

Dimension 55x46x3.3mm

FEATURES

- 128X64 DOTS (RELATES TO 8×21 CHARACTER OR 4x16 LARGE CHARACTER)
- HIGH CONTRAST OLED DISPLAY
- INTEGRATED CONTROLLER SSD1306
- SPI INTERFACE: MOSI, CLK, CS, D/C
- ${ }^{2} \mathrm{C}$ INTERFACE: SDA, SCL
- WIDE TEMPERATURE RANGE (Top $-40^{\circ} \mathrm{C}-+80^{\circ} \mathrm{C}$)
- NO MOUNTING REQUIRED: JUST PUT INTO PCB
- 3 VERSIONS (WITH / W.O. POLARISOR AND PROTECTION GLASS) IN VARIOUS COLORS)
- FAST RESPONSE TIME, NO AFTERGLOW

ORDERING CODES

- GRAPHIC 128×64, yellow, black background, incl. protection glass
- GRAPHIC 128×64, yellow, black background, w./o. protection glass
- GRAPHIC 128x64, white, black background, w./o. protection glass

WITH A MINIMUM ORDER QTY. OF 10,000 PCS.

- GRAPHIC 128×64, with Polariser (Standard)

EA OLEDM128-6GGA

EA OLEDM128-6LGA EA OLEDM128-6LWA

X: $G=$ Yellow
$B=$ Blue
R = Red

ACCESSORIES

- TEST BOARD WITH USB-INTERFACE

EA 9781-1USB

- SOCKET 4.8MM HOCH (2 PCS. ARE REQUIRED)
- TOUCHPANEL, 4-WIRE ANALOGUE SELF-ADHESIVE
- ZIFF CONNECTOR FOR TOUCH, BOTTOM CONTACT) IN COMBINATION WITH EA OLEDM128-6GGA ONLY

EA FL-20P
EA TOUCH128-1*)
EA WF100-04S

EA OLED SERIES

With its EA OLED series ELECTRONIC ASSEMBLY launched worldwide the first display family with OLEDtechnology for direct mounting and soldering. In comparison to standard displays there's no FFC/FPC cable/connector that may lose contact, this OLED series will be soldered directly or put into a standard 2.54 mm precision socket.
It is designed for compact handheld equipment and provides a lot real advantages:

- Extreme compact ($55 \times 46 \mathrm{~mm}$) with a large viewing area ($51 \times 31 \mathrm{~mm}$)
- Super flat with 2.1 mm (without frontal protection glass)
- SPI and $\mathrm{I}^{2} \mathrm{C}$ interface
- Simple mounting with direct soldering
- Ex stock available from 1 pc. off
- Long life time (up to $100,000 \mathrm{~h}$ are possible)
- Wide temperature range $\left(-40 . .+80^{\circ} \mathrm{C}\right)$
- Fast response time ($10 \mu \mathrm{~s}$), no afterglow

VERSIONS

The EA OLEDM128-6 is available in 3 different versions:

EA OLEDM128-6GGA / Allround

This module is perfect for rough environment. An additional frontal glass protects the display against scratch, shock and UV light. Thanks to its integrated polariser there's no need for an additionally smoked glass.

EA OLEDM128-6LGA and -6LWA / Flat

This module is the standard module and does fit for the most applications. The flat design (2.4 mm) makes the display perfect for smallest equipment. The background is always deep black for best contrast.

COLORS (CUSTOM MADE)

The standard colors are yellow and white.
The flat version EA OLEDM128-6LGA is on customers request available in 3 more colors. The minimum order quantity is 10,000 pcs. and lead time is about 20 weeks. Samples are available on request.
Interface and software are 100% compatible. The yellow color provides highest brightness and longest life time.

EA OLEDM128-6LEA

EA OLEDM128-6LRA

EA OLEDM128-6LBA

APPLICATION EXAMPLES

4-Wire SPI

3-Wire SPI

$1^{2} \mathrm{C}$ Address 0x78 (0x3C)

1^{2} C Address 0x7A (0x3D)

VCC - Generation: 12 V (FAN5331, LT1935)

DATA TRANSFER 4-WIRE SPI (8 BIT)

Data transmission for SPI is unidirectional, that means that data can only be written, there's no data read option. Selection for writing data or command is done with the D/C line. A busy check is not necessary at all. Clock rate may be up to 10 MHz . Data transmission is based on SPI mode 3, MSB first. For more
 details please refer to the controllers data sheet SSD1306.

