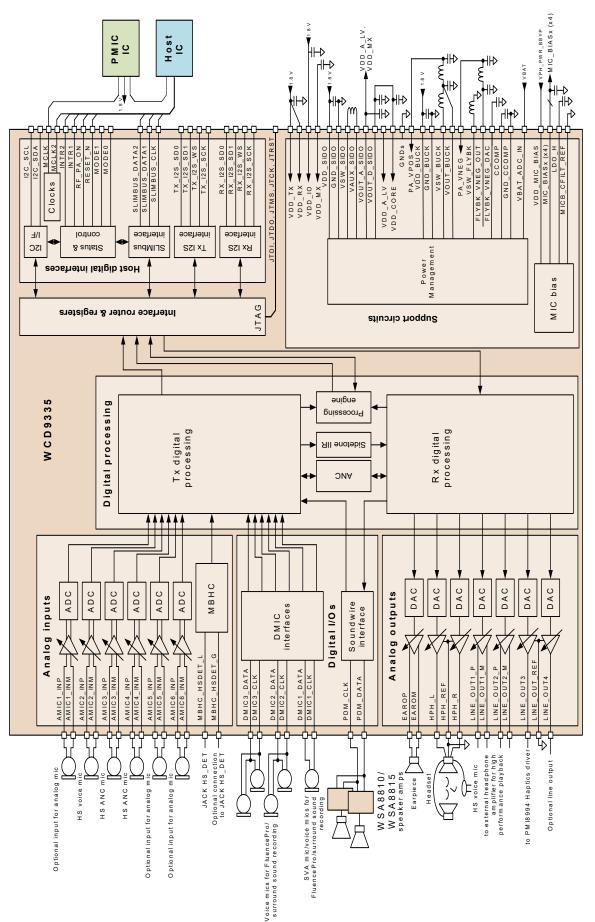


Figure 1-2 WCD9335 detailed functional block diagram

LM80-P2751-29 Rev. A

တ

1.4 Supply voltage summary

The following supplies are required:

- Primary phone power (VPH_PWR)
- Regulated 1.8 V from power management

The on-chip circuits generate all other voltages required by the WCD9335.

1.5 Features

The features of the WCD9335 device are listed in Table 1-1.

Table 1-1 Summary of WCD9335 device features

Feature	WCD9335 capabilities
System	
Hi-fi audio	 Recording path: 110 dB dynamic range and -103 dB THD + N Playback path: 130 dB dynamic range and -109 dB THD + N
Qualcomm Voice Activation subsystem	 Microphone activity detection (MAD) to detect audio and beacon activity Codec processing engine (CPE) with 304 kB on-chip RAM Provides keyword detection and user identification in the codec with less than 0.85 mA power at battery (100% speech occupancy). Look-ahead buffer provides more consistent and coherent interaction to users.
Digital I/Os	
SLIMbus slave	 Two data lanes; 16 transmit (Tx) ports + 8 receive (Rx) ports + control Tx sample rates: 8, 16, 32, 48, 96, and 192 kHz Rx sample rates: 8, 16, 32, 44.1, 48, 96, 192, and 384 kHz Bit resolution: 12, 16, 20, 24, and 32 Framer device to support framer handover to codec
Two stereo master and slave I ² S	 Isochronous mode Push/pull transport protocols Four Tx ports + four Rx ports Tx sample rates: 8, 16, 32, 48, 96, and 192 kHz Rx sample rates: 8, 16, 32, 44.1, 48, 96, and 192 kHz Bit resolution: 16 and 32
SoundWire interface to WSA8810/WSA8815	■ Multichannel, audio, and control use two lines (one clock and one data)
Digital microphone ports	■ Six; three clock lines; nine supported frequencies from 600 kHz to 6.144 MHz
Interrupts	■ Multiple hardware interrupts multiplexed behind two interrupt pads

Feature	WCD9335 capabilities	
Tx processing		
Analog audio input ports	Six ports that support differential and single-ended configurations. There are three operational modes: Hi-fi Programmable gain from 0–24 dB in 1.5 dB steps 0.9 µVrms input referred noise, 100 dB SNR, and -107 THD at 21 dB gain Standard Programmable gain from 0–30 dB in 1.5 dB steps 1.4 µVrms input referred noise, 96 dB SNR, and -102 THD at 21 dB gain Ultra low power Programmable gain from 0–30 dB in 1.5 dB steps 2.7 µVrms input referred noise, 90 dB SNR, and -95 THD at 21 dB gain Capless inputs: Input multiplexing allows routing any AMIC input to any decimator Integrated IEC diodes on AMIC2_INP, AMIC3_INP, and AMIC4_INP	
ADCs	■ Six audio ADCs	
Concurrency	■ Nine concurrent Tx decimation paths to support voice and audio applications	
Digital controls	 ■ Gain: -84 dB to +40 dB in 0.5 dB increments ■ DC blocking corner frequency: 4 Hz, 75 Hz, and 100 Hz 	
Decimation filters	 Nine decimation filters for concurrent Tx paths Passband ripple: ± 0.005 dB 	
Rx processing		
Analog audio output ports	 Seven – earpieces, stereo headphone, four line outputs (two differentials, two single-ended or four single-ended) Integrated IEC diodes on EAROP, EAROM, HPH_L, HPH_R, and HPH_REF pads Class-H differential earpiece output 120 mW (typical) into 32 Ω; 150 mW (minimum) into 16 Ω or 10.67 Ω Class-H stereo single-ended headphone outputs; capless; 16 Ω or 32 Ω Two differentials and two single-ended line outputs 	
Digital audio to WSA	■ SoundWire interface	
DACs	 Seven DACs and nine dedicated interpolators High-performance DACs for differential line outputs (to external headphone amplifiers) 	
Performance	 ■ Headphone: 1 Vrms; 122 dB dynamic range, -105 dB THD+N, and 16 µVpp click and pop in Class-H mode ■ Line outputs: 2 Vrms; 130 dB dynamic range and -109 THD+N (differential) 	
Concurrency	■ Nine concurrent Rx paths	
Frequency response	 High pass filter (HPF) cutoff of 0.48 Hz with 0.0025 dB droop at 20 Hz to meet Dolby requirements Nine interpolation filters with passband ripple of ±0.0025 dB (HPF disabled) 	
Mixing	 Digital mixing at the input of each DAC path Digital mixing on inputs to IIRs with independent gain control HD audio mixing path added to all interpolators 	

Feature	WCD9335 capabilities
Dynamic range enhancement	■ DRE provides Hi-Fi audio quality for headphone and line-output PAs
Protection and suppression	Overcurrent protection
	■ Click-and-pop suppression
Multiple sample rates	 Any path can use any of these sampling rates: 8, 16, 32, 44.1, 48, 96, 192, and 384 kHz
Concurrent PCM rates	■ Independent rates on each path to support voice and music concurrently
Additional digital processing	and paths
Active noise cancellation	-
Multibutton headset control	Moisture detection
(MBHC)	 Mechanical plug insertion and removal detection on both tip and ground detection pad with pop noise reduction
	■ Accessory plug type (3-pole, 4-pole - CTIA or OMTP, and 5-pole) detection
	■ Detection for up to eight buttons (send/end, volume, and play control)
	■ Headset impedance detection with ±5% from 3 $Ω$ up to 2 k $Ω$
Sidetone paths and processing	All mixed channels operate at the same sample rate
	■ No gain changes occur as a result of mixing channels
	■ Five-stage IIR filters
	■ Sample-rate converters
	■ Echo cancellation (EC)
Clock circuits	■ Master clocks supported: 24.576, 19.2, 12.288, and 9.6 MHz (default)
Support circuits	
Microphone biasing	■ Four voltage sources for powering analog and digital microphones
	■ Programmable from 1.0 V to 2.85 V
SmartBoost	■ Feedback signal to the companion WSA boost for efficient power control
Feedback speaker protection	 Receives I/V sense signals from companion WSA devices and transmits them to the audio processing in the APQ chipset
Always-on power	 Supports headset-insert/button-detect and Snapdragon Voice Activation while in low-power sleep mode
Fabrication technology and p	package
Package	■ Small, thermally efficient 113 FOWPSP; 4.17 × 3.91 × 0.65 mm; 0.35 mm pitch

1.6 Terms and acronyms

Table 1-2 defines terms and acronyms commonly used throughout this document.

