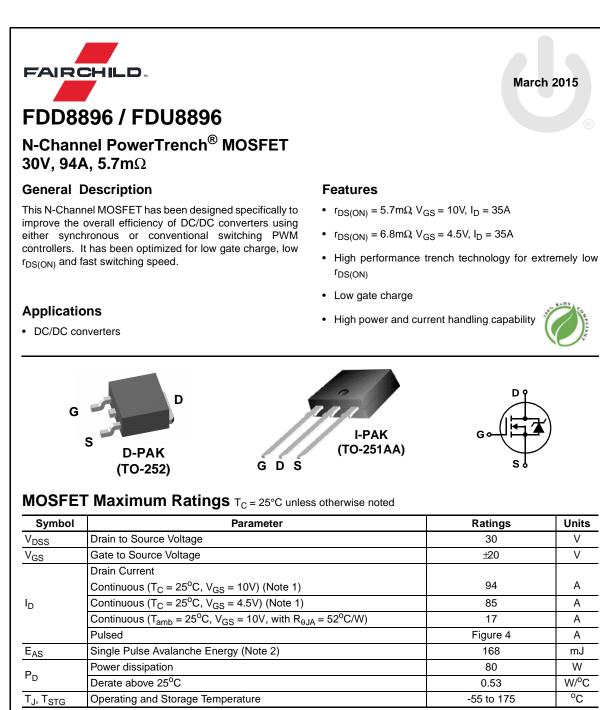


Is Now Part of



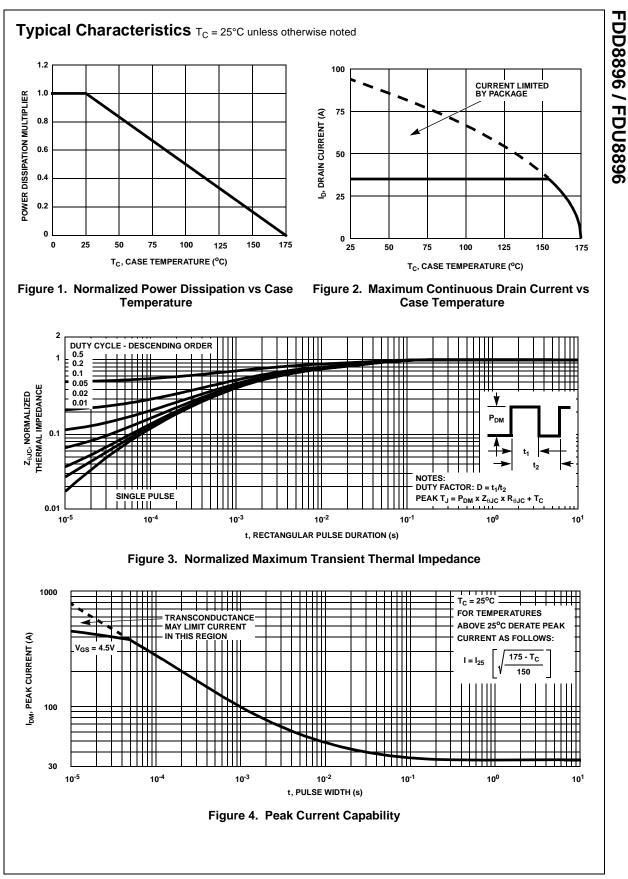
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

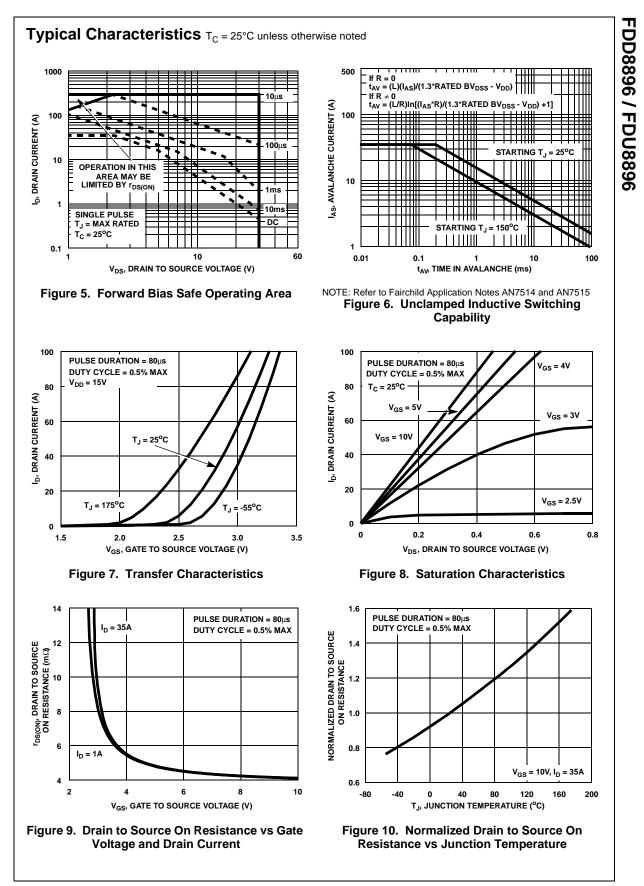
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

