Low-Voltage, SPST, CMOS Analog Switches

Abstract

General Description The MAX4501/MAX4502 are single-pole/single-throw (SPST), low-voltage, single-supply, CMOS analog switches. The MAX4501 is normally open (NO). The MAX4502 is normally closed (NC). These CMOS switches can operate continuously with a single supply between +2 V and +12 V . Each switch can handle Rail-to-Rail ${ }^{\circledR}$ analog signals. The off-leakage current is only 1 nA at $+25^{\circ} \mathrm{C}$ or 10 nA at $+85^{\circ} \mathrm{C}$. The digital input has 0.8 V and 2.4 V logic thresholds, ensuring TTL/CMOS-logic compatibility when using a single +5 V supply.

-_Features

- Available in SOT23-5 and SC70-5 Packages
- +2V to +12V Single-Supply Operation
- Guaranteed On-Resistance: 250Ω at +5V
- Guaranteed Low Off-Leakage Current 1 nA at $+25^{\circ} \mathrm{C}$ 10 nA at $+85^{\circ} \mathrm{C}$
- Guaranteed Low On-Leakage Current $2 n A$ at $+25^{\circ} \mathrm{C}$ $20 n A$ at $+85^{\circ} \mathrm{C}$
- Low Charge Injection: 10pC
- Fast Switching Speed: toN $=75 n s$, toFF $=50 \mathrm{~ns}$
- TTL/CMOS-Logic Compatible with +5V Supply

Applications
Battery-Operated Equipment
Audio and Video Signal Routing
Low-Voltage Data-Acquisition Systems
Communications Circuits
PCMCIA Cards
Cellular Phones
Modems

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	TOP MARK
MAX4501CUK-T	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	5 SOT23-5	AAAA
MAX4501CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO	-
MAX4501CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP	-
MAX4501C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*	-
MAX4501EXK-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SC70-5	AAE
MAX4501EUK-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23-5	AAAA
MAX4501ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	-
MAX4501EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP	-
MAX4501MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP**	-

Ordering Information continued at end of data sheet.
*Contact factory for dice specifications.
**Contact factory for availability.

Pin Configurations/Functional Diagrams/Truth Table

INPUT	SWITCH STATE	
	MAX4501	MAX4502
LOW	OFF	ON
HIGH	ON	OFF

N.C. = NOT INTERNALLY CONNECTED

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

For free samples \& the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

Low-Voltage, SPST, CMOS Analog Switches

(Voltages Referenced to GND)

Note 1: Voltages exceeding $\mathrm{V}+$ or GND on any signal terminal are clamped by internal diodes. Limit forward-diode current to maximum current rating

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—+5V Supply

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\text {INH }}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {INL }}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\left.\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}.\right)($ Note 2$)$

Low-Voltage, SPST, CMOS Analog Switches

ELECTRICAL CHARACTERISTICS—+5V Supply (continued)

$\left(\mathrm{V}+=+4.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
SWITCH DYNAMIC CHARACTERISTICS (continued)							
Charge Injection (Note 5)	Q	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{NO}}=0, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},$ Figure 2			1	10	pC
Off-Isolation	VISO	$\begin{aligned} & R_{L}=50 \Omega, C_{L}=15 p F, V_{N O}=1 V_{R M S}, \\ & f=100 \mathrm{kHz}, T_{A}=+25^{\circ} \mathrm{C} \text {, Figure } 3 \end{aligned}$		<-100			dB
NO or NC Off-Capacitance	C_{NO} (OFF), CnC(OFF)	$f=1 \mathrm{MHz}$, Figure 4		3			pF
COM Off-Capacitance	CCOM(OFF)	$\mathrm{f}=1 \mathrm{MHz}$, Figure 4		3			pF
COM On-Capacitance	CCOM(ON)	$f=1 \mathrm{MHz}$, Figure 4		8			pF
POWER SUPPLY							
V+ Supply Current	I+	V IN $=0$ or $\mathrm{V}+$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1		1	$\mu \mathrm{A}$
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10		10	

ELECTRICAL CHARACTERISTICS—+12V Supply

$\left(\mathrm{V}+=+11.4 \mathrm{~V}\right.$ to $+12.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{V}} \mathrm{NH}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {INL }}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

Low-Voltage, SPST, CMOS Analog Switches

ELECTRICAL CHARACTERISTICS—+3V Supply

$\left(\mathrm{V}+=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~V}_{\text {INH }}=2.4 \mathrm{~V}, \mathrm{~V}_{\text {INL }}=0.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	VCOM, $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$			0		V+	V
COM to NO or NC On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{\mathrm{COM}}=1.5 \mathrm{~V}, \\ & \mathrm{ICOM}^{2}=0.1 \mathrm{~mA} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		175	600	Ω
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			800	
DIGITAL I/O							
Input Logic High	VINH			2.4		V+	V
Input Logic Low	VINL			0		0.8	V
Input Current Logic High or Low	IINH, lint	VIN $=0$ or $\mathrm{V}+$		-1.00	0.03	1.00	$\mu \mathrm{A}$
SWITCH DYNAMIC CHARACTERISTICS							
Turn-On Time (Note 5)	ton	$\begin{aligned} & V_{N O}=V_{N C}=1.5 \mathrm{~V}, \\ & V_{I N}=3 V_{,}, R_{L}=1 \mathrm{k} \Omega, \end{aligned}$ Figure 1	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		45	300	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			500	
Turn-Off Time (Note 5)	tOFF	$\begin{aligned} & V_{N O}=V_{N C}=1.5 \mathrm{~V}, \\ & V_{I N}=3 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, \end{aligned}$ Figure 1	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		10	125	ns
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			175	
Charge Injection (Note 5)	Q	$C_{L}=1 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Figure 2			0.5	10	pC
POWER SUPPLY							
V+ Supply Current	I+	$\mathrm{IN}=0$ or $\mathrm{V}+$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1		1	$\mu \mathrm{A}$
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10		10	