Table 1-2 Terms and acronyms

Term or acronym	Definition
ADC	Analog-to-digital converter
AMIC	Analog microphone

Term or acronym	Definition
ВОМ	Bill of materials
BPF	Band pass filter
bps	Bits per second
CPE	Codec processing engine
DAC	Digital-to-analog converter
DMIC	Digital microphone
EC	Echo cancellation
ESD	Electrostatic discharge
FOWPSP	Fan out wafer-level picoscale package
FOWLP	Fan out wafer level package
Hi-fi	High fidelity
HPF	High pass filter
HPH	Headphone
HR	Hundred reel
HV	High voltage
I ² C	Interintegrated circuit
I ² S	Inter-IC sound
IEC	International Electrotechnical Commission
JTAG	Joint Test Action Group (ANSI/ICEEE Std. 1149.1-1990)
LDO	Low dropout (linear regulator)
LPF	Low pass filter
LV	Low voltage
MBHC	Multibutton headset control
MGB	Master bandgap (voltage reference)
MIC or mic	Microphone
MSL	Moisture sensitivity level
NVM	Nonvolatile memory
OEM	Original equipment manufacturer
OSR	Oversampling ratio
PA	Power amplifier
PCB	Printed circuit board
PDM	Pulse density modulation
RoHS	Restriction of hazardous substances
SIDO	Single inductor dual output
SIMO	Single inductor multiple outputs
SLIMbus	Serial low-power interchip media bus

Term or acronym	Definition
SMPS	Switched-mode power supply
SMT	Surface-mount technology
SNR	Signal-to-noise ratio
Sn/Ag/Cu	Also known as SAC. Tin-silver-copper is a lead-free (Pb-free) alloy commonly used for electronic solder
SPKR	Speaker
SR	Short reel
TR	Tape and reel
WCD	WSP codec device
WLP	Wafer-level package
WSA	WSP smart amplifier
WSP	Wafer-scale package
XO	Crystal oscillator

2 Pad definitions

The WCD9335 is available in the 113 FOWPSP; a high-level view of its pad assignments is shown in Figure 2-1.

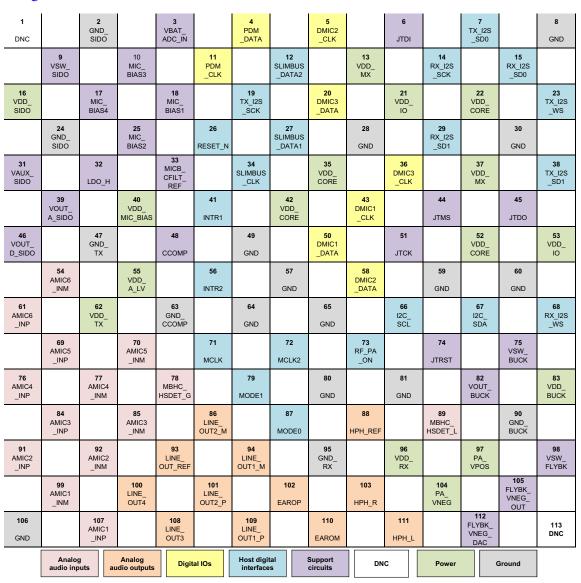


Figure 2-1 WCD9335 pad assignments (top view)

2.1 I/O parameter definitions

Table 2-1 I/O description (pad type) parameters

Symbol	Description	
Pad attribute		
Al	Analog input	
AO	Analog output	
В	Bidirectional digital with CMOS input	
DI	Digital input (CMOS)	
DO	Digital output (CMOS)	
Z	Z High-impedance (Hi-Z) output	
VDD_IO is used for digital I/O pads.		

2.2 Pad descriptions

Descriptions of all pads are presented in the following tables, organized by functional group:

Table 2-2	Analog inputs
Table 2-3	Analog outputs
Table 2-4	Digital I/Os (other than host interfaces)
Table 2-5	Host digital interfaces
Table 2-6	Support circuits
Table 2-7	Do not connect pads
Table 2-8	Power supply pads
Table 2-9	Ground pads

Table 2-2 Pad descriptions – analog inputs

Pad #	Pad name	Pad type ¹	Functional description	
107	AMIC1_INP	Al	Analog microphone 1 input, differential plus	
99	AMIC1_INM	Al	nalog microphone 1 input, differential minus	
91	AMIC2_INP	Al	Analog microphone 2 input, differential plus	
92	AMIC2_INM	Al	Analog microphone 2 input, differential minus	
84	AMIC3_INP	Al	Analog microphone 3 input, differential plus	
85	AMIC3_INM	Al	Analog microphone 3 input, differential minus	
76	AMIC4_INP	Al	Analog microphone 4 input, differential plus	
77	AMIC4_INM	Al	Analog microphone 4 input, differential minus	
69	AMIC5_INP	Al	Analog microphone 5 input, differential plus	
70	AMIC5_INM	Al	Analog microphone 5 input, differential minus	
61	AMIC6_INP	Al	Analog microphone 6 input, differential plus	
54	AMIC6_INM	Al	Analog microphone 6 input, differential minus	
89	MBHC_HSDET_L	Al	MBHC mechanical insertion/removal tip-detection pad	
78	MBHC_HSDET_G	Al	Secondary MBHC mechanical insertion/removal ground-detection pad	

^{1.} See Table 2-1 for parameter and acronym definitions.

Table 2-3 Pad descriptions – analog outputs

Pad #	Pad name	Pad type ¹	Functional description	
102	EAROP	AO	Earpiece amplifier output, differential plus	
110	EAROM	AO	Earpiece amplifier output, differential minus	
111	HPH_L	AO	Headphone left output	
103	HPH_R	AO	Headphone right output	
88	HPH_REF	Al	Capless headphone ground reference of the PA	
109	LINE_OUT1_P	AO	Audio line output 1, differential plus	
94	LINE_OUT1_M	AO	Audio line output 1, differential minus	
101	LINE_OUT2_P	AO	Audio line output 2, differential plus	
86	LINE_OUT2_M	AO	Audio line output 2, differential minus	
108	LINE_OUT3	AO	Audio line output 3, single-ended	
100	LINE_OUT4	AO	Audio line output 4, single-ended	
93	LINE_OUT_REF	Al	Audio line outputs 3 and 4 ground reference	

^{1.} See Table 2-1 for parameter and acronym definitions.

Table 2-4 Pad descriptions – digital I/Os (other than host interfaces)

Pad #	Pad name	Pad type ¹	Functional description			
Digital m	Digital microphone (DMIC) interfaces					
50	DMIC1_DATA	DI	Data for digital microphones 1 and 2			
43	DMIC1_CLK	DO	Clock for digital microphones 1 and 2			
58	DMIC2_DATA	DI	Data for digital microphones 3 and 4			
5	DMIC2_CLK	DO	Clock for digital microphones 3 and 4			
20	DMIC3_DATA	DI	Data for digital microphones 5 and 6			
36	DMIC3_CLK	DO	Clock for digital microphones 5 and 6			
SoundW	ire port					
4	PDM_DATA	В	SoundWire data for WSA8810/WSA8815 smart speaker amplifier			
11	PDM_CLK	DO	SoundWire clock for WSA8810/WSA8815 smart speaker amplifier			

^{1.} See Table 2-1 for parameter and acronym definitions.

Table 2-5 Pad descriptions – host digital interfaces

Pad #	Pad name	Pad type ¹	Functional description	
SLIMbus	bidirectional audio			
12	SLIMBUS_DATA2	В	Bidirectional (Rx/Tx) SLIMbus data bit 2	
27	SLIMBUS_DATA1	В	Bidirectional (Rx/Tx) SLIMbus data bit 1	
34	SLIMBUS_CLK	В	Bidirectional (Rx/Tx) SLIMbus clock	
Interinte	grated circuit (I2C) por	t		
67	I2C_SDA	В	I ² C serial data	
66	I2C_SCL	В	I ² C serial clock	
I ² S bus -	- Rx direction			
14	RX_I2S_SCK	В	I ² S bit clock, Rx direction	
68	RX_I2S_WS	В	I ² S word select, Rx direction	
29	RX_I2S_SD1	DI	I ² S serial data line 1, Rx direction	
15	RX_I2S_SD0	DI	I ² S serial data line 0, Rx direction	
I ² S bus -	Tx direction			
19	TX_I2S_SCK	В	I ² S bit clock, Tx direction	
23	TX_I2S_WS	В	I ² S word select, Tx direction	
38	TX_I2S_SD1	DO	I ² S serial data line 1, Tx direction	
7	TX_I2S_SD0	DO	I ² S serial data line 0, Tx direction	
Clock cir	cuits			
71	MCLK	Al	Master clock input	
72	MCLK2	Al	Master clock input 2	

Table 2-5 Pad descriptions – host digital interfaces (cont.)

Pad #	Pad name	Pad type ¹	Functional description	
Discrete status and control signals		nals		
26	RESET_N	DI	WCD9335 IC-level reset	
73	RF_PA_ON	DI	Indicates that GSM RF power amplifier is about to burst	
41	INTR1	DO	Interrupt output 1	
56	INTR2	DO	Interrupt output 2	
87	MODE0	DI	Digital interface mode selection (SLIMbus or I ² S) bit 0	
79	MODE1	DI	Digital interface mode selection (SLIMbus or I ² S) bit 1	

^{1.} See Table 2-1 for parameter and acronym definitions.

