

BLUETOOTH SMART SDK

Developing your 1st Bluetooth Smart Application

Thursday, 26 September 2013

Version 2.0

Bluegiga Technologies Oy

Copyright © 2000-2013 Bluegiga Technologies

All rights reserved.

Bluegiga Technologies assumes no responsibility for any errors which may appear in this manual.
Furthermore, Bluegiga Technologies reserves the right to alter the hardware, software, and/or specifications
detailed here at any time without notice and does not make any commitment to update the information
contained here. Bluegiga products are not authorized for use as critical components in life support devices or
systems.

The WRAP, Bluegiga Access Server, Access Point and iWRAP are registered trademarks of Bluegiga
Technologies.

The Bluetooth trademark is owned by the Bluetooth SIG Inc., USA and is licensed to Bluegiga Technologies.
All other trademarks listed herein are owned by their respective owners.

Bluegiga Technologies Oy

VERSION HISTORY

Version Comment

1.0 First version

1.1 Project and Hardware configuration added

1.2 BGScript and firmware update instructions added

1.3 Better screen captures and BLEGUI example added

1.4 Bluetooth LE description updated

1.6 Minor updates

1.7 Updated compile and installation instructions

1.8 Chapter 3 updated

1.9 Chapter 4 updated

2.0 Minor changes

Bluegiga Technologies Oy

TABLE OF CONTENTS

1 Introduction ..5

2 What is Bluetooth low energy Technology? ..6

3 Typical Bluetooth 4.0 Application Architecture ..7

3.1 Overview ...7

3.2 What is a Profile? ..8

3.3 What Is a Service? ..9

3.4 What is a Characteristic? ... 10

3.5 Relationship Between Profiles, Services and Characteristics ... 11

4 Introduction to the Bluegiga Bluetooth Smart Software ... 12

4.1 The Bluetooth Smart Stack .. 12

4.2 The Bluetooth Smart SDK ... 12

4.3 The BGAPI Protocol .. 14

4.4 The BGLib Host Library ... 15

4.5 BGScript
TM

 Scripting Language ... 16

4.6 The Profile Toolkit .. 17

5 Implementation of “BGDemo” Sensor .. 18

5.1 Installing the Tools ... 19

5.2 Creating a Project .. 20

5.3 Hardware Configuration ... 21

5.4 Building a GATT Database with Profile Toolkit .. 22

5.4.1 Generic Access Profile Service ... 22

5.4.2 Device ID ... 24

5.4.3 A Manufacturer Specific Service.. 25

5.5 Writing BGScript Code ... 26

5.6 Compiling and Installing the Firmware .. 28

5.6.1 Using BLE Update tool .. 28

5.6.2 Compiling Using bgbuild.exe ... 30

5.6.3 Installing the firmware with TI’s Flash Tool .. 31

6 Testing the BGDemo Sensor ... 32

6.1 Using BLEGUI ... 32

6.1.1 Discovering the BGDemo Sensor .. 32

6.1.2 Establishing a Connection ... 33

6.1.3 Making GATT Service Discovery ... 34

6.1.4 Reading the Serial Number String ... 35

6.2 Reading and Writing the Manufacturer Specific Service ... 37

7 Contact Information .. Error! Bookmark not defined.

Bluegiga Technologies Oy

Page 5 of 39

1 Introduction

This application note discusses how to start developing Bluetooth Smart applications using Bluegiga Bluetooth
Smart modules and BLED112 Bluetooth Smart USB dongle. The application note contains a practical example
of how to build Bluetooth Smart GATT based services with the profile toolkit, how to make a standalone
sensor device using BGScript programming language.

Bluegiga Technologies Oy

Page 6 of 39

2 What is Bluetooth low energy Technology?

Bluetooth low energy (Bluetooth 4.0) is a new, open standard developed by the Bluetooth SIG. It’s targeted to
address the needs of new modern wireless applications such as ultra-low power consumption, fast connection
times, reliability and security. Bluetooth low energy consumes 10-20 times less power and is able to transmit
data 50 times quicker than classical Bluetooth solutions.

Link: How Bluetooth low energy technology works?

Bluetooth low energy is designed for new emerging applications and markets, but it still embraces the very
same benefits we already know from the classical, well established Bluetooth technology:

 Robustness and reliability - The adaptive frequency hopping technology used by Bluetooth low
energy allows the device to quickly hop within a wide frequency band, not just to reduce interference
but also to identify crowded frequencies and avoid them. On addition to broadcasting Bluetooth low
energy also provides a reliable, connection oriented way of transmitting data.