DATA TRANSFER 4-WIRE SPI (9 BIT)

Data transmission for SPI is unidirectional, that means that data can only be written, there's no data read option. Selection for writing data or command is done with the first bit of the 9 bit data transfer. A busy check is not necessary at all. Clock rate
 may be up to 10 MHz . Data transmission is based on SPI mode 3, MSB first (9 bit). For more details please refer to the controllers data sheet SSD1306.

DATA TRANSFER I²C

The $I^{2} \mathrm{C}$ mode provides a bi-directional data transmission: That means that data can be written and read. With the pin SA0 the $I^{2} \mathrm{C}$ address can be changed, so up to 2 displays may be driven on 1 bus. The clock rate may be up to 400 KHz . Please make sure when defining the pull-up resistors that the internal resistance of the display is $600 . .1000 \Omega$. This affects the low level when reading data and ACK bit.
Attention: When reading data, after the command for page- or column address there need to be a dummy read (discard the first byte).

Control byte: C_{0} (Continuation bit) $=0 \rightarrow$ Display data do follow; $1 \rightarrow$ refer D/C bit

GRAPHIC RAM

The EA OLEDM128-6 comes with an integrated display RAM. Each byte represents 8 dots. For more details please refer to the controllers data sheet SSD1306, available on our website at
http://www.Icd-module.de/fileadmin/eng/pdf/zubehoer/SSD1306B 1.1.pdf.

COMMAND TABLE (ABSTRACT)

This is a collection of the most important commands. The data sheet SSD1306 provides the full list plus a detailed description.

Column address	
-	Page 0
哭	Page 1
\%	Page 2
P0	Page 3
\$00	Page 4
Doi	Page 5
	Page 6
Do	Page 7

Command	$\begin{array}{\|l} \hline \mathrm{D} / \\ \mathrm{C} \end{array}$	Command Code									Description
		Hex	D7	D6	D5	D4	D3	D2	D1	D0	
Contrast Control	$\begin{array}{\|l\|} \hline 0 \\ 0 \end{array}$	$\begin{aligned} & \hline 81 \\ & 7 \mathrm{~F} \end{aligned}$	$\begin{aligned} & \hline 1 \\ & \mathrm{~A}_{7} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \mathrm{~A}_{6} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ \mathrm{~A}_{5} \end{array}$	$\begin{aligned} & \hline 0 \\ & \mathrm{~A}_{4} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \mathrm{~A}_{3} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \mathrm{~A}_{2} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \mathrm{~A}_{1} \end{aligned}$	$\begin{aligned} & \hline 1 \\ & \mathrm{~A}_{0} \end{aligned}$	Double byte command to select 1 out of 256 contrast steps. Contrast increases as the value increases.
Display On / Off	0	$\begin{array}{\|l\|} \hline \mathrm{AE} / \\ \mathrm{AF} \end{array}$	1	0	1	0	1	1	1	X_{0}	$\mathrm{X}_{0}=0$: Display OFF (sleep mode) (RESET) $\mathrm{X}_{0}=1$: Display ON in normal mode
Set Column address	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|l\|} \hline 21 \\ 0 \\ 7 F \end{array}$	$\begin{aligned} & \hline 0 \\ & A_{7} \\ & B_{7} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ \mathrm{~A}_{6} \\ \mathrm{~B}_{6} \end{array}$	$\begin{aligned} & \hline 1 \\ & A_{5} \\ & B_{5} \end{aligned}$	$\begin{aligned} & 0 \\ & \hline A_{4} \\ & B_{4} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{~A}_{3} \\ & \mathrm{~B}_{3} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{~A}_{2} \\ & \mathrm{~B}_{2} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ A_{1} \\ B_{1} \end{array}$	$\begin{aligned} & \hline 1 \\ & \mathrm{~A}_{0} \\ & \mathrm{~B}_{0} \end{aligned}$	Setup column start and end address A[7:0] : Column start address, range: 0-127d, (RESET $=0$) $\mathrm{B}[7: 0]$: Column end address, range : 0-127d, RESET = 127) Note: This command is only for horizontal or vertical addressing mode.
Set Page address	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|l\|} \hline 22 \\ 0 \\ 7 \end{array}$	$\begin{aligned} & 0 \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & 0 \\ & X \\ & X \\ & X \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ x \\ x \\ x \end{array}$	$\begin{aligned} & \hline 0 \\ & X \\ & X \\ & X \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{~A}_{2} \\ & \mathrm{~B}_{2} \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ A_{1} \\ B_{1} \end{array}$	$\begin{aligned} & \hline 0 \\ & A_{0} \\ & B_{0} \end{aligned}$	Setup page start and end address A[2:0] : Page start Address, range : 0-7d, (RESET = 0) $\mathrm{B}[2: 0]$: Page end Address, range : $0-7 d,($ RESET = 7) Note: This command is only for horizontal or vertical addressing mode.
Display Start Line	0	$\begin{aligned} & \hline 40 \\ & - \\ & 7 F \end{aligned}$	0	1	A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	A_{0}	Set display RAM display start line register from 0-63 using $\mathrm{X}_{5} \mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}$. Display start line register is reset to 0 during RESET.
Segment remap	0	$\begin{array}{\|l\|} \hline \text { A0/ } \\ \text { A1 } \end{array}$	1	0	1	0	0	0	0	X 0	$X_{0}=0$: column address 0 is mapped to SEG0 (RESET) $X_{0}=1$: column address 127 is mapped to SEG0
Com output scan direction	0	$\begin{array}{\|l\|} \hline \mathrm{C0} \\ \mathrm{C} 8 \\ \hline \end{array}$	1	1	0	0	X_{3}	0	0	0	$X_{3}=0$: normal mode (RESET) Scan from COMO to COM[N -1] $X_{3}=1$: remapped mode. Scan from COM[$\mathrm{N}-1$] to COMO Where N is the Multiplex ratio
RAM Data	1	XX	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	$\mathrm{D}_{7}-\mathrm{D}_{0}$ is written to RAM.