Table 2-6 Pad descriptions - support circuits

Pad #	Pad name	Pad type 1	Functional description
SIDO bu	ck		
9	VSW_SIDO	AI, AO	SIDO buck switching node
31	VAUX_SIDO	AI, AO	SIDO buck auxiliary voltage node
39	VOUT_A_SIDO	AO	SIDO output voltage for analog circuits
46	VOUT_D_SIDO	AO	SIDO output voltage for digital circuits
Buck SM	IPS .		
75	VSW_BUCK	AI, AO	Buck SMPS switching node
82	VOUT_BUCK	AO	Buck SMPS output node 1
SIMO fly	back		
105	FLYBK_VNEG_OUT	AO	Flyback SIMO negative output for PAs
112	FLYBK_VNEG_DAC	AO	Flyback SIMO negative output for DACs
98	VSW_FLYBK	AI, AO	Flyback SIMO switching node
Low-drop	pout (LDO) linear regul	ator	
32	LDO_H	AO	Internal-circuitry LDO high-voltage output load capacitor
Micropho	one bias voltage sourc	es	
18	MIC_BIAS1	AO	Microphone bias output voltage 1
25	MIC_BIAS2	AO	Microphone bias output voltage 2
10	MIC_BIAS3	AO	Microphone bias output voltage 3
17	MIC_BIAS4	AO	Microphone bias output voltage 4
33	MICB_CFILT_REF	Al	Microphone bias shared reference ground of the circuits
Bandgap	voltage reference dec	oupling	
48	CCOMP	AO	Bandgap reference circuit compensation capacitor
Battery v	oltage monitor		
3	VBAT_ADC_IN	Al	Input to VBAT ADC
	1	1	1

Table 2-6 Pad descriptions – support circuits (cont.)

Pad #	Pad name	Pad type ¹	Functional description
JTAG interface			
51	JTCK	DI	JTAG clock
6	JTDI	DI	JTAG data input
45	JTDO	DO	JTAG data output
44	JTMS	DI	JTAG mode select
74	JTRST	DI	JTAG reset

^{1.} See Table 2-1 for parameter and acronym definitions.

Table 2-7 Pad descriptions – do not connect pads

Pad #	Pad name	e Functional description	
1, 113 DNC		Do not connect; connected internally, do not connect externally	

Table 2-8 Pad descriptions – power supply pads

Pad #	Pad name	Functional description
104	PA_VNEG	Negative supply for PAs
97	PA_VPOS	Positive supply for PAs
55	VDD_A_LV	Power for analog low-voltage circuits
83	VDD_BUCK	Power for buck SMPS
22, 35, 42, 52	VDD_CORE	Power for core digital circuits
13, 37	VDD_MX	Power for on-chip memory
40	VDD_MIC_BIAS	Power for the LDO and microphone bias circuits
21, 53	VDD_IO	Power for digital I/O pads
96	VDD_RX	Power for analog audio output (Rx) circuits
16	VDD_SIDO	Power for the SIDO buck
62	VDD_TX	Power for analog audio input (Tx) circuits

Table 2-9 Pad descriptions – ground pads

Pad #	Pad name	Functional description
8, 28, 30, 49, 57, 59, 60, 64, 65, 80, 81, 106	GND	Ground
90	GND_BUCK	Ground for buck SMPS circuits
63	GND_CCOMP	Ground for bandgap reference circuits
95	GND_RX	Ground for analog audio input (Rx) circuits
2, 24	GND_SIDO	Ground for SIDO buck
47	GND_TX	Ground for analog audio input (Tx) circuits

3 Electrical specifications

3.1 Absolute maximum ratings

Absolute maximum ratings (Table 3-1) reflect the worst-case conditions that WCD9335 devices are exposed to during testing. They are limiting values to be considered individually when all other parameters are within their specified operating ranges. Functional operation and specification compliance at any absolute maximum condition, or after exposure to any of these conditions, are not guaranteed or implied. Exposure can shorten the life of the device.

Table 3-1 Absolute maximum ratings

Parameter	Description	Minimum	Maximum	Units
Power supply voltage	s	"		
VDD_MIC_BIAS	Power for the LDO and microphone bias circuits	-0.30	4.80	V
VDD_RX	Power for analog audio output (Rx) circuits	-0.30	2.16	V
VDD_TX	Power for analog audio input (Tx) circuits	-0.30	2.16	V
VDD_BUCK	Power for buck SMPS	-0.30	2.16	V
VDD_SIDO	Power for the SIDO buck	-0.30	2.16	V
VDD_IO	Power for digital I/O pads	-0.30	2.16	V
VDD_A_LV	Power for analog low-voltage circuits	-0.30	1.30	V
VDD_MX	Power for on-chip memory	-0.30	1.30	V
VDD_CORE	Power for core digital circuits	-0.30	1.30	V
Signal pads			1	
VIN_DIG	Any digital input, nonpower	-0.30	2.15	V
VIN_ANA	Any analog input, nonpower	-0.30	2.90	V
VBAT_ADC_IN	Input to VBAT ADC	-0.30	4.80	V

3.2 Operating conditions

Operating conditions include parameters that are under the control of the design team: power supply voltage, power distribution impedances, and thermal conditions (Table 3-2). The WCD9335 meets all performance specifications listed in Section through Section 3.7.6, when used within the operating conditions, unless otherwise noted in those sections (provided the absolute maximum ratings have never been exceeded).

Table 3-2 Operating conditions

Parameter	Description	Minimum	Тур	Maximum	Units
Power supply voltage	es				
VDD_MIC_BIAS	Power for the LDO and microphone bias circuits	3.15	3.80	4.60	V
VDD_RX	Power for analog audio output (Rx) circuits	1.70	1.80	1.90	V
VDD_TX	Power for analog audio input (Tx) circuits	1.70	1.80	1.90	V
VDD_BUCK	Power for buck SMPS	1.70	1.80	1.90	V
VDD_SIDO	Power for the SIDO buck	1.70	1.80	1.90	V
VDD_IO	Power for digital I/O pads	1.70	1.80	1.90	V
Internally generated in	nput voltage	1			
VDD_A_LV	Power for analog low-voltage circuits	1.0	1.10	1.21	V
VDD_MX	Power for on-chip memory	1.0	1.10	1.21	V
VDD_CORE	Power for core digital circuits	0.88	1.10	1.21	V
Signal pads		1			
VBAT_ADC_IN	Input to VBAT ADC	2.50	3.80	4.60	V
Thermal condition		<u> </u>			
Тс	Operating temperature (case)	-30	_	85	°C

3.3 DC power characteristics

3.3.1 Peak current

Table 3-3 Power supply peak current

Parameter	Conditions	Minimum	Тур	Maximum	Units
VDD_MIC_BIAS	-	_	_	15	mA
VDD_RX	-	_	-	25	mA
VDD_TX	-	-	-	25	mA
VDD_BUCK	-	_	_	650	mA
VDD_SIDO	-	-	-	200	mA
VDD_IO	Total for two pads	_	_	10	mA
VDD_A_LV	Included in VDD_SIDO	_	_	15	mA
VDD_MX	Included in VDD_SIDO, total for two pads	_	-	10	mA
VDD_CORE	Included in VDD_SIDO, total for four pads	_	_	40	mA

3.4 Digital logic characteristics

Table 3-4 Digital I/O characteristics

	Parameter	Conditions	Minimum	Тур	Maximum	Units
VIH	High-level input voltage	_	0.65 · VDDX	_	1.1 · VDDX	V
VIL	Low-level input voltage	_	0	_	0.35 · VDDX	V
VOH	High-level output voltage	_	0.90 · VDDX	_	VDDX	V
VOL	Low-level output voltage	_	0	_	0.10 · VDDX	V
CIN	Digital input capacitance	_	_	_	5	pF

3.5 Audio inputs and Tx processing

Unless otherwise stated:

- All Tx performance parameters are measured with 1.02 kHz sine wave input signal, differential or single-ended inputs, Fs = 48 kHz, 24-bit data, and MCLK = 9.6 MHz or 12.288 MHz.
- SNR is measured by taking the ratio of the output level with input signal level of 0 dBV and 1.02 kHz sine wave to the output level with inputs grounded over a bandwidth of 20 Hz–20 kHz.

3.5.1 Analog input through digital serial interface

Table 3-5 specifies the performance of the following Tx path: Any analog input \rightarrow pre-amp \rightarrow ADC \rightarrow digital serial interface.

NOTE Only hi-fi mode specification is listed. Lower power consumption modes are supported.

