

www.vishay.com

Vishay Semiconductors

IR Receiver Modules for Remote Control Systems

MECHANICAL DATA

Pinning for TSOP381.., TSOP383.., TSOP385..: 1 = OUT, 2 = GND, 3 = V_S

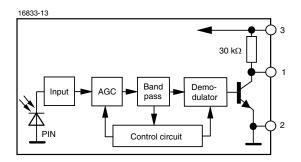
FEATURES

- Very low supply current
- · Photo detector and preamplifier in one package
- Internal filter for PCM frequency
- · Improved shielding against EMI
- Supply voltage: 2.5 V to 5.5 V
- · Improved immunity against ambient light
- Insensitive to supply voltage ripple and noise
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

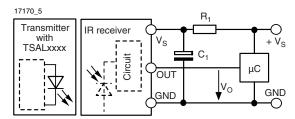
ROHS COMPLIANT HALOGEN FREE

GREEN (5-2008)

DESCRIPTION


These products are miniaturized receivers for infrared remote control systems. A PIN diode and a preamplifier are assembled on a lead frame, the epoxy package acts as an IR filter.

The demodulated output signal can be directly connected to a microprocessor for decoding. The TSOP381.. is legacy products compatible with all common IR remote control data formats. The TSOP383.. is optimized to better suppress spurious pulses from energy saving fluorescent lamps. The TSOP385.. has an excellent noise suppression. It is immune to dimmed LCD backlighting and any fluorescent lamps. AGC3 and AGC5 may also suppress some data signals in case of continuous transmission. Between these three receiver types, the TSOP383.. is preferred. Customers should initially try the TSOP383.. in their design.


This component has not been qualified according to automotive specifications.

PARTS TABLE						
AGC		LEGACY, FOR SHORT BURST REMOTE CONTROLS (AGC1)	NOISY ENVIRONMENTS AND SHORT BURSTS (AGC3)	VERY NOISY ENVIRONMENTS AND SHORT BURSTS (AGC5)		
Carrier frequency	30 kHz	TSOP38130	TSOP38330	TSOP38530		
	33 kHz	TSOP38133	TSOP38333	TSOP38533		
	36 kHz	TSOP38136	TSOP38336 (1)(2)	TSOP38536		
	38 kHz	TSOP38138	TSOP38338 (3)(4)(5)(6)	TSOP38538		
	40 kHz	TSOP38140	TSOP38340	TSOP38540		
	56 kHz	TSOP38156	TSOP38356	TSOP38556		
Package		Minicast				
Pinning		1= OUT, 2 = GND, 3 = V _S				
Dimensions (mm)		5.0 W x 6.95 H x 4.8 D				
Mounting		Leaded				
Application		Remote control				
Best remote control code		(1) MCIR (2) RCMM (3) Mitsubishi (4) RECS-80 Code (5) r-map (6) XMP-1, XMP-2				

BLOCK DIAGRAM

APPLICATION CIRCUIT

 $R_{_1}$ and $C_{_1}$ are recommended for protection against EOS. Components should be in the range of 33 Ω < $R_{_1}$ < 1 k $\!\Omega,$ $C_{_1}$ > 0.1 $\mu F.$

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT	
Supply voltage		V _S	-0.3 to +6	V	
Supply current		I _S	3	mA	
Output voltage		Vo	-0.3 to (V _S + 0.3)	V	
Output current		Io	5	mA	
Junction temperature		T _j	100	°C	
Storage temperature range		T _{stg}	-25 to +85	°C	
Operating temperature range		T _{amb}	-25 to +85	°C	
Power consumption	T _{amb} ≤ 85 °C	P _{tot}	10	mW	
Soldering temperature	t ≤ 10 s, 1 mm from case	T _{sd}	260	°C	

Note

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification
is not implied. Exposure to absolute maximum rating conditions for extended periods may affect the device reliability.