INITIALISATION EXAMPLE

```
```

void init_OLEDM128(void)

```
```

void init_OLEDM128(void)
{
{
send_command(0x40);
send_command(0x40);
send_command(0xA0);
send_command(0xA0);
send_command(0xC0);
send_command(0xC0);
send_command(0xA6);
send_command(0xA6);
send_command(0x81); send_command(0xFF);
send_command(0x81); send_command(0xFF);
send_command(0xD5); send_command(0x40);
send_command(0xD5); send_command(0x40);
send_command(0xD9); send_command(0x44);
send_command(0xD9); send_command(0x44);
send_command(0xAF);
send_command(0xAF);
}

```
```

}

```
```

```
//Set Display start line
```

//Set Display start line
//Bottom View no Segment remap
//Bottom View no Segment remap
//Bottom View COM scan direction normal
//Bottom View COM scan direction normal
//Display normal (RAM)
//Display normal (RAM)
//Set contrast to maximum
//Set contrast to maximum
//Clock divider/Oscillator frequency
//Clock divider/Oscillator frequency
//Pre-charge Period
//Pre-charge Period
//Display on

```
//Display on
```


ACCESSORY: SOCKET EA FL-20P

Using a 20-pin socket makes the display replaceable and adapts the height. Those socket may also be soldered automatically by wave soldering or reflow process. Each display requires 2 pcs. Also available in SMT (EA FL-20PS).

ACCESSORY: TOUCHPANEL EA TOUCH128-1

As an accessory there is an analogue touchpanel available. It comes with a self-adhesive glue on its rear side. Connection is done via FFC, pitch 1.0 mm . Any standard ZIFF connector can be used (e.g. EA WF100-04S). Bending radius is minimum 5 mm . Interfacing to a processor can be either done by an external touch panel controller or with a controller that is featured with analogue input. The touch panel is similar to a potentiometer: connecting a voltage of e.g. 3.3 V to the pins Top-Bottom makes it possible to read out a voltage on pin Left or Right which is linear to the Y -coordinate of the pressed point. The X-coordinate will result when the voltage will be supplied to Left-Right and measurement is done at Top or Bottom. The pinout of the connecting cable is shown in the drawing. Only in combination with the EA OLEDM128-6GGA.

