Data Sheet

FEATURES

Latch-up immune under all circumstances
2.5 pF off source capacitance

12 pF off drain capacitance
-0.6 pC charge injection
Low leakage: 0.4 nA maximum at $85^{\circ} \mathrm{C}$
$\pm 9 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$ dual-supply operation
9 V to 40 V single-supply operation
48 V supply maximum ratings
Fully specified at $\pm 15 \mathrm{~V}, \pm 20 \mathrm{~V},+12 \mathrm{~V}$, and $+\mathbf{3 6} \mathrm{V}$
$V_{s s}$ to $V_{D D}$ analog signal range

APPLICATIONS

High voltage signal routing

Automatic test equipment
Analog front-end circuits
Precision data acquisition Industrial instrumentation
Amplifier gain select
Relay replacement

FUNCTIONAL BLOCK DIAGRAMS

SWITCHES SHOWN FOR A LOGIC 1 INPUT.
Figure 1. TSSOP Package

SWITCHES SHOWN FOR A LOGIC 1 INPUT. $\stackrel{.0}{\circ}$
Figure 2. LFCSP Package

PRODUCT HIGHLIGHTS

1. Trench Isolation Guards Against Latch-Up. A dielectric trench separates the P and N channel transistors thereby preventing latch-up even under severe overvoltage conditions.
2. Ultralow Capacitance and $<1 \mathrm{pC}$ Charge Injection.
3. Dual-Supply Operation.

For applications where the analog signal is bipolar, the ADG5236 can be operated from dual supplies up to $\pm 22 \mathrm{~V}$.
4. Single-Supply Operation.

For applications where the analog signal is unipolar, the ADG5236 can be operated from a single rail power supply up to 40 V .
5. 3 V Logic-Compatible Digital Inputs.
$\mathrm{V}_{\mathrm{INH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$.
6. No V_{L} Logic Power Supply Required.

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagrams 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
± 15 V Dual Supply 3
± 20 V Dual Supply 4
12 V Single Supply. 5
36 V Single Supply 6
Continuous Current per Channel, Sx or Dx 7
REVISION HISTORY
11/13-Rev. A to Rev. B
Changes to Features and Applications Sections 1
Changes to Figure 23 13
4/12—Rev. 0 to Rev. A
Updated Outline Dimensions 19
Changes to Ordering Guide 19
7/11—Revision 0: Initial Version
Absolute Maximum Ratings 8
ESD Caution 8
Pin Configurations and Function Descriptions 9
Truth Tables for Switches 9
Typical Performance Characteristics 10
Test Circuits 14
Terminology 16
Trench Isolation 17
Applications Information 18
Outline Dimensions 19
Ordering Guide 19

ADG5236

SPECIFICATIONS

± 15 V DUAL SUPPLY
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
POWER REQUIREMENTS					$\mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-16.5 \mathrm{~V}$
IDD	45			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
	55		70	$\mu \mathrm{A}$ max	
Iss	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
			1	$\mu \mathrm{A}$ max	
$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$			$\pm 9 / \pm 22$	V min/V max	GND $=0 \mathrm{~V}$

${ }^{1}$ Guaranteed by design; not subject to production test.

± 20 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-20 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
C_{s} (Off)	2.5			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
C_{D} (Off)	12			pF typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{\text {S }}(\mathrm{On})$	15			pF typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS	$\begin{aligned} & 50 \\ & 70 \\ & 0.001 \end{aligned}$		1101	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\mathrm{DD}}=+22 \mathrm{~V}, \mathrm{~V}_{S S}=-22 \mathrm{~V}$
IDD					Digital inputs $=0 \mathrm{~V}$ or V_{DD}
Iss				$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
				$\mu \mathrm{A}$ max	
VDD/VSS			$\pm 9 / \pm 22$	V min/V max	$\mathrm{GND}=0 \mathrm{~V}$

${ }^{1}$ Guaranteed by design; not subject to production test.

12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
Off Isolation	-90			dB typ	$\mathrm{RL}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz},$ $\text { see Figure } 28$
Channel-to-Channel Crosstalk	-90			dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}, \\ & \text { see Figure } 26 \end{aligned}$
-3 dB Bandwidth	185			MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}$, see Figure 29
Insertion Loss	-11			dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}, \\ & \text { see Figure } 29 \end{aligned}$
C_{s} (Off)	3			pF typ	$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$C_{\text {d }}$ (Off)	16			pF typ	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{\text {S }}(\mathrm{On})$	16			pF typ	$\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS					$\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}$
IdD	40			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
			65	$\mu \mathrm{A}$ max	
$V_{D D}$			9/40	V min/V max	$\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}$

${ }^{1}$ Guaranteed by design; not subject to production test.

