General Description

The MAX8667/MAX8668 dual step-down converters with dual low-dropout (LDO) linear regulators are intended to power low-voltage microprocessors or DSPs in portable devices. They feature high efficiency with small external component size. The step-down converters are adjustable from 0.6 V to 3.3 V (MAX8668) or factory preset (MAX8667) with guaranteed output current of 600 mA for OUT1 and 1200 mA for OUT2. The 1.5 MHz hysteretic-PWM control scheme allows for tiny external components and reduces no-load operating current to $100 \mu \mathrm{~A}$ with all outputs enabled. Dual low-qui-escent-current, low-noise LDOs operate down to 1.7 V supply voltage. The MAX8667/MAX8668 have individual enables for each output, maximizing flexibility
The MAX8667/MAX8668 are available in the spacesaving, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$, 16-pin thin QFN package.

Cell Phones/Smartphones
PDA and Palmtop Computers
Portable MP3 and DVD Players
Digital Cameras, Camcorders
PCMCIA Cards
Handheld Instruments

Typical Operating Circuit

_Features

- Tiny, Thin QFN 3mm x 3mm Package
- Individual Enables
- Step-Down Converters 600mA Guaranteed Output Current on OUT1 1200mA Guaranteed Output Current on OUT2 Tiny Size $2.2 \mu \mathrm{H}$ Chip Inductor (0805) Output Voltage from 0.6V to 3.3V (MAX8668) Ultra-Fast Line and Load Transients Low $\mathbf{2 5 \mu}$ A Supply Current Each
- LDOs

300mA Guaranteed
Low 1.7V Minimum Supply Voltage Low Output Noise

Ordering Information

PART	PKG CODE	TOP MARK
MAX8667ETEAA +	T1633-4	AEQ
MAX8667ETEAB+	T1633-4	AFI
MAX8667ETEAC +	T1633-4	AFM
MAX8667ETECQ +	T1633-4	AFN

Note: All MAX8667/MAX8668 parts are in a 16-pin, thin QFN, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ package and operate in the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range.
+Denotes a lead-free package.
Ordering Information continued at the end of data sheet. Selector Guide appears at the end of data sheet.

Pin Configuration

1.5MHz Dual Step-Down DC-DC Converters with Dual LDOs and Individual Enables

ABSOLUTE MAXIMUM RATINGS

IN12, IN34, FB1, FB2, EN1, EN2, EN3, EN4, OUT1,
OUT2, REF to GND.
-0.3 V to +6.0 V OUT3,

OUT4 to GND.....-0.3V to the lesser of +6 V or (VIN34 +0.3 V) PGND1, PGND2 to GND
-0.3 V to +0.3 V
LX1, LX2 Current
1.5A RMS

LX1, LX2 to GND (Note 1)-0.3V to (VIN12 + 0.3V)
Note 1: LX_ has internal clamp diodes to GND and IN12. Applications that forward bias these diodes should take care not to exceed the IC's package-dissipation limits.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\text {IN34 }}=\mathrm{V}_{\text {IN12 }}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

1.5MHz Dual Step-Down DC-DC Converters with Dual LDOs and Individual Enables

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\text {IN34 }}=\mathrm{V}_{\text {IN12 }}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 1$)$