Specification			
Value	min	max	Unit
Top-Bottom	120	300	Ω
Left-Right	580	900	Ω
Voltage	3	12	V
Current	5	25	mA
Linearity	1,5		$\%$
Force	45	65	G
Contact Bounce	5	10	Ms
$\mathrm{T}_{\text {op. }}$	-20	+60	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {Stor. }}$	-20	+70	${ }^{\circ} \mathrm{C}$
Transmission	75	85	$\%$
Lifetime	10000		Cycles

ACCESSORY: ZIFF CONNECTOR EA WF100-04S

The ZIFF connector matches perfect to the touch panel EA TOUCH128-1. It provides 4 pins with 1.0 mm pitch. Connection is bottom contact. The top contact version is called EA WF100-04T.

SPECIFICATION

Unless otherwise specified, VSS $=0 \mathrm{~V}, V D D=1.8-3.3 V\left(T a=25^{\circ} \mathrm{C}\right)$

Value	Condition	min	typ	max	Unit
Operating Temperature		-40		+80	${ }^{\circ} \mathrm{C}$
Storage Temperature		-40		+80	${ }^{\circ} \mathrm{C}$
Storage Humidity	$<40^{\circ} \mathrm{C}$			90	$\% \mathrm{RH}$
Operating Voltage VDD logic supply		1.8	3.0	3.3	V
Operating Voltage VCC OLED supply			12.5	13.0	V
High Logic input level		$0.8 \times$ VDD			
Low Logic input level				$0.2 \times \mathrm{VDD}$	V
Power Supply VCC ${ }^{1)}$	All Pixel off		0,4		mA
	Demo picture ${ }^{2)}$		12		mA
	All Pixel on		28		mA

1) $\mathrm{VCC}=12 \mathrm{~V}$, initialization 0x81,0xFF / 0xD5,0x40 / 0xD9, 0x44 / 0xDB,0x20
2) Demo Picture:

OPTICAL DATA

Item	Symbol	Condition	min	typ	max	Unit
View Angle	(V) θ	CR $\geqq 2000$	160	170		deg
	(H) φ	CR $\geqq 2000$	160	170		deg
Contrast Ratio	CR	Dark Room	2000:1			
Response Time	T rise			10		$\mu \mathrm{s}$
	T fall			10		$\mu \mathrm{s}$
Luminance ${ }^{1)}$	L	-6GGA / -6LGA	90	100		$\mathrm{cd} / \mathrm{m}^{2}$
CIE $1931 \times$ (Yellow)		Dark Room	0.45	0.47	0.49	
CIE 1931 y(Yellow)		Dark Room	0.48	0.50	0.52	
Operating Life Time ${ }^{2)}$	yellow	50\% chess board	50,000			hrs
	white		20,000			

[^0]
DIMENSIONS EA OLEDM128-6

Pin	Symbol	Pin	Symbol	Description
1	NC	21	VCC	Typ. 12 V OLED driving voltage
2	NC	22	VCC	
3	NC	23	GND	Ground
4		24	GND	
5		25	VDD	Typ. 3.3 V logic power supply
6		26	BS0	$\begin{aligned} & 00=4-\text { Wire SPI; } 01=3-\text { Wire SPI } \\ & 10=I^{2} \mathrm{C} \text { Interface } \end{aligned}$
7		27	BS1	
8		28	GND	Ground
9		29	CS	Chip Select (active low)
10		30	RES	Reset (active low)
11		31	D/C	SPI (4-Wire): L=Command, H=Data, ${ }^{2} \mathrm{C}$: SA0
12		32	D0	SPI: SCLK, ${ }^{2} \mathrm{C}$: SCL
13		33	D1	SPI: MOSI, ${ }^{2} \mathrm{C}$: SDA $_{\text {in }}$
14		34	D2	SPI: NC, ${ }^{2} \mathrm{C}$: SDA $_{\text {out }}$
15		35	GND	Ground
16		36	Iref	Reference for current source for segement drivers
17		37	VCOMH	Common deselect level. (Internally regulated)
18	NC	38	VCOMH	
19	NC	39	VCC	Typ. 12 V OLED driving voltage
20	NC	40	VCC	

Note:

- OLED displays are generally not suited for wave or reflow soldering. Temperatures of over $80^{\circ} \mathrm{C}$ can cause lasting damage.
- The surfaces of the displays are protected from scratching by self-adhesive protective foil. Please remove before mounting

[^0]:
 ${ }^{2)} T_{a}=25^{\circ} \mathrm{C}$, operating life time is defined the amount of time until the luminance has decayed to 50% of the initial value. Screen saving mode is recommended to extend life time

