Data Sheet

FEATURES

$\pm 2 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$ dual-supply operation
2 V to 12 V single-supply operation
Temperature range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
<0.2 nA leakage currents
52Ω on resistance over full signal range
Rail-to-rail switching operation
16-lead LFCSP and TSSOP packages
Typical power consumption: <0.1 $\boldsymbol{\mu W}$
TTL-/CMOS-compatible inputs
Package upgrades to 74HC4053 and MAX4053/MAX4583

APPLICATIONS

Automatic test equipment
Data acquisition systems
Battery-powered systems
Communications systems
Audio and video signal routing
Relay replacement
Sample-and-hold systems
Industrial control systems

GENERAL DESCRIPTION

The ADG633 is a low voltage CMOS device comprising three independently selectable single-pole, double-throw (SPDT) switches. The device is fully specified for $\pm 5 \mathrm{~V},+5 \mathrm{~V}$, and +3 V supplies. The ADG633 switches are turned on with a logic low (or high) on the appropriate control input. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. An $\overline{\mathrm{EN}}$ input is used to enable or disable the device. When the device is disabled, all channels are switched off.

The ADG633 is designed on an enhanced process that provides lower power dissipation, yet is capable of high switching speeds. Low power consumption and an operating supply range of 2 V to 12 V make the ADG633 ideal for battery-powered, portable instruments. All channels exhibit break-before-make switching action, preventing momentary shorting when switching channels.

FUNCTIONAL BLOCK DIAGRAM

SWITCHES SHOWN FOR A LOGIC 1 INPUT. 兴
Figure 1.

All digital inputs have 0.8 V to 2.4 V logic thresholds, ensuring TTL/CMOS logic compatibility when using single +5 V or dual $\pm 5 \mathrm{~V}$ supplies.

The ADG633 is available in a small, 16-lead TSSOP package and a 16-lead, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP package.

PRODUCT HIGHLIGHTS

1. Single- and dual-supply operation. The ADG633 offers high performance and is fully specified and guaranteed with $\pm 5 \mathrm{~V},+5 \mathrm{~V}$, and +3 V supply rails.
2. Temperature range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
3. Guaranteed break-before-make switching action.
4. Low power consumption, typically $<0.1 \mu \mathrm{~W}$.
5. Small, 16-lead TSSOP and 16-lead, $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP packages.

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Product Highlights. 1
Revision History 2
Specifications 3
Dual-Supply Operation 3
Single-Supply Operation 4
REVISION HISTORY
2/2017—Rev. A to Rev. B
Deleted B Version Throughout
Changes to Features Section, Applications Section, and Product
Highlights Section 1
Added Note 2 to Table 1; Renumbered Sequentially 3
Added Note 2 to Table 2; Renumbered Sequentially 4
Added Note 2 to Table 3; Renumbered Sequentially 5
Added Note 1 to Table 4; Renumbered Sequentially6
Changes to Figure 3 and Table 6 7
Updated Outline Dimensions 14
Changes to Ordering Guide 14
Absolute Maximum Ratings 6
ESD Caution. 6
Pin Configurations and Function Descriptions 7
Typical Performance Characteristics 8
Terminology 11
Test Circuits 12
Outline Dimensions 14
Ordering Guide 14
11/2009—Rev. 0 to Rev. A6
Added Table 5; Renumbered Sequentially 7
Changes to Table 67
Update Outline Dimensions 14
Changes to Ordering Guide 14
2/2003-Revision 0: Initial Version