Table 3-5 Analog input through digital serial interface performance

Parameter	Conditions	Min	Тур	Max	Units					
Microphone amplifie	Microphone amplifier gain = 0 dB (minimum gain)									
Input-referred noise	A-weighted; inputs grounded; bandwidth 20 Hz–20 kHz	_	3.3	_	μVrms					
SNR	A-weighted	_	109	_	dB					
THD + N ratio	Analog input = 0 dBV; bandwidth 20 Hz–20 kHz	_	-103	_	dB					
	Analog input = -1 dBV; bandwidth 20 Hz–20 kHz	-	-98	_	dB					
	Analog input = -60 dBV; bandwidth 20 Hz–20 kHz; A-weighted	-	-50	_	dB					
Microphone amplifie	er gain = 21 dB (typical gain)									
Input-referred noise	A-weighted; inputs grounded; bandwidth 20 Hz–20 kHz	_	0.9	_	μVrms					
SNR	A-weighted	-	100	_	dB					
THD + N ratio	Analog input = -21 dBV; bandwidth 20 Hz–20 kHz	_	-90	_	dB					
	Analog input = -22 dBV; bandwidth 20 Hz–20 kHz	-	-90	-	dB					
	Analog input = -81 dBV; bandwidth 20 Hz–20 kHz; A-weighted	_	-34	-	dB					
THD	Analog input = -22 dBV; bandwidth 20 Hz–20 kHz	_	-107	_	dB					
General requiremen	ts									
Absolute gain error	Hi-fi mode	_	-0.1	_	dB					
Full scale input signal	Measure differential input level that gives 0 dBFS output level; gain = 0 dB	_	0.1	-	dBV					
Power supply rejection (VDD_TX)	0 < f < 1 kHz; 100 mVpp sine wave imposed on the power supply; analog input = 0 Vrms									
	Terminate inputs with 0 Ω ; gain = 0 dB	_	113	_	dB					
	1 kHz < f < 5 kHz; 100 mVpp sine wave imposed on the power supply; analog input = 0 Vrms									
	Terminate inputs with 0 Ω ; gain = 0 dB	_	107	_	dB					
	5 kHz < f < 20 kHz; 100 mVpp sine wave imposed on the power supply; analog input = 0 Vrms									
	Terminate inputs with 0 Ω; gain = 0 dB	_	94	_	dB					
Input impedance	_	1	_	_	ΜΩ					
Input capacitance	Analog pad	_	_	30	pF					

Table 3-5 Analog input through digital serial interface performance (cont.)

Parameter	Conditions	Min	Тур	Max	Units
Rx-to-Tx crosstalk attenuation	Tx path measurement with -5 dBFS Rx path signal; separate Tx input and Rx output grounds	-	105	_	dB
Interchannel isolation	20 < f < 20 kHz; one input terminated with 1 kΩ and the other input gets 1 kHz at -5 dBFS. Measure the digital output of the terminated channel; separate Tx inputs grounds	_	93	-	dB

3.5.2 DMIC input through digital serial interface

Table 3-6 specifies the performance of the following Tx path:

Any digital microphone input \rightarrow digital serial interface.

Table 3-6 Digital microphone input through digital serial interface performance

Parameter	Conditions	Minimum	Тур	Maximum	Units			
Frequency response (from digital microphone input to SB/I ² S PCM output, all sample rates)								
Frequency response	See Table 3-7 for the frequency respo PCM output for all the sampling rates.		ital microph	one input to \$	SB/I ² S			

Table 3-6 Digital microphone input through digital serial interface performance (cont.)

Parameter	Conditions	Minimum	Тур	Maximum	Units
Clock rate	System clock = 9.6 MHz decimated output rates: 8 kHz, 16 kHz, 32 kHz, and 48 kHz	_	600	-	kHz
	System clock = 9.6 MHz decimated output rates: 8 kHz, 16 kHz, 32 kHz, and 48 kHz	_	1.2	_	MHz
	System clock = 9.6 MHz decimated output rates: 8 kHz, 16 kHz, 32 kHz, 48 kHz, 96 kHz, and 192 kHz	_	2.4	_	MHz
	System clock = 9.6 MHz decimated output rates: 8 kHz, 16 kHz, 32 kHz, 48 kHz, 96 kHz, and 192 kHz	_	3.2	-	MHz
	System clock = 9.6 MHz decimated output rates: 8 kHz, 16 kHz, 32 kHz, 48 kHz, 96 kHz, and 192 kHz	_	4.8	_	MHz
	System clock = 12.288 MHz decimated output rates: 8 kHz, 16 kHz, 32 kHz, and 48 kHz	_	768	_	kHz
	System clock = 12.288 MHz decimated output rates: 8 kHz, 16 kHz, 32 kHz, and 48 kHz	_	1.536	_	MHz
	System clock = 12.288 MHz decimated output rates: 8 kHz, 16 kHz, 32 kHz, 48 kHz, 96 kHz, and 192 kHz	_	2.048	-	MHz
	System clock = 12.288 MHz decimated output rates: 8 kHz, 16 kHz, 32 kHz, 48 kHz, 96 kHz, and 192 kHz	_	3.072	-	MHz
	System clock = 12.288 MHz decimated output rates: 8 kHz, 16 kHz, 32 kHz, 48 kHz, 96 kHz, and 192 kHz	-	4.096	-	MHz
	System clock = 12.288 MHz decimated output rates: 8 kHz, 16 kHz, 32 kHz, 48 kHz, 96 kHz, and 192 kHz	-	6.144	_	MHz
Input capacitance	-	_	1	5	pF
Board capacitance	_	_	10	50	pF

3.6 Audio outputs and Rx processing

Unless otherwise stated:

- All Rx performance parameters are measured with 1.02 kHz sine wave input signal, Fs = 48 kHz,
 - 24-bit data and MCLK = 9.6 MHz or 12.288 MHz
- Receive noise is measured with no dither added to the input signal

3.6.1 Digital serial interface through earpiece analog output

Table 3-7 specifies the performance of the following Rx path: digital serial input \rightarrow mono DAC \rightarrow mono EAR output with 32 Ω , load unless otherwise specified.

Table 3-7 Serial interface through mono EAR output

Parameter	Conditions	Minimum	Тур	Maximum	Units			
EAR output; 8/16 kHz; 16 bits								
Receive noise	A-weighted; input = -999 dBFS, 6 dB gain mode	_	8.4	_	μVrms			
	A-weighted; input = -999 dBFS, 0 dB gain mode	-	5	_	μVrms			
SNR	Ratio of full-scale output to output noise level, A-weighted, 6 dB gain	_	107	_	dB			
THD + N ratio	PCMI = 0 dBFS, 20 Hz–20 kHz, 6 dB gain	_	-91	_	dB			
	PCMI = -1 dBFS, 20 Hz–20 kHz, 6 dB gain	_	-90	_	dB			
	PCMI = -60 dBFS, 20 Hz–20 kHz, 6 dB gain, A-weighted	-	-38	_	dB			
EAR output; 48 kHz	z; 16 bits							
Receive noise	A-weighted; input = -999 dBFS, 6 dB gain mode	_	8.4	_	μVrms			
	A-weighted; input = -999 dBFS, 0 dB gain mode	_	5	-	μVrms			
SNR	Ratio of full-scale output to output noise level, A-weighted, 6 dB gain	_	107	_	dB			
THD + N ratio	PCMI = 0 dBFS, 20 Hz–20 kHz, 6 dB gain	_	-96	_	dB			
	PCMI = -1 dBFS, 20 Hz–20 kHz, 6 dB gain	_	-95	_	dB			
	PCMI = -60 dBFS, 20 Hz–20 kHz, 6 dB gain, A-weighted	_	-40	_	dB			
Other characteristi	cs			1	I .			
Full-scale output	Input = 0 dBFS, PA gain = 6 dB	_	1.96	_	Vrms			
voltage	Input = 0 dBFS, PA gain = 0 dB	_	0.99	-	Vrms			
Output power	PA gain = 6 dB, 32 Ω, THD+N ≤ 1%	_	120	_	mW			
Output load	Supported output load	10	32	_	Ω			

Table 3-7 Serial interface through mono EAR output (cont.)

Parameter	Conditions	Minimum	Тур	Maximum	Units
Tx-to-Rx crosstalk attenuation	Rx path measurement with -5 dBFS Tx path signal; separate Tx input and Rx output grounds	_	101	_	dB
Power supply rejection	0 < f < 1 kHz; 100 mVpp sine wave imposed on the power supply; PCMI = -999 dBFS	-	101	_	dB
	1 kHz < f < 5 kHz; 100 mVpp sine wave imposed on the power supply; PCMI = - 999 dBFS	-	95	_	dB
	5 kHz < f < 20 kHz; 100 mVpp sine wave imposed on the power supply; PCMI = - 999 dBFS	_	80	_	dB
Disabled output impedance	Measured externally with the amplifier disabled	_	38	_	kΩ
Output capacitance	The differential output load capacitance that EAR PA can support including any PCB trace, EMI, ESD, and transducer capacitances.	-	_	500	pF
Output DC offset	Input = -999 dBFS, measured between differential output	_	0.73	_	mV
Turn on/off click-and-pop level	A-weighted, 6 dB gain	_	0.5	_	mVpp

3.6.2 Digital serial interface through HPH output

Table 3-8 specifies the performance of the following Rx path: digital serial input \rightarrow stereo DAC \rightarrow stereo Class H HPH with 16 Ω load, unless otherwise specified.