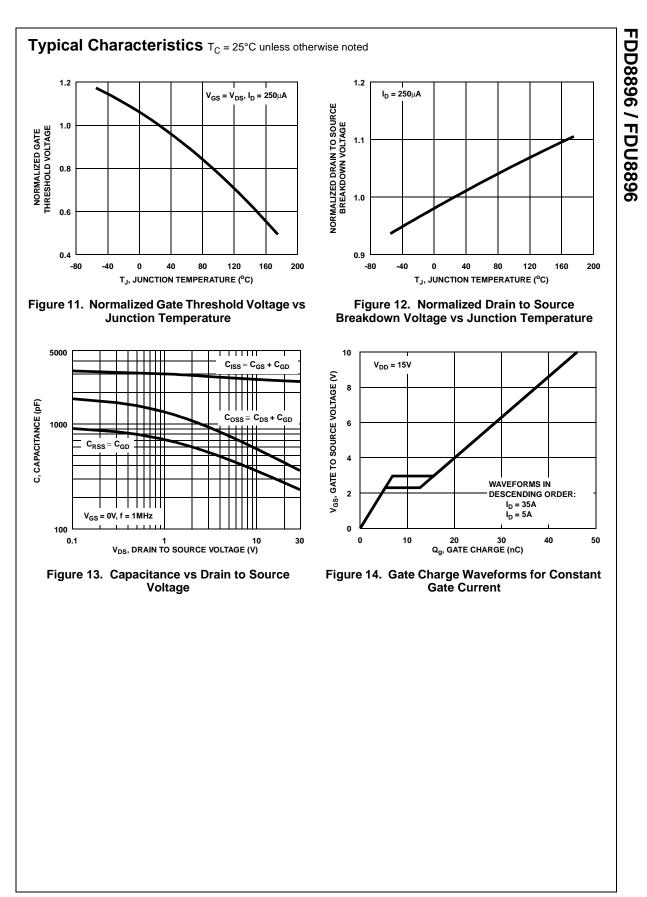
Thermal Characteristics

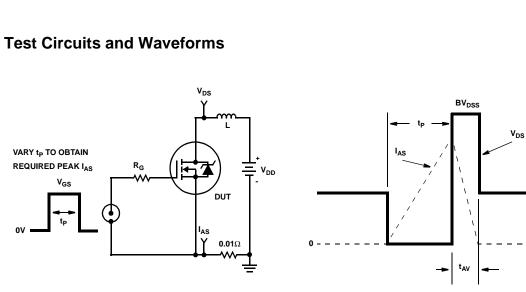

R_{\thetaJC}	Thermal Resistance Junction to Case TO-252, TO-251	1.88	°C/W
R_{\thetaJA}	Thermal Resistance Junction to Ambient TO-252, TO-251	100	°C/W
R_{\thetaJA}	Thermal Resistance Junction to Ambient TO-252, 1in ² copper pad area	52	°C/W

