Si52146

SKYWORKS

PCI-Express Gen 1, Gen 2, Gen 3, \& Gen 4 Six Output Clock Generator

Features

- PCI-Express Gen 1, Gen 2, Gen 3, and Gen 4 common clock compliant
- Gen 3 SRNS Compliant
- Supports Serial-ATA (SATA) at 100 MHz
- Low power push-pull HCSL compatible differential outputs
- No termination resistors required
- Dedicated output enable pins for each clock
- Pin selectable spread control
- Up to six PCI-Express clock outputs
- 25 MHz crystal input or clock input
- $I^{2} \mathrm{C}$ support with readback capabilities
- Triangular spread spectrum profile for maximum electromagnetic interference (EMI) reduction
- Industrial temperature: -40 to $85^{\circ} \mathrm{C}$
- 3.3 V Power supply
- 32-pin QFN package

Applications

- Network attached storage
- Wireless access point
- Multi-function printer

Description

The Si52146 is a high-performance, PCle clock generator that can source six PCle clocks from a 25 MHz crystal or clock input. The clock outputs are compliant to PCle Gen 1, Gen 2, Gen 3, Gen 3 SRNS and Gen 4 common clock specifications. The device has six output enable control pins for enabling and disabling differential outputs. A spread spectrum control pin for EMI reduction is also available. The small footprint and low power consumption makes the Si52146 the ideal clock solution for consumer and embedded applications. Measuring PCle clock jitter is quick and easy with the Skyworks Solutions PCle Clock Jitter Tool. Download it for free at https://www.skyworksinc.com/en/application-pages/pci-express-learning-center.

Functional Block Diagram

Patents pending

Table of Contents

Section Page

1. Electrical Specifications 4
2. Functional Description 7
2.1. Crystal Recommendations 7
2.2. CKPWRGD/PDB (Power Down) Pin 8
2.3. PDB (Power Down) Assertion 8
2.4. PDB Deassertion 8
2.5. OE Pin 8
2.6. OE Assertion 8
2.7. OE Deassertion 8
2.8. SSON Pin 8
3. Test and Measurement Setup 9
4. Control Registers 11
4.1. I2C Interface 11
4.2. Data Protocol 11
5. Pin Descriptions: 32-Pin QFN 16
6. Ordering Guide 18
7. Package Outline 19
8. Land Pattern 20
Document Change List 22

Si52146

1. Electrical Specifications

Table 1. DC Electrical Specifications

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
3.3 V Operating Voltage	VDD core	$3.3 \pm 5 \%$	3.135	3.3	3.465	V
3.3 V Input High Voltage	V_{IH}	Control input pins	2.0	-	$V_{D D}+0.3$	V
3.3 V Input Low Voltage	$\mathrm{V}_{\text {IL }}$	Control input pins	$\mathrm{V}_{\text {SS }}-0.3$	-	0.8	V
Input High Voltage	$\mathrm{V}_{\text {IH\|2C }}$	SDATA, SCLK	2.2	-	-	V
Input Low Voltage	$\mathrm{V}_{\text {III2C }}$	SDATA, SCLK	-	-	1.0	V
Input High Leakage Current	I_{H}	Except internal pull-down resistors, $0<V_{\text {IN }}<V_{D D}$	-	-	5	$\mu \mathrm{A}$
Input Low Leakage Current	1 IL	Except internal pull-up resistors, $0<\mathrm{V}_{I N}<\mathrm{V}_{\mathrm{DD}}$	-5	-	-	$\mu \mathrm{A}$
High-impedance Output Current	l O		-10	-	10	$\mu \mathrm{A}$
Input Pin Capacitance	$\mathrm{C}_{\text {IN }}$		1.5	-	5	pF
Output Pin Capacitance	$\mathrm{C}_{\text {OUT }}$		-	-	6	pF
Pin Inductance	$L_{\text {IN }}$		-	-	7	nH
Power Down Current	$\mathrm{I}_{\mathrm{DD} \text { _PD }}$		-	-	1	mA
Dynamic Supply Current	$\mathrm{IDD}_{\text {_ } 3.3 \mathrm{~V}}$	All outputs enabled. Differential clocks with 5" traces and 2 pF load.	-	-	60	mA