Table 3-8 Serial interface through HPH output

Parameter	Conditions	Minimum	Тур	Maximum	Units				
HPH; 48 kHz/44.1 kH	HPH; 48 kHz/44.1 kHz/16-bits								
Receive noise	A-weighted; input = -999 dBFS								
	Standard mode	_	0.89	_	μVrms				
	Hi-fi mode	_	0.77	_	μVrms				
	Low-power mode	_	1.04	_	μVrms				
SNR	Ratio of full-scale output to output noise level, A-weighted								
	Standard mode	_	121	_	dB				
	Hi-fi mode	_	122	_	dB				
	Low-power mode	_	119	_	dB				
THD + N ratio	PCMI = 0 dBFS; 20 Hz-20 kHz								
	Standard mode	_	-97	_	dB				
	Hi-fi mode	_	-98	_	dB				
	Low-power mode	_	-92	_	dB				
	PCMI = -1 dBFS; 20 Hz-20 kHz								
	Standard mode	_	-96	_	dB				
	Hi-fi mode	_	-97	_	dB				
	Low-power mode	_	-92	_	dB				
	PCMI = -60 dBFS; 20 Hz–20 kHz, A-weighted								
	Standard mode	_	-41	_	dB				
	Hi-fi mode	_	-41	_	dB				
	Low-power mode	_	-41	_	dB				
HPH; 48 kHz/44.1 kH	dz/192 kHz/24-bits; 384 kHz/32-bits								
Receive noise	A-weighted; input = -999 dBFS								
	Standard mode	_	0.89	_	μVrms				
	Hi-fi mode	_	0.77	_	μVrms				
	Low-power mode	_	1.04	_	μVrms				
SNR	Ratio of full-scale output to the output noise level, A-weighted								
	Standard mode	_	121	_	dB				
	Hi-fi mode	_	122	_	dB				
	Low-power mode	_	119	_	dB				

Table 3-8 Serial interface through HPH output (cont.)

Parameter	Conditions	Minimum	Тур	Maximum	Units
THD + N ratio	PCMI = 0 dBFS; 20 Hz- 20 kHz				
	Standard mode	_	-104	_	dB
	Hi-fi mode	_	-105	_	dB
	Low-power mode	_	-93	_	dB
	PCMI = -1 dBFS; 20 Hz- 20 kHz				
	Standard mode	_	-104	_	dB
	Hi-fi mode	_	-105	_	dB
	Low-power mode	_	-95	_	dB
	PCMI = -60 dBFS; 20 Hz- 20 kHz; A-weighted				
	Standard mode	_	-61	_	dB
	Hi-fi mode	_	-62	_	dB
	Low-power mode	_	-60	_	dB
Other characteristics	•				
Full-scale output voltage	Input = 0 dBFS; 16 Ω or 32 Ω load	_	1	_	Vrms
Output power	Input = 0 dBFS, 16 Ω load	_	62.5	_	mW
	Input = 0 dBFS, 32 Ω load	_	31.25	_	mW
Output load	Supported output load	4	16	_	Ω
Tx-to-Rx crosstalk attenuation	Rx path measurement with -5 dBFS Tx path signal, separate Tx input, and the Rx output grounds	_	118	_	dB
Inter-channel isolation	Measured channel output = -999 dBFS; second DAC channel output = -5 dBFS; separate GND for HPH_L and HPH_R				
	■ 1 kHz	_	105	_	dB
	■ 20 kHz	_	97	_	dB
Inter-channel gain error	Delta between the left and right channels; input = 1 kHz at -20 dBFS	-0.3	-	0.3	dB
Inter-channel phase error	Delta between the left and right channels; input = 1 kHz at -20 dBFS	_	0	_	degree
Power supply rejection (VDD_RX or VDD_BUCK)	0 kHz < f < 1 kHz; 100 mVpp sine wave imposed on the power supply; PCMI = -999 dBFS	_	109	-	dB
	1 kHz < f < 5 kHz; 100 mVpp sine wave imposed on the power supply; PCMI = -999 dBFS	-	99	_	dB
	5 kHz < f < 20 kHz; 100 mVpp sine wave imposed on the power supply; PCMI = -999 dBFS	-	77	_	dB
Disabled output impedance	Measured externally, with the amplifier disabled	_	9.2	_	Ω

Table 3-8 Serial interface through HPH output (cont.)

Parameter	Conditions	Minimum	Тур	Maximum	Units
Output capacitance	Single-ended output load capacitance that HPH PA can support including any PCB trace, EMI, ESD, and transducer capacitances	-	-	1000	pF
Output DC offset	Measured between HPH_L or HPH_R and ground	_	0	_	mV
Turn on/off	A-weighted, 16 Ω , 32 Ω , or 10 k Ω load				
click-and-pop level	Standard mode	_	16	_	μVpp
	Class-H hi-fi mode	_	16	_	μVpp
	Low-power mode	_	17	_	μVpp

3.6.3 Digital serial interface through stereo hi-fi differential line outputs

Table 3-9 specifies the performance of the following Rx path: digital serial input \rightarrow stereo DAC \rightarrow stereo hi-fi differential line outputs with 600 Ω load on the positive output and 200 Ω load on the negative output, unless otherwise specified.

Table 3-9 Serial interface through stereo-differential line outputs

Parameter	Conditions	Minimum	Тур	Maximum	Units
Line output differential; 48 kHz/44.1 kHz/192 kHz/24 bits; 384 kHz/32-bits					
Receive noise	A-weighted; input = -999 dBFS	_	0.58	_	μVrms
SNR	Ratio of full-scale output to output noise level; A-weighted	_	130	_	dB
THD + N ratio	PCMI = 0 dBFS; 20 Hz-20kHz	_	-109	-	dB
	PCMI = -1 dBFS; 20 Hz-20 kHz	_	-109	-	dB
	PCMI = -60; dBFS 20 Hz-20 kHz, A-weighted	_	-70	_	dB
Other characteristics				1	
Full-scale output voltage	Input = 0 dBFS	-	1.97	_	Vrms
Output load	Supported output load (at each output pad)	200	-	-	Ω
Tx-to-Rx crosstalk attenuation	Rx path measurement with -5 dBFS Tx path signal. f = 1 kHz; separate Tx input and Rx output grounds	_	119	_	dB

Table 3-9 Serial interface through stereo-differential line outputs (cont.)

Parameter	Conditions	Minimum	Тур	Maximum	Units
Power supply rejection	0 kHz < f < 1 kHz; 100 mVpp sine wave imposed on the power supply; PCMI = -999 dBFS	-	110	_	dB
	1 kHz < f < 5 kHz; 100 mVpp sine wave imposed on the power supply; PCMI = -999 dBFS	-	102	-	dB
	5 kHz < f < 20 kHz; 100 mVpp sine wave imposed on the power supply; PCMI = -999 dBFS	-	93	_	dB
Disabled output impedance	Measured externally from each pad to GND, with the amplifier disabled	_	15.2	_	Ω
Output capacitance	Differential output load capacitance that the line PA can support, including any PCB trace, EMI, ESD, and input capacitances of external circuits	-	-	100	pF
Turn on/off click and pop level	A-weighted	_	0.028	_	mVpp

3.6.4 Digital serial interface through single-ended line output

Table 3-10 specifies the performance of the following Rx path: digital serial input \rightarrow stereo DAC \rightarrow single-ended line output in Class-AB mode with 1 k Ω load, unless otherwise specified.

Table 3-10 Serial interface through stereo line output

Parameter	Conditions	Minimum	Тур	Maximum	Units
Line out SE; 48 kHz/44.1	kHz/16-bits				
Receive noise	A-weighted; input = -999 dBFS	_	1.16	_	μVrms
SNR	Ratio of full-scale output to output noise level, A-weighted	-	119	-	dB
THD + N ratio	PCMI = 0 dBFS; 20 Hz-20 kHz	-	-96	_	dB
	PCMI = -1 dBFS; 20 Hz-20 kHz	-	-95	_	dB
	PCMI = -60 dBFS; 20 Hz–20 kHz; A-weighted	-	-41	-	dB
Line out SE; 48 kHz/44.1	kHz/192 kHz/24-bits				
Receive noise	A-weighted; input = -999 dBFS	-	1.16	-	μVrms
SNR	Ratio of full-scale output to output noise level, A-weighted	-	119	-	dB
THD + N ratio	PCMI = 0 dBFS; 20 Hz-20 kHz	-	-99	_	dB
	PCMI = -1 dBFS; 20 Hz-20 kHz	-	-99	_	dB
	PCMI = -60 dBFS; 20 Hz–20 kHz; A-weighted	-	-59	-	dB
Other characteristics	1	1			

Table 3-10 Serial interface through stereo line output (cont.)