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Maximum Adjustable Output Voltage	MAX8668		3.3			V
FB1, FB2 Regulation Voltage	MAX8668, no load, VFB_ falling	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	0.588	0.600	0.612	V
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0.582	0.600	0.618	
OUT1, OUT2 Regulation Voltage	MAX8667ETEJS+, no load, Vout_ falling	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	1.274	1.300	1.326	V
		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1.261	1.300	1.339	
FB1, FB2 Line Regulation	MAX8668, $\mathrm{V}_{\text {IN12 }}=2.6 \mathrm{~V}$ to 5.5 V		0.01			\%/V
OUT1, OUT2 Line Regulation	$\mathrm{MAX} 8667, \mathrm{~V}_{\mathrm{IN} 12}=2.8 \mathrm{~V}$ to 5.5 V		0.05			\%/V
FB1, FB2 Bias Current	MAX8668, shutdown mode		0.1			$\mu \mathrm{A}$
	MAX8668, $\mathrm{V}_{\text {FB1 }}=0.5 \mathrm{~V}$		0.01			
OUT1 Current Limit	pMOSFET switch (ILIMP1)		700	900	1100	mA
	nMOSFET rectifier (valley current)		500	750	1000	
OUT2 Current Limit	pMOSFET switch (ILIMP2)		1333	1667	2000	mA
	nMOSFET rectifier (valley current)		1200	1500	1800	
OUT1 On-Resistance	pMOSFET switch, ILX1 $=-400 \mathrm{~mA}$			0.3	0.6	Ω
	nMOSFET rectifier, ILX1 $=400 \mathrm{~mA}$			0.3	0.6	
OUT2 On-Resistance	pMOSFET switch, ILX2 $=-400 \mathrm{~mA}$			0.12	0.27	Ω
	nMOSFET rectifier, ILX2 $=400 \mathrm{~mA}$			0.12	0.27	
Rectifier-Off Current Threshold (ILXOFF)				60	120	mA
LX Leakage Current	LX_ = 5.5V	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1		+1	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	0.1			
Minimum On-Time				100		ns
Minimum Off-Time				50		ns
LDO REGULATORS						
Supply Current	Each LDO		20			$\mu \mathrm{A}$
Output-Voltage Accuracy	1 mA load, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-1.5		+1.5	\%
	1 mA to 300 mA load		-3.0		+3.0	
Line Regulation	$\mathrm{V}_{\text {IN }} 4=3.6 \mathrm{~V}$ to 5.5 V , 1 mA load		0.003			\%/V
Dropout Voltage	$\mathrm{V}_{\text {IN34 }}=1.8 \mathrm{~V}, 300 \mathrm{~mA}$ load			130	250	mV
Current Limit	VOUT3, VOUT4 90\% of nominal value		375	420	465	mA
Soft-Start Ramp Time	To 90\% of final value		0.1			ms
Output Noise	100 Hz to $100 \mathrm{kHz}, 30 \mathrm{~mA}$ load, V ${ }^{\text {OUT3 }}$ and $\mathrm{V}_{\text {OUT4 }}=2.8 \mathrm{~V}$		75			$\mu \mathrm{V}$ RMS
Power-Supply Rejection Ratio	$\mathrm{f}<1 \mathrm{kHz}, 30 \mathrm{~mA}$ load		57			dB
Shutdown Output Resistance				1		$\mathrm{k} \Omega$
TIMING (See Figure 2)						
Power-On Time (tpwron)	OUT1, OUT2			25		$\mu \mathrm{s}$
	OUT3, OUT4		45			
Enable Time (ten)	OUT1, OUT2		15			$\mu \mathrm{s}$
	OUT3, OUT4		35			

Note 1: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design.

1.5MHz Dual Step-Down DC-DC Converters with Dual LDOs and Individual Enables

Typical Operating Characteristics
$\left(\mathrm{V}_{\text {IN12 }}=\mathrm{V}_{\text {IN34 }}=3.6 \mathrm{~V}\right.$, circuit of Figure $4, \mathrm{~V}_{\text {OUT1 }}=1.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT2 }}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {OUT3 }}=2.8 \mathrm{~V}, \mathrm{~V}_{\text {OUT4 }}=2.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.$)$

OUT2 LOAD REGULATION

SWITCHING FREQUENCY vs. LOAD CURRENT

OUT1 OUTPUT VOLTAGE
vs. INPUT VOLTAGE (600mA LOAD)

OUT2 OUTPUT VOLTAGE
vs. INPUT VOLTAGE (1200mA LOAD)

NO-LOAD SUPPLY CURRENT
vs. SUPPLY VOLTAGE OUT1 AND OUT2 ONLY

1.5MHz Dual Step-Down DC-DC Converters with Dual LDOs and Individual Enables

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\text {IN12 }}=\mathrm{V}_{\text {IN34 }}=3.6 \mathrm{~V}\right.$, circuit of Figure $4, \mathrm{~V}_{\text {OUT1 }}=1.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT2 }}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {OUT3 }}=2.8 \mathrm{~V}, \mathrm{~V}_{\text {OUT4 }}=2.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

OUT3 OUTPUT VOLTAGE
vs. INPUT VOLTAGE (300mA LOAD)

OUT3 DROPOUT VOLTAGE vs. LOAD CURRENT

1.5MHz Dual Step-Down DC-DC Converters with Dual LDOs and Individual Enables

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{\text {IN12 }}=\mathrm{V}_{\text {IN34 }}=3.6 \mathrm{~V}\right.$, circuit of Figure $4, \mathrm{~V}_{\text {OUT1 }}=1.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT2 }}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {OUT3 }}=2.8 \mathrm{~V}, \mathrm{~V}_{\text {OUT4 }}=2.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.$)$