Table 2. AC Electrical Specifications

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Crystal						
Long-term Accuracy	$\mathrm{L}_{\text {ACC }}$	Measured at $\mathrm{V}_{\mathrm{DD}} / 2$ differential	-	-	250	ppm
Clock Input						
CLKIN Duty Cycle	T_{DC}	Measured at $\mathrm{V}_{\mathrm{DD}} / 2$	47	-	53	\%
CLKIN Rise and Fall Times	$\mathrm{T}_{\mathrm{R}} / \mathrm{T}_{\mathrm{F}}$	Measured between $0.2 \mathrm{~V}_{\mathrm{DD}}$ and $0.8 \mathrm{~V}_{\mathrm{DD}}$	0.5	-	4.0	V/ns
CLKIN Cycle to Cycle Jitter	$\mathrm{T}_{\text {ccJ }}$	Measured at VDD/2	-	-	250	ps
CLKIN Long Term Jitter	TLTJ	Measured at VDD/2	-	-	350	ps
Input High Voltage	V_{IH}	XIN/CLKIN pin	2	-	VDD+0.3	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$	XIN/CLKIN pin	-	-	0.8	V
Input High Current	$\mathrm{IIH}^{\text {I }}$	XIN/CLKIN pin, VIN = VDD	-	-	35	uA
Input Low Current	1 IL	XIN/CLKIN pin, 0 < VIN <0.8	-35	-	-	uA
DIFF at 0.7 V						
Duty Cycle	T_{DC}	Measured at 0 V differential	45	-	55	\%
Output-to-Output skew	$\mathrm{T}_{\text {SKEW }}$	Measured at 0 V differential	-	-	800	ps
DIFF Cycle to Cycle Jitter	TCCJ	Measured at 0 V differential	-	35	50	ps
PCle Gen 1 Pk-Pk, Common Clock	Pk-Pk	PCle Gen 1	0	30	50	ps
PCle Gen 2 Phase Jitter, Common Clock	RMS ${ }_{\text {GEN } 2}$	10 kHz < F $<1.5 \mathrm{MHz}$	0	1.75	2.1	ps
PCle Gen 2 Phase Jitter, Common Clock	$\mathrm{RMS}_{\text {GEN2 }}$	1.5 MHz < F < Nyquist	0	1.75	2.0	ps
PCle Gen 3 Phase Jitter, Common Clock	$\mathrm{RMS}_{\text {GEN } 3}$	$\begin{gathered} \text { PLL BW of 2-4 or } 2-5 \mathrm{MHz}, \\ \mathrm{CDR}=10 \mathrm{MHz} \end{gathered}$	0	0.5	0.6	ps
PCle Gen 3 Phase Jitter, Separate Reference No Spread, SRNS	RMS ${ }_{\text {GEN3_SRNS }}$	$\begin{gathered} \hline \text { PLL BW of 2-4 or 2-5 MHz, } \\ \text { CDR }=10 \mathrm{MHz} \end{gathered}$	-	0.35	0.42	ps
PCle Gen 4 Phase Jitter, Common Clock	$\mathrm{RMS}_{\text {GEN4 }}$	$\begin{gathered} \text { PLL BW of 2-4 or 2-5 MHz, } \\ \text { CDR }=10 \mathrm{MHz} \end{gathered}$	-	0.5	0.6	ps
Long Term Accuracy	$\mathrm{L}_{\text {ACC }}$	Measured at 0 V differential	-	-	100	ppm
Rising/Falling Slew Rate	$\mathrm{T}_{\mathrm{R}} / \mathrm{T}_{\mathrm{F}}$	Measured differentially from $\pm 150 \mathrm{mV}$	1	-	8	V/ns
Voltage High	$\mathrm{V}_{\text {HIGH }}$		-	-	1.15	V
Voltage Low	$\mathrm{V}_{\text {LOW }}$		-0.3	-	-	V
Crossing Point Voltage at 0.7 V Swing	$\mathrm{V}_{\text {OX }}$		300	-	550	mV

Notes:

1. Visit https://www.pcisig.com for complete PCle specifications.
2. Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5.
3. Download the Skyworks Solutions PCle Clock Jitter Tool at at https://www.skyworksinc.com/en/application-pages/pci-express-learning-center.