36 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 4.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range On Resistance, Ron			0 V to V_{DD}	\checkmark max	
	150			Ω typ	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=0 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA}, \\ & \text { see Figure } 25 \end{aligned}$
	170	215	245	Ω max	$\mathrm{V}_{\mathrm{DD}}=32.4 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$
On-Resistance Match Between Channels, Δ Ron	1.4			Ω typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ to $30 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA}$
	8	9	10	Ω max	
On-Resistance Flatness, Rflation)	35			Ω typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ to $30 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA}$
	50	60	65	Ω max	
LEAKAGE CURRENTS Source Off Leakage, Is (Off)					$\mathrm{V}_{\mathrm{DD}}=39.6 \mathrm{~V}, \mathrm{~V}_{\text {S }}=0 \mathrm{~V}$
	0.01			nA typ	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=30 \mathrm{~V} / 1 \mathrm{~V}, \\ & \text { see Figure } 27 \end{aligned}$
	0.1	0.2	0.4	$n A$ max	
Drain Off Leakage, I_{D} (Off)	0.01			nA typ	$\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=30 \mathrm{~V} / 1 \mathrm{~V},$
	0.1	0.4	1.2	$n A \max$	
Channel On Leakage, $\mathrm{I}_{\mathrm{D}}(\mathrm{On})$, $\mathrm{IS}_{\text {S }}(\mathrm{On})$	0.02			nA typ	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} / 30 \mathrm{~V}$, see Figure 24
	0.2	0.4	1.2	nA max	
DIGITAL INPUTS					
Input High Voltage, $\mathrm{V}_{\text {INH }}$			2.0	V min	
Input Low Voltage, $\mathrm{V}_{\text {INL }}$			0.8	V max	
Input Current, Inl or linh	0.002			$\mu \mathrm{A}$ typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
			± 0.1	$\mu \mathrm{A}$ max	
Digital Input Capacitance, $\mathrm{C}_{\text {IN }}$	3			pF typ	
DYNAMIC CHARACTERISTICS ${ }^{1}$					
Transition Time, ttransition	180			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	250	275	305	ns max	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}$, see Figure 30
ton	170			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	225	265	295	ns max	$V_{S}=18 \mathrm{~V}$, see Figure 32

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
toff	170	215	22535	ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
Break-Before-Make Time Delay, to	215			ns max	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}$, see Figure 32
	75			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, C_{L}=35 \mathrm{pF}$
				ns min	$\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{52}=18 \mathrm{~V}$, see Figure 31
Charge Injection, QiN	-0.6		35	pC typ	$\mathrm{V}_{\mathrm{S}}=18 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF},$ see Figure 33
Off Isolation	-85			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz},$ see Figure 28
Channel-to-Channel Crosstalk	-85			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz},$ see Figure 26
-3 dB Bandwidth	266			MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}$, see Figure 29
Insertion Loss	-7			dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}, \\ & \text { see Figure } 29 \end{aligned}$
C_{s} (Off)	2.5			pF typ	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$C_{\text {d }}$ (Off)	12			pF typ	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{d}}(\mathrm{On}), \mathrm{C}_{\text {S }}(\mathrm{On})$	15			pF typ	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS					$\mathrm{V}_{\mathrm{DD}}=39.6 \mathrm{~V}$
IdD	85			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
	100		130	$\mu \mathrm{A}$ max	
$V_{D D}$			9/40	\checkmark min/V max	$\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

${ }^{1}$ Guaranteed by design; not subject to production test.

CONTINUOUS CURRENT PER CHANNEL, SxA, SxB, OR Dx

Table 5.

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit
CONTINUOUS CURRENT, SxA, SxB, or Dx				
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-15 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	19	7	2.8	mA max
LFCSP ($\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	30	7.7	2.8	mA max
$\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-20 \mathrm{~V}$				
TSSOP ($\theta_{\text {JA }}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	21	7	2.8	mA max
LFCSP ($\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	31	7.7	2.8	mA max
$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$				
TSSOP ($\theta_{\text {JA }}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	14	6.3	2.7	mA max
LFCSP ($\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	22.5	7.3	2.8	mA max
$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	24	7.4	2.8	mA max
LFCSP ($\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	35	7.8	2.8	mA max

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 6.