$10 \mu \mathrm{~s} / \mathrm{div}$

1.5MHz Dual Step-Down DC-DC Converters with Dual LDOs and Individual Enables

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\text {IN12 }}=\mathrm{V}_{\text {IN34 }}=3.6 \mathrm{~V}\right.$, circuit of Figure $4, \mathrm{~V}_{\text {OUT1 }}=1.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT2 }}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {OUT3 }}=2.8 \mathrm{~V}, \mathrm{~V}_{\text {OUT4 }}=2.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

1.5MHz Dual Step-Down DC-DC Converters with Dual LDOs and Individual Enables

Pin Description

PIN	NAME		FUNCTION
	MAX8667	MAX8668	
1	EN3	EN3	Enable Input for Regulator 3. Drive EN3 high or connect to IN34 to turn on regulator 3. Drive low to turn off regulator 3 and reduce input quiescent current.
2	OUT3	OUT3	Output of Regulator 3. Bypass OUT3 with a $4.7 \mu \mathrm{~F}$ ceramic capacitor to GND. OUT3 is discharged to GND through an internal $1 \mathrm{k} \Omega$ in shutdown.
3	IN34	IN34	Input Voltage for LDO Regulators 3 and 4 . Supply voltage range is from 1.7 V to 5.5 V . This supply voltage must not exceed $\mathrm{V}_{\mathrm{IN} 12}$. Connect a $4.7 \mu \mathrm{~F}$ or larger ceramic capacitor from IN34 to ground.
4	OUT4	OUT4	Output of Regulator 4. Bypass OUT4 with a $4.7 \mu \mathrm{~F}$ ceramic capacitor to GND. OUT4 is discharged to GND through an internal $1 \mathrm{k} \Omega$ in shutdown.
5	EN4	EN4	Enable Input for Regulator 4. Drive EN4 high or connect to IN34 to turn on regulator 4. Drive low to turn off regulator 4 and reduce input quiescent current.
6	GND	GND	Ground
7	REF	REF	Reference Output. Bypass REF with a $0.01 \mu \mathrm{~F}$ ceramic capacitor to GND.
8	OUT2	-	Feedback Input for Regulator 2. Connect OUT2 directly to the output of step-down regulator 2.
	-	FB2	Feedback Input for Regulator 2. Connect FB2 to the center of a resistor feedback divider between the output of regulator 2 and ground to set the output voltage. See the Setting the Output Voltages and Voltage Positioning section.
9	PGND2	PGND2	Power Ground for Step-Down Regulator 2
10	LX2	LX2	Inductor Connection for Regulator 2
11	IN12	IN12	Input Voltage for Step-Down Regulators 1 and 2. Supply voltage range is from 2.6 V to 5.5 V . This supply voltage must not be less than VIN34. Connect a $10 \mu \mathrm{~F}$ or larger ceramic capacitor from IN12 to ground.
12	LX1	LX1	Inductor Connection for Regulator 1
13	PGND1	PGND1	Power Ground for Step-Down Regulator 1
14	OUT1	-	Feedback Input for Regulator 1. Connect OUT1 directly to the output of step-down regulator 1.
	-	FB1	Feedback Input for Regulator 1. Connect FB1 to the center of a resistor feedback divider between the output of regulator 1 and ground to set the output voltage. See the Setting the Output Voltages and Voltage Positioning section.
15	EN1	EN1	Enable Input for Regulator 1. Drive EN1 high or connect to IN12 to turn on step-down regulator 1. Drive low to turn off the regulator and reduce input quiescent current.
16	EN2	EN2	Enable Input for Regulator 2. Drive EN2 high or connect to IN12 to turn on step-down regulator 2. Drive low to turn off the regulator and reduce input quiescent current.
-	EP	EP	Exposed Paddle. Connect to GND, PGND1, PGND2, and circuit ground.

1.5MHz Dual Step-Down DC-DC Converters with Dual LDOs and Individual Enables

MAX8667/MAX8668

Figure 1. Functional Diagram

1.5MHz Dual Step-Down DC-DC Converters with Dual LDOs and Individual Enables

Abstract

The MAX8667/MAX8668 dual step-down converters with dual low-dropout (LDO) linear regulators are intended to power low-voltage microprocessors or DSPs in portable devices. They feature high efficiency with small external component size. The step-down outputs are adjustable from 0.6 V to 3.3 V (MAX8668) or factory preset (MAX8667) with guaranteed output current of 600 mA for OUT1 and 1200 mA for OUT2. The 1.5 MHz hysteretic-PWM control scheme allows for tiny external components and reduces no-load operating current to $100 \mu \mathrm{~A}$ (typ) with all regulators enabled. Dual, low-quiescent-current, low-noise LDOs operate down to 1.7 V supply voltage. The MAX8667/MAX8668 have individual enable inputs for each output to facilitate any supply sequencing.

