Anything-to-LVPECL/LVDS Translators with Pin-Selectable Divide-by-Four

\qquad
General Description
The MAX9377/MAX9378 are fully differential, highspeed, low-jitter anything-to-LVPECL and anything-toLVDS translators, respectively, with a selectable divide-by-four function. Low propagation delay and high speed make them ideal for various high-speed network routing and backplane applications at speeds up to 2 GHz in nondivide mode.
The MAX9377/MAX9378 accept any differential input signal within the supply rails and with minimum amplitude of 100 mV . Inputs are fully compatible with the LVDS, LVPECL, HSTL, and CML differential signaling standards. The MAX9377 outputs are LVPECL and have sufficient current to drive 50Ω transmission lines. The MAX9378 outputs are LVDS and conform to the ANSI EIA/TIA-644 LVDS standard.
The MAX9377/MAX9378 are available in 8-pin μ MAX packages and operate from a single +3.3 V supply over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Pin Configuration

Guaranteed 2GHz Switching Frequency
Accept LVDS/LVPECL/Anything Inputs
Pin-Selectable Divide-by-Four Function
421ps (typ) Propagation Delays (MAX9377)
30ps (max) Pulse Skew
2psRMS (max) Random Jitter
Minimum 100mV Differential Input to Guarantee
Temperature-Compensated LVPECL Output

+ + .3.0V to +3.6V Power-Supply Operating Range
ESD Protection: >2kV Human Body Model (HBM)
Features

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9377EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$
MAX9378EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$8 \mu \mathrm{MAX}$

Functional Diagram

Anything-to-LVPECL/LVDS Translators with Pin-Selectable Divide-by-Four

ABSOLUTE MAXIMUM RATINGS

Inputs (IN, $\overline{\mathrm{N}}, \mathrm{RST}, \mathrm{SEL}) \ldots . ~$IN	
Short-Circuit Duration (MAX9378 OUT, OUT)Continuous Continuous Output Current \qquad	
Surge Output Current .. 100 mA	
$8-\mu \mathrm{MAX}$ (derate $5.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 470.6 mW	

Junction Temperature
$+150^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD Protection
Human Body Model (IN, IN, OUT, OUT) $\geq 2 \mathrm{kV}$
Soldering Temperature (10s)
$+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}\right.$ to +3.6 V , differential input voltage $\mathrm{I} \mathrm{V}_{\text {ID }}=0.1 \mathrm{~V}$ to 3.0 V , input voltage $\left(\mathrm{V}_{\text {IN }}, \mathrm{V} \overline{\mathrm{N}}\right)=0$ to V_{CC}, input common-mode voltage $V_{C M}=0.05 \mathrm{~V}$ to (VCC -0.05 V), LVPECL outputs terminated with $50 \Omega \pm 1 \%$ to (VCC -2.0 V), LVDS outputs terminated with $100 \Omega \pm 1 \%$, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{IV}$ ID $=0.2 \mathrm{~V}$, input common-mode voltage $\mathrm{V}_{\mathrm{CM}}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 2, 3)

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
LVCMOS/LVTTL INPUTS (RST, SEL)												
Input High Voltage	V_{IH}		2.0		VCC	2.0		$V_{\text {cc }}$	2.0		VCC	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$		GND		0.8	GND		0.8	GND		0.8	V
Input High Current	IIH	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or 2V	0		150	0		150	0		150	$\mu \mathrm{A}$
Input Low Current	IIL	$\mathrm{V}_{\text {IL }}=0$ or 0.8 V	-20		+20	-20		+20	-20		+20	$\mu \mathrm{A}$

DIFFERENTIAL INPUTS (IN, IN)

Differential Input Threshold	$V_{\text {THD }}$		-100	± 6	+100	-100	± 6	+100	-100	± 6	+100	mV
Input Current	$1 \mathrm{ln}, \mathrm{IN}$	$\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\mathrm{CC}}$ or OV	-20		+20	-20		+20	-20		+20	$\mu \mathrm{A}$
Input CommonMode Voltage	VCM	Figure 1	0.05		$\begin{gathered} V_{C C}- \\ 0.05 \end{gathered}$	0.05		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 0.05 \end{aligned}$	0.05		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.05 \end{gathered}$	V

LVPECL OUTPUTS (OUT, OUT) (MAX9377)