Si52146

Table 2. AC Electrical Specifications (Continued)

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Spread Range	SPR-2	Down spread	-	-0.5	-	\%
Modulation Frequency	$\mathrm{F}_{\text {MOD }}$		30	31.5	33	kHz
Enable/Disable and Setup						
Clock Stabilization from Power-up	TSTABLE	Measured from the point both $V_{D D}$ and clock input are valid	-	-	1.8	ms
Stopclock Set-up Time	$\mathrm{T}_{\text {SS }}$		10.0	-	-	ns

Notes:

1. Visit https://www.pcisig.com for complete PCle specifications.
2. Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5.
3. Download the Skyworks Solutions PCle Clock Jitter Tool at at https://www.skyworksinc.com/en/application-pages/pci-express-learning-center.

Table 3. Absolute Maximum Conditions

Parameter	Symbol	Test Condition	Min	Typ	Max	Unit
Main Supply Voltage	$\mathrm{V}_{\mathrm{DD} _3.3 \mathrm{~V}}$	Functional	-	-	4.6	V
Input Voltage	$\mathrm{V}_{\text {IN }}$	Relative to V_{SS}	-0.5	-	4.6	$\mathrm{~V}_{\mathrm{DC}}$
Temperature, Storage	T_{S}	Non-functional	-65	-	150	${ }^{\circ} \mathrm{C}$
Temperature, Operating Ambient	T_{A}	Functional	-40	-	85	${ }^{\circ} \mathrm{C}$
Temperature, Junction	T_{J}	Functional	-	-	150	${ }^{\circ} \mathrm{C}$
Dissipation, Junction to Case	$\varnothing_{\text {JC }}$	JEDEC (JESD 51)	-	-	17	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Dissipation, Junction to Ambient	$\varnothing_{\text {JA }}$	JEDEC (JESD 51)	-	-	35	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD Protection (Human Body Model)	$\mathrm{ESD}_{\text {HBM }}$	JEDEC (JESD 22-A114)	2000	-	-	V
Flammability Rating	UL-94	UL (Class)		$\mathrm{V}-0$		

Note: While using multiple power supplies, the voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is not required.

2. Functional Description

2.1. Crystal Recommendations

If using crystal input, the device requires a parallel resonance 25 MHz crystal.
Table 4. Crystal Recommendations

Frequency (Fund)	Cut	Loading	Load Cap	Shunt Cap (max)	Motional (max)	Tolerance $(\boldsymbol{m a x})$	Stability (max)	Aging (max)
25 MHz	AT	Parallel	$12-15 \mathrm{pF}$	5 pF	0.016 pF	35 ppm	30 ppm	5 ppm

2.1.1. Crystal Loading

Crystal loading is critical in achieving low ppm performance. In order to achieve low zero ppm error, use the calculations in section 2.1.2 to estimate the appropriate capacitive loading (CL).
Figure 1 shows a typical crystal configuration using the two trim capacitors. It is important that the trim capacitors are in series with the crystal.

Figure 1. Crystal Capacitive Clarification

2.1.2. Calculating Load Capacitors

In addition to the standard external trim capacitors, consider the trace capacitance and pin capacitance to calculate the crystal loading correctly. The capacitance on each side is in series with the crystal. The total capacitance on both sides is twice the specified crystal load capacitance (CL). Trim capacitors are calculated to provide equal capacitive loading on both sides.

Figure 2. Crystal Loading Example
Use the following formulas to calculate the trim capacitor values for Ce 1 and Ce 2 .

Load Capacitance (each side)

$\mathbf{C e}=2 \times C L-(C s+C i)$

Total Capacitance (as seen by the crystal)

CLe $=\frac{1}{\left(\frac{1}{C e 1+C s 1+C i 1}+\frac{1}{C e 2+C s 2+C i 2}\right)}$

- CL: Crystal load capacitance
- CLe: Actual loading seen by crystal using standard value trim capacitors
- Ce: External trim capacitors
- Cs: Stray capacitance (terraced)
- Ci : Internal capacitance (lead frame, bond wires, etc.)