 Security - Data privacy and integrity is always a concern is wireless, mission critical applications.
Therefore Bluetooth low energy technology is designed to incorporate high level of security including
authentication, authorization, encryption and man-in-the-middle protection.

 Interoperability - Bluetooth low energy technology is an open standard maintained and developed by
the Bluetooth SIG. Strong qualification and interoperability testing processes are included in the
development of technology so that wireless device manufacturers can enjoy the benefit of many
solution providers and consumers can feel confident that equipment will communicate with other
devices regardless of manufacturer.

 Global availability - Based on the open, license free 2.4GHz frequency band, Bluetooth low energy
technology can be used in world wide applications.

 There are two types of Bluetooth 4.0 devices:

 Bluetooth 4.0 single-mode devices that only support Bluetooth low energy and are optimized for
low-power, low-cost and small size solutions.

 Bluetooth 4.0 dual-mode devices that support Bluetooth low energy and
classical Bluetooth technologies and are interoperable with all the previously Bluetooth specification
versions.

Key features of Bluetooth low energy wireless technology include:

 Ultra-low peak, average and idle mode power consumption

 Ability to run for years on standard, coin-cell batteries

 Low cost

 Multi-vendor interoperability

 Enhanced range

Bluetooth low energy is also meant for markets and applications, such as:

 Automotive

 Consumer electronics

 Smart energy

 Entertainment

 Home automation

 Security & proximity

 Sports & fitness

https://www.bluetooth.org/en-us/training-resources/technology
http://www.youtube.com/watch?v=KW-TKBBiFss
http://www.youtube.com/watch?v=9G19p4ec_vM
http://www.youtube.com/watch?v=xjm9YyV2yeM
http://www.youtube.com/watch?v=3bifVc_iC2Y
http://www.youtube.com/watch?v=Ei_L1Pu6YuI
http://www.youtube.com/watch?v=TUwedeshPJU
http://www.youtube.com/watch?v=uQuGvBci5CQ

Bluegiga Technologies Oy

Page 7 of 39

3 Typical Bluetooth 4.0 Application Architecture

3.1 Overview

Bluetooth low energy applications typically have the following architecture:

 Server

Service is the device that provides the information, so these are typically the sensor devices, like
thermometers or heart rate sensors. The server exposes implements services and the services
expose the data in characteristics.

 Client

Client is the device that collects the information for one or more sensors and typically either displays it
to the user or passes it forward. The client devices typically do not implement any service, but just
collect the information from the service provided by the server devices. Clients are typically devices
like mobile phones, tablets and PCs.

The figure below shows the relationship of these two roles.

Client Server

Service 1

Servic e 2

Service n

Figure 1: Bluetooth low energy device roles

Bluegiga Technologies Oy

Page 8 of 39

3.2 What is a Profile?

Profiles are used to describe devices and the data they expose and also how these devices behave. The data
is described by using services, which are explained later and a profile may implement single or multiple
services depending on the profile specification. For example a Heart Rate Service specification mandates that
the following services need to be implemented:

 Heart Rate Service

 Device Information Service

Profile specifications might also define other requirements such as security, advertisement intervals and
connection parameters.

The purpose of profile specifications is to allow device and software vendors to build standardized
interoperable devices and software. Standardized profiles have globally unique 16-bit UUID, so they can
easily identify.

Profiles are defined in profiles specifications, which are available at:

https://developer.bluetooth.org/gatt/profiles/Pages/ProfilesHome.aspx

https://developer.bluetooth.org/gatt/profiles/Pages/ProfilesHome.aspx

Bluegiga Technologies Oy

Page 9 of 39

3.3 What Is a Service?

Services such as a Heart Rate service describes what kind of data a device exposes, how the data can be
accessed and what the security requirements for that data are. The data is described using characteristics
and a service may contain single or multiple characteristics and some characteristics might be optional where
as some are mandatory.

Two types of services exist:

 Primary Service

A primary service is a service that exposes primary usable functionality of this device. A primary service
can be included by another service.

 Secondary Service

A secondary service is a service that is subservient to another secondary service or primary service. A
secondary service is only relevant in the context of another service.

Just like the profiles also the services are defined in service specifications and the Bluetooth SIG standardized
services are available at:

https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx

Every service standardized by the Bluetooth SIG has a globally unique 16-bit UUID so just like the profiles
also the services can be easily identified.