©2008 Fairchild Semiconductor Corporation


FDD8896 / FDU8896

FDD8896 / FDU8896


Symbol Off Characteristi B _{VDSS} Drain to I _{DSS} Zero Ga I _{DSS} Gate to On Characteristi V _{GS(TH)} Gate to r _{DS(ON)} Drain to C _{ISS} Input Ca C _{OSS} Output C _{RSS} Reverse R _G Gate to Q _{g(TOT)} Total Ga Q _{gs} Gate to Q _{gs} Gate to Q _{gg2} Gate to Q _{gg4} Gate to Switching Chara Chara	Source Breakdown Voltage te Voltage Drain Current Source Leakage Current cs Source Threshold Voltage Source On Resistance teristics apacitance Capacitance Transfer Capacitance esistance		Conditions $V_{GS} = 0V$ $T_{C} = 150^{\circ}C$ $I_{D} = 250\mu A$ $A_{SS} = 10V$ $A_{SS} = 4.5V$ $A_{SS} = 10V$,	N/ 	nm /A Typ - - - 0.0047 0.0057 0.0075 2525 490 300	2500 0 75 u 75 u 4 250 ±100 2.5 0.0057 0.0068 0.0092 - - -	
Electrical Cha Symbol Off Characteristic BVDSS Drain to IDSS Zero Ga IDSS Gate to Dn Characteristic VGS(TH) Gate to Drain to VGS(TH) Gate to Dynamic Characteristic CISS Input Ca COSS Output CRSS Reverse RG Gate to Qg(TOT) Total Ga Qgs Gate to Switching Chara Threshold	racteristics T _C = 25°(Parameter CS Source Breakdown Voltage te Voltage Drain Current Source Leakage Current CS Source Threshold Voltage Source On Resistance teristics apacitance Capacitance Transfer Capacitance sistance	C unless otherwis Test $I_D = 250\mu A,$ $V_{DS} = 24V$ $V_{GS} = 0V$ $V_{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = \pm 15V,$ f = 1MHz	se noted Conditions $V_{GS} = 0V$ $T_C = 150^{\circ}C$ $I_D = 250\mu A$ $G_{SS} = 10V$ $G_{SS} = 4.5V$ $G_{SS} = 10V$,	Min 30 1.2	Typ - - - 0.0047 0.0057 0.0075 2525 490	- 1 250 ±100 2.5 0.0057 0.0068	Units V μA nA V Ω
Symbol Dff Characteristi BVDSS Drain to IDSS Zero Ga IDSS Gate to Dn Characteristi VGS(TH) Gate to VGS(TH) Gate to VGS(TH) Drain to VGS(TH) Drain to VGS(ON) Drain to CLISS Input Ca COSS Output CRSS Reverse RG Gate to Qg(TOT) Total Ga Qgs Gate to Qgs Gate to Qgd Gate to Qgd Gate to Switching Chara Chara	Parameter CS Source Breakdown Voltage te Voltage Drain Current Source Leakage Current CS Source Threshold Voltage Source On Resistance teristics apacitance Capacitance Transfer Capacitance sistance	I _D = 250µA, V_{DS} = 24V V_{GS} = 0V V_{GS} = ±20V V_{DS} = 35A, V _C I_D = 35A, V _C I_D = 35A, V _C I_D = 35A, V _C V_{DS} = 15V, f = 1MHz	Conditions $V_{GS} = 0V$ $T_{C} = 150^{\circ}C$ $I_{D} = 250\mu A$ $A_{SS} = 10V$ $A_{SS} = 4.5V$ $A_{SS} = 10V$,	30 - - - - - - - -	- - - 0.0047 0.0057 0.0075 2525 490	- 1 250 ±100 2.5 0.0057 0.0068	V μA nA V Ω
Off Characteristi B _{VDSS} Drain to I _{DSS} Zero Ga I _{DSS} Gate to On Characteristi V _{GS(TH)} Gate to r _{DS(ON)} Drain to Oynamic Characteristi C _{ISS} Input Caracteristi C _{SSS} Output C _{RSS} Reverse R _G Gate to Q _{g(TOT)} Total Ga Q _{gg2} Gate to Q _{gg2} Gate to Q _{gg2} Gate to Q _{gg4} Gate to Switching Characteristic Gate to	CS Source Breakdown Voltage te Voltage Drain Current Source Leakage Current CS Source Threshold Voltage Source On Resistance teristics apacitance Capacitance Transfer Capacitance sistance	$I_{D} = 250\mu A,$ $V_{DS} = 24V$ $V_{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = \pm 20V$ $V_{GS} = -1000$ $I_{D} = -35A, V_{C}$	$V_{GS} = 0V$ $T_C = 150^{\circ}C$ $I_D = 250\mu A$ $G_{SS} = 10V$ $G_{SS} = 4.5V$ $G_{SS} = 10V$,	30 - - - - - - - -	- - - 0.0047 0.0057 0.0075 2525 490	- 1 250 ±100 2.5 0.0057 0.0068	V μA nA V Ω
BVDSS Drain to IDSS Zero Ga IGSS Gate to DON Characteristi VGS(TH) VGS(TH) Gate to VGS(TH) Gate to PDS(ON) Drain to Dynamic Characteristi CISS Input Ca COSS Output CRSS Reverse RG Gate to Qg(TOT) Total Ga Qgs Gate to Qgs Gate to Qgd Gate to Qgd Gate to Cast to Cast to <th>Source Breakdown Voltage te Voltage Drain Current Source Leakage Current cs Source Threshold Voltage Source On Resistance teristics apacitance Capacitance Transfer Capacitance esistance</th> <th>$V_{DS} = 24V$ $V_{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = \pm 20V$ $V_{GS} = V_{DS},$ $I_{D} = 35A, V_{C}$ $V_{DS} = 15V,$ $f = 1MHz$</th> <th>$T_{\rm C} = 150^{\circ}{\rm C}$ $I_{\rm D} = 250\mu{\rm A}$ $A_{\rm AS} = 10{\rm V}$ $A_{\rm AS} = 4.5{\rm V}$ $A_{\rm AS} = 10{\rm V}$,</th> <th>- - - - - - - - -</th> <th>0.0047 