Single-Ended Output High Voltage	VOH	Figure 3	$\begin{aligned} & V_{C C}- \\ & 1.085 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.033 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 0.880 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.025 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 0.992 \end{aligned}$	$\begin{aligned} & \text { VCC- } \\ & 0.880 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.025 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 0.978 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 0.880 \end{aligned}$	V
Single-Ended Output Low Voltage	Vol	Figure 3	$\begin{aligned} & V_{C C}- \\ & 1.830 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.755 \end{aligned}$	$\begin{aligned} & \text { VCC }- \\ & 1.620 \end{aligned}$	$\begin{aligned} & \text { VCC }- \\ & 1.810 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 1.717 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.620 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.810 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.699 \end{aligned}$	$\begin{aligned} & V_{C C}- \\ & 1.620 \end{aligned}$	V
Differential Output Voltage	$\mathrm{V}_{\mathrm{OH}}-$ VoL	Figure 3	595	725		595	725		595	725		mV

LVDS OUTPUTS (OUT, OUT) (MAX9378)

| Differential Output
 Voltage | VOD | Figure 2 | 250 | 370 | 450 | 250 | 363 | 450 | 250 | 348 | 450 | mV |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Anything-to-LVPECL/LVDS Translators with Pin-Selectable Divide-by-Four

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V} C \mathrm{C}=+3.0 \mathrm{~V}\right.$ to +3.6 V , differential input voltage IV ID $=0.1 \mathrm{~V}$ to 3.0 V , input voltage $(\mathrm{V}$ IN,$~ \mathrm{~V} \overline{\mathrm{IN}})=0$ to V_{CC}, input common-mode voltage $V_{C M}=0.05 \mathrm{~V}$ to $(\mathrm{V} C \mathrm{C}-0.05 \mathrm{~V})$, LVPECL outputs terminated with $50 \Omega \pm 1 \%$ to (VCC -2.0 V), LVDS outputs terminated with $100 \Omega \pm 1 \%$, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V} C \mathrm{C}=+3.3 \mathrm{~V}, \mathrm{IV} \mathrm{IDI}=0.2 \mathrm{~V}$, input common-mode voltage $\mathrm{V}_{\mathrm{CM}}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 2, 3)

PARAMETER	SYMBOL	CONDITIONS	$-40^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Change in Magnitude of $\mathrm{V}_{\text {OD }}$ Between Complementary Output States	$\left\|\Delta \mathrm{V}_{\text {OD }}\right\|$	Figure 2		1.0	20		1.0	20		1.0	20	mV
Offset CommonMode Voltage	$\|\mathrm{Vos}\|$	Figure 2	1.125		1.375	1.125	1.250	1.375	1.125		1.375	V
Change in Magnitude of VOS Between Complementary Output States	$\left\|\Delta \mathrm{V}_{\text {OS }}\right\|$	Figure 2		0.1	20		0.1	20		0.1	20	mV
Output ShortCircuit Current, Either Output Shorted to GND	$\|\mathrm{los}\|$	VID $= \pm 100 \mathrm{mV}$, one output GND, other output open or shorted to GND		19.0	24		19.0	24		19.0	24	mA
Output ShortCircuit Current, Outputs Shorted Together	$\|\mathrm{losab}\|$	$\begin{aligned} & V_{\text {ID }}= \pm 100 \mathrm{mV}, \\ & \text { VOUT }=\text { VOUT } \end{aligned}$		4.0	12		4.0	12		4.0	12	mA
POWER SUPPLY												
Supply Current	Icc	MAX9377, all pins open except V_{Cc}, GND		13	22		15	22		17	22	
		MAX9378, RL = 100, quiescent, inputs are open		18.0	30			30		22	30	