However not every use case can be fulfilled by the standardized service and therefore the Bluetooth Smart
specification enables device vendors to make proprietary service. The proprietary services are described just
as the standardized services, but 128-bit UUIDs need to be used instead of use 16-bit UUIDs reserved for the
standard services.

https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx

Bluegiga Technologies Oy

Page 10 of 39

3.4 What is a Characteristic?

Characteristics are used to expose the actual data. Characteristic is a value, with a known type (UINT8,
UINT16, UTF-8 etc.), a known presentation format. Just like profiles and services also characteristics have
unique UUID so they can be easily identified and the standardized characteristics use 16-bit UUIDs and
vendor specific characteristics use 128-bit UUIDs.

Characteristics consist of:

 Characteristic Declaration describing the properties of characteristic value such as:

 characteristic (UUID)

 Access control (read, write, indicate etc.)

 Characteristic value handle (unique handle within a single device)

 Characteristic Value containing the value of a characteristic (for example temperature reading).

 Characteristic Descriptor(s) which provide additional information about the characteristic (characteristic
user description, characteristic client configuration, vendor specific information etc.).

Figure 2: Characteristic structure

Standardized characteristics are defined in Characteristic Specification and the standardized characteristics
are available at:

https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx

https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx

Bluegiga Technologies Oy

Page 11 of 39

3.5 Relationship Between Profiles, Services and Characteristics

The illustration below shows the relationship between profiles, services and characteristics.

Health thermometer profile

GAP service
(UUID: 1800)

Health thermometer
service

(UUID: 1809)

Device information
service

(UUID:180A)

Health thermometer service
(UUID: 1809)

Temperature measurement
(UUID: 2A1C)
Mandatory

Temperature type
(UUID: 2A1D)

Optional

Intermediate temperature
(UUID: 2A1E)

Optional

Measurement interval
(UUID: 2A21)

Optional

Temperature measurement

Handle : 1
UUID: 2803 (declaration)

Data:
Data UUID: 2A1D

Data Handle: 2
Data Properties: Indicate

Handle : 2
UUID: 2A1C (attribute value)

Data:
Flags: <uint8>
Measurement value:<float>

Time stamp: <date_time>
Temperature type: <temperature_type>

Handle: 3
UUID: 2903

Client characteristics configuration
Properties: Read, write

Figure 3: Health thermometer profile

Bluegiga Technologies Oy

Page 12 of 39

4 Introduction to the Bluegiga Bluetooth Smart Software

The Bluegiga Bluetooth Smart Software enables developers to quickly and easily develop Bluetooth Smart
applications without in-depth knowledge of the Bluetooth Smart technology. The Bluetooth Smart Software
consist of two parts:

 The Bluetooth Smart Stack

 The Bluetooth Smart Software Development Kit (SDK)

4.1 The Bluetooth Smart Stack

The Bluetooth Smart stack is a fully Bluetooth 4.0 single mode compatible software stack implementing slave
and master modes, all the protocol layers such as L2CAP, Attribute Protocol (ATT), Generic Attribute Profile
(GATT), Generic Access Profile (GAP) and security and connection management.

The Bluetooth Smart is meant for the Bluegiga Bluetooth Smart products such as BLE112, BLE113 and
BLED112 and it runs on the embedded MCU used in these products so no host is needed.

4.2 The Bluetooth Smart SDK

The Bluetooth Smart SDK is a software development kit, which enables the device and software vendors to
develop products on top of the Bluegiga’s Bluetooth Smart hardware and software.

The Bluetooth Smart SDK supports multiple development models and the software developers can decide
whether the application software runs on a separate host (a low power MCU) or whether they want to make
fully standalone devices and execute their code on the MCU embedded in the Bluegiga Bluetooth Smart
modules. The SDK also contains documentation, tools for compiling the firmware, installing it into the
hardware and lot of example application speeding up the development process.

Fully standalone applications can be developed using a simple scripting language called BGScript
TM

. Several
profiles and examples are also offered as a part of the Bluetooth Smart Software in order to easily develop the
Bluetooth Smart compatible end products.

Bluegiga’s Bluetooth Smart Software provides a complete development framework for Bluetooth low energy
application implementers.