Parameter	Conditions	Minimum	Тур	Maximum	Units
Full-scale output voltage	Input = 0 dBFS	_	1	_	Vrms
Output load	Supported output load	1	_	_	kΩ
Tx-to-Rx crosstalk attenuation	Rx path measurement with - 5 dBFS Tx path signal, separate Tx input, and Rx output grounds	_	114	_	dB
Inter-channel isolation	20 < f < 20 kHz, measured channel output = -999 dBFS, second DAC channel output = -5 dBFS, separate GND on line outputs	_	111	_	dB
Power supply rejection	0 kHz < f < 1 kHz; 100 mVpp sine wave imposed on the power supply; PCMI = -999 dBFS	_	112	_	dB
	1 kHz < f < 5 kHz; 100 mVpp sine wave imposed on the power supply; PCMI = -999 dBFS	-	100	_	dB
	5 kHz < f < 20 kHz; 100 mVpp sine wave imposed on the power supply; PCMI = -999 dBFS	-	83	_	dB
Disabled output impedance	Measured externally, with the amplifier disabled	_	14.5	_	Ω
Output capacitance	Single-ended output load capacitance that the line PA can support including any PCB trace, EMI, ESD, and input capacitances of external circuits	-	-	100	pF
Turn on/off click-and-pop level	A-weighted	_	0.2	_	mVpp

3.7 Digital I/Os and digital processing

Digital logic characteristics are defined in Section 3.4. The supported industry standards are identified in the following subsections.

3.7.1 SLIMbus

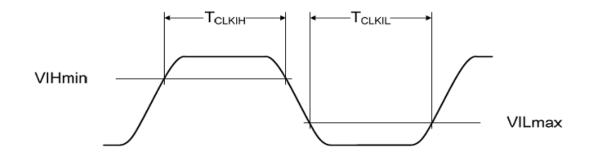


Figure 3-1 Received clock signal constraints

Table 3-11 Clock input timing requirements

Symbol	Parameter	Conditions	Minimum	Тур	Maximum	Units
T _{CLKIH}	CLK input high time	IOL = 1 mA	12	-	_	ns
V _{CLKIL}	CLK input low time	IOH = 1 mA	12	-	_	ns
SR _{CLKI}	Clock input slew rate	Load = 15 pF or 75 pF	0.02 × VDD	_	_	V/ns

Table 3-12 Data output timing characteristics

Symbol	Parameter	Conditions	Minimum	Тур	Maximum	Units
SR _{DATA}	Data output slew rate	20% < VO < 80%	_	_	0.5 × VDD	V/ns
T _{DV}	Time for data output valid	IOH = 1 mA	_	_	12	ns

Table 3-13 Data input timing requirements

Symbol	Parameter	Conditions	Minimum	Тур	Maximum	Units
T _H	Data input hold time	_	2	_	-	ns
T _{SETUP}	Data input setup time	_	3	_	_	ns

NOTE The WCD9335 SLIMbus is compliant to the clock and data specifications, as specified in the MIPI Alliance Specification for Serial Low-power Inter-chip Media Bus (SLIMbus) Version 1.01.01.

3.7.2 Inter-IC sound (I²S)

Table 3-14 Supported I²S standards and exceptions

Applicable standards	Feature exceptions	WCD9335 variations
Phillips I ² S Bus Specifications, revised June 5, 1996	No external controller support	None

Table 3-15 Master transmitter with data rate of 16 MHz

Parameter	Conditions	Minimum	Тур	Maximum	Unit
Clock period T	I ² S requirement: min T = 62.5	_	62.5	-	ns
Clock high t(hc)	I ² S requirement: min > 0.35 T	_	_	_	ns
Clock low t(lc)	I ² S requirement: min > 0.35 T	_	_	_	ns
Delay t(dtr)	I ² S requirement: max < 0.8 T	_	_	15.6	ns
Hold time t(htr)	I ² S requirement: min > 0	3.2	_	_	ns

Table 3-16 Slave receiver with clock rate of 16 MHz

Parameter	Conditions	Minimum	Тур	Maximum	Unit
Clock period T	I ² S requirement: min T = 62.5	-	62.5	-	ns
Clock high t(hc)	I ² S requirement: min < 0.35 T	_	-	_	ns
Clock low t(lc)	I ² S requirement: min < 0.35 T	-	-	_	ns
Setup time t(sr)	I ² S requirement: min < 0.2 T	15.6	-	_	ns
Hold time t(htr)	I ² S requirement: min < 0	0	_	_	ns

3.7.3 Inter-integrated circuit (I²C)

Table 3-17 Supported I²C standards and exceptions

Applicable standards	Feature exceptions	WCD9335 variations
<i>I2C Specification</i> , version 6.0, October 4 April 2014 (Phillips Semiconductor document number 9398 393 40011)	ŀ	None

3.7.4 Digital microphone PDM interface

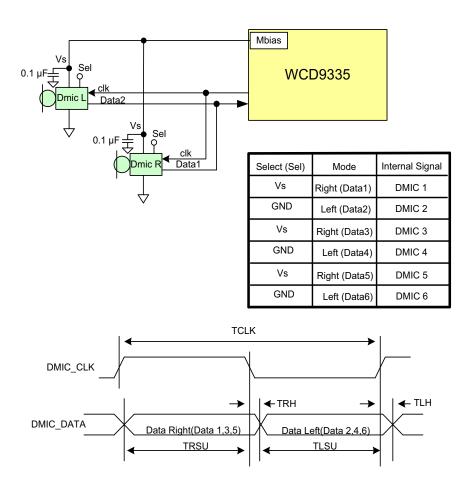


Figure 3-2 WCD9335 digital microphone PDM interface timing

Table 3-18 Digital microphone timing

Parameter	Minimum	Тур	Maximum	Unit
DMIC clock period (TCLK)	163	_	1666	ns
DMIC clock duty cycle	45	-	55	%
Data left setup time to DMIC clock rising edge (TLSU)	10	_	_	ns
Data left hold time from DMIC clock rising edge (TLH)	0	-	_	ns
Data right setup time to DMIC clock falling edge (TRSU)	10	-	_	ns
Data right hold time from DMIC clock falling edge (TRH)	0	_	_	ns

3.7.5 Master clock (MCLK)

Table 3-19 Master clock (MCLK)

Parameter	Minimum	Тур	Maximum	Units
Frequency ¹	9.6	9.6	24.576	MHz
Rise/fall time	_	10	20	ns
Duty cycle	45	50	55	%

^{1.} The codec supports 9.6 MHz, 19.2 MHz, 12.288 MHz, or 24.576 MHz frequency.

NOTE Recommendation G.711: The nominal value recommended for the sampling rate is 8000 samples per second. The tolerance on that rate should be ±50 ppm.

3.7.6 SoundWire

WCD9335 SoundWire PHY timing parameters as specified in Table 3-20 are compliant to clock and data specifications as specified in the MIPI Alliance Specification for SoundWire Version 0.8, Revision 04. See Figure 3-3 and Figure 3-4.

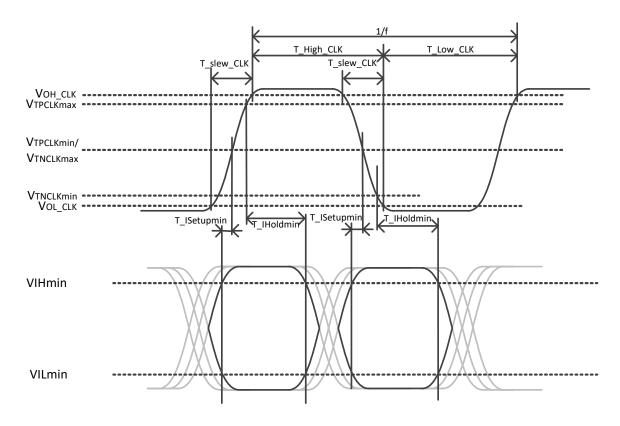


Figure 3-3 PHY timing – clock output/input and data input

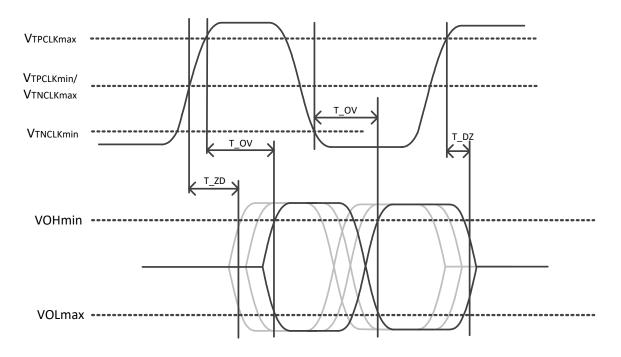


Figure 3-4 PHY timing – clock output/input and data input

Table 3-20 PHY timing parameters (1.8 V systems)