0.0057 0.0075 2525 490</th> <th>250 ±100 2.5 0.0057 0.0068</th> <th>μΑ nA V Ω</th>	Source Breakdown Voltage te Voltage Drain Current Source Leakage Current cs Source Threshold Voltage Source On Resistance teristics apacitance Capacitance Transfer Capacitance esistance	$V_{DS} = 24V$ $V_{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = \pm 20V$ $V_{GS} = V_{DS},$ $I_{D} = 35A, V_{C}$ $I_{D} = 35A, V_{C}$ $I_{D} = 35A, V_{C}$ $I_{D} = 35A, V_{C}$ $V_{DS} = 15V,$ $f = 1MHz$	$T_{\rm C} = 150^{\circ}{\rm C}$ $I_{\rm D} = 250\mu{\rm A}$ $A_{\rm AS} = 10{\rm V}$ $A_{\rm AS} = 4.5{\rm V}$ $A_{\rm AS} = 10{\rm V}$,	- - - - - - - - -	0.0047 0.0057 0.0075 2525 490	250 ±100 2.5 0.0057 0.0068	μΑ nA V Ω
IDSS Zero Ga IGSS Gate to On Characteristi VGS(TH) Gate to rDS(ON) Drain to Dynamic Charac CISS Input Ca COSS Output CRSS Reverse RG Gate to Qg(TOT) Total Ga Qg(TH) Thresho Qgs Gate to Qgs2 Gate to Qgd Gate to Qgd Gate to Qgod Gate to	te Voltage Drain Current Source Leakage Current CS Source Threshold Voltage Source On Resistance teristics apacitance Capacitance Transfer Capacitance sistance	$V_{DS} = 24V$ $V_{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = \pm 20V$ $V_{GS} = V_{DS},$ $I_{D} = 35A, V_{C}$ $I_{D} = 35A, V_{C}$ $I_{D} = 35A, V_{C}$ $I_{D} = 35A, V_{C}$ $V_{DS} = 15V,$ $f = 1MHz$	$T_{\rm C} = 150^{\circ}{\rm C}$ $I_{\rm D} = 250\mu{\rm A}$ $A_{\rm AS} = 10{\rm V}$ $A_{\rm AS} = 4.5{\rm V}$ $A_{\rm AS} = 10{\rm V}$,	- - - - - - - - -	0.0047 0.0057 0.0075 2525 490	250 ±100 2.5 0.0057 0.0068	μΑ nA V Ω
IGSS Gate to IGSS Gate to VGS(TH) Gate to rDS(ON) Drain to Dynamic Charac CISS Input Ci COSS Output CRSS Reverse RG Gate to Qg(TOT) Total Gate to Qgs Gate to Qgs2 Gate to Qgd Gate to Switching Chara	Source Leakage Current CS Source Threshold Voltage Source On Resistance teristics apacitance Capacitance Transfer Capacitance esistance	$V_{GS} = 0V$ $V_{GS} = \pm 20V$ $V_{GS} = \pm 20V$ $V_{GS} = V_{DS},$ $I_{D} = 35A, V_{C}$ $I_{D} = 35A, V_{C}$ $I_{D} = 35A, V_{C}$ $T_{J} = 175^{\circ}C$ $V_{DS} = 15V,$ $f = 1MHz$	$I_{D} = 250\mu A$ $A_{SS} = 10V$ $A_{SS} = 4.5V$ $A_{SS} = 10V$,	- 1.2 - -	0.0047 0.0057 0.0075 2525 490	250 ±100 2.5 0.0057 0.0068	 Ω
IGSS Gate to IGSS Gate to VGS(TH) Gate to rDS(ON) Drain to Dynamic Charac CISS Input Ci COSS Output CRSS Reverse RG Gate to Qg(TOT) Total Gate to Qgs Gate to Qgs2 Gate to Qgd Gate to Switching Chara	Source Leakage Current CS Source Threshold Voltage Source On Resistance teristics apacitance Capacitance Transfer Capacitance esistance	$V_{GS} = \pm 20V$ $V_{GS} = V_{DS},$ $I_{D} = 35A, V_{C}$ $I_{D} = 35A, V_{C}$ $I_{D} = 35A, V_{C}$ $I_{D} = 35A, V_{C}$ $T_{J} = 175^{\circ}C$ $V_{DS} = 15V,$ $f = 1MHz$	$I_{D} = 250\mu A$ $A_{SS} = 10V$ $A_{SS} = 4.5V$ $A_{SS} = 10V$,	- 1.2 - -	0.0047 0.0057 0.0075 2525 490	±100 2.5 0.0057 0.0068	 Ω
On Characteristi V _{GS(TH)} Gate to r _{DS(ON)} Drain to Dynamic Charac C _{ISS} Input Ca C _{OSS} Output C _{RSS} Reverse R _G Gate to Q _{g(TOT)} Total Gate to Q _{gs2} Gate to Q _{gd} Gate to	Source Threshold Voltage Source On Resistance teristics apacitance Capacitance Transfer Capacitance esistance	$\frac{V_{GS} = V_{DS},}{I_D = 35A, V_C}$ $\frac{I_D = 35A, V_C}{I_D = 35A, V_C}$ $\frac{I_D = 35A, V_C}{T_J = 175^{\circ}C}$ $\frac{V_{DS} = 15V,}{f = 1MHz}$	_{BS} = 10V _{BS} = 4.5V _{BS} = 10V,	-	0.0047 0.0057 0.0075 2525 490	2.5 0.0057 0.0068	V Ω pF
V _{GS(TH)} Gate to r _{DS(ON)} Drain to Dynamic Charace C _{ISS} Input Ca C _{OSS} Output C _{RSS} Reverse R _G Gate Re Q _{g(TOT)} Total Ga Q _{g(S)} Total Ga Q _{g(S)} Gate to Q _{gd} Gate to Q _{gd} Gate to Q _{gd} Gate to	Source Threshold Voltage Source On Resistance teristics apacitance Capacitance Transfer Capacitance esistance	$I_{D} = 35A, V_{C}$ $I_{D} = 35A, V_{C}$ $I_{D} = 35A, V_{C}$ $T_{J} = 175^{\circ}C$ $V_{DS} = 15V,$ $f = 1MHz$	_{BS} = 10V _{BS} = 4.5V _{BS} = 10V,	-	0.0047 0.0057 0.0075 2525 490	0.0057 0.0068	Ω pF
Image: Post (ON) Drain to provide the post of th	Source On Resistance teristics apacitance Capacitance Transfer Capacitance sistance	$I_{D} = 35A, V_{C}$ $I_{D} = 35A, V_{C}$ $I_{D} = 35A, V_{C}$ $T_{J} = 175^{\circ}C$ $V_{DS} = 15V,$ $f = 1MHz$	_{BS} = 10V _{BS} = 4.5V _{BS} = 10V,	-	0.0047 0.0057 0.0075 2525 490	0.0057 0.0068	Ω pF