Bluegiga Technologies Oy

Page 13 of 39

Bluetooth 4.0 radio

HCI

Bluetooth Smart Ready ModuleBluetooth Smart Ready Module

Bluegiga BGAPITM

Attribute Protocol (ATT)

Generic Attribute Profile (GATT)

Security
Manager (SM)

Bluegiga BGSCriptTM VM

BGScriptTM application

Bluegiga BGLibTM

(BGAPI parser)

Application

Optional hostOptional host

UART or USB

Generic
Access Profile

(GAP)

L2CAP

Figure 4: Bluetooth Smart Software

The Bluetooth Smart Software architecture is illustrated and it consists of the following components

 The Bluetooth Smart stack implementing the Bluetooth low energy protocol

 BGAPI
TM

APIs that enable the software developers to interface to the Bluetooth Smart Stack

 BGScript
TM

 Virtual Machine (VM) and scripting language which enable application code to be
developed and executed directly on the Bluetooth Smart hardware

 BGLib
TM

 lightweight host library which implements the BGAPI binary protocol and parser and is target
for applications where separate host processor is used to interface to the Bluetooth Smart modules
over UART or USB.

 Profile Toolkit
TM

 is a GATT based profile development tool that enables software developers quickly
and easily to describe the Bluetooth Smart profiles, services and characteristics using simple XML
templates

Each of these components are described in more detail in the following chapters.

Bluegiga Technologies Oy

Page 14 of 39

4.3 The BGAPI Protocol

For applications where a separate host is used to implement the end user application, a transport protocol is
needed between the host and the Bluetooth stack. The transport protocol is used to communicate with the
Bluetooth stack as well to transmit and receive data packets. This protocol is called BGAPI and it's a
lightweight binary based communication protocol designed specifically for ease of implementation within host
devices with limited resources.

The BGAPI protocol is a simple command, response and event based protocol and it can be used over UART
SPI (at the moment not supported by the Bluetooth Smart hardware) or USB interfaces.

Figure 5: BGAPI protocol

The BGAPI provides access for example to the following layers in the Bluetooth Smart Stack:

 Generic Access Profile - GAP allows the management of discoverability and connetability modes
and open connections

 Security manager - Provides access the Bluetooth low energy security functions

 Attribute database - An class to access the local attribute database

 Attribute client - Provides an interface to discover, read and write remote attributes

 Connection - Provides an interface to manage Bluetooth low energy connections

 Hardware - An interface to access the various hardware layers such as timers, ADC and other
hardware interfaces

 Persistent Store - User to access the parameters of the radio hardware and read/write data to non-
volatile memory

 System - Various system functions, such as querying the hardware status or reset it

Bluegiga Technologies Oy

Page 15 of 39

4.4 The BGLib Host Library

For easy implementation of BGAPI protocol an ANSI C host library is available. The library is easily portable
ANSI C code delivered within the Bluetooth Smart SDK. The purpose is to simplify the application
development to various host environments.

Bluetooth 4.0 radio

HCI

Bluetooth Smart Ready ModuleBluetooth Smart Ready Module

Bluegiga BGAPITM

Attribute Protocol (ATT)

Generic Attribute Profile (GATT)

Security
Manager (SM)

Bluegiga BGSCriptTM VM

Bluegiga BGLibTM

(BGAPI parser)

Application

Optional hostOptional host

UART or USB

Generic
Access Profile

(GAP)

L2CAP

Figure 6: BGLib host library

Bluegiga Technologies Oy

Page 16 of 39

4.5 BGScriptTM Scripting Language

The Bluetooth Smart SDK Also allows the application developers to create fully standalone devices without a
separate host MCU and run all the application code on the Bluegiga Bluetooth Smart Hardware. The
Bluetooth Smart modules can run simple applications along the Bluetooth Smart stack and this provides a
benefit when one needs to minimize the end product’s size, cost and current consumption. For developing
standalone Bluetooth Smart applications the SDK includes the Script VM, compiler and other BGScript
development tools. BGScript provides access to the same software and hardware interfaces as the BGAPI
protocol and the BGScript code can be developed and compiled with free-of-charge tools provided by
Bluegiga.

Typical BGScript applications are only few tens to hundreds lines of code, so they are really quick and easy to
develop and lots of readymade examples are provides with the SDK.

Bluetooth 4.0 radio

HCI

Bluetooth Smart Ready ModuleBluetooth Smart Ready Module

Bluegiga BGAPITM

Attribute Protocol (ATT)

Generic Attribute Profile (GATT)

Security
Manager (SM)

Bluegiga BGSCriptTM VM

BGScriptTM application

Generic
Access Profile

(GAP)

L2CAP

Figure 7: BGScript application model

BGScript code example:

System Started

event system_boot(major, minor, patch, build, ll_version, protocol_version,hw)

 #Enable advertising mode

 call gap_set_mode(gap_general_discoverable,gap_undirected_connectable)

 #Enable bondable mode

 call sm_set_bondable_mode(1)

 #Start timer at 1 second interval (32768 = crystal frequency)

 call hardware_set_soft_timer(32768)

end

Bluegiga Technologies Oy

Page 17 of 39

4.6 The Profile Toolkit

The Bluetooth Smart profile toolkit a simple set of tools, which can used to describe GATT based Bluetooth
Smart services and characteristics. The profile toolkit consists of a simple XML based description language
and templates, which can be used to describe the devices GATT database. The profile toolkit also contains a
compiler, which converts the XML to binary format and generates API to access the characteristic values.

