Low-Voltage, Single-Supply, SPDT Analog Switch in SC70

General Description

The MAX4599 single-pole/double-throw (SPDT) switch operates from a +2.0 V to +5.5 V single supply. It offers 60Ω max on-resistance (R_{ON}) at +5 V and fast switching times (t ON $=30 \mathrm{~ns}$ max, toFF $=25 \mathrm{~ns}$ max).

The MAX4599 features excellent Ron flatness (4Ω max) and matching (1Ω max) between channels. This device also offers 5 pC max charge injection.

The MAX4599 is available in tiny 6-pin SC70, μ DFN, and SOT23 packages.

Applications

- Battery-Operated Equipment
- Audio and Video Signal Routing
- Cellular Phones
- Low-Voltage Data-Acquisition Systems
- Sample-and-Hold Circuits
- Communications Circuits

Features

- Available in 6-Pin SC70 Package
- $60 \Omega \max (40 \Omega$ typ) On-Resistance
- $1 \Omega \max (0.2 \Omega$ typ $)$ RoN Matching Between Channels
- $4 \Omega \max (2.5 \Omega$ typ) RON Flatness
- Fast Switching: $\mathrm{t}_{\mathrm{ON}}=30 \mathrm{~ns}$ (max)
toff $=25 n s(\max)$
- Guaranteed 5pC max Charge Injection
- +2.0 V to +5.5 V Single-Supply Operation
- $200 \mathrm{MHz}-3 \mathrm{~dB}$ Bandwidth
- Low $\pm 0.5 n \mathrm{~A}$ Leakage Current at $+25^{\circ} \mathrm{C}$
- Break-Before-Make Switching
- TTL/CMOS-Logic Compatible
- -76dB Off-Isolation at 1 MHz
- 0.12\% Total Harmonic Distortion

Pin Configuration/Functional Diagram/Truth Table

MAX4599		
IN	NC	NO
0	ON	OFF
1	OFF	ON
SWITCH IS SHOWN FOR "0" INPUT.		

Low-Voltage, Single-Supply, SPDT Analog Switch in SC70

Absolute Maximum Ratings

Continuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
6 -Pin SC70-6 (derate $3.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)......... 245 mW	
6 -Pin μ DFN-6 (derate $2.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 168 mW	
6 -Pin SOT23-6 (derate $7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$	$\left.70^{\circ} \mathrm{C}\right)571 \mathrm{~mW}$
Operating Temperature Range	
MAX4599E	
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature (soldering, 10s)+300	

Note 1: Signals on NO, NC, COM, or IN exceeding V+ or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics—Single +5V Supply

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\text {INH }}=+2.4 \mathrm{~V}, \mathrm{~V}_{\text {INL }}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\mathrm{V}_{\mathrm{COM}}$, $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$			0		V+	V
On-Resistance	R_{ON}	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		40	60	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			65	
On-Resistance Match Between Channels (Note 4)	$\triangle \mathrm{RON}$	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=1 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.2	1	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			2	
On-Resistance Flatness (Note 5)	RFLAT(ON)	$\begin{aligned} & \mathrm{V}+=4.5 \mathrm{~V} \text {; } \mathrm{I}_{\mathrm{COM}}=1 \mathrm{~mA} \text {; } \\ & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V}, 2.0 \mathrm{~V} \text {, } \\ & 3.5 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2.5	4	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			5	
NO, NC Off-Leakage Current (Note 6)	${ }^{I_{\text {NO }}}$ (OFF), $I_{\text {NC(OFF) }}$	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, \\ & 4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{NO}} \text { or } \\ & \mathrm{V}_{\mathrm{NC}}=4.5 \mathrm{~V}, 1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-0.5	0.01	0.5	nA
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-5		5	
COM On-Leakage Current (Note 6)	ICOM(ON)	$\begin{aligned} & \mathrm{V}+=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, \\ & 4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V} \text {, } \\ & 4.5 \mathrm{~V} \text {, or floating } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1	0.01	1	nA
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10		10	
DIGITAL I/O							
Input Logic High	V_{IH}			2.4			V
Input Logic Low	$\mathrm{V}_{\text {IL }}$					0.8	V
DYNAMIC							
Turn-On Time	${ }^{\text {toN }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=3 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \end{aligned}$ Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		25	30	ns
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			40	