Step-Down DC-DC Regulators (OUT1, OUT2)

Step-Down Regulator Architecture
The MAX8667/MAX8668 step-down regulators are optimized for high-efficiency voltage conversion over a wide load range, while maintaining excellent transient response, minimizing external component size, and minimizing output voltage ripple. The DC-DC converters (OUT1, OUT2) also feature an optimized on-resistance internal MOSFET switch and synchronous rectifier to maximize efficiency. The MAX8667/ MAX8668 utilize a proprietary hysteretic-PWM control scheme that switches with nearly fixed frequency at up to 1.5 MHz allowing for ultra-small external components. The step-down converter output current is guaranteed up to 600 mA for OUT1 and 1200 mA for OUT2.
When the step-down converter output voltage falls below the regulation threshold, the error comparator begins a switching cycle by turning the high-side p-channel MOSFET switch on. This switch remains on until the minimum on-time (tON) expires and the output voltage is in regulation or the current-limit threshold (ILIMP_) is exceeded. Once off, the high-side switch remains off until the minimum off-time (tOFF) expires and the output voltage again falls below the regulation threshold. During this off period, the low-side synchronous rectifier turns on and remains on until either the high-side switch turns on or the inductor current reduces to the rectifier-off current threshold (ILXOFF $=60 \mathrm{~mA}$ typ). The internal synchronous rectifier eliminates the need for an external Schottky diode.

Input Supply and Undervoltage Lockout

 The input voltage range of step-down regulators OUT1 and OUT2 is 2.6 V to 5.5 V . This supply voltage must be greater than or equal to the LDO supply voltage (VIN34).A UVLO circuit prevents step-down regulators OUT1 and OUT2 from switching when the supply voltage is too low to guarantee proper operation. When VIN12 falls below 2.4 V (typ), OUT1 and OUT2 are shut down. OUT1 and OUT2 turn on and begin soft-start when VIN12 rises above 2.5V (typ).

Soft-Start

When initially powered up, or enabled with $E N_{-}$, the step-down regulators soft-start by gradually ramping up the output voltage. This reduces inrush current during startup. See the startup waveforms in the Typical Operating Characteristics section.

Current Limit

The MAX8667/MAX8668 limit the peak inductor current of the p-channel MOSFET (ILIMP_). A valley current limit is used to protect the step-down regulators during severe overload and output short-circuit conditions. When the peak current limit is reached, the internal p-channel MOSFET turns off and remains off until the output drops below regulation, the inductor current falls below the valley current-limit threshold, and the minimum off-time has expired.

Voltage Positioning

The OUT1 and OUT2 output voltages and voltage positioning of the MAX8668 are set by a resistor network connected to FB_. With this configuration, a portion of the feedback signal is sensed on the switched side of the inductor, and the output voltage droops slightly as the load current is increased due to the DC resistance of the inductor. This output voltage droop is known as voltage positioning. Voltage positioning allows the load regulation to be set to match the voltage droop during a load transient, reducing the peak-to-peak output voltage deviation during a load transient, and reducing the output capacitance requirements.

Dropout

As the input voltage approaches the output voltage, the duty cycle of the p-channel MOSFET reaches 100%. In this state, the p-channel MOSFET is turned on constantly (not switching), and the dropout voltage is the voltage drop due to the output current across the onresistance of the internal p-channel MOSFET (RPCH) and the inductor's DC resistance (R_{L}):

$$
V_{D O}=L_{\text {LOAD }}\left(R_{P C H}+R_{L}\right)
$$

LDO Linear Regulators (OUT3, OUT4) The MAX8667/MAX8668 contain two low-dropout linear regulators (LDOs), OUT3 and OUT4. The LDO output voltages are factory preset, and each LDO supplies

1.5MHz Dual Step-Down DC-DC Converters with Dual LDOs and Individual Enables

loads up to 300 mA . The LDOs include an internal reference, error amplifier, p-channel pass transistor, and internal voltage-dividers. Each error amplifier compares the reference voltage to the output voltage (divided by the internal voltage-divider) and amplifies the difference. If the divided feedback voltage is lower than the reference voltage, the pass-transistor gate is pulled lower, allowing more current to pass to the outputs and increasing the output voltage. If the divided feedback voltage is too high, the pass-transistor gate is pulled up, allowing less current to pass to the output.

