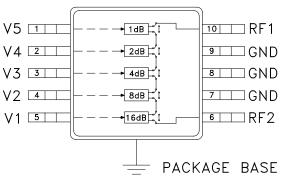


v06.0218

HMC273AMS10GE


1 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.7 - 3.8 GHz

Typical Applications

The HMC273AMS10G(E) is ideal for:

- Cellular; UMTS/3G Infrastructure
- ISM, MMDS, WLAN, WIMAX
- Microwave Radio & VSAT
- Test Equipment and Sensors

Functional Diagram

Features

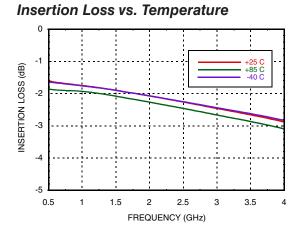
RoHs Compliant Product 1 dB LSB Steps to 31 dB Single Positive Control Per BIT ±0.2 dB Typical Bit Error Miniature MSOP 10 Package: 14.8mm² Included in the HMC-DK004 Designer's Kit

General Description

The HMC273AMS10G(E) is a general purpose broadband 5-Bit positive control GaAs IC digital attenuator in a 10 lead MSOP plastic package. Covering 0.7 to 3.8 GHz, the insertion loss is typically less than 3 dB. The attenuator bit values are 1 (LSB), 2, 4, 8, and 16 dB for a total attenuation of 31 dB. Accuracy is excellent at \pm 0.2 dB typical with an IIP3 of up to +46 dBm. Five bit control voltage inputs, toggled between 0 and +3 to +5 volts, are used to select each attenuation state. A single Vdd bias of +3 to +5 volts applied through an external 5K Ohm resistor is required.

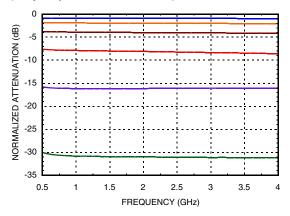
Electrical Specifications, $T_A = +25^{\circ}$ C, Vdd = +3V to +5V & Vctl = 0/Vdd (Unless Otherwise Stated)

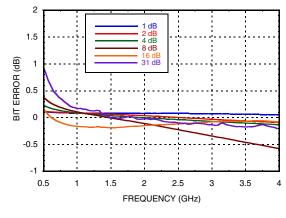
Parameter		Frequency	Min.	Typical	Max.	Units
Insertion Loss		0.7 - 1.4 GHz 1.4 - 2.3 GHz 2.3 - 2.7 GHz 2.7 - 3.8 GHz		1.8 2.3 2.5 2.9	2.4 2.9 3.1 3.5	dB dB dB dB dB
Attenuation Range		0.7 - 3.8 GHz		31		dB
Return Loss (RF1 & RF2, All Atten. States)		0.7 - 1.4 GHz 1.4 - 2.7 GHz 2.7 - 3.8 GHz	10 11 12	14 15 16		dB dB dB
Attenuation Accuracy: (Referenced to Insertion Loss) All Attenuation States All Attenuation States All Attenuation States All Attenuation States		0.7 - 1.4 GHz 1.4 - 2.2 GHz 2.2 - 2.7 GHz 2.7 - 3.8 GHz	± (0.30 + 3% of Atten. Setting) Max ± (0.30 + 4% of Atten. Setting) Max ± (0.40 + 5% of Atten. Setting) Max ± (0.50 + 5% of Atten. Setting) Max		etting) Max etting) Max	dB dB dB dB
Input Power for 0.1 dB Compression	Vdd = 5V Vdd = 3V	0.7 - 3.8 GHz		28 26		dBm dBm
Input Third Order Intercept Point (Two-tone Input Power = 0 dBm Each Tone)	Vdd = 5V Vdd = 3V	0.7 - 3.8 GHz		46 45		dBm dBm
Switching Characteristics tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)		0.7 - 3.8 GHz		1250 1300		ns ns

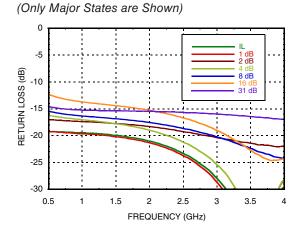

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

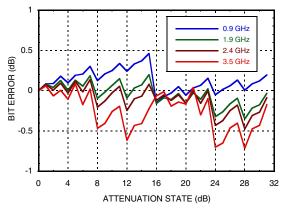
1 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.7 - 3.8 GHz

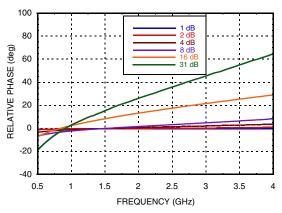

Return Loss RF1, RF2


v06.0218


Normalized Attenuation

(Only Major States are Shown)