Electrical Characteristics-Single +5 V Supply (continued)

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\text {INH }}=+2.4 \mathrm{~V}, \mathrm{~V}_{\text {INL }}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Turn-Off Time	toff	$\mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=3 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		20	25	ns
		Figure 2	$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			30	
Break-Before-Make	$t_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=3 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \end{aligned}$ Figure 3	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		10		ns
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	1			
On-Channel -3dB Bandwidth	BW	Signal $=0 \mathrm{dBm}$, 50Ω in and out, Figure 5	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		200		MHz
Off-Isolation (Note 7)	VISO	$\begin{aligned} & C_{\mathrm{L}}=5 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=50 \Omega ; \\ & \mathrm{f=1MHz;V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}= \\ & 1 \mathrm{~V}_{\mathrm{RMS}} ; \text { Figure } 5 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-76		dB
Charge Injection (Note 6)	Q	$\begin{aligned} & V_{G E N}=0, R_{G E N}=0, \\ & C_{L}=1.0 n F, \text { Figure } 4 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		3	5	pC
NO, NC Off-Capacitance	$\mathrm{C}_{\mathrm{NO} \text { (OFF), }}$ $\mathrm{C}_{\mathrm{NC} \text { (OFF) }}$	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{GND}$; $\mathrm{f}=1 \mathrm{MHz}$; Figure 6	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		8		pF
COM Off-Capacitance	$\mathrm{C}_{\text {COM (OFF) }}$	$\mathrm{V}_{\mathrm{COM}}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz},$ Figure 6	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		8		pF
Switch On-Capacitance	$\mathrm{C}_{(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=\mathrm{V}_{\mathrm{NO}}, \\ & \mathrm{~V}_{\mathrm{NC}}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}, \\ & \text { Figure } 6 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		20		pF
Total Harmonic Distortion	THD	$\begin{aligned} & R_{L}=600 \Omega, V_{I N}=5 \mathrm{Vp}-\mathrm{p}, \\ & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.12		\%
SUPPLY							
Power-Supply Range	V+			2.0		5.5	V
Positive Supply Current	I+	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0$ or $\mathrm{V}+$		-1	0.001	1	$\mu \mathrm{A}$

Electrical Characteristics-Single +3V Supply

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=+2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\begin{gathered} \mathrm{V}_{\mathrm{COM}}, \\ \mathrm{v}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \end{gathered}$			0		V+	V
On-Resistance	R_{ON}	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		60	95	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			105	
DIGITAL I/O							
Input Logic High	V_{IH}			2.0			V
Input Logic Low	$\mathrm{V}_{\text {IL }}$					0.8	V

Electrical Characteristics-Single +3V Supply (continued)

$\left(\mathrm{V}+=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=+2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=+0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
DYNAMIC							
Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=2 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \end{aligned}$ Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		40	45	ns
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			55	
Turn-Off Time	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=2 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \end{aligned}$ Figure 2	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		30	35	ns
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			40	
Break-Before-Make	${ }^{\text {tBBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=2 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \end{aligned}$ Figure 3	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	13			ns
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	1			
Charge Injection (Note 6)	Q	$\begin{aligned} & V_{G E N}=0, R_{G E N}=0, \\ & C_{L}=1.0 n F, \text { Figure } 4 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		2	5	pC
SUPPLY							
Positive Supply Current	I+	$\mathrm{V}+=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0$ or $\mathrm{V}+$		-1	0.001	1	$\mu \mathrm{A}$