2.2. CKPWRGD/PDB (Power Down) Pin

The CKPWRGD/PDB pin is a dual-function pin. During initial power up, the pin functions as the CKPWRGD pin. Upon the first power up, if the CKPWRGD pin is low, the outputs will be disabled, but the crystal oscillator and $I^{2} C$ logics will be active. Once the CKPWRGD pin has been sampled high by the clock chip, the pin assumes a PDB functionality. When the pin has assumed a PDB functionality and is pulled low, the device will be placed in power down mode. The CKPWRGD/PDB pin is required to be driven at all times even though it has an internal $100 \mathrm{k} \Omega$ resistor.

2.3. PDB (Power Down) Assertion

The PDB pin is an asynchronous active low input used to disable all output clocks in a glitch-free manner. All outputs will be driven low in power down mode. In power down mode, all outputs, the crystal oscillator, and the $\mathrm{I}^{2} \mathrm{C}$ logic are disabled.

2.4. PDB Deassertion

When a valid rising edge on CKPWRGD/PDB pin is applied, all outputs are enabled in a glitch-free manner within two to six output clock cycles.

2.5. OE Pin

The OE pin is an active high input used to enable and disable the output clock. To enable the output clock, the OE pin and the $I^{2} C O E$ bit need to be a logic high. By default, the OE pin and the $I^{2} C O E$ bit are set to a logic high. There are two methods to disable the output clock: the OE pin is pulled to a logic low, or the $\mathrm{I}^{2} \mathrm{C}$ OE bit is set to a logic low. The OE pin is required to be driven at all times even though it has an internal $100 \mathrm{k} \Omega$ resistor.

2.6. OE Assertion

The OE pin is an active high input used for synchronous stopping and starting the respective output clock while the rest of the clock generator continues to function. The assertion of the OE function is achieved by pulling the OE pin and the $I^{2} C O E$ bit high which causes the respective stopped output to resume normal operation. No short or stretched clock pulses are produced when the clocks resume. The maximum latency from the assertion to active outputs is no more than two to six output clock cycles.

2.7. OE Deassertion

The OE function is deasserted by pulling the pin or the $I^{2} \mathrm{C} O E$ bit to a logic low. The corresponding output is stopped cleanly and the final output state is driven low.

2.8. SSON Pin

The SSON pin is an active input used to enable -0.5% spread spectrum on the outputs. When sampled high, -0.5% spread is enabled on the output clocks. When sampled low, the output clocks are non-spread.

3. Test and Measurement Setup

Figure 3 shows the test load configuration for the HCSL compatible clock outputs.

Figure 3. 0.7 V Differential Load Configuration
Please reference application note AN781 for recommendations on how to terminate the differential outputs for LVDS, LVPECL, or CML signalling levels.

Figure 4. Differential Output Signals (for AC Parameters Measurement)

Figure 5. Single-ended Measurement for Differential Output Signals (for AC Parameters Measurement)

4. Control Registers

4.1. $I^{2} \mathrm{C}$ Interface

To enhance the flexibility and function of the clock synthesizer, an $I^{2} \mathrm{C}$ interface is provided. Through the $\mathrm{I}^{2} \mathrm{C}$ interface, various device functions are available, such as individual clock output enablement. The registers associated with the $I^{2} \mathrm{C}$ interface initialize to their default setting at power-up. The use of this interface is optional. Clock device register changes are normally made at system initialization, if any are required.

4.2. Data Protocol

The clock driver $I^{2} \mathrm{C}$ protocol accepts byte write, byte read, block write, and block read operations from the controller. For block write/read operation, access the bytes in sequential order from lowest to highest (most significant bit first) with the ability to stop after any complete byte is transferred. For byte write and byte read operations, the system controller can access individually indexed bytes. .
The block write and block read protocol is outlined in Table 5 while Table 6 outlines byte write and byte read protocol. The slave receiver address is 11010110 (D6h).