Anything-to-LVPECL/LVDS Translators with Pin-Selectable Divide-by-Four

AC ELECTRICAL CHARACTERISTICS

$(\mathrm{VCC}=+3.0 \mathrm{~V}$ to +3.6 V , differential input voltage IV ID $=0.1 \mathrm{~V}$ to 1.2 V , input frequency $\leq 1.34 \mathrm{GHz}$, differential input transition time $=$ 125 ps (20% to 80%), input voltage $\left(\mathrm{V}_{\mathrm{IN}}, ~ \mathrm{~V} \overline{\mathrm{~N}}\right)=0$ to V_{CC}, input common-mode voltage $\mathrm{V}_{\mathrm{CM}}=0.05 \mathrm{~V}$ to ($\mathrm{V}_{\mathrm{CC}}-0.05 \mathrm{~V}$), LVPECL outputs terminated with $50 \Omega \pm 1 \%$ to ($\mathrm{VCC}-2.0 \mathrm{~V}$) MAX9377, LVDS outputs terminated with $\mathrm{R}_{\mathrm{L}}=100 \Omega \pm 1 \%$ (MAX9378), $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{C}}=+3.3 \mathrm{~V}$, $\mathrm{I} \mathrm{V}_{\mathrm{ID}}=0.2 \mathrm{~V}$, input common-mode voltage $\mathrm{V}_{\mathrm{CM}}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 4)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Reset-to-Differential Output Low Delay	tDR	Figure 4		0.8	1.0	ns
Reset-to-Input Clock Setup Time	tSET	Figure 4	0.5			ns
Clock-to-Divider Output Propagation Delay	tPCO	Figure 4 (Note 5)		0.6	1.0	ns
SEL to Switched Output Delay	tsel	Figure 5		0.3	0.6	ns
MAX9377						
Switching Frequency	$f_{\text {max }}$	$\mathrm{V}_{\text {OH }}-\mathrm{V}_{\text {OL }} \geq 250 \mathrm{mV}$	2.0	2.5		GHz
Propagation Delay Low to High	tPLH	Figure 3, SEL = 0	250	421	600	ps
Propagation Delay High to Low	tPHL	Figure 3, SEL = 0	250	421	600	ps
Pulse Skew ItpLH -tphLI	tSKEW	(Note 6)		6	30	ps
Output Low-to-High Transition Time (20\% to 80\%)	tR	Figure 3		116	220	ps
Output High-to-Low Transition Time (20\% to 80\%)	$\mathrm{tF}_{\text {F }}$	Figure 3		116	220	ps
Added Random Jitter	tRJ	$\mathrm{fIN}=1.34 \mathrm{GHz}($ Note 7), SEL $=0$		0.7	2	ps(RMS)
MAX9378						
Switching Frequency	$f_{\text {max }}$	$V_{O D} \geq 250 \mathrm{mV}$	2.0	2.5		GHz
Propagation Delay Low to High	tPLH	Figure 3, SEL = 0	250	363	600	ps
Propagation Delay High to Low	tPHL	Figure 3, SEL = 0	250	367	600	ps
Pulse Skew ItpLH - tpHLI	tSKEW	Figure 3 (Note 6)		3	30	ps
Output Low-to-High Transition Time (20\% to 80\%)	tR	Figure 2		93	220	ps
Output High-to-Low Transition Time (20\% to 80\%)	$\mathrm{tF}_{\text {F }}$	Figure 2		93	220	ps
Added Random Jitter	tRJ	$\mathrm{fIN}=1.34 \mathrm{GHz}($ Note 7), SEL $=0$		0.8	2	ps(RMS)

Note 1: Measurements are made with the device in thermal equilibrium. All voltages are referenced to ground except $\mathrm{V}_{\text {THD }}, \mathrm{V}_{\text {ID }}$, V_{OD}, and $\Delta \mathrm{V}_{\mathrm{OD}}$.
Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.
Note 3: DC parameters production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and guaranteed by design and characterization over the full operating temperature range.
Note 4: Guaranteed by design and characterization, not production tested. Limits are set at ± 6 sigma.
Note 5: tpco is the delay associated with the frequency-divider function. The total delay when divide-by-four is selected is tpco + tpLH.
Note 6: tSKEW is the magnitude difference of differential propagation delays for the same output under same conditions; tsKEW = ItPHL - tpLHI.
Note 7: Device jitter added to the input signal.

Anything-to-LVPECL/LVDS Translators with Pin-Selectable Divide-by-Four

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}\right.$, differential input voltage $\mathrm{IV} \mathrm{ID}=0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.2 \mathrm{~V}$, input frequency $=500 \mathrm{MHz}$, outputs terminated with $50 \Omega \pm 1 \%$ to $V_{C C}-2.0 \mathrm{~V}$ (MAX9377), outputs terminated with $100 \Omega \pm 1 \%$ (MAX9378), $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Anything-to-LVPECL/LVDS Translators with Pin-Selectable Divide-by-Four

PIN	NAME	FUNCTION	
1	SEL	Frequency Divider Select Input. High = divide by four, low = no division. Internal $75 \mathrm{k} \Omega$ pulldown to GND.	
2	IN	Differential LVDS/Any Noninverting Input	
3	$\overline{\mathrm{IN}}$	Differential LVDS/Any Inverting Input	
4	GND	Ground	
5	RST	Frequency Divider Reset Input. Active high, asynchronous, reset. Internal 75k pulldown to GND.	
6	OUT	MAX9377	Differential LVPECL Inverting Output. Terminate with $50 \Omega \pm 1 \%$ to VCC - 2 V .
		MAX9378	Inverting LVDS Output. Terminate to OUT with $100 \Omega \pm 1 \%$.
7	OUT	MAX9377	Differential LVPECL Noninverting Output. Terminate with $50 \Omega \pm 1 \%$ to VCC - 2V.
		MAX9378	Noninverting LVDS Output. Terminate to OUT with $100 \Omega \pm 1 \%$.
8	VCC	Positive Supply. Bypass from $V_{C C}$ to GND with $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ ceramic capacitors. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device	

Detailed Description

The MAX9377/MAX9378 are fully differential, highspeed, low-jitter anything-to-LVPECL and anything-toLVDS translators, respectively, with a selectable divide-by-four function. Low propagation delay and high speed make them ideal for various high-speed network routing and backplane applications at speeds up to 2 GHz in nondivide mode.
The MAX9377/MAX9378 accept any differential input signals within the supply rails and with a minimum amplitude of 100 mV . Inputs are fully compatible with the LVDS, LVPECL, HSTL, and CML differential signaling standards. The MAX9377 outputs are LVPECL and have sufficient current to drive 50Ω transmission lines. The MAX9378 outputs are LVDS and conform to the ANSI EIA/TIA-644 LVDS standard.