r _{DS(ON)} Drain to Dynamic Charace C _{ISS} Input C C _{CSS} Output C _{RSS} Reverse R _G Gate R Q _{g(TOT)} Total Ga Q _{g(5)} Total Ga Q _{g(2)} Gate to Q _{gs} Gate Cl Q _{gd} Gate to Switching Chara	Source On Resistance teristics apacitance Capacitance Transfer Capacitance sistance	$I_{D} = 35A, V_{C}$ $I_{D} = 35A, V_{C}$ $I_{D} = 35A, V_{C}$ $T_{J} = 175^{\circ}C$ $V_{DS} = 15V,$ $f = 1MHz$	_{BS} = 10V _{BS} = 4.5V _{BS} = 10V,	-	0.0057 0.0075 2525 490	0.0057 0.0068	pF
Dynamic Charac C _{ISS} Input Ci C _{OSS} Output C _{RSS} Reverse R _G Gate Re Q _{g(TOT)} Total Gi Q _{g(5)} Total Gi Q _{g(TH)} Thresho Q _{gs} Gate to Q _{gd} Gate to Q _{gd} Gate to Q _{gd} Gate to Q _{gd} Gate to Switching Chara	teristics apacitance Capacitance Transfer Capacitance sistance	$I_{D} = 35A, V_{C}$ $I_{D} = 35A, V_{C}$ $T_{J} = 175^{\circ}C$ $V_{DS} = 15V,$ $f = 1MHz$	_{AS} = 4.5V _{AS} = 10V,		0.0075 2525 490		pF
Dynamic Charac C _{ISS} Input Ci C _{OSS} Output C _{RSS} Reverse R _G Gate Re Q _{g(TOT)} Total Gi Q _{g(5)} Total Gi Q _{g(TH)} Threshol Q _{gs} Gate to Q _{gd} Gate to Q _{gd} Gate to Q _{gd} Gate to Switching Chara	teristics apacitance Capacitance Transfer Capacitance sistance	$I_{D} = 35A, V_{C}$ $T_{J} = 175^{\circ}C$ $V_{DS} = 15V,$ $f = 1MHz$	_{SS} = 10V,	-	2525 490	0.0092 - -	pF
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	apacitance Capacitance Transfer Capacitance esistance	V _{DS} = 15V, f = 1MHz	V _{GS} = 0V,		2525 490	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	apacitance Capacitance Transfer Capacitance esistance	f = 1MHz	V _{GS} = 0V,	-	490	-	
$\begin{array}{c c} C_{OSS} & Output \\ \hline C_{RSS} & Reverse \\ \hline R_G & Gate Re \\ \hline Q_{g(TOT)} & Total Ga \\ \hline Q_{g(5)} & Total Ga \\ \hline Q_{g(5)} & Total Ga \\ \hline Q_{gs} & Gate to \\ \hline Q_{gs} & Gate Cl \\ \hline Q_{gd} & Gate to \\ \hline Switching Chara \\ \hline \end{array}$	Capacitance Transfer Capacitance sistance	f = 1MHz	V _{GS} = 0V,	-	490	-	
$\begin{array}{c c} C_{OSS} & Output \\ \hline C_{RSS} & Reverse \\ \hline R_G & Gate Re \\ \hline Q_{g(TOT)} & Total Ga \\ \hline Q_{g(5)} & Total Ga \\ \hline Q_{gS} & Gate to \\ \hline Q_{gs} & Gate Cl \\ \hline Q_{gd} & Gate to \\ \hline Q_{gd} & Gate to \\ \hline Switching Chara \\ \hline \end{array}$	Transfer Capacitance	f = 1MHz	V _{GS} = 0V,	-		-	pF
$\begin{array}{c c} C_{RSS} & Reverse \\ R_G & Gate R \\ Q_{g(TOT)} & Total Ga \\ Q_{g(5)} & Total Ga \\ Q_{g(5)} & Total Ga \\ Q_{g(TH)} & Thresho \\ Q_{gs} & Gate to \\ Q_{gs2} & Gate Cl \\ Q_{gd} & Gate to \\ \end{array}$	Transfer Capacitance			-	300		
R _G Gate Re Q _{g(TOT)} Total Gate Q _{g(5)} Total Gate Q _{g(TH)} Thresho Q _{gs} Gate to Q _{gd} Gate Cl Q _{gd} Gate to Q _{gd} Gate to Q _{gd} Gate to		V _{GS} = 0.5V,			500	-	pF
Q _{g(5)} Total Ga Q _{g(TH)} Thresho Q _{gs} Gate to Q _{gs2} Gate Cl Q _{gd} Gate to Q _{gd} Gate to Q _{gd} Gate to			f = 1MHz	-	2.1	-	Ω
Q _{g(5)} Total Ga Q _{g(TH)} Thresho Q _{gs} Gate to Q _{gs2} Gate Cl Q _{gd} Gate to Switching Chara	ite Charge at 10V	$V_{GS} = 0V$ to		-	46	60	nC
Q _{g(TH)} Thresho Q _{gs} Gate to Q _{gs2} Gate Cl Q _{gd} Gate to Q _{gd} Gate to	te Charge at 5V	$V_{GS} = 0V$ to	5V	-	24	32	nC
Q _{gs} Gate to Q _{gs2} Gate Cl Q _{gd} Gate to Switching Chara	ld Gate Charge	$V_{GS} = 0V$ to	1V V _{DD} = 15V	-	2.3	3.0	nC
Q _{gs2} Gate Cl Q _{gd} Gate to Switching Chara	Source Gate Charge		$I_D = 35A$ $I_a = 1.0mA$	-	6.9	-	nC
Gate to Switching Chara	Gate Charge Threshold to Plateau		$I_g = 1.011A$	-	4.6	-	nC
Switching Chara	Drain "Miller" Charge			-	9.8	-	nC
	cteristics (Vac - 10)()				-		
t ITurn Or						171	ns
	Delay Time			-	9	-	ns
		$\lambda = -4E\lambda /$	- 25 \	-	106	-	ns
	Delay Time	V _{DD} = 15V, V _{GS} = 10V,		-	53	-	ns
	,			-	41	-	ns
t _f Fall Tim t _{OFF} Turn-Of				_	-	143	ns
	ode Characteristics	1		<u> </u>	<u> </u>	. 10	110
	oue Gharacteristics					I	
V _{SD} Source	Source to Drain Diode Voltage	I _{SD} = 35A		-	-	1.25	V V
	Recovery Time	$I_{SD} = 15A$	ll _{SD} /dt = 100A/μs	-		1.0 27	ns
	Recovered Charge	-	ll _{SD} /dt = 100A/μs		-	12	nC