Electrical Characteristics—Single +2.5V Supply

$\left(\mathrm{V}+=+2.5 \mathrm{~V}, \mathrm{~V}_{\text {INH }}=+2.0 \mathrm{~V}, \mathrm{~V}_{\text {INL }}=+0.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)($ Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\begin{gathered} \mathrm{V}_{\mathrm{COM}}, \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \end{gathered}$			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}+=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{COM}}=1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		65	110	Ω
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$		120		
Input Logic High	V_{IH}			2.0			V
Input Logic Low	$\mathrm{V}_{\text {IL }}$					0.6	V
DYNAMIC							
Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=2 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \end{aligned}$$\text { Figure } 3$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		45	50	ns
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			60	
Turn-Off Time	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=3 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \text { Figure } 3 \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		30	35	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			45	

Note 2: Parameters are 100% tested at $+25^{\circ} \mathrm{C}$ only and guaranteed by correlation at the full rated temperature.
Note 3: The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used in this data sheet.
Note 4: $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}(\mathrm{MAX})}-\mathrm{R}_{\mathrm{ON}(\mathrm{MIN})}$.
Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.
Note 6: Guaranteed by design.
Note 7: Off-Isolation $=20 \log _{10}\left(\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}}\right), \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.

Typical Operating Characteristics

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Low-Voltage, Single-Supply, SPDT Analog Switch in SC70

Typical Operating Characteristics (continued)

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1	IN	Digital Control Input
2	V+	Positive Supply Voltage
3	GND	Ground
4	N.C.	Analog Switch Normally Closed
5	COM	Analog Switch Common
6	NO	Analog Switch Normally Open

Applications Information

Analog Signal Levels

Analog signals can range over the supply voltage ($\mathrm{V}+$ to GND) with on-resistance changing very little over the entire range (see Typical Operating Characteristics). The MAX4599 is bidirectional, so the NO, NC, and COM pins can be used either as inputs or outputs.

Power-Supply Sequencing and Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Always apply $\mathrm{V}+$ before applying analog signals or logic inputs, especially if the analog or logic signals are not current limited. If this sequencing is not possible, and if the analog or logic inputs are not current limited to $<20 \mathrm{~mA}$, add a small-signal diode (D1) as shown in Figure 1. If the analog signal can dip below GND, add D2.

TOTAL HARMONIC DISTORTION PLUS

Figure 1. Overvoltage Protection Using Two External Blocking Diodes

Adding protection diodes reduces the analog signal range to a diode drop (about 0.7 V) below $\mathrm{V}+$ for D 1 or to a diode drop above ground for D2. The addition of diodes does not affect leakage. On-resistance increases by a small amount at low supply voltages. Maximum supply voltage $(\mathrm{V}+$) must not exceed 6 V .
Protection diodes D1 and D2 also protect against some overvoltage situations. A fault voltage up to the absolute maximum rating at an analog signal input does not damage the device, even if the supply voltage is below the signal voltage.

Test Circuits/Timing Diagrams

Figure 2. Switching Time

Figure 3. Break-Before-Make Interval

Figure 4. Charge Injection

Test Circuits/Timing Diagrams (continued)

Figure 5. Off-Isolation/On-Channel Bandwidth
Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4599EXT +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 SC70-6	AAF
MAX4599EUT +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6 SOT23-6	AAHC
MAX4599ELT +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	6μ DFN- 6	AA

Chip Information
TRANSISTOR COUNT: 89

Figure 6. Channel On/Off-Capacitance

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
6 SC70	X6SN-1	$\underline{\underline{21-0077}}$	$\underline{\underline{90-0189}}$
6 uDFN	L611-1	$\underline{\underline{21-0147}}$	$\underline{\underline{90-0080}}$
6 SOT23	U6SN+1	$\underline{\underline{21-0058}}$	$\underline{\underline{90-0175}}$

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
3	$2 / 18$	Updated Ordering Information table and created Packaging Information table	
4	$2 / 21$	Updated Package Information table for 6-SOT23.	8

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Analog Devices Inc.:
MAX4599EXT + T MAX4599ELT + T MAX4599EUT + T