Inputs
Inputs have a wide common-mode range of 0.05 V to (VCC -0.05 V), which accommodates any differential signals within the supply rails, and requires a minimum of 100 mV to switch the outputs. This allows the MAX9377/MAX9378 inputs to support virtually any differential signaling standard.

RST and SEL Inputs

The frequency-divide functions are controlled by two LVCMOS/LVTTL inputs, RST and SEL. SEL selects either the divide-by-four function or a no-division function as shown in Table 1. RST, an asynchronous activehigh input, resets the divide-by-four within the device and places the circuits into a known state. Setting RST

Table 1. SEL AND RST Truth Table

RST	SEL	OUTPUT
X	L or open	No frequency division.
H	H	Outputs are placed in differential low.
L	H	Divide-by-four function.

high when powering up the device with SEL high prevents the unknown states with the divider from being propagated to the outputs. If the device is powered up with SEL high but without asserting RST, the outputs are only guaranteed to be 1/4th the input frequency after 2.5 cycles have been applied to the input.

LVPECL Outputs (MAX9377)

The MAX9377 LVPECL outputs are emitter followers that require external resistive paths to a voltage source ($\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{C C}-2.0 \mathrm{~V}$ typ) more negative than worst-case Vol for proper static and dynamic operation. When properly terminated, the outputs generate steady-state voltage levels, VOL or VOH with fast transition edges between state levels. Output current always flows into the termination during proper operation.

LVDS Outputs (MAX9378)

The MAX9378 LVDS outputs require a resistive load to terminate the signal and complete the transmission loop. Because the device switches current and not voltage, the actual output voltage swing is determined by the value of the termination resistor. With a 3.5 mA typical output current, the MAX9378 produces an output voltage of 350 mV when driving a 100Ω load.

Anything-to-LVPECL/LVDS Translators with Pin-Selectable Divide-by-Four

Figure 1. Differential Input Definition

Applications Information

LVPECL Output Termination (MAX9377)

Terminate the MAX9377 LVPECL outputs with 50Ω to ($\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$) or use equivalent Thevenin terminations. Terminate OUT and OUT with identical termination on each for low output distortion. When a single-ended signal is taken from the differential output, terminate both OUT and OUT. Ensure that output currents do not exceed the current limits as specified in the Absolute Maximum Ratings. Under all operating conditions, the device's total thermal limits should be observed.

LVDS Output Termination (MAX9378)

The MAX9378 LVDS outputs are current-steering devices; no output voltage is generated without a termination resistor. The termination resistors should match the differential impedance of the transmission line. Output voltage levels are dependent upon the value of the termination resistor. The MAX9378 is optimized for point-to-point communication with the 100Ω termination resistor at the receiver inputs. Termination resistance values may range between 90Ω and 132Ω, depending on the characteristic impedance of the transmission medium.

Supply Bypassing Bypass VCC to ground with high-frequency surfacemount ceramic $0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ capacitors. Place the capacitors as close to the device as possible with the $0.01 \mu \mathrm{~F}$ capacitor closest to the device pins.

Traces
Circuit board trace layout is very important to maintain the signal integrity of high-speed differential signals.

Figure 2. LVDS Output Load and Transition Times

Figure 3. Differential Input-to-Output Propagation Delay Timing Diagram

Maintaining integrity is accomplished in part by reducing signal reflections and skew, and increasing com-mon-mode noise immunity.
Signal reflections are caused by discontinuities in the 50Ω characteristic impedance of the traces. Avoid discontinuities by maintaining the distance between differential traces, not using sharp corners or using vias. Maintaining distance between the traces also increases common-mode noise immunity. Reducing signal skew is accomplished by matching the electrical length of the differential traces.

Anything-to-LVPECL/LVDS Translators with Pin-Selectable Divide-by-Four

Figure 4. Frequency Divider and Reset Timing Diagram

Figure 5. Frequency Select Delay Timing Diagram

Chip Information
MAX9377 TRANSISTOR COUNT: 614
MAX9378 TRANSISTOR COUNT: 614
PROCESS: Bipolar

Anything-to-LVPECL/LVDS Translators with Pin-Selectable Divide-by-Four

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Analog Devices Inc.:
MAX9378EUA + T MAX9378EUA +