Figure 8: A profile toolkit example of GAP service

Bluegiga Technologies Oy

Page 18 of 39

5 Implementation of “BGDemo” Sensor

In this chapter we discuss an actual implementation of a standalone Bluetooth Smart sensor called
“BGDemo”. The implementation consists of following steps:

1. Installing the tools

2. Setting up the project

3. Defining hardware configuration

4. Building a GATT based service database with profile toolkit

5. Writing a simple BGScript that defines the sensors functionality

6. Compiling the GATT data base and BGScript into a binary firmware

7. Installing the firmware into BLE112 or BLED112 hardware

8. Testing it out

Bluegiga Technologies Oy

Page 19 of 39

5.1 Installing the Tools

1. Download the latest install the Bluegiga Bluetooth Smart SDK from the Bluegiga web site

2. Run the executable

3. Follow the on-screen instructions and install the SDK to the desired directory

4. Perform a Full Installation (BLE SDK and TI tools)

Figure 9: Installing Bluegiga Bluetooth Smart SDK

Bluegiga Technologies Oy

Page 20 of 39

5.2 Creating a Project

The project is started by creating a project file. The file is a simple XML formatted document and defines all
the other files the included in the project. An example of a complete project file is shown below:

Figure 10: Project file

 The project configuration is described within the <project> tags

 <gatt> tag defines the .XML file containing the GATT data base

 <hardware> tag defines the .XML file containing the hardware configuration

 <script> tag defines the .BGS file containing the BGScript code. If the project does not contain a
BGScript code, this tag can be simply left out.

 <usb_main> tag defines the .XML file containing the USB descriptors description. If the project does
not use USB interface, this tag can be simply left out.

 <image> tag defines the output .HEX file containing the firmware image

 <device type> tag defines if the project is meant for BLE112 or BLE113 hardware

 <boot fw> tag defines which interface is enabled for DFU firmware upgrades

The exact syntax and options of the project file can be found from the BLE112 and BLE113 Configuration
Guide and the syntax is not fully described in this document.

NOTE:

For applications targeted for BLE112 module, the USB should be disabled as the USB interface will
continually draw around 1mA of power.

WARNING:

If the firmware is to be installed into the BLED112 USB dongle the USB CDC configuration MUST BE included
in the project file. If this is not included in the project file and the compiled firmware is installed into the
BLED112 USB dongle, the USB interface will be disabled and the dongle stops from working.

Bluegiga Technologies Oy

Page 21 of 39

5.3 Hardware Configuration

Once the project is configured the next logical step is the hardware configuration of your Bluetooth Smart
module. In this document we use the BLE113 Bluetooth Smart Module as a target platform.

If the default project template is used, the file where the hardware configuration remains is called
hardware.xml.

An example of a hardware configuration used in BGDemo application is shown below.

Figure 11: Hardware configuration for the BLE113 Bluetooth Smart Module

 The hardware configuration is described within the <hardware> tags

 <sleeposc> tag defines whether the sleep oscillator is enabled or not. The Sleep oscillator allows low
power sleep modes to be used. The BLE113 does incorporate the sleep oscillator so this value should
be set to true especially in the applications where power consumption matters. The PPM value
defines the sleep oscillator accuracy and MUST not be changed.

 <usb> tag defines if USB is to be enabled or not. The BLE113 (unlike BLE112 or BLED112) does not
have USB interface so we leave the setting to false.

 <txpower> tag defines the TX power level and the value 15 configures the maximum TX power level.

 <script enable> tag defines if BGScript VM and application are present. Since our example uses a
BGscript application we set this value to true.

 <slow clock> tag enabled the slow the MCU clock when there is radio activity and reduces the peak
power consumption. The option is enabled by setting the value to true.

 <pmux regulator_pin> configuration defines which GPIO pin is used to control an external DC/DC
converter. An external DC/DC converter can be used to lower the peak power consumption during
radio activity and the Bluetooth Smart software will automatically enable or disable the DC/DC based
on the software status. The DKBLE112 and DKBLE113 development kits have the DC/DC converter,
so this feature is enabled.