SPECIFICATIONS

DUAL-SUPPLY OPERATION

$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, R_{ON} On-Resistance Match Between Channels, $\Delta \mathrm{R}_{\mathrm{ON}}$ On-Resistance Flatness, $\mathrm{R}_{\text {flat(ON) }}$	$\begin{aligned} & 52 \\ & 75 \\ & 0.8 \\ & 1.3 \\ & 9 \\ & 12 \end{aligned}$	90 1.8 13	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 100 \\ & 2 \\ & 14 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} ; \text { see Figure } 20 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} ; \text { see Figure } 20 \\ & \mathrm{~V}_{\mathrm{S}}=+3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=+3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, $\mathrm{I}_{\text {(OFF) }}$ Drain Off Leakage, $I_{\text {D(OFF) }}$ Channel On Leakage, $\mathrm{I}_{\text {(ON) }} \mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	$\begin{aligned} & \pm 0.005 \\ & \pm 0.2 \\ & \pm 0.005 \\ & \pm 0.2 \\ & \pm 0.005 \\ & \pm 0.2 \end{aligned}$		$\begin{aligned} & \pm 5 \\ & \pm 5 \\ & \pm 5 \\ & \hline \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{S}=\mp 4.5 \mathrm{~V} \text {; see Figure } 21 \\ & \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 4.5 \mathrm{~V} \text {; see Figure } 21 \\ & \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 4.5 \mathrm{~V} \text {; see Figure } 22 \\ & \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 4.5 \mathrm{~V} \text {; see Figure } 22 \\ & \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V} \text {; see Figure } 23 \\ & \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V} \text {; see Figure } 23 \\ & \hline \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\mathrm{INL}}$ Input Current, $\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\mathrm{INH}}$ Digital Input Capacitance, C_{IN}	0.005 2		$\begin{gathered} 2.4 \\ 0.8 \\ \pm 1 \end{gathered}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\begin{aligned} & V_{\text {IN }}=V_{\text {INL }} \text { or } V_{\text {INH }} \\ & V_{\text {IN }}=V_{\text {INL }} \text { or } V^{\text {INH }} \end{aligned}$
DYNAMIC CHARACTERISTICS¹ $\mathrm{t}_{\text {transition }}$ $\mathrm{t}_{\mathrm{ON}}(\overline{\mathrm{EN}})$ $\mathrm{t}_{\text {OFF }}(\overline{\mathrm{EN}})$ Break-Before-Make Time Delay, $\mathrm{t}_{\text {BB }}$ Charge Injection Off Isolation Total Harmonic Distortion, THD + N Channel-to-Channel Crosstalk -3 dB Bandwidth $\mathrm{C}_{\text {s(OFF) }}$ $C_{\text {D(OFF) }}$ $\mathrm{C}_{\mathrm{D}(\mathrm{ON})}, \mathrm{C}_{\mathrm{S}(\mathrm{ON})}$	60 90 70 95 25 40 40 2 4 -90 0.025 -90 580 4 7 12	$\begin{aligned} & 110 \\ & 120 \\ & 45 \end{aligned}$	$\begin{aligned} & 130 \\ & 135 \\ & 50 \\ & 10 \end{aligned}$	ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ pC max dB typ \% typ dB typ MHz typ pF typ pF typ pF typ	
POWER REQUIREMENTS ${ }^{2}$ $I_{D D}$ $I_{s s}$	0.01 0.01		1 1	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V}$ Digital inputs $=0 \mathrm{~V}$ or 5.5 V

[^0]
SINGLE-SUPPLY OPERATION

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2.