Name	Description	Minimum	Тур	Maximum	Units
VOH_CLK	Voltage level for clock high output	0.8 x VDD	_	-	V
VOL_CLK	Voltage level for clock low output	-	-	0.2 x VDD	V
VTPCLK	Voltage threshold for positive-going clock edges	0.9	_	1.17	V
VTNCLK	Voltage threshold for negative-going clock edges	0.63	_	0.9	V
T_slew_CLK	Slew time for positive or negative clock edge on clock output	2	-	5.4	ns
T_High_CLK	Duration of high half-period on clock output	35.3	_	_	ns
T_Low_CLK	Duration of low half-period on clock output	35.3	_	_	ns
DC_Out_Clock	Duty cycle generated at clock output	46	_	54	%
DC_In_Clock	Duty cycle received at clock input	45	_	55	%
T_Slew_Data	Slew time for data output changing from low to high or high to low	2	_	_	ns
T_DZ	Time to disable data output after positive or negative edge on clock input	-	_	4	ns
T_ZD	Time to enable data output after positive or negative edge on clock input	7.9	_	_	ns
T_OV	Time for data output to remain stable or valid after positive or negative edge on clock input	_	-	27.6	ns

Name	Description	Minimum	Тур	Maximum	Units
T_OH	Time for data output to remain stable after positive or negative edge on clock input	6.7	_	_	ns
t_ISetup_min	Minimum setup time demanded by a data input before a positive or negative edge on clock input	_	-	0	ns
t_IHold_min	Minimum hold time demanded by a data input after to a positive or negative edge on clock input	-	-	4	ns
t_Keeper_Settle	Time to bus-keeper generating the correct value on the data output after a continuously stable data value has been presented on the data input	-	_	2.5	ns
Frequency	Clock output frequency	0.6	_ 1	12.288	MHz

^{1.} When MCLK = 12.288 MHz, SoundWire clock = 768 kHz, 1.536 MHz, 3.072 MHz, 6.144 MHz, or 12.288 MHz. When MCLK = 9.6 MHz, SoundWire clock = 600 kHz, 1.2 MHz, 2.4 MHz, 4.8 MHz, or 9.6 MHz.

3.8 Support circuits - analog

3.8.1 Microphone bias

NOTE Microphone bias performances are measured with 0.1 uF load capacitance and output voltage of 2.85 V.

Table 3-21 Microphone bias performance

Parameter	Conditions	Minimum	Тур	Maximum	Units
Output voltage normal					
operation error	3 mA microphone load	1	1.8	2.85	V
		-50	_	50	mV
Load current	Output current that the MIC bias output can source	0.005	-	6	mA
Output noise	-	-	2.5	-	μV
Power supply rejection ratio	100 mVpp applied to VDD_MIC_BIAS input; 1.5 mA microphone load				
	20 Hz	93	-	_	dB
	200 Hz to 1 kHz	113	-	_	dB
	2 kHz	100	-	_	dB
	10 kHz	90	-	_	dB
	20 kHz	78	_	_	dB
Load capacitance	Capacitances directly at the MIC bias output	0.025	0.1	0.5	μF

4 Device marking and ordering information

The WCD9335 is available in the 113 FOWPSP that includes ground pads for improved grounding, mechanical strength, and thermal continuity. The 113 FOWPSP has a $4.17 \times 3.91 \times 0.65$ mm body with a maximum height of 0.65 mm. A simplified version of the 113 FOWPSP outline drawing is shown in Figure 4-1.

Figure 4-1 113 FOWPSP (4.17 × 3.91 × 0.65 mm) package outline drawing

□ (0.65 MAX)

NOTE This is a simplified outline drawing.

4

4.1 Device ordering information

4.1.1 Specification-compliant devices

Use the identification code shown in Figure 4-2 to order the device.

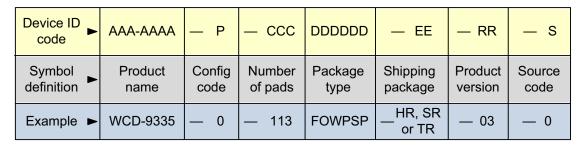


Figure 4-2 Device identification code

5 Carrier, storage, & handling information

5.1 Carrier

5.1.1 Tape and reel information

All carrier tape systems conform to EIA-481 standards.

A simplified sketch of the WCD9335 tape carrier is shown in Figure 5-1, including the proper part orientation, maximum number of devices per reel, and key dimensions.

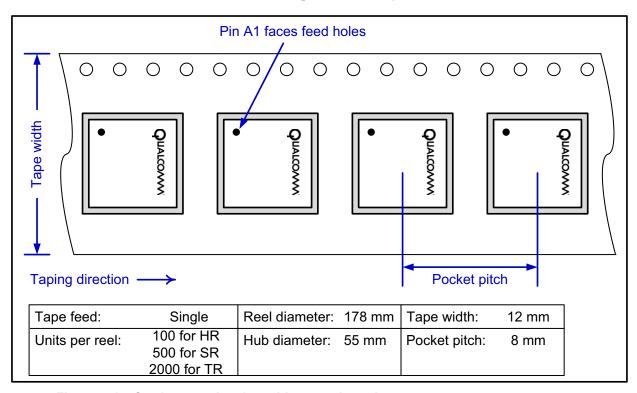


Figure 5-1 Carrier tape drawing with part orientation

Tape-handling recommendations are shown in Figure 5-2.

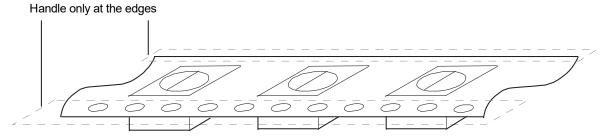


Figure 5-2 Tape handling

5.2 Storage

5.2.1 Bagged storage conditions

The WCD9335 devices delivered in tape and reel carriers must be stored in sealed, moisture barrier, antistatic bags.

5.2.2 Out-of-bag duration

The out-of-bag duration is the time a device can be on the factory floor before being installed onto a PCB.

5.3 Handling

Tape handling was discussed in Section 5.1.1. Other (IC-specific) handling guidelines are presented in this section.

Unlike traditional IC devices, the die within a fan-out wafer-level package (WLP) is not protected by an overmold and substrate; hence, these devices are relatively fragile.

NOTE To avoid damage to the die due to improper handling, follow these recommendations:

- Do not use tweezers; a vacuum tip is recommended for handling the devices.
- Carefully select a pickup tool for use during the SMT process.
- Do not touch the device when reworking or tuning the components located near the device.

5.3.1 Baking

Baking is not required if material is stored in a $\leq 30^{\circ}$ C/60% RH condition.

5.3.2 Electrostatic discharge

Electrostatic discharge (ESD) occurs naturally in laboratory and factory environments. An established high-voltage potential is always at risk of discharging to a lower potential. If this discharge path is through a semiconductor device, destructive damage can occur.

Develop and use the ESD countermeasures and handling methods to control the factory environment at each manufacturing site.

You must handle products according to the ESD Association standard: ANSI/ESD S20.20-1999, *Protection of Electrical and Electronic Parts, Assemblies, and Equipment.*

6 PCB mounting guidelines

6.1 RoHS compliance

The device complies with the requirements of the EU restriction of hazardous substances (RoHS) directive. Its tin-silver-copper (Sn/Ag/Cu) solder balls use SAC405 composition.

7 Device reliability

7.1 Reliability qualifications summary

Table 7-1 Silicon reliability results

Sample size	Result
370	Pass
	< 1000 DPPM
370	Pass
	< 50 FIT
370	> 20
3	2000 V
3	500 V
6	Pass
6	Pass
	6

Table 7-2 Package reliability results

Tests, standards, and conditions	Assembly source SCS Sample size	Assembly source Nanium Sample size	Result
Moisture resistance test (MRT): J-STD-020E	480	480	Pass
Reflow at 260 +0/-5°C			
(Total samples from three different assembly lots at each SAT)			
Temperature cycle: JESD22-A104-D	240	240	Pass
Temperature: -55°C to 125°C; number of cycles: 1000			
Soak time at minimum/maximum temperature: 8–10 minutes			
Cycle rate: 2 cycles per hour (CPH)			
Preconditioning: JESD22-A113-F			
MSL1, reflow temperature: 260°C+0/-5°C			
(Total samples from three different assembly lots at each SAT)			
Unbiased highly accelerated stress test (UHAST):	240	240	Pass
JESD22-A118-B			
Stress condition: 130°C/85% RH, 96 hrs			
Preconditioning: JESD22-A113-F			
MSL: 1, reflow temperature: 260 +0/-5°C			
(Total samples from three different assembly lots at each SAT)			
High-temperature storage life: JESD22-A103-C	240	240	Pass
Temperature 150°C, 1000 hours			
(Total samples from three different assembly lots at each SAT)			
Solder ball shear: JESD22-B117	15	15	Pass
Flammability UL-STD-94	_	_	See Note
Flammability test – not required			
Note : ICs are exempt from flammability requirements due to their size per UL/EN 60950-1, as long as they are mounted on materials rated V-1 or better. Most PWBs onto which ICs are mounted are rated V-0 (better than V-1).			
Physical dimensions: JESD22-B100-A	60	60	Pass
Case outline drawing: Qualcomm internal document			
(Total samples from three different assembly lots at each SAT)			