ELECTRICAL AND OPTICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Cupply ourrent	$E_{V} = 0, V_{S} = 3.3 \text{ V}$	I _{SD}	0.27	0.35	0.45	mA
Supply current	$E_v = 40 \text{ klx, sunlight}$	I _{SH}		0.45		mA
Supply voltage		Vs	2.5		5.5	V
Transmission distance	$E_{\rm v}=0$, test signal see fig. 1, IR diode TSAL6200, $I_{\rm F}=200$ mA	d		45		m
Output voltage low	$I_{OSL} = 0.5 \text{ mA}, E_e = 0.7 \text{ mW/m}^2$, test signal see fig. 1	V _{OSL}			100	mV
Minimum irradiance	Pulse width tolerance: t_{pi} - 5/f _o < t_{po} < t_{pi} + 6/f _o , test signal see fig. 1	E _{e min.}		0.12	0.25	mW/m ²
Maximum irradiance	t_{pi} - $5/f_0 < t_{po} < t_{pi} + 6/f_0$, test signal see fig. 1	E _{e max.}	30			W/m ²
Directivity	Angle of half transmission distance	Φ1/2		± 45		deg

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

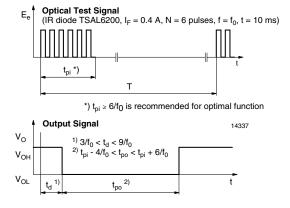


Fig. 1 - Output Active Low

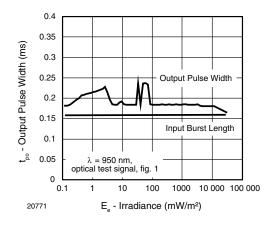


Fig. 2 - Pulse Length and Sensitivity in Dark Ambient



Fig. 3 - Output Function

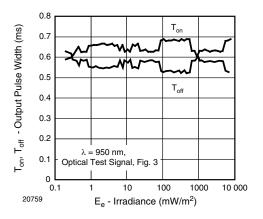


Fig. 4 - Output Pulse Diagram

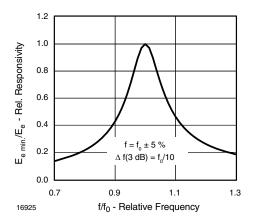


Fig. 5 - Frequency Dependence of Responsivity

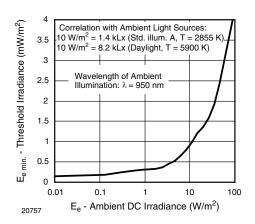


Fig. 6 - Sensitivity in Bright Ambient

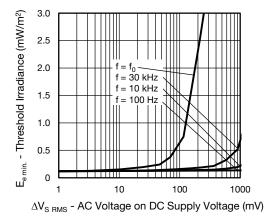


Fig. 7 - Sensitivity vs. Supply Voltage Disturbances

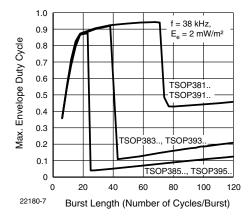
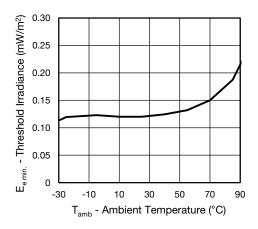



Fig. 8 - Max. Envelope Duty Cycle vs. Burst Length

www.vishay.com

Fig. 9 - Sensitivity vs. Ambient Temperature

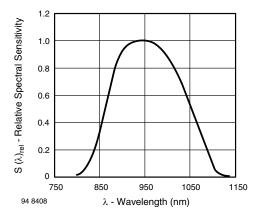


Fig. 10 - Relative Spectral Sensitivity vs. Wavelength

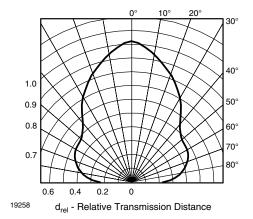


Fig. 11 - Horizontal Directivity

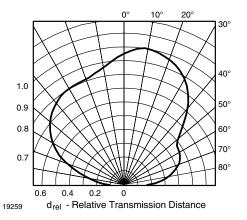


Fig. 12 - Vertical Directivity

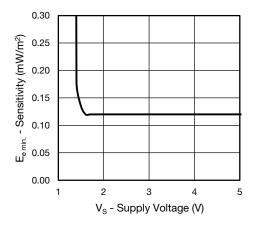


Fig. 13 - Sensitivity vs. Supply Voltage

SUITABLE DATA FORMAT

This series is designed to suppress spurious output pulses due to noise or disturbance signals. The devices can distinguish data signals from noise due to differences in frequency, burst length, and envelope duty cycle. The data signal should be close to the device's band-pass center frequency (e.g. 38 kHz) and fulfill the conditions in the table below.