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, R_{ON} On-Resistance Match Between Channels, $\Delta \mathrm{R}_{\mathrm{ON}}$ On-Resistance Flatness, $\mathrm{R}_{\text {FLAT(ON) }}$	$\begin{aligned} & 85 \\ & 150 \\ & 4.5 \\ & 8 \\ & 13 \end{aligned}$	$\begin{aligned} & 160 \\ & 9 \\ & 14 \end{aligned}$	$\begin{aligned} & 0 \text { to } V_{D D} \\ & 200 \\ & 10 \\ & 16 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \text {; see Figure } 20 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \text {; see Figure } 20 \\ & \mathrm{~V}_{\mathrm{S}}=+3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=+3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, $I_{\text {SOFF) }}$ Drain Off Leakage, $I_{\text {D(OFF) }}$ Channel On Leakage, $\mathrm{I}_{\text {(ON) }} \mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	$\begin{aligned} & \pm 0.005 \\ & \pm 0.2 \\ & \pm 0.005 \\ & \pm 0.2 \\ & \pm 0.005 \\ & \pm 0.2 \end{aligned}$		± 5 ± 5 ± 5	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 21 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 21 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 22 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 22 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \text {; see Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \text {; see Figure } 23 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\mathbb{I N L}}$ Input Current, I_{NL} or $\mathrm{I}_{\mathrm{INH}}$ Digital Input Capacitance, $\mathrm{C}_{\text {IN }}$	$\begin{aligned} & 0.005 \\ & 2 \\ & \hline \end{aligned}$		$\begin{gathered} 2.4 \\ 0.8 \\ \pm 1 \end{gathered}$	$V_{\text {min }}$ V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\begin{aligned} & V_{I N}=V_{I N L} \text { or } V_{I N H} \\ & V_{I N}=V_{I N L} \text { or } V_{I N H} \end{aligned}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ $\mathrm{t}_{\text {transition }}$ $\mathrm{t}_{\mathrm{ON}}(\overline{\mathrm{EN}})$ $\mathrm{t}_{\text {OfF }}(\overline{\mathrm{EN}})$ Break-Before-Make Time Delay, $\mathrm{t}_{\text {BB }}$ Charge Injection Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth $\mathrm{C}_{\mathrm{S}(\mathrm{OFF})}$ $C_{\text {D(OFF) }}$ $\mathrm{C}_{\mathrm{DON})} \mathrm{C}_{\mathrm{S}(\mathrm{ON})}$	$\begin{aligned} & 100 \\ & 150 \\ & 100 \\ & 150 \\ & 25 \\ & 35 \\ & 90 \\ & \\ & 0.5 \\ & 1 \\ & -90 \\ & -90 \\ & 520 \\ & 5 \\ & 8 \\ & 12 \end{aligned}$	$\begin{aligned} & 190 \\ & 190 \\ & 45 \end{aligned}$	$\begin{aligned} & 220 \\ & 220 \\ & 50 \\ & 10 \end{aligned}$	ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ pC max dB typ dB typ MHz typ pF typ pF typ pF typ	
POWER REQUIREMENTS ${ }^{2}$ $I_{D D}$	0.01		1	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

[^1]${ }^{2}$ The device is fully specified at $a \pm 5 \mathrm{~V}$ dual supply and at 5 V and 3.3 V single supplies. It is possible to operate the ADG633 with unbalanced supplies or at other voltage supplies ($\pm 2 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$, and 2 V to 12 V); however, the switch characteristics change. These changes include, but are not limited to: analog signal range, on resistance, leakage, $\mathrm{V}_{\mathbb{I N L}}, \mathrm{V}_{\mathbb{I N H}}$, and switching times. The optimal power-up sequence for the device is: ground, $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$, and then the digital inputs, before applying the analog input signal.
$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, R_{ON} On-Resistance Match Between Channels, $\Delta \mathrm{R}_{\mathrm{ON}}$	$\begin{aligned} & 185 \\ & 300 \\ & 2 \\ & 4.5 \end{aligned}$	350 6	$\begin{aligned} & 0 \text { to } V_{D D} \\ & 400 \\ & 7 \end{aligned}$	V Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0.1 \mathrm{~mA} \text {; see Figure } 20 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0.1 \mathrm{~mA} \text {; see Figure } 20 \\ & \mathrm{~V}_{\mathrm{S}}=+1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0.1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=+1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=0.1 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, $\mathrm{I}_{\text {S(OFF) }}$ Drain Off Leakage, $I_{D(O f F)}$ Channel On Leakage, $I_{\left(O O_{)}\right)} I_{\mathrm{I}_{(O N)}}$	$\begin{aligned} & \pm 0.005 \\ & \pm 0.2 \\ & \pm 0.005 \\ & \pm 0.2 \\ & \pm 0.005 \\ & \pm 0.2 \end{aligned}$		± 5 ± 5 ± 5	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 21 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 21 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 22 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 22 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 3 \mathrm{~V} \text {; see Figure } 23 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 3 \mathrm{~V} \text {; see Figure } 23 \\ & \hline \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, $\mathrm{V}_{\mathrm{INL}}$ Input Current, $\mathrm{I}_{\mathrm{INL} \text { or } \mathrm{I}_{\mathrm{NH}}, ~}^{\text {In }}$ Digital Input Capacitance, $\mathrm{C}_{\text {IN }}$	0.005 2		$\begin{aligned} & 2.0 \\ & 0.5 \\ & \pm 1 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\begin{aligned} & V_{I N}=V_{I N L} \text { or } V_{I N H} \\ & V_{I N}=V_{I N L} \text { or } V_{I N H} \end{aligned}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ $\mathrm{t}_{\text {TRANSITION }}$ $\mathrm{t}_{\mathrm{ON}}(\overline{\mathrm{EN}})$ $\mathrm{t}_{\text {OFF }}(\overline{\mathrm{EN}})$ Break-Before-Make Time Delay, $\mathrm{t}_{\text {BBM }}$ Charge Injection Off Isolation Channel-to-Channel Crosstalk $-3 d B$ Bandwidth $C_{S(\text { OFF) }}$ $C_{\text {D(OFF) }}$ $C_{D(O N)}, C_{S(O N)}$	$\begin{aligned} & 170 \\ & 300 \\ & 200 \\ & 310 \\ & 30 \\ & 40 \\ & 180 \\ & 1 \\ & 2 \\ & 2 \\ & -90 \\ & -90 \\ & 500 \\ & 5 \\ & 8 \\ & 12 \\ & \hline \end{aligned}$	$\begin{aligned} & 370 \\ & 380 \\ & 55 \end{aligned}$	$\begin{aligned} & 400 \\ & 420 \\ & 75 \\ & 10 \end{aligned}$	ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ pC max dB typ dB typ MHz typ pF typ pF typ pF typ	
POWER REQUIREMENTS ${ }^{2}$ $I_{D D}$	0.01		1	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{aligned}$