©2008 Fairchild Semiconductor Corporation

©2004 Fairchild Semiconductor Corporation

©2008 Fairchild Semiconductor Corporation

FDD8896 / FDU8896

 V_{DD}

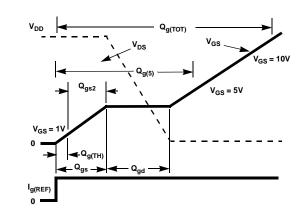
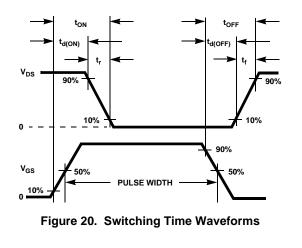



Figure 18. Gate Charge Waveforms

Figure 15. Unclamped Energy Test Circuit

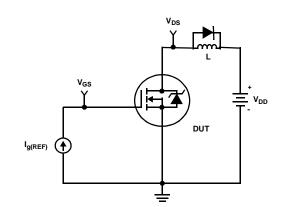


Figure 17. Gate Charge Test Circuit

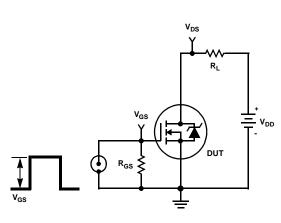


Figure 19. Switching Time Test Circuit

©2008 Fairchild Semiconductor Corporation

Thermal Resistance vs. Mounting Pad Area

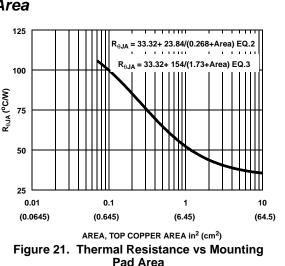
The maximum rated junction temperature, T_{JM} , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM} , in an application. Therefore the application's ambient temperature, T_A (°C), and thermal resistance $R_{\theta JA}$ (°C/W) must be reviewed to ensure that T_{JM} is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

$$P_{DM} = \frac{(T_{JM} - T_A)}{R_{\theta JA}}$$
(EQ. 1)