Table 5. Block Read and Block Write Protocol

Block Write Protocol		Block Read Protocol	
Bit	Description	Bit	Description
1	Start	1	Start
$8: 2$	Slave address-7 bits	$8: 2$	Slave address-7 bits
9	Write	9	Write
10	Acknowledge from slave	10	Acknowledge from slave
$18: 11$	Command Code-8 bits	$18: 11$	Command Code-8 bits
19	Acknowledge from slave	19	Acknowledge from slave
$27: 20$	Byte Count-8 bits	27	Repeat start
28	Acknowledge from slave	28	Slave address-7 bits
$36: 29$	Data byte 1-8 bits	29	Acknowledge from slave
37	Acknowledge from slave	$37: 30$	Byte Count from slave-8 bits
$45: 38$	Data byte 2-8 bits	38	Acknowledge
46	Acknowledge from slave	$46: 39$	Data byte 1 from slave-8 bits
\ldots.	Data Byte/Slave Acknowledges	47	Acknowledge
\ldots.	Data Byte N-8 bits	$55: 48$	Data byte 2 from slave- 8 bits
\ldots.	Acknowledge from slave	56	Acknowledge
\ldots.	Stop	\ldots.	Data bytes from slave/Acknowledge
		$\ldots .$.	Data Byte N from slave-8 bits
		$\ldots .$.	NOT Acknowledge
		\ldots.	Stop

Table 6. Byte Read and Byte Write Protocol

Byte Write Protocol		Byte Read Protocol	
Bit	Description	Bit	Description
1	Start	1	Start
$8: 2$	Slave address-7 bits	$8: 2$	Slave address-7 bits
9	Write	9	Write
10	Acknowledge from slave	10	Acknowledge from slave
$18: 11$	Command Code-8 bits	$18: 11$	Command Code-8 bits
19	Acknowledge from slave	19	Acknowledge from slave
$27: 20$	Data byte-8 bits	20	Repeated start
28	Acknowledge from slave	$27: 21$	Slave address-7 bits
29	Stop	28	Read
		29	Acknowledge from slave
		$38: 30$	Data from slave-8 bits
		39	Stop

Control Register 0. Byte 0

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name								
Type	R/W							

Reset settings $=00000000$

Bit	Name	Function
$7: 0$	Reserved	

Register 1. Byte 1

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				DIFF0_OE		DIFF1_OE		DIFF2_OE
Type	R/W							

Reset settings = 00010101

Bit	Name	Function	
$7: 5$	Reserved		
4	DIFF0_OE	Output Enable for DIFF0. 0: Output disabled. 1: Output Enabled.	
3	Reserved		
2	DIFF1_OE	Output Enable for DIFF1. 0: Output disabled. 1: Output enabled.	
1	Reserved		
0	DIFF2_OE	Output Enable for DIFF2. 0: Output disabled. 1: Output enabled.	

Register 2. Byte 2

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	DIFF3_OE	DIFF4_OE	DIFF5_OE					
Type	R/W							

Reset settings $=11100000$

Bit	Name	Function
7	DIFF3_OE	Output Enable for DIFF3. 0: Output disabled. 1: Output enabled.
6	DIFF4_OE	Output Enable for DIFF4. 0: Output disabled. 1: Output enabled.
5	DIFF5_OE	Output Enable for DIFF5. 0: Output disabled. 1: Output enabled.
$4: 0$	Reserved	

Register 3. Byte 3

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	Rev Code[3:0]							
Type	R/W							

Reset settings $=00001000$

Bit	Name		Function
$7: 4$	Rev Code[3:0]	Program Revision Code.	
$3: 0$	Vendor ID[3:0]	Vendor Identification Code.	

Register 4. Byte 4

Reset settings $=00000110$

Bit	Name		Function
$7: 0$	$B C[7: 0]$	Byte Count Register.	