[^2]${ }^{2}$ The device is fully specified at $\mathrm{a} \pm 5 \mathrm{~V}$ dual supply and at 5 V and 3.3 V single supplies. It is possible to operate the ADG633 with unbalanced supplies or at other voltage supplies ($\pm 2 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$, and 2 V to 12 V); however, the switch characteristics change. These changes include, but are not limited to: analog signal range, on resistance, leakage, $\mathrm{V}_{\mathbb{I N L}}, \mathrm{V}_{\mathbb{I N H}}$, and switching times. The optimal power-up sequence for the device is: ground, $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$, and then the digital inputs, before applying the analog input signal.

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 4.

Parameter	Rating
V_{DD} to $\mathrm{V}_{\mathrm{SS}}{ }^{1}$	13 V
$\mathrm{~V}_{\mathrm{DD}}$ to GND	-0.3 V to +13 V
$\mathrm{~V}_{\mathrm{SS}}$ to GND	+0.3 V to -6.5 V
Analog Inputs ${ }^{2}$	$\mathrm{~V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Inputs ${ }^{2}$	$\mathrm{GND}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or
	10 mA, whichever occurs first
Peak Current, S or D	40 mA (pulsed at $1 \mathrm{~ms}, 10 \%$
	duty cycle maximum)
Continuous Current, S or D	20 mA
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
θ_{JA} Thermal Impedance	
\quad 16-Lead TSSOP	$150.4^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP, 4-Layer Board	$70^{\circ} \mathrm{C} / \mathrm{W}$
Lead Soldering	
Lead Temperature, Soldering	$300^{\circ} \mathrm{C}$
\quad (10 sec)	
IR Reflow, Peak Temperature	$220^{\circ} \mathrm{C}$
\quad (<20 sec)	
(Pb-Free) Soldering	
Reflow, Peak Temperature	$260(+0 /-5)^{\circ} \mathrm{C}$
Time at Peak Temperature	20 sec to 40 sec
ESD	4 kV

${ }^{1}$ The device is fully specified at a $\pm 5 \mathrm{~V}$ dual supply and at 5 V and 3.3 V single supplies. It is possible to operate the ADG633 with unbalanced supplies or at other voltage supplies ($\pm 2 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$, and 2 V to 12 V); however, the switch characteristics change. These changes include, but are not limited to: analog signal range, on resistance, leakage, $\mathrm{V}_{\mathbb{I N L}}, \mathrm{V}_{\mathbb{I N H}}$, and switching times. The optimal power-up sequence for the device is: ground, $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{55}$, and then the digital inputs, before applying the analog input signal.
${ }^{2}$ Overvoltages at $\mathrm{Ax}, \overline{\mathrm{EN}}, \mathrm{S}$, or D are clamped by internal diodes. Limit current to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.
Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. 16-Lead TSSOP Pin Configuration