Parameter	Rating
$V_{\text {do }}$ to V $\mathrm{V}_{\text {s }}$	48 V
V ${ }_{\text {do }}$ to GND	-0.3 V to +48 V
$V_{\text {ss }}$ to GND	+0.3 V to -48 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or }$ 30 mA , whichever occurs first
Digital Inputs ${ }^{1}$	$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or }$ 30 mA , whichever occurs first
Peak Current, SxA, SxB, or Dx Pin	63 mA (pulsed at 1 ms , 10\% duty cycle maximum)
Continuous Current, $\mathrm{SxA}, \mathrm{SxB}$, or Dx^{2}	Data + 15\%
Temperature Range	
Operating	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Thermal Impedance, θ_{JA}	
16-Lead TSSOP (4-Layer Board)	$112^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP	$30.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering Peak Temperature, Pb Free	$260(+0 /-5)^{\circ} \mathrm{C}$

[^0]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 3. TSSOP Pin Configuration

Figure 4. LFCSP Pin Configuration

Table 7. Pin Function Descriptions

Pin No.		Mnemonic	Description
TSSOP	LFCSP		
1	15	IN1	Logic Control Input 1.
2	16	S1A	Source Terminal 1A. This pin can be an input or output.
3	1	D1	Drain Terminal 1. This pin can be an input or output.
4	2	S1B	Source Terminal 1B. This pin can be an input or output.
5	3	$\mathrm{V}_{\text {SS }}$	Most Negative Power Supply Potential.
6	4	GND	Ground (0 V) Reference.
7, 8, 14 to 16	5, 7, 13, 14	NC	No Connect. These pins are open.
9	6	IN2	Logic Control Input 2.
10	8	S2A	Source Terminal 2A. This pin can be an input or output.
11	9	D2	Drain Terminal 2. This pin can be an input or output.
12	10	S2B	Source Terminal 2B. This pin can be an input or output.
13	11	VDD	Most Positive Power Supply Potential.
N/A ${ }^{1}$	12	EN	Active High Digital Input. When this pin is low, the device is disabled and all switches are off. When this pin is high, the INx logic inputs determine the on switches.
N / A^{1}	EP	Exposed Pad	Exposed Pad. The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, V_{ss}.

${ }^{1} \mathrm{~N} /$ A means not applicable.

TRUTH TABLES FOR SWITCHES

Table 8. TSSOP Truth Table

INx	SxA	SxB
0	Off	On
1	On	Off

Table 9. LFCSP Truth Table

EN	INx	SxA	SxB
0	X^{1}	Off	Off
1	0	Off	On
1	1	On	Off

[^1]
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. On Resistance vs. V_{S}, V_{D} (Dual Supply)

Figure 6. On Resistance vs. V_{S}, V_{D} (Dual Supply)

Figure 7. On Resistance vs. V_{S}, V_{D} (Single Supply)

Figure 8. On Resistance vs. V_{S}, V_{D} (Single Supply)

Figure 9. On Resistance vs. VD or V_{s} for Different Temperatures, ± 15 V Dual Supply

Figure 10. On Resistance vs. V_{D} or V_{S} for Different Temperatures, ± 20 V Dual Supply

Figure 11. On Resistance vs. V_{D} or V_{S} for Different Temperatures, 12 V Single Supply

Figure 12. On Resistance vs. Vs or Vo for Different Temperatures, 36 V Single Supply

Figure 13. Leakage Current vs. Temperature, ± 15 V Dual Supply

Figure 14. Leakage Current vs. Temperature, ± 20 V Single Supply

Figure 15. Leakage Current vs. Temperature, 12 V Single Supply

Figure 16. Leakage Current vs. Temperature, 36 V Single Supply

Figure 17. Off Isolation vs. Frequency

Figure 18. Crosstalk vs. Frequency

Figure 19. Charge Injection vs. Source Voltage

Figure 20. ACPSRR vs. Frequency

Figure 21. Bandwidth

Figure 22. ttransition Time vs. Temperature

Figure 23. Capacitance vs. Source Voltage, Dual Supply

TEST CIRCUITS

Figure 24. On Leakage

Figure 25. On Resistance

Figure 26. Channel-to-Channel Crosstalk

Figure 27. Off Leakage

Figure 28. Off Isolation

INSERTION LOSS $=20 \log \frac{\mathrm{~V}_{\text {OUT }} \text { WITH SWITCH }}{\mathrm{v}_{\text {OUT }} \text { WITHOUT SWITCH }}$

Figure 29. Bandwidth

Figure 31. Break-Before-Make Time Delay t_{D}

Figure 32. Enable Delay, toN (EN), toff (EN)

Figure 33. Charge Injection

TERMINOLOGY

I_{DD}
$I_{D D}$ represents the positive supply current.
Iss
ISS represents the negative supply current.
V_{D}, V_{s}
V_{D} and V_{S} represent the analog voltage on Terminal D and Terminal S, respectively.
Ron
Ron represents the ohmic resistance between Terminal D and Terminal S.