Register 5. Byte 5

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	DIFF_Amp_Sel	DIFF_Amp_CntI[2]	DIFF_Amp_Cnt[[1]	DIFF_Amp_Cnt[[0]				
Type	R/W							

Reset settings $=11011000$

Bit	Name	Function
7	DIFF_Amp_Sel	Amplitude Control for DIFF Differential Outputs. 0: Differential outputs with Default amplitude. 1: Differential outputs amplitude is set by Byte 5[6:4].
6	DIFF_Amp_Cnt[[2]	DIFF Differential Outputs Amplitude Adjustment.
5	DIFF_Amp_CntI[1]	000: 300 mV 001: 400 mV 010:500 $\mathrm{mV} \quad 011: 600 \mathrm{mV}$ $100: 700 \mathrm{mV} \mathrm{101:800} \mathrm{mV}$ 110: $900 \mathrm{mV} \quad 111: 1000 \mathrm{mV}$
4	DIFF_Amp_Cnt[0]	
$3: 0$	Reserved	

5. Pin Descriptions: 32-Pin QFN

Table 7. Si52146 32-Pin QFN Descriptions

Pin \#	Name	Type	Description
1	VDD_DIFF	PWR	3.3 V power supply
2	OE_DIFF2	I,PU	Active high input pin enables DIFF2 (internal $100 \mathrm{k} \Omega$ pull-up).
3	SSON	I, PD	Active high input pin enables -0.5% spread on DIFF clocks (internal $100 \mathrm{k} \Omega$ pull-down)
4	OE_DIFF3	I,PU	Active high input pin enables DIFF3 (internal $100 \mathrm{k} \Omega$ pull-up).
5	OE_DIFF4	I,PU	Active high input pin enables DIFF4 (internal $100 \mathrm{k} \Omega$ pull-up).
6	OE_DIFF5	I,PU	Active high input pin enables DIFF5 (internal $100 \mathrm{k} \Omega$ pull-up).
7	NC	NC	No connect
8	VDD_DIFF	PWR	3.3 V power supply
9	DIFF0	O, DIF	$0.7 \mathrm{~V}, 100 \mathrm{MHz}$ differential clock output
10	$\overline{\text { DIFF0 }}$	O, DIF	$0.7 \mathrm{~V}, 100 \mathrm{MHz}$ differential clock output
11	DIFF1	O, DIF	$0.7 \mathrm{~V}, 100 \mathrm{MHz}$ differential clock output
12	$\overline{\text { DIFF1 }}$	O, DIF	$0.7 \mathrm{~V}, 100 \mathrm{MHz}$ differential clock output

Table 7. Si52146 32-Pin QFN Descriptions (Continued)

Pin \#	Name	Type	Description
13	VDD_DIFF	PWR	3.3 V power supply
14	DIFF2	O, DIF	$0.7 \mathrm{~V}, 100 \mathrm{MHz}$ differential clock output
15	$\overline{\text { DIFF2 }}$	O, DIF	$0.7 \mathrm{~V}, 100 \mathrm{MHz}$ differential clock output
16	VDD_DIFF	PWR	3.3 V power supply
17	$\overline{\text { DIFF3 }}$	O, DIF	$0.7 \mathrm{~V}, 100 \mathrm{MHz}$ differential clock output
18	DIFF3	O, DIF	$0.7 \mathrm{~V}, 100 \mathrm{MHz}$ differential clock output
19	$\overline{\text { DIFF4 }}$	O, DIF	$0.7 \mathrm{~V}, 100 \mathrm{MHz}$ differential clock output
20	DIFF4	O, DIF	$0.7 \mathrm{~V}, 100 \mathrm{MHz}$ differential clock output
21	VDD_DIFF	PWR	3.3 V power supply
22	$\overline{\text { DIFF5 }}$	O, DIF	$0.7 \mathrm{~V}, 100 \mathrm{MHz}$ differential clock output
23	DIFF5	O, DIF	$0.7 \mathrm{~V}, 100 \mathrm{MHz}$ differential clock output
24	VDD_DIFF	PWR	3.3 V power supply
25	SCLK	I	$I^{2} \mathrm{C}$ compatible SCLOCK
26	SDATA	I/O	$I^{2} \mathrm{C}$ compatible SDATA
27	CKPWRGD/PDB	I, PU	Active low input for asserting power down (PDB) and disabling all
outputs (internal 100 k Ω pull-up).			
28	VDD_CORE	PWR	3.3 V power supply
29	XOUT	O	25.00 MHz crystal output, Float XOUT if using only CLKIN (clock input)
30	XIN/CLKIN	I	25.00 MHz crystal input or $3.3 \mathrm{~V}, 25 \mathrm{MHz}$ clock input
31	OE_DIFF0	I,PU	Active high input pin enables DIFF0 (internal 100 k Ω pull-up).
32	OE_DIFF1	I,PU	Active high input pin enables DIFF1 (internal 100 k Ω pull-up).
33	GND	GND	Ground for bottom pad of the IC.