Input Supply and Undervoltage Lockout The input voltage range of LDO regulators OUT3 and OUT4 is 1.7 V to 5.5 V . This supply voltage must be less than or equal to the voltage applied to IN12 (VIN34 \leq Vin12).
An undervoltage lockout circuit turns off the LDO regulators when the input supply voltage is too low to guarantee proper operation. When ViN34 falls below 1.5V (typ), OUT3 and OUT4 are shut down. OUT3 and OUT4 turn on and begin soft-start when VIN34 rises above 1.6V (typ).

Soft-Start

When initially powered up, or enabled with EN_, the LDOs soft-start by gradually ramping up the output voltage. This reduces inrush current during startup. The
soft-start ramp time is typically 100μ s from the start of the soft-start ramp to the output reaching its nominal regulation voltage.

Current Limit

The OUT3 and OUT4 output current is limited to 375 mA (min). If the output current exceeds the current limit, the corresponding LDO output voltage drops.

Dropout

The maximum dropout voltage for the linear regulators is 250 mV at 300 mA load. To avoid dropout, make sure the IN34 supply voltage is at least 250 mV higher than the highest LDO output voltage.

Thermal-Overload Protection
Thermal-overload protection limits the total power dissipation in the MAX8667/MAX8668. Thermal-protection circuits monitor the die temperature. If the die temperature exceeds $+160^{\circ} \mathrm{C}$, the IC is shut down, allowing the IC to cool. Once the IC has cooled by $15^{\circ} \mathrm{C}$, the IC is enabled again. This results in a pulsed output during continuous thermal-overload conditions. The thermaloverload protection protects the MAX8667/MAX8668 in the event of fault conditions. For continuous operation, do not exceed the absolute maximum junction temperature of $+150^{\circ} \mathrm{C}$. See the Thermal Considerations section for more information.

Figure 2. Timing Diagram

1.5MHz Dual Step-Down DC-DC Converters with Dual LDOs and Individual Enables

MAX8667/МАХ8668

Figure 3. MAX8667 Typical Application Circuit

Figure 4. MAX8668 Typical Application Circuit

1.5MHz Dual Step-Down DC-DC Converters with Dual LDOs and Individual Enables

Applications Information

Setting the Output Voltages

 and Voltage PositioningThe LDO output voltages of the MAX8667/MAX8668, and the step-down outputs of the MAX8667 are factory preset. See the Selector Guide to find the part number corresponding to the desired output voltages.
The OUT1 and OUT2 output voltages of the MAX8668 are set by a resistor network connected to FB_ as shown in Figure 5. With this configuration, a portion of the feedback signal is sensed on the switched side of the inductor (LX), and the output voltage droops slightly as the load current is increased due to the DC resistance of the inductor (DCR). This allows the load regulation to be set to match the voltage droop during a load transient (voltage positioning), reducing the peak-to-peak output-voltage deviation during a load transient, and reducing the output capacitance requirements.
For the simplest method of setting the output voltage, R6 is not installed. Choose the value of R2 (a good starting value is $100 \mathrm{k} \Omega$), and then calculate the value of R1 as follows:

$$
\mathrm{R} 1=\mathrm{R} 2 \times\left(\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{FB}}}-1\right)
$$

where V_{FB} is the feedback regulation voltage (0.6 V).
With the voltage set in this manner, the voltage positioning depends only on the DCR, and the maximum output voltage droop is:

$$
\Delta \mathrm{VOUT}(\mathrm{MAX})=\mathrm{DCR} \times \operatorname{lOUT}(\mathrm{MAX})
$$

Setting the Output Voltages with Reduced Voltage Positioning

To obtain less voltage positioning than described in the previous section, use the following procedure for setting the output voltages. The OUT1 and OUT2 output voltages and voltage positioning of the MAX8668 are set by a resistor network connected to FB_ as shown in Figure 5.
To set the output voltage (VOUT), first select a value for R2 (a good starting value is $100 \mathrm{k} \Omega$). Then calculate the value of REQ (the equivalent parallel resistance of R1 and R6) as follows:

$$
R_{E Q}=\left(\frac{V_{O U T}}{V_{F B}}-1\right) \times R 2
$$

where V_{FB} is the feedback-regulation voltage (0.6 V).