Figure 3. 16-Lead LFCSP Pin Configuration

Table 5. Pin Function Descriptions

Pin No.		Mnemonic	Description
TSSOP	LFCSP		
1	15	S2B	Source Terminal of Multiplexer 2. Can be an input or output.
2	16	S2A	Source Terminal of Multiplexer 2. Can be an input or output.
3	1	S3B	Source Terminal of Multiplexer 3. Can be an input or output.
4	2	D3	Drain Terminal of Multiplexer 3. Can be an input or output.
5	3	S3A	Source Terminal of Multiplexer 3. Can be an input or output.
6	4	$\overline{\mathrm{EN}}$	Digital Control Input. Disables all multiplexers when set high.
7	5	$\mathrm{V}_{\text {ss }}$	Most Negative Power Supply Terminal. Tie this pin to GND when using the device with single-supply voltages.
8	6	GND	Ground (0 V) Reference.
9	7	A2	Digital Control Input.
10	8	A1	Digital Control Input.
11	9	A0	Digital Control Input.
12	10	S1A	Source Terminal of Multiplexer 1. Can be an input or output.
13	11	S1B	Source Terminal of Multiplexer 1. Can be an input or output.
14	12	D1	Drain Terminal of Multiplexer 1. Can be an input or output.
15	13	D2	Drain Terminal of Multiplexer 2. Can be an input or output.
16	14	VDD	Most Positive Power Supply Terminal.
Not applicable	EP	EP	Exposed Paddle. The exposed paddle can be left floating or be tied to $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$, or GND.

Table 6. ADG633 Truth Table

				Switch Condition					
A2	A1	A0	EN	Switch S1A/D1	Switch S1B/D1	Switch S2A/D2	Switch S2B/D2	Switch S3A/D3	Switch S3B/D3
X^{1}	X^{1}	X^{1}	1	Off	Off	Off	Off	Off	Off
0	0	0	0	On	Off	On	Off	On	Off
0	0	1	0	Off	On	On	Off	On	Off
0	1	0	0	On	Off	Off	On	Off	
0	1	1	0	Off	On	Off	On	On	Off
1	0	0	0	On	Off	On	Off	Off	On
1	0	1	0	Off	On	On	Off	Off	On
1	1	0	0	On	Off	Off	On	Off	On
1	1	1	0	Off	On	Off	On	On	

[^3]TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. On Resistance vs. $V_{D}\left(V_{s}\right)$, Dual Supplies

Figure 5. On Resistance vs. $V_{D}\left(V_{S}\right)$, Single Supply

Figure 6. On Resistance vs. $V_{D}\left(V_{s}\right)$ for Various Temperatures, Dual Supplies

Figure 7. On Resistance vs. $V_{D}\left(V_{s}\right)$ for Various Temperatures, Single Supply

Figure 8. On Resistance vs. $V_{D}\left(V_{s}\right)$ for Various Temperatures, Single Supply

Figure 9. Leakage Current vs. Temperature, Dual Supplies

Figure 10. Leakage Current vs. Temperature, Single Supply

Figure 11. Charge Injection vs. Source Voltage

Figure 12. $t_{\mathrm{ON}} / t_{\text {OFF }}$ Times vs. Temperature, Dual Supplies

Figure 13. $t_{\text {ON }} / t_{\text {OFF }}$ Times vs. Temperature, Single Supply

Figure 14. On Response vs. Frequency

Figure 15. Off Isolation vs. Frequency

Figure 16. Crosstalk vs. Frequency

Figure 17. THD + Noise vs. Frequency

Figure 18. $V_{D D}$ Current vs. Logic Level

Figure 19. Logic Threshold Voltage vs. $V_{D D}$

TERMINOLOGY

\mathbf{V}_{DD}
Most positive power supply potential.
$\mathrm{V}_{\text {ss }}$
Most negative power supply potential.
I_{DD}
Positive supply current.
$\mathrm{I}_{\text {ss }}$
Negative supply current.