6. Ordering Guide

Part Number	Package Type	Temperature
Lead-free		
Si52146-A01AGM	32-pin QFN	Industrial, -40 to $85^{\circ} \mathrm{C}$
Si52146-A01AGMR	32-pin QFN-Tape and Reel	Industrial, -40 to $85^{\circ} \mathrm{C}$

7. Package Outline

Figure 6 illustrates the package details for the Si52146. Table 8 lists the values for the dimensions shown in the illustration.

Figure 6. 32-Pin Quad Flat No Lead (QFN) Package
Table 8. Package Diagram Dimensions

Symbol	Millimeters				
	Min	Nom	Max		
A	0.70	0.75	0.80		
A1	0.00	0.02	0.05		
b	0.18	0.25	0.30		
D	3.15	5.00 BSC			
D2	0.50				3.25
e BSC					
E	3.15	5.00 BSC			
E2	0.30	3.20	3.25		
L	0.40				0.50
aaa					
bbb	0.10				
ccc					
ddd					
eee					

Notes:
4. All dimensions shown are in millimeters (mm) unless otherwise noted.
5. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
6. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
7. This drawing conforms to the JEDEC Solid State Outline MO-220.

8. Land Pattern

Figure 7. QFN Land Pattern

Table 9. Land Pattern Dimensions

Dimension	mm
S 1	4.01
S	4.01
L 1	3.20
W 1	3.20
e	0.50
W	0.26

Table 9. Land Pattern Dimensions

| L |
| :--- | :---: |
| Notes: |
| General |
| 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
 2. This Land Patter Design is based on the IPC-7351 guidelines.
 Solder Mask Design
 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to
 be 60 m minimum, all the way around the pad. |

Stencil Design

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
5. The stencil thickness should be 0.125 mm (5 mils).
6. The ratio of stencil aperture to land pad size can be $1: 1$ for all perimeter pads.
7. A 3×3 array of 0.85 mm square openings on a 1.00 mm pitch can be used for the center ground pad.

Card Assembly

8. A No-Clean, Type-3 solder paste is recommended.
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Document Change List

Revision 0.1 to Revision 1.0

- Updated Pin Names.
- Updated Table 1.
- Updated Table 2.
- Updated Table 3.
- Updated section 2.1.
- Updated section 2.1.1.
- Updated sections 2.2 through 2.8.
- Updated section 4.2.
- Updated Table 7.

Revision 1.0 to Revision 1.1

- Removed Moisture Sensitivity Level specification from Table 3.

Revision 1.1 to Revision 1.2

- Updated Table 2.
- Updated section 3.

Revision 1.2 to Revision 1.3

- Updated Features on page 1
- Updated Description on page 1.
- Updated specs in Table 2, "AC Electrical Specifications," on page 5.
- Updated the package outline.

Revision 1.3 to Revision 1.4

- Added test condition for Tstable in Table 2.

SKYWORKS

ClockBuilder Pro

Customize Skyworks clock generators, jitter attenuators and network synchronizers with a single tool. With CBPro you can control evaluation boards, access documentation, request a custom part number, export for in-system programming and more!
www.skyworksinc.com/CBPro

I

?
Portfolio
www.skyworksinc.com/ia/timing

SW/HW
www.skyworksinc.com/CBPro

Quality
www.skyworksinc.com/quality

Support \& Resources
www.skyworksinc.com/support

Copyright © 2021 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks' Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of Skyworks' published specifications or parameters.
 registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Skyworks:
SI52146-A01AGM SI52146-A01AGMR