Figure 5. MAX8668 Feedback Network
Calculate the factor m based on the desired load-regulation improvement:

$$
\mathrm{m}=\frac{\mathrm{IOUT}(\mathrm{MAX}) \times \mathrm{DCR}}{\Delta \mathrm{~V} \text { OUT(DESIRED })}
$$

where $\operatorname{IOUT}(\mathrm{MAX})$ is the maximum output current, DCR is the inductor series resistance, and $\Delta \mathrm{V}$ OUT(DESIRED) is the maximum allowable droop in the output voltage at full load. The calculated value for m must be between 1.1 and 2; $m=2$ results in a $2 x$ improvement in load regulation.
Now calculate the values of R1 and R6 as follows:

$$
\begin{aligned}
R 1 & =R_{E Q} \times m \\
R 6 & =R_{E Q} \times \frac{m}{m-1}
\end{aligned}
$$

The value of R1 should always be lower than the value of R6.

Power-Supply Sequencing

 The MAX8667/MAX8668 have individual enable inputs for each regulator to allow complete control over the power sequencing. When all EN_ inputs are low, the IC is in low-power shutdown mode, reducing the supply current to less than $1 \mu \mathrm{~A}$. After one of the $E N_{-}$inputs asserts high, the corresponding regulator begins softstart after a delay of tEN (see Figure 2). The first output enabled from shutdown mode or initially powering up the IC has a longer delay (tpWRON) as the IC exits the low-power shutdown mode.
Inductor Selection

The MAX8667/MAX8668 step-down converters operate with inductors between $2.2 \mu \mathrm{H}$ and $4.7 \mu \mathrm{H}$. Low inductance values are physically smaller, but require faster switching, resulting in some efficiency loss. The inductor's DC current rating must be high enough to account

1.5MHz Dual Step-Down DC-DC Converters with Dual LDOs and Individual Enables

Table 1. Recommended Inductors

MANUFACTURER	INDUCTOR	$\mathbf{L}(\boldsymbol{\mu} \mathbf{H})$	$\mathbf{R}_{\mathbf{L}}(\mathbf{m} \boldsymbol{\Omega})$	CURRENT RATING (A)	$\mathbf{L} \times \mathbf{x} \mathbf{~} \times \mathbf{H}(\mathbf{m m})$
FDK	MIPF2016	2.2	110	1.1	$2.0 \times 1.6 \times 1.0$
FDK	MIPF2520D	2.2	80	1.3	$2.5 \times 2.0 \times 1.0$
Murata	LQH32CN2R2M5	2.2	97	0.79	$3.2 \times 2.5 \times 1.55$
	LQM31P	2.2	220	0.9	$3.2 \times 1.6 \times 0.95$
Sumida	CDRH2D09	2.2	120	0.44	$3.2 \times 3.2 \times 1.0$
TDK	GLF251812T	2.2	200	0.6	$2.5 \times 1.8 \times 1.35$
TOKO	D2812C	2.2	140	0.77	$2.8 \times 2.8 \times 1.2$
TOKO	MDT2520-CR	2.2	80	0.7	$2.5 \times 2.0 \times 1.0$
Wurth	TPC Series	2.2	55	1.8	$4.0 \times 4.0 \times 1.1$
	TPC Series	4.7	124	1.35	$4.0 \times 4.0 \times 1.1$
	CB2518T	2.2	90	0.51	$2.5 \times 1.8 \times 2.0$

for peak ripple current and load transients. The stepdown converter's unique architecture has minimal current overshoot during startup and load transients and in most cases, an inductor capable of $1.3 x$ the maximum load current is acceptable.
For output voltages above 2 V , when light-load efficiency is important, the minimum recommended inductor is $2.2 \mu \mathrm{H}$. For optimum voltage-positioning load transients, choose an inductor with DC series resistance in the $50 \mathrm{~m} \Omega$ to $150 \mathrm{~m} \Omega$ range. For higher efficiency at heavy loads (above 200 mA) and minimal load regulation, keep the inductor resistance as small as possible. For light-load applications (up to 200mA), higher resistance is acceptable with very little impact on performance.

Capacitor Selection

Input Capacitors

The input capacitor for the step-down converters (C2 in Figures 3 and 4) reduces the current peaks drawn from the battery or input power source and reduces switching noise in the IC. The impedance of C2 at the switching frequency should be very low. Surface-mount ceramic capacitors are a good choice due to their small size and low ESR. Make sure the capacitor maintains its capacitance over temperature and DC bias. Ceramic capacitors with X5R or X7R temperature characteristics generally perform well. A $10 \mu \mathrm{~F}$ ceramic capacitor is recommended.
A $4.7 \mu \mathrm{~F}$ ceramic capacitor is recommended for the LDO input capacitor (C3 in Figure 3).