Δ Ron

Δ Ron represents the difference between the Ron of any two channels.
$\mathbf{R}_{\text {flat (ON) }}$
Flatness that is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range is represented by $\mathrm{R}_{\text {fLat (ON) }}$.

Is (Off)
Is (Off) is the source leakage current with the switch off.
I_{D} (Off)
I_{D} (Off) is the drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}(\mathrm{On}), \mathrm{I}_{\mathrm{s}}(\mathrm{On})$
$\mathrm{I}_{\mathrm{D}}(\mathrm{On})$ and $\mathrm{I}_{\mathrm{S}}(\mathrm{On})$ represent the channel leakage currents with the switch on.
$V_{\text {INL }}$
$\mathrm{V}_{\text {INL }}$ is the maximum input voltage for Logic 0 .
$V_{\text {INH }}$
$\mathrm{V}_{\text {INH }}$ is the minimum input voltage for Logic 1.
$\mathrm{I}_{\mathrm{INL}}, \mathrm{I}_{\mathrm{INH}}$
$\mathrm{I}_{\text {INL }}$ and $\mathrm{I}_{\text {INH }}$ represent the low and high input currents of the digital inputs.
C_{D} (Off)
C_{D} (Off) represents the off switch drain capacitance, which is measured with reference to ground.
C_{s} (Off)
C_{S} (Off) represents the off switch source capacitance, which is measured with reference to ground.
C_{D} (On), C_{s} (On)
$C_{D}(\mathrm{On})$ and $\mathrm{C}_{s}(\mathrm{On})$ represent on switch capacitances, which are measured with reference to ground.

$\mathrm{C}_{\text {IN }}$

$\mathrm{C}_{\text {IN }}$ is the digital input capacitance.
ton
$t_{\text {ON }}$ represents the delay between applying the digital control input and the output switching on.
$\boldsymbol{t}_{\text {OfF }}$
toff represents the delay between applying the digital control input and the output switching off.
t_{D}
t_{D} represents the off time measured between the 80% point of both switches when switching from one address state to another.

Off Isolation

Off isolation is a measure of unwanted signal coupling through an off switch.

Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

Crosstalk

Crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

Bandwidth is the frequency at which the output is attenuated by 3 dB .

On Response

On response is the frequency response of the on switch.

Insertion Loss

Insertion loss is the loss due to the on resistance of the switch.
AC Power Supply Rejection Ratio (ACPSRR)
ACPSRR is the ratio of the amplitude of signal on the output to the amplitude of the modulation. This is a measure of the ability of the device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p.

TRENCH ISOLATION

In the ADG5236, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junction isolated switches, are eliminated, and the result is a completely latch-up proof switch.
In junction isolation, the N and P wells of the PMOS and NMOS transistors form a diode that is reverse-biased under normal operation. However, during overvoltage conditions, this diode can become forward-biased. A silicon controlled rectifier (SCR) type circuit is formed by the two transistors causing a significant amplification of the current that, in turn, leads to latch-up. With trench isolation, this diode is removed, and the result is a latch-up proof switch.

Figure 34. Trench Isolation

APPLICATIONS INFORMATION

The ADG52xx family of switches and multiplexers provide a robust solution for instrumentation, industrial, automotive, aerospace, and other harsh environments that are prone to latch-up, which is an undesirable high current state that can lead to device failure and persists until the power supply is turned off. The ADG5236 high voltage switches allow singlesupply operation from 9 V to 40 V and dual supply operation from $\pm 9 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$.

OUTLINE DIMENSIONS

Figure 35. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.

Figure 36. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body, Very Very Thin Quad
(CP-16-17)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADG5236BRUZ $_{\text {ADG5236BRUZ-RL7 }}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG5236BCPZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-16-17

[^2]
NOTES

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Analog Devices Inc.:
ADG5236BRUZ-RL7 ADG5236BCPZ-RL7 ADG5236BRUZ

[^0]: ${ }^{1}$ Overvoltages at the $\mathrm{INx}, \mathrm{SxA}, \mathrm{SxB}$, and Dx pins are clamped by internal diodes.
 Limit the current to the maximum ratings given.
 ${ }^{2}$ See Table 5.

[^1]: ${ }^{1} \mathrm{X}$ means don't care.

[^2]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