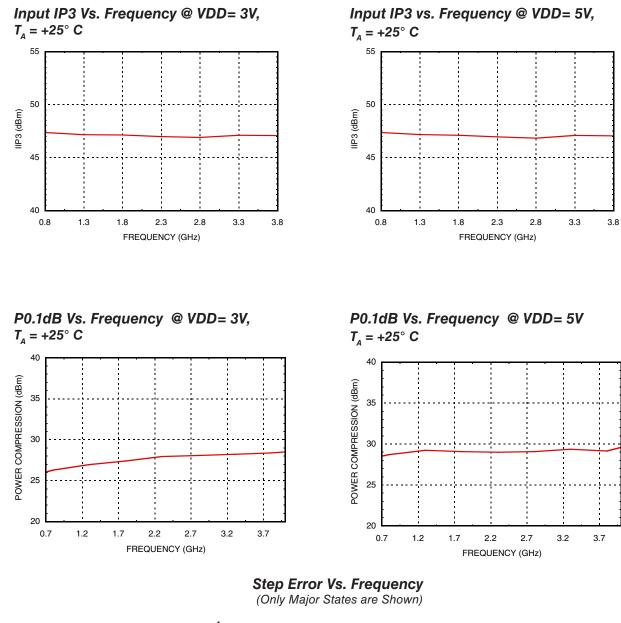


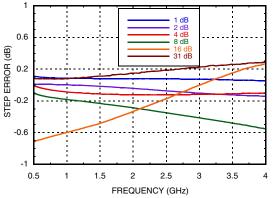


Bit Error vs. Attenuation State

Relative Phase vs. Frequency

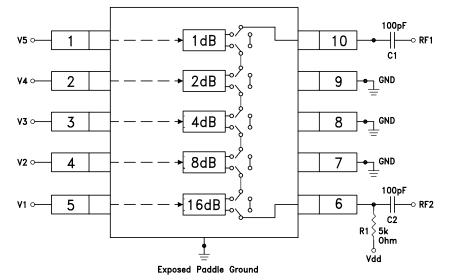
(Only Major States are Shown)


Note: All Data Typical Over Voltage (+3V to +5V)


For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

v06.0218

1 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.7 - 3.8 GHz


For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

1 dB LSB GaAs MMIC 5-BIT DIGITAL

ATTENUATOR, 0.7 - 3.8 GHz

Application Circuit

v06.0218

DC blocking capacitors C1 & C2 are required on RF1 & RF2. Choose $C1 = C2 = 100 \sim 300 \text{ pF}$ to allow lowest customer specific frequency to pass with minimal loss. R1 = 5K Ohm is required to supply voltage to the circuit through either PIN 6 or PIN 10.

Truth Table

Control Voltage Input				Attenuation	
V1 16 dB	V2 8 dB	V3 4 dB	V4 2 dB	V5 1 dB	Setting RF1 - RF2
High	High	High	High	High	Reference I.L.
High	High	High	High	Low	1 dB
High	High	High	Low	High	2 dB
High	High	Low	High	High	4 dB
High	Low	High	High	High	8 dB
Low	High	High	High	High	16 dB
Low	Low	Low	Low	Low	31 dB Max. Atten.
Any combination of the above states will provide an attenuation approximately equal to the sum of the bits selected.					

Control Voltages

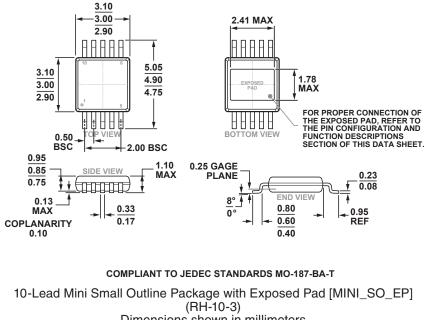
State	Bias Condition	
Low	0 to +0.2 V @ < 1uA Max	
High	Vdd ± 0.2V @ 1uA Max	
Note: Vdd = +3V to 5V \pm 0.2V		

Absolute Maximum Ratings

Control Voltage (V1 - V5)	Vdd + 0.5 V
Bias Voltage (Vdd)	+8.0 Vdc
Channel Temperature	150 °C
Continuous Pdiss	0.68 W
Thermal Resistance	95°C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
RF Input Power	+26 dBm
ESD Sensitivity (HBM)	Class 1A

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D


03-02-2015-C

v06.0218

1 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.7 - 3.8 GHz

Outline Drawing

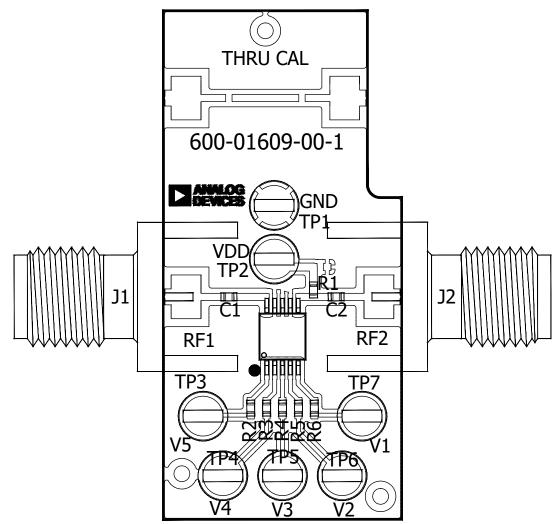
Dimensions shown in millimeters

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[2]
HMC273AMS10GE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL3 ^[1]	<u>273A</u> XXXX

[1] Max peak reflow temperature of 260 °C

[2] 4 - Digit lot number XXXX



HMC273AMS10GE

v06.0218

1 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.7 - 3.8 GHz

Evaluation Circuit Board

List of Materials for Evaluation PCB EV1HMC273AMS10G^[1]

Item	Description
J1 - J2	PCB Mount SMA Connector
J3 - J6	DC Pin
R1	5 kOhm Resistor, 0402 Chip
R2, R3, R4	100 Ohm Resistor, 0402 Chip
C1, C2	0402 Chip Capacitor, Select for Lowest Frequency of Operation
U1	HMC273AMS10GE Digital Attenuator
PCB ^[2]	EV1HMC273AMS10G Evaluation PCB 1.5" x 1.5"

[1] Reference this number when ordering complete evaluation PCB [2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed ground paddle should be connected directly to the ground plane similar to that shown below. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board as shown is available from Analog Devices, upon request.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.: HMC273AMS10GETR HMC273AMS10GE EV1HMC273AMS10G