Step-Down Output Capacitors
The step-down output capacitors (C6 and C7 in Figures 3 and 4) are required to keep the output-voltage ripple
small and to ensure regulation loop stability. These capacitors must have low impedance at the switching frequency. Surface-mount ceramic capacitors are a good choice due to their small size and low ESR. Make sure the capacitor maintains its capacitance over temperature and DC bias. Ceramic capacitors with X5R or X7R temperature characteristics generally perform well. The output capacitance can be very low. For most applications, a $2.2 \mu \mathrm{~F}$ ceramic capacitor is sufficient. For C7 of the MAX8668, a $2.2 \mu \mathrm{~F}$ (VOUT2 $\leq 1.8 \mathrm{~V}$) or a $4.7 \mu \mathrm{~F}$ (VOUT2 $>1.8 \mathrm{~V}$) ceramic capacitor is recommended. For optimum load-transient performance and very low output ripple, the output capacitor value in $\mu \mathrm{F}$ should be equal to or greater than the inductor value in $\mu \mathrm{H}$.

Feed-Forward Capacitor

The feed-forward capacitors on the MAX8668 (C4 and C5 in Figure 4) set the feedback loop response, control the switching frequency, and are critical in obtaining the best efficiency possible. Small X7R and C0G ceramic capacitors are recommended.
For OUT1, calculate the value of C4 as follows:

$$
\mathrm{C} 4=1.2 \times 10^{-5}(\mathrm{~s} / \mathrm{V}) \times(\text { VOUT } / \mathrm{R} 1)
$$

For OUT2, calculate the value of C5 and C10 as follows:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{ff}}=1.2 \times 10^{-5}(\mathrm{~s} / \mathrm{V}) \times(\text { VoUT } / \mathrm{R} 3) \\
& \mathrm{C}_{\mathrm{ff}}=\mathrm{C} 5+(\mathrm{C} 10 / 2)
\end{aligned}
$$

$(\mathrm{C} 10 / \mathrm{C} 5)+1=\left(\mathrm{V}_{\mathrm{OUT}} / \mathrm{VFB}\right)$, where V_{FB} is 0.6 V .
Rearranging the formulas:

$$
\begin{aligned}
\mathrm{C} 10 & =2 \times \mathrm{Cff} \times\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\mathrm{FB}}\right) /\left(\mathrm{VOUT}_{\text {OU }}+\mathrm{V}_{\mathrm{FB}}\right) \\
\mathrm{C} 5 & =\mathrm{Cff}-(\mathrm{C} 10 / 2)
\end{aligned}
$$

1.5MHz Dual Step-Down DC-DC Converters with Dual LDOs and Individual Enables

C10 is needed if VOUT $>1.5 \mathrm{~V}$ or VIN12 can be less than VOUT / 0.65.

LDO Output Capacitor and Stability

Connect a $4.7 \mu \mathrm{~F}$ ceramic capacitor between OUT3 and GND, and a second 4.7μ F ceramic capacitor from OUT4 to GND. For a constant loading above 10 mA , the output capacitors can be reduced to $2.2 \mu \mathrm{~F}$. The equivalent series resistance (ESR) of the LDO output capacitors affects stability and output noise. Use output capacitors with an ESR of 0.1Ω or less to ensure stable operation and optimum transient response. Surfacemount ceramic capacitors have very low ESR and are commonly available. Connect these capacitors as close as possible to the IC's pins to minimize PCB trace inductance.

Thermal Considerations

The maximum package power dissipation of the MAX8667/MAX8668 is 1667 mW . Make sure the power dissipated by the MAX8667/MAX8668 does not exceed this rating. The total IC power dissipation is the sum of the power dissipation of the four regulators:

$$
\mathrm{PD}_{\mathrm{D}}=\mathrm{P}_{\mathrm{D} 1}+\mathrm{P}_{\mathrm{D} 2}+\mathrm{P}_{\mathrm{D}}+\mathrm{P}_{\mathrm{D}}
$$

Estimate the OUT1 and OUT2 power dissipations as follows:

$$
\begin{aligned}
& \text { PD1 }=\text { IOUT1 } \times \text { VOUT1 } \times \frac{1-\eta}{\eta} \\
& \text { PD2 }=\text { IOUT2 } \times \text { VOUT2 } \times \frac{1-\eta}{\eta}
\end{aligned}
$$

where R_{L} is the inductor's DC resistance, and η is the efficiency (see the Typical Operating Characteristics section).
Calculate the OUT3 and OUT4 power dissipations as follows:

$$
\begin{aligned}
& \text { PD3 }=\text { IOUT3 } \times(\text { VIN34 }- \text { VOUT3 }) \\
& \text { PD4 }=\text { IOUT4 } \times(\text { VIN34 }- \text { VOUT4 })
\end{aligned}
$$