GND

Ground (0 V) reference.
S
Source terminal. Can be an input or output.
D
Drain terminal. Can be an input or output.
\mathbf{A}_{x}
Logic control input.
$\overline{\text { EN }}$
Active low digital input. When $\overline{\mathrm{EN}}$ is high, the device is disabled and all switches are off. When $\overline{\mathrm{EN}}$ is low, the Ax logic inputs determine the on switches.
V_{D}, V_{S}
Analog voltage on Terminal D and Terminal S.
$\mathbf{R}_{\text {ON }}$
Ohmic resistance between Terminal D and Terminal S.
$\Delta \mathbf{R}_{\text {oN }}$
On-resistance match between any two channels, that is,
$\mathrm{R}_{\text {ONMAX }}-\mathrm{R}_{\text {ONmin }}$.
$\mathbf{R}_{\text {flat(on) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.
$\mathbf{I}_{\text {S(OFF) }}$
Source leakage current with the switch off.
$\mathrm{I}_{\mathrm{D} \text { (} \mathrm{FFF})}$
Drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}(\mathrm{ON})}, \mathrm{I}_{\mathrm{S}(\mathrm{ON})}$
Channel leakage current with the switch on.
$\mathrm{V}_{\text {INL }}$
Maximum input voltage for Logic 0 .
$\mathrm{V}_{\text {INH }}$
Minimum input voltage for Logic 1.
$\mathbf{I}_{\text {INI }}, \mathbf{I}_{\text {INH }}$
Input current of the digital input.
$\mathrm{C}_{\mathrm{S}(\text { (FFF) }}$
Off switch source capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{D}(\mathrm{OFF})}$
Off switch drain capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{D}(\mathrm{ON})}, \mathrm{C}_{\mathrm{S}(\mathrm{ON})}$
On switch capacitance. Measured with reference to ground.
$\mathrm{C}_{\text {IN }}$
Digital input capacitance.
$t_{\mathrm{ON}}(\overline{\mathrm{EN}})$
Delay between applying the digital control input and the output switching on (see Figure 26).
$\mathbf{t}_{\text {OFF }}(\overline{\mathbf{E N}})$
Delay between applying the digital control input and the output switching off (see Figure 26).
$\mathbf{t}_{\text {ввм }}$
On time, measured between 80% points of both switches when switching from one address state to another.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by 3 dB .
On Response
The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

TEST CIRCUITS

Figure 20. On Resistance

igure 24. Transition Time, $t_{\text {TRANSITION }}$

Figure 25. Break-Before-Make Delay, $t_{B B M}$

Figure 26. Enable Delay, $t_{O N}(\overline{E N}), t_{\text {OFF }}(\overline{E N})$

Figure 27. Charge Injection

Figure 28. Off Isolation

Figure 29. Bandwidth

Figure 30. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

Figure 31. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.
Figure 32. 16-Lead Frame Chip Scale Package [LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.75 mm Package Height (CP-16-23)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADG633YRU	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG633YRU-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG633YRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG633YRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG633YCPZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-23
ADG633YCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-23

[^4] ADG633

NOTES

NOTES

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Analog Devices Inc.:
ADG633YCPZ ADG633YRUZ ADG633YRUZ-REEL7 ADG633YCPZ-REEL7

[^0]: ${ }^{1}$ Guaranteed by design; not subject to production test.
 ${ }^{2}$ The device is fully specified at a $\pm 5 \mathrm{~V}$ dual supply and at 5 V and 3.3 V single supplies. It is possible to operate the ADG633 with unbalanced supplies or at other voltage supplies ($\pm 2 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$, and 2 V to 12 V); however, the switch characteristics change. These changes include, but are not limited to: analog signal range, on resistance, leakage, $V_{\mathbb{N L}}, V_{\mathbb{N H}}$, and switching times. The optimal power-up sequence for the device is: ground, $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{S S}$, and then the digital inputs, before applying the analog input signal.

[^1]: ${ }^{1}$ Guaranteed by design; not subject to production test.

[^2]: ${ }^{1}$ Guaranteed by design; not subject to production test.

[^3]: ${ }^{1} \mathrm{X}$ means the logic state does not matter; it can be either 0 or 1.

[^4]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