When a data signal is applied to the product in the presence of a disturbance, the sensitivity of the receiver is automatically reduced by the AGC to insure that no spurious pulses are present at the receiver's output.

Some examples which are suppressed are:

- DC light (e.g. from tungsten bulbs sunlight)
- · Continuous signals at any frequency
- Strongly or weakly modulated patterns from fluorescent lamps with electronic ballasts (see figure 14 or figure 15)

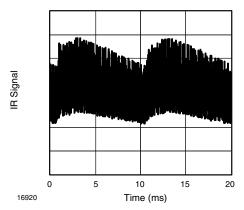
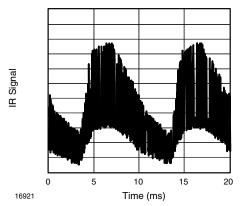
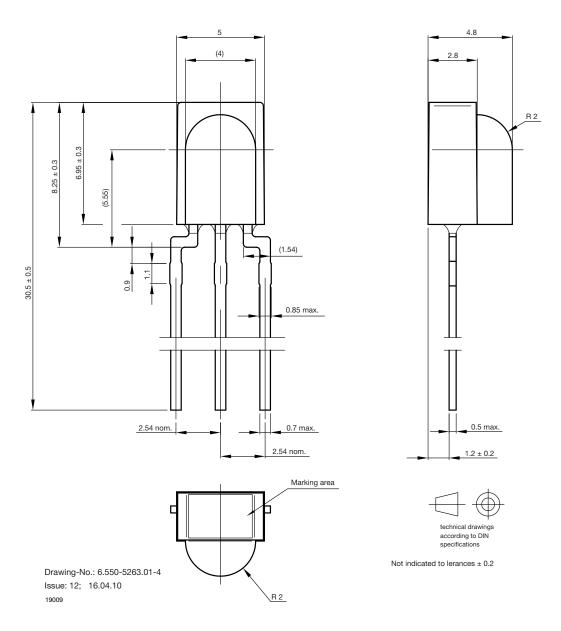


Fig. 14 - IR Disturbance from Fluorescent Lamp with Low Modulation




Fig. 15 - IR Disturbance from Fluorescent Lamp with High Modulation

	TSOP381	TSOP383	TSOP385
Minimum burst length	6 cycles/burst	6 cycles/burst	6 cycles/burst
After each burst of length A gap time is required of	6 to 70 cycles ≥ 10 cycles	6 to 35 cycles ≥ 10 cycles	6 to 24 cycles ≥ 10 cycles
For bursts greater than a minimum gap time in the data stream is needed of	70 cycles > 1.2 x burst length	35 cycles > 6 x burst length	24 cycles > 25 ms
Maximum number of continuous short bursts/second	2000	2000	2000
MCIR code	yes	preferred	yes
RCMM code	yes	preferred	yes
XMP-1, XMP-2 code	yes	preferred	yes
Suppression of interference from fluorescent lamps	Common disturbance patterns are supressed (example: signal pattern of fig. 14)	Even critical disturbance patterns are suppressed (examples: signal pattern of fig. 14 and fig. 15)	Even critical disturbance patterns are suppressed (examples: signal pattern of fig. 14 and fig. 15)

Notes

- For data formats with long bursts (more than 10 carrier cycles) please see the datasheet for TSOP382.., TSOP384..
- Best choice of AGC for some popular IR-codes:
 - TSOP38336: MCIR. RCMM
 - TSOP38538: Mitsubishi, RECS-80 Code
 - TSOP38338: XMP-1, XMP-2, r-map
- For SIRCS 15 and 20 bit, Sony 12 bit IR-codes, please see the datasheet for TSOP4S40, TSOP2S40

PACKAGE DIMENSIONS in millimeters

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000