NOTE:

 Enabling the <slow clock> feature will corrupt high speed UART transmissions, so if UART is used in
your application this feature MUST NOT be enabled.

:

Bluegiga Technologies Oy

Page 22 of 39

5.4 Building a GATT Database with Profile Toolkit

This section discusses the implementation of a GATT database so the services and characteristics exposed
by a device. The service database is created with the Profile Toolkit

TM
 tools, which simply is are just XML

based description language and templates.

5.4.1 Generic Access Profile Service

Every Bluetooth Smart device needs to implement a GAP service. The GAP service is very simple and
consists of only two characteristics. An example implementation of GAP service is show below.

Figure 12: GAP service

5.4.1.1 Service Description

A Bluetooth Smart service is described within the <service> tags. For every service you need to define a UUID
as shown in the example above.

For the GAP service the globally unique 16-bit UUID is : 1800

In the example above we also use optional <description> tag is used to identify the service name. This is
optional tag and can be considered to be a comment in the XML file and is not used in the actual device.

The Bluetooth SIG standardized services and UUIDs are available at:

https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx

https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx

Bluegiga Technologies Oy

Page 23 of 39

5.4.1.2 Characteristics Description

Characteristics belonging to a service are described within <characteristic”> tags and they must be inside the
<service> tags of the service they belong to.

A service may have one or more characteristics. The GAP service, used as an example, contains two
characteristics, which are:

 Device name (UUID: 2A00)

This is a device’s user friendly name (similar to the friendly name used in Bluetooth classic)

 Device appearance (UUID: 2A01)

This identifies the devices type (similar to the Class-of-Device used in Bluetooth classic)

Characteristics also must have unique UUIDs and they need to be defined in the GATT database as shown
above.

Standardized characteristics are defined in Characteristic Specification and the standardized characteristics
are available at:

https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx

Characteristics properties:

Service characteristics are described using the <properties> tag. The properties define how the characteristic
can be accessed by a remote device. In the GAP service both the values are defined read only. Now since the
values are read only they can be marked as const meaning the values are constant and they will be stored on
the flash memory during the firmware installation.

Characteristics values:

The characteristic’s value is defined within the <value and </value> tags. The device appearance is a hex
value, so hex flag is used.

The exact syntax and more examples of services and characteristics definitions can be found from the Profile
Toolkit Developer Guide.

https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx

Bluegiga Technologies Oy

Page 24 of 39

5.4.2 Device ID

The second service implemented in our example is the Device ID service. The DI service exposes information
about the vendor of the device and optional information for example about the devices firmware and hardware
versions. In this example we implement a fairly minimalistic DI service with only a few characteristics. The DI
service description is very similar to the GAP service and has only a few differences. The XML description is
shown below.

Figure 13: Device ID service

The global UUID for the DI service is: 180A

Link: Device ID Service

Three characteristic are defined and they are Manufacturer Name String, Model Number String and Serial
Number String. All of these characteristics have UTF-8 format and they are ready only values. The two first
values we permanently store to the flash and mark them const, but the third value is unique to every device
and later we want to be able to modify the value with our BGscript code. Therefore we do no mark it const and
we also define and ID for the value xgatt_dis_2a35 which we later use in the BGScript code to write the
devices Bluetooth address to the serial number string.

Link: Manufacturer Name String, Model Number String and Serial Number String

https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.device_information.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.manufacturer_name_string.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.model_number_string.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.serial_number_string.xml

Bluegiga Technologies Oy

Page 25 of 39

5.4.3 A Manufacturer Specific Service

The third service used in this example is a manufacturer specific service. Bluetooth Smart devices can have
services defined by manufacturers which are not standardized by the Bluetooth SIG. The service structure is
exactly the same however, manufacturer specific services MUST use 128-bit long UUIDs instead of the 16-bit
UUIDs reserved for the standardized services.

The 128-bit UUIDs do not need to be applied or registered, but can be generated using for example online
tools such as this site: http://www.uuidgenerator.net/

Figure 14: Proprietary service

The example service above has one characteristic which can be either read or written.

http://www.uuidgenerator.net/

Bluegiga Technologies Oy

Page 26 of 39

5.5 Writing BGScript Code

This example implements a standalone sensor device without an external host processor. The sensor side
application is created with BGScript scripting language and the code is shown below.

BGScript uses an event based programming approach. The script is executed when an event takes place, and
the programmer may register listeners for various events.