In using surface mount devices such as the TO-252 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of P_{DM} is complex and influenced by many factors:

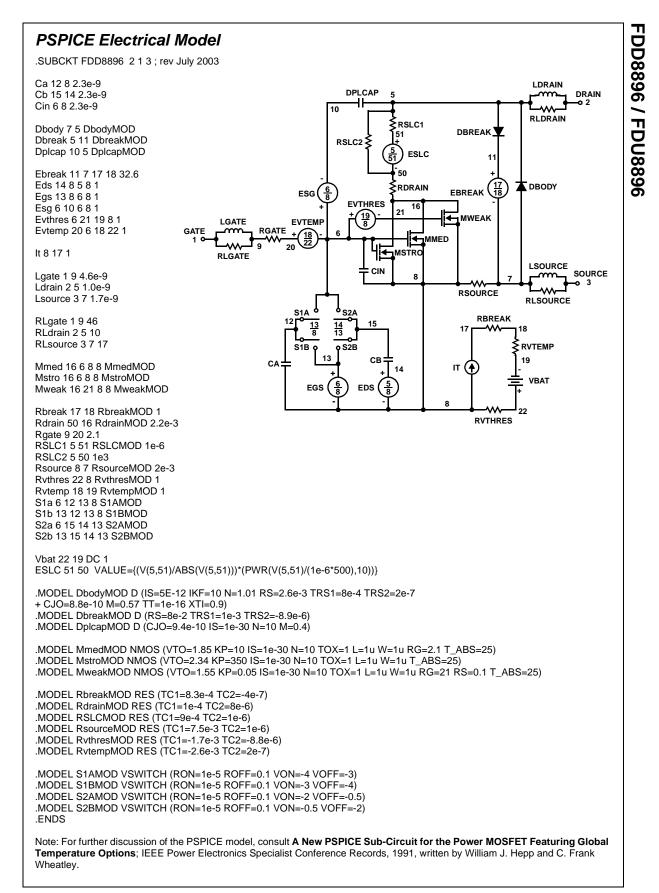
- 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
- 2. The number of copper layers and the thickness of the board.
- 3. The use of external heat sinks.
- 4. The use of thermal vias.
- 5. Air flow and board orientation.
- 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.

Fairchild provides thermal information to assist the designer's preliminary application evaluation. Figure 21 defines the $R_{\theta,JA}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve.

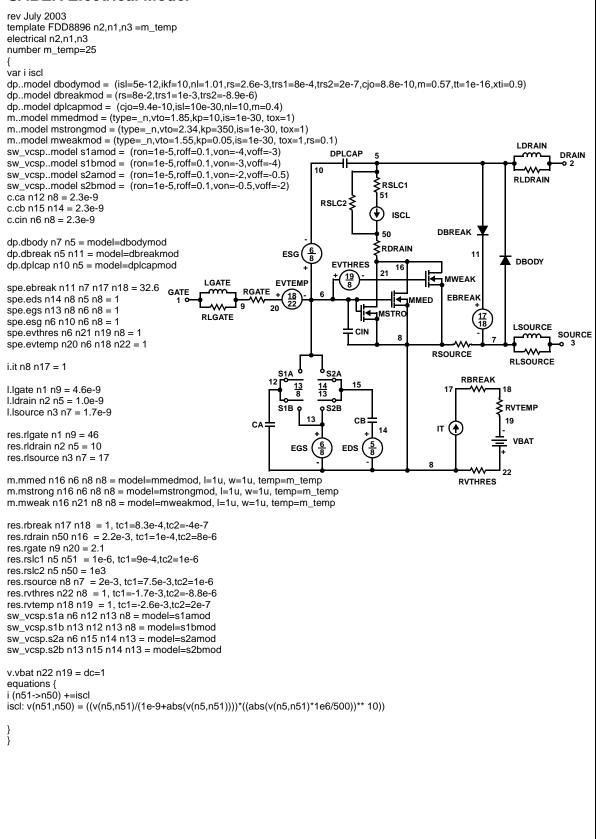

Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inches square and equation 3 is for area in centimeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads.

$$R_{\theta JA} = 33.32 + \frac{23.84}{(0.268 + Area)}$$
 (EQ. 2)