The maximum junction temperature of the MAX8667/ MAX8668 is $+150^{\circ} \mathrm{C}$. The junction-to-case thermal resistance (θ_{JC}) of the MAX8667/MAX8668 is $6.9^{\circ} \mathrm{C} / \mathrm{W}$. When mounted on a single-layer PCB , the junction to ambient thermal resistance ($\theta J \mathrm{~J}$) is about $64^{\circ} \mathrm{C} / \mathrm{W}$. Mounted on a multilayer PCB, $\theta \mathrm{JA}$ is about $48^{\circ} \mathrm{C} / \mathrm{W}$. Calculate the junction temperature of the MAX8667/MAX8668 as follows:

$$
\mathrm{T}_{J}=\mathrm{T}_{\mathrm{A}}+\mathrm{PD}_{\mathrm{D}} \times \theta_{\mathrm{JA}}
$$

where T_{A} is the maximum ambient temperature. Make sure the calculated value of $T J$ does not exceed the $+150^{\circ} \mathrm{C}$ maximum.

PCB Layout High switching frequencies and relatively large peak currents make PCB layout a very important aspect of design. Good design minimizes excessive EMI on the feedback paths and voltage gradients in the ground plane, both of which can result in instability or regulation errors. Connect the input capacitors as close as possible to the $I N_{-}$and $P G N D$ _ pins. Connect the inductor and output capacitors as close as possible to the IC and keep the traces short, direct, and wide.
The feedback network traces are sensitive to inductor magnetic field interference. Route these traces away from the inductors and noisy traces such as LX. Keep the feedback components close to the FB_ pin.
Connect GND and PGND_ to the ground plane. Connect the exposed paddle to the ground plane with one or more vias to help conduct heat away from the IC.
Refer to the MAX8668 evaluation kit for a PCB layout example.

1.5MHz Dual Step-Down DC-DC Converters with Dual LDOs and Individual Enables

__Ordering Information (continued)

PART	PKG CODE	TOP MARK
MAX8667ETEHR +	T1633-4	AFJ
MAX8667ETEJS +	T1633-4	AFQ
MAX8668ETEA +	T1633-4	AER
MAX8668ETEP+	T1633-4	AFK
MAX8668ETEQ +	T1633-4	AFR
MAX8668ETET +	T1633-4	AFS
MAX8668ETEU+	T1633-4	AFL
MAX8668ETEV +	T1633-4	AFT
MAX8668ETEW +	T1633-4	AFU
MAX8668ETEX +	T1633-4	AFV

All MAX8667/MAX8668 parts are in a 16-pin, thin QFN, 3mm x 3 mm package and operate in the $-40^{\circ} \mathrm{C}$ to $=+85^{\circ} \mathrm{C}$ extended temperature range.
+Denotes a lead-free package.

Selector Guide

PART	OUT1 $\mathbf{(V)}$	OUT2 $\mathbf{(V)}$	OUT3 $\mathbf{(V)}$	OUT4 $\mathbf{(V)}$
MAX8667ETEAA+	1.20	1.80	2.80	2.80
MAX8667ETEAB+	1.20	1.80	2.85	2.85
MAX8667ETEAC+	1.20	1.80	1.20	1.20
MAX8667ETECQ+	1.60	1.80	2.80	1.20
MAX8667ETEHR+	1.80	1.20	2.60	2.80
MAX8667ETEJS+	1.30	1.30	3.30	2.70
MAX8668ETEA+	ADJ	ADJ	2.80	2.80
MAX8668ETEP+	ADJ	ADJ	3.30	1.80
MAX8668ETEQ+	ADJ	ADJ	2.80	1.20
MAX8668ETET+	ADJ	ADJ	3.30	3.30
MAX8668ETEU+	ADJ	ADJ	3.30	2.80
MAX8668ETEV+	ADJ	ADJ	3.30	2.50
MAX8668ETEW+	ADJ	ADJ	3.30	3.00
MAX8668ETEX+	ADJ	ADJ	2.80	1.80

Chip Information
PROCESS: BiCMOS

1.5MHz Dual Step-Down DC-DC Converters with Dual LDOs and Individual Enables

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

1．5MHz Dual Step－Down DC－DC Converters with Dual LDOs and Individual Enables

（The package drawing（s）in this data sheet may not reflect the most current specifications．For the latest package outline information go to www．maxim－ic．com／packages．）

Revision History
Pages changed at Rev 1：1，12，14， 18

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Analog Devices Inc.:

MAX8668ETEQ+T MAX8668ETEU+T