Our example BGDemo application uses the following BGScript code.

dim tmp(10)

dim addr(6)

Boot Event listener

event system_boot(major ,minor ,patch ,build ,ll_version ,protocol_version ,hw)

 #Read local BT address

 call system_address_get()(addr(0:6))

 # Write BT address to DI service serial number string

 call attributes_write(xgatt_dis_2a25,0,6,addr(0:5))

 #set bondable mode

 call sm_set_bondable_mode(1)

 #set to advertising mode

 call gap_set_mode(gap_general_discoverable,gap_undirected_connectable)

end

Disconnection event listener

event connection_disconnected(handle,result)

 #connection disconnected, continue advertising

 call gap_set_mode(gap_general_discoverable,gap_undirected_connectable)

end

Bluegiga Technologies Oy

Page 27 of 39

The BGScript has two event listeners defined:

 system_boot(…) event listener

When the system is started (power up) a boot event is generated and this event listener will catch it.
This event is the entry point for all the BGScript applications. In the example above, when the system
is started, the BGSCript code reads the local devices MAC (Bluetooth) address, stores it to the Device
ID services serial number string, enables bonding mode in case the remote device wants to do pairing
and finally starts the advertisement procedure so the device becomes visible and connectable to other
devices.

 connection_disconnected(…)event listener

The second event handler is executed when a Bluetooth Smart connection is lost or closed by the
remote device and it simply enables the advertisement mode again.

The BGScript functions and events can be found from the Bluetooth Smart Software API reference document.

Bluegiga Technologies Oy

Page 28 of 39

5.6 Compiling and Installing the Firmware

5.6.1 Using BLE Update tool

When you want to test your project, you need to compile the hardware settings, the GATT data base and
BGScript code into a firmware binary file. The easiest way to do this is with the BLE Update tool that can be
used to compile the project and install the firmware to a Bluetooth Smart Module using a CC debugger tools

In order to compile and install the project:

1. Connect CC debugger to the PC via USB

2. Connect the CC debugger to the debug interface on the BLE112 or BLE113

3. Press the button on CC debugger and make sure the led turns green

4. Start BLE Update tool

5. Make sure the CC debugger is shown in the Port drop down list

6. Use Browse to locate your project file (for example BLE113-project.bgproj)

7. Press Update

BLE Update tool will compile the project and install it into the target device.

Figure 15: Compile and install with BLE Update tool

Note:

You can also double clikc the .BGPROJ file and it will automatically open the BLE Update tool.

If you have BLE113 Development Kit v.1.2 the CC debugger component is already placed on the kit and you
simply need to:

 Connect the DEBUGGER USB port to the PC

 Turn the DEBUGGER switch to MODULE

 Press the RESET DEBUGGER button and make sure the DEBUGGER led turns green

Bluegiga Technologies Oy

Page 29 of 39

The View Build Log opens up a dialog that shows the bgbuild compilere output and the RAM and Flash
memory allocations.

Figure 16: BLE Update build log

Bluegiga Technologies Oy

Page 30 of 39

5.6.2 Compiling Using bgbuild.exe

The project can also be compiled with the bgbuild.exe command line compiler. The BGBuild compiler simply
generates the firmware image file, which can be installed to the BLE112 or BLE113.

In order to compile the project using BGBuild:

1. Open Windows Command Prompt (cmd.exe)

2. Navigate to the directory where your project is

3. Execute BGbuild.exe compiler

Syntax: bgbuild.exe <project file>

Figure 17: Compiling with BGBuild.exe

If the compilation is successful a .HEX file is generated, which can be installed into a Bluetooth Smart Module.

On the other hand if the compilation fails due to syntax errors in the BGScript or GATT files, and error
message is printed.

Bluegiga Technologies Oy

Page 31 of 39

5.6.3 Installing the firmware with TI’s Flash Tool

Texas Instruments flash tool can also be used to install the firmware into the target device using the CC
debugger.

In order to install the firmware with TI flash tool:

1. Connect CC debugger to the PC via USB

2. Connect the CC debugger to the debug interface on the BLE112

3. Press the button on CC debugger and make sure the led turns green

4. Start TI flash tool tool

5. Select program CCxxxx SoC or MSP430

6. Make sure the target device is recognized and displayed in the System-on-Chip field

7. Make sure Retain IEEE address.. field is checked

8. Select the .HEX file you want to program to the target device

9. Select Erase, Program and Verify

10. Finally press Perform actions and make sure the installation is successful

Figure 18: TI’s flash programmer tool

Note:

TI Flash tool should NOT be used with the Bluegiga Bluetooth Smart SDK v.1.1 or newer, but BLE Update tool
should be used instead. The BLE112 and BLED112 devices contain a security key, which is needed for the
firmware to operate and if the device is programmed with TI flash tool, this security key will be erased.