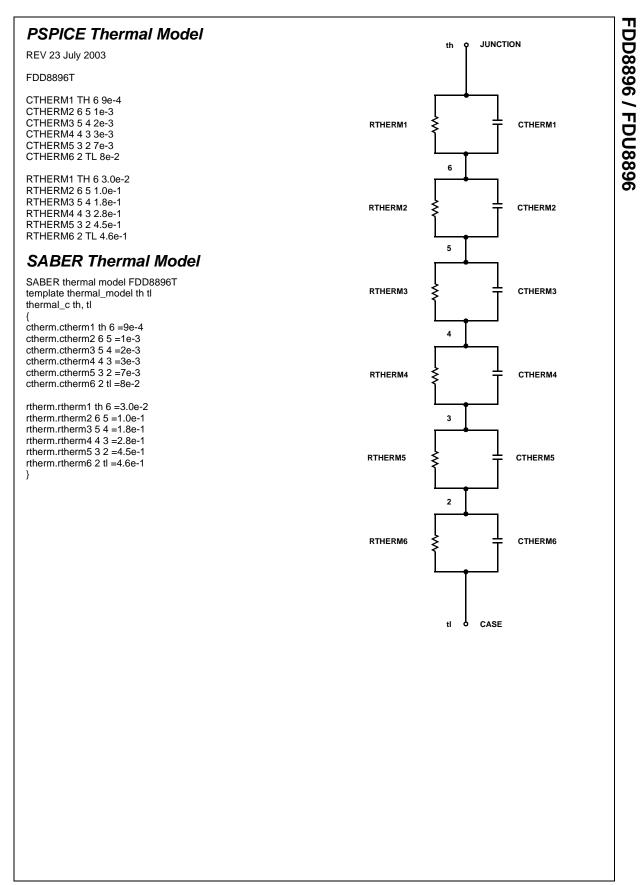
Area in Inches Squared

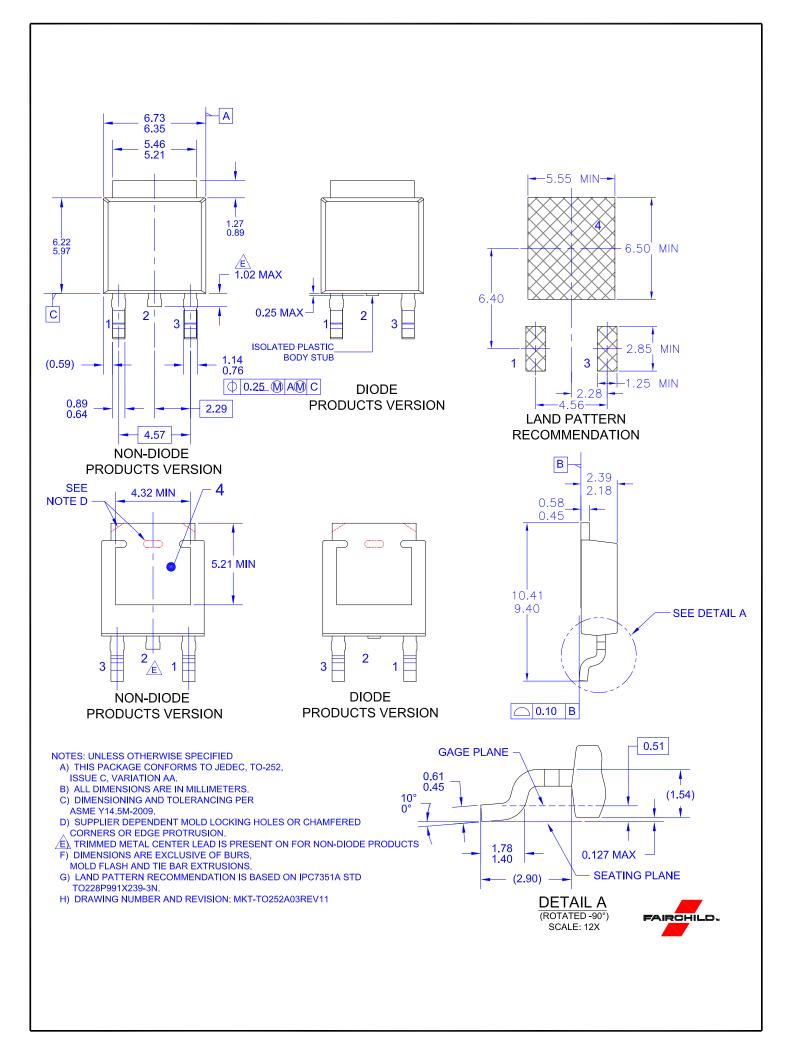

$$R_{\theta JA} = 33.32 + \frac{154}{(1.73 + Area)}$$
 (EQ. 3)

Area in Centimeters Squared



FDD8896 / FDU8896


©2008 Fairchild Semiconductor Corporation



SABER Electrical Model

DD8896 / FDU8896

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi: FDD8896