EXHIBIT 1

PLEASE READ THIS LICENSE AGREEMENT ("AGREEMENT") CAREFULLY. THIS AGREEMENT IS A BINDING LEGAL AGREEMENT ENTERED INTO BY AND BETWEEN YOU (OR IF YOU ARE ENTERING INTO THIS AGREEMENT ON BEHALF OF AN ENTITY, THEN THE ENTITY THAT YOU REPRESENT) AND QUAlcomm Technologies, Inc. ("QTI" "WE" "OUR" OR "US"). THIS IS THE AGREEMENT THAT APPLIES TO YOUR USE OF THE DESIGNATED AND/OR ATTACHED DOCUMENTATION AND ANY UPDATES OR IMPROVEMENTS THEREOF (COLLECTIVELY, "MATERIALS"). BY USING OR COMPLETING THE INSTALLATION OF THE MATERIALS, YOU ARE ACCEPTING THIS AGREEMENT AND YOU AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS. IF YOU DO NOT AGREE TO THESE TERMS, QTI IS UNWILLING TO AND DOES NOT LICENSE THE MATERIALS TO YOU. IF YOU DO NOT AGREE TO THESE TERMS YOU MUST DISCONTINUE AND YOU MAY NOT USE THE MATERIALS OR RETAIN ANY COPIES OF THE MATERIALS. ANY USE OR POSSESSION OF THE MATERIALS BY YOU IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH IN THIS AGREEMENT.

- 1.1 License. Subject to the terms and conditions of this Agreement, including, without limitation, the restrictions, conditions, limitations and exclusions set forth in this Agreement, Qualcomm Technologies, Inc. ("QTI") hereby grants to you a nonexclusive, limited license under QTI's copyrights to use the attached Materials; and to reproduce and redistribute a reasonable number of copies of the Materials. You may not use Qualcomm Technologies or its affiliates or subsidiaries name, logo or trademarks; and copyright, trademark, patent and any other notices that appear on the Materials may not be removed or obscured. QTI shall be free to use suggestions, feedback or other information received from You, without obligation of any kind to You. QTI may immediately terminate this Agreement upon your breach. Upon termination of this Agreement, Sections 1.2-4 shall survive.
- 1.2 **Indemnification**. You agree to indemnify and hold harmless QTI and its officers, directors, employees and successors and assigns against any and all third party claims, demands, causes of action, losses, liabilities, damages, costs and expenses, incurred by QTI (including but not limited to costs of defense, investigation and reasonable attorney's fees) arising out of, resulting from or related to: (i) any breach of this Agreement by You; and (ii) your acts, omissions, products and services. If requested by QTI, You agree to defend QTI in connection with any third party claims, demands, or causes of action resulting from, arising out of or in connection with any of the foregoing.
- 1.3 **Ownership**. QTI (or its licensors) shall retain title and all ownership rights in and to the Materials and all copies thereof, and nothing herein shall be deemed to grant any right to You under any of QTI's or its affiliates' patents. You shall not subject the Materials to any third party license terms (e.g., open source license terms). You shall not use the Materials for the purpose of identifying or providing evidence to support any potential patent infringement claim against QTI, its affiliates, or any of QTI's or QTI's affiliates' suppliers and/or direct or indirect customers. QTI hereby reserves all rights not expressly granted herein.
- 1.4 WARRANTY DISCLAIMER. YOU EXPRESSLY ACKNOWLEDGE AND AGREE THAT THE USE OF THE MATERIALS IS AT YOUR SOLE RISK. THE MATERIALS AND TECHNICAL SUPPORT. IF ANY, ARE PROVIDED "AS IS" AND WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS OR IMPLIED. QTI ITS LICENSORS AND AFFILIATES MAKE NO WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THE MATERIALS OR ANY OTHER INFORMATION OR DOCUMENTATION PROVIDED UNDER THIS AGREEMENT, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR AGAINST INFRINGEMENT, OR ANY EXPRESS OR IMPLIED WARRANTY ARISING OUT OF TRADE USAGE OR OUT OF A COURSE OF DEALING OR COURSE OF PERFORMANCE. NOTHING CONTAINED IN THIS AGREEMENT SHALL BE CONSTRUED AS (I) A WARRANTY OR REPRESENTATION BY QTI, ITS LICENSORS OR AFFILIATES AS TO THE VALIDITY OR SCOPE OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT OR (II) A WARRANTY OR REPRESENTATION BY OTI THAT ANY MANUFACTURE OR USE WILL BE FREE FROM INFRINGEMENT OF PATENTS, COPYRIGHTS OR OTHER INTELLECTUAL PROPERTY RIGHTS OF OTHERS, AND IT SHALL BE THE SOLE RESPONSIBILITY OF YOU TO MAKE SUCH DETERMINATION AS IS NECESSARY WITH RESPECT TO THE ACQUISITION OF LICENSES UNDER PATENTS AND OTHER INTELLECTUAL PROPERTY OF THIRD PARTIES. 1.5 LIMITATION OF LIABILITY. IN NO EVENT SHALL QTI, QTI'S AFFILIATES OR ITS LICENSORS BE LIABLE TO YOU FOR ANY INCIDENTAL, CONSEQUENTIAL OR SPECIAL DAMAGES, INCLUDING BUT NOT LIMITED TO ANY LOST PROFITS, LOST SAVINGS, OR OTHER INCIDENTAL DAMAGES, ARISING OUT OF THE USE OR INABILITY TO USE, OR THE DELIVERY OR FAILURE TO DELIVER, ANY OF THE MATERIALS, OR ANY BREACH OF ANY OBLIGATION UNDER THIS AGREEMENT, EVEN IF OTI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE FOREGOING LIMITATION OF LIABILITY SHALL REMAIN IN FULL FORCE AND EFFECT REGARDLESS OF WHETHER YOUR REMEDIES HEREUNDER ARE DETERMINED TO HAVE FAILED OF THEIR ESSENTIAL PURPOSE. THE ENTIRE LIABILITY OF QTI, QTI'S AFFILIATES AND ITS LICENSORS, AND THE SOLE AND EXCLUSIVE REMEDY OF YOU, FOR ANY CLAIM OR CAUSE OF ACTION ARISING HEREUNDER (WHETHER IN CONTRACT, TORT, OR OTHERWISE) SHALL NOT EXCEED US\$10.
- 2. **COMPLIANCE WITH LAWS**; APPLICABLE LAW. You agree to comply with all applicable local, international and national laws and regulations and with U.S. Export Administration Regulations, as they apply to the subject matter of this Agreement. This Agreement is governed by the laws of the State of California, excluding California's choice of law rules.
- 3. **CONTRACTING PARTIES**. If the Materials are downloaded on any computer owned by a corporation or other legal entity, then this Agreement is formed by and between QTI and such entity. The individual accepting the terms of this Agreement represents and warrants to QTI that they have the authority to bind such entity to the terms and conditions of this Agreement.
- 4. MISCELLANEOUS PROVISIONS. This Agreement, together with all exhibits attached hereto, which are incorporated herein by this reference, constitutes the entire agreement between QTI and You and supersedes all prior negotiations, representations and agreements between the parties with respect to the subject matter hereof. No addition or modification of this Agreement shall be effective unless made in writing and signed by the respective representatives of QTI and You. The restrictions, limitations, exclusions and conditions set forth in this Agreement shall apply even if QTI or any of its affiliates becomes aware of or fails to act in a manner to address any violation or failure to comply therewith. You hereby acknowledge and agree that the restrictions, limitations, conditions and exclusions imposed in this Agreement on the rights granted in this Agreement are not a derogation of the benefits of such rights. You further acknowledges that, in the absence of such restrictions, limitations, conditions and exclusions, QTI would not have entered into this Agreement with You. Each party shall be responsible for and shall bear its own expenses in connection with this Agreement. If any of the provisions of this Agreement are determined to be invalid, illegal, or otherwise unenforceable, the remaining provisions shall remain in full force and effect. This Agreement is entered into solely in the English language, and if for any reason any other language version is prepared by any party, it shall be solely for convenience and the English version shall govern and control all aspects. If You are located in the province of Quebec, Canada, the following applies: The Parties hereby confirm they have requested this Agreement and all related documents be prepared in English.