Bluegiga Technologies Oy

Page 32 of 39

6 Testing the BGDemo Sensor

6.1 Using BLEGUI

This section describes how to test the BGDemo sensor implementation using BLEGUI software.

BLEGUI is a simple PC utility that can be used to control a Bluegiga Bluetooth Smart device over UART or
USB. BLEGUI software sends the BGAPI commands to the device and parses the reponses and has a simple
user interface to display device data.

6.1.1 Discovering the BGDemo Sensor

 Connect for example a BLED112 USB dongle to your PC

 Make use the USB/CDC driver gets installed and a Virtual COM port gets created

 Open BLEGUI software and attach the device in the virtual COM port to the BLEGUI

As soon as the BGDemo sensor is powered on it starts to advertise. A BLED112 USB dongle can for example
be used to scan for the sensor.

 Enable Active Scanning

 Press Set Scan Parameters

 Select Generic scan mode

 Press Scan

If the BGDemo device is power on and the BGDemo application is installed to is you should see the device in
the BLEGUI software.

Figure 19: Discoverting the BGDemo device

Bluegiga Technologies Oy

Page 33 of 39

6.1.2 Establishing a Connection

Simply select the BGDemo sensor device and press the Connect button in the BLEGUI application.

Figure 20: Opening a connection

Bluegiga Technologies Oy

Page 34 of 39

6.1.3 Making GATT Service Discovery

In order to see the supplied services in the BGDemo device do the following steps

 Press the GATT button to start GATT tool

 Press Service discover button to start a GATT primary service discovery procedure

Figure 21: GATT service discovery

The three services defined in the GATT data base are visible in the device.

Bluegiga Technologies Oy

Page 35 of 39

6.1.4 Reading the Serial Number String

 To read the DI service’s serial number string, which contains the MAC address, do the following
steps:

o Select the Device ID service (UUID: 180A)

o Make Descriptors discovery

Figure 22: GATT descriptor discovery

The Serial Number String is stored in the UUID a2a5 as defined in the GATT database. The value is read only
and to read it:

 Select the Serial Number String characteristic

 Press Read

Bluegiga Technologies Oy

Page 36 of 39

Figure 23: Reading Serial Number String

The MAC address is displayed in the Raw column.

Bluegiga Technologies Oy

Page 37 of 39

6.2 Reading and Writing the Manufacturer Specific Service

In order to write and read the value of our proprietary characteristic

 Connect to the BGDemo sensor

 Make GATT service discovery

 Select the proprietary service and make descriptor discovery

 Press Read in order to read the value:

o Note that the value does not contain any real data by default, since it was not marked as const
but zero’s are returned

 To write the value:

o Select the proprietary characteristic

o Write the desired value to the line below the GATT view (c0ffee)

o Press Write

Figure 24: Writing a characteristic value

Bluegiga Technologies Oy

Page 38 of 39

 To make sure the value got written, simply read it again.

Note:

If you reset the BGDemo sensor the value written to the proprietary characteristic will be lost, since the
example BGScript code will not store the value to the flash memory.

If you want to store the value permanently use for example the PS key API commands to write the value to the
PS key storage in your BGScript code.

Disconnecting from the device will keep the characteristic value, since as long as the software runs, the value
will be kept in RAM.

Bluegiga Technologies Oy

Page 39 of 39

7 Contact information

Sales: sales@bluegiga.com

Technical support: www.bluegiga.com/support/

Orders: orders@bluegiga.com

WWW: www.bluegiga.com

 www.bluegiga.hk

Head Office / Finland:

Phone: +358-9-4355 060

Fax: +358-9-4355 0660

Sinikalliontie 5A

02630 ESPOO

FINLAND

Postal address / Finland:

P.O. BOX 120

02631 ESPOO

FINLAND

Sales Office / USA:

Phone: +1 770 291 2181

Fax: +1 770 291 2183

Bluegiga Technologies, Inc.

3235 Satellite Boulevard, Building 400, Suite 300

Duluth, GA, 30096, USA

Sales Office / Hong-Kong:

Phone: +852 3972 2186

Bluegiga Technologies Ltd.

Unit 10-18

32/F, Tower 1, Millennium City 1

388 Kwun Tong Road

Kwun Tong, Kowloon

Hong Kong

mailto:sales@bluegiga.com
http://www.bluegiga.com/support/
mailto:orders@bluegiga.com
http://www.bluegiga.com/
http://www.bluegiga.hk/