Note 2: Algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
Note 3: Leakage parameters are 100\% tested at maximum-rated hot operating temperature, and are guaranteed by correlation at $+25^{\circ} \mathrm{C}$
Note 4: SOT and SC70 packaged parts are 100% tested at $+25^{\circ} \mathrm{C}$. Limits at maximum and minimum rated temperature are guaranteed by design and correlation limits at $+25^{\circ} \mathrm{C}$.
Note 5: Guaranteed, not production tested.

Low-Voltage, SPST, CMOS Analog Switches

Typical Operating Characteristics
$\left(\mathrm{V}+=+5 \mathrm{~V}, \mathrm{GND}=0, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

CHARGE INJECTION
vs. VCOM

TOTAL HARMONIC DISTORTION
vs. FREQUENCY

SWITCHING TIME

vs. SUPPLY VOLTAGE

Low-Voltage, SPST, CMOS Analog Switches

PIN		NAS4501	NAME		FUNCTION
SO/DIP	SC70-5/SOT23-5		SC70-5/SOT23-5		
1	1	1	1	COM	
$2,3,5$	-	$2,3,5$	-	N.C.	No Connection. Not internally connected.
4	5	4	5	V+	Positive Supply-Voltage Input (analog and digital)
6	4	6	4	IN	Digital Control Input
7	3	7	3	GND	Ground
8	2	-	-	NO	Analog Switch (normally open)
-	-	8	2	NC	Analog Switch (normally closed)

Note: NO, NC, and COM pins are identical and interchangeable. Any may be considered as an input or an output; signals pass equally well in both directions.

Applications Information

Power-Supply Considerations

The MAX4501/MAX4502 are constructed like most CMOS analog switches, except they have only two supply pins: V_{+}and GND. V+ and GND drive the internal CMOS switches and set the analog voltage limits of the switch. Reverse ESD-protection diodes are internally connected between each analog signal pin and both $\mathrm{V}+$ and GND. One of these diodes conducts if any analog signal exceeds V+ or GND. During normal operation, these and other reverse-biased ESD diodes leak, forming the only current drawn from V+ or GND.
Virtually all the analog leakage current comes from the ESD diodes. Although the ESD diodes on a given signal pin are identical and therefore fairly well balanced, they are reverse biased differently. Each is biased by either V_{+}or GND and the analog signal. This means their leakages will vary as the signal varies. The difference in the two diode leakages to the V+ and GND pins constitutes the analog signal-path leakage current. All analog leakage current flows between each pin and one of the supply terminals, not to the other switch terminal. This is why both sides of a given switch can show leakage currents of the same or opposite polarity.
There is no connection between the analog-signal paths and V+ or GND.
V+ and GND also power the internal logic and logiclevel translators, and set the input logic limits. The logic-level translators convert the logic levels to switched V+ and GND signals to drive the analog sig-
nal gates. This drive signal is the only connection between the logic supplies (and signals) and the analog supplies. COM, NO, and NC pins have ESD-protection diodes to V+ and GND.

The logic-level thresholds are CMOS/TTL compatible when $V+$ is +5 V . As $V+$ rises, the threshold increases slightly. When $\mathrm{V}+$ reaches +12 V , the logic-level threshold is about 3 V -above the TTL guaranteed high-level minimum of 2.8 V , but still compatible with CMOS outputs.
Do not connect the MAX4501/MAX4502's V+ pin to +3 V and then connect the logic-level pins to TTL logic-level signals. TTL levels can exceed +3 V and violate the absolute maximum ratings, damaging the part and/or external circuits.

High-Frequency Performance

In 50Ω systems, signal response is reasonably flat up to 250 MHz (see Typical Operating Characteristics). Above 20 MHz , the on-response has several minor peaks that are highly layout dependent. The problem is not in turning the switch on; it's in turning it off. The offstate switch acts like a capacitor and passes higher frequencies with less attenuation. At 10 MHz , off-isolation is about -60 dB in 50Ω systems, decreasing approximately 20 dB per decade as frequency increases. Higher circuit impedances also cause off-isolation to decrease. Adjacent channel attenuation is about 3 dB above that of a bare IC socket, and is due entirely to capacitive coupling.

Low-Voltage, SPST, CMOS Analog Switches

Figure 1. Switching Times

Figure 2. Charge Injection

Low-Voltage, SPST, CMOS Analog Switches

Figure 3. Off-Isolation and On-Loss

Figure 4. NO, NC, and COM Capacitance

Ordering Information (continued)

PART	TEMP. RANGE	PIN- PACKAGE	TOP MARK
MAX4502CUK-T	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	5 SOT23-5	AAAB
MAX4502CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO	-
MAX4502CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP	-
MAX4502C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice	-
MAX4502EXK- T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SC70-5	AAF
MAX4502EUK-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	5 SOT23-5	AAAB
MAX4502ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO	-
MAX4502EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP	-
MAX4502MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP**	-

*Contact factory for dice specifications.
**Contact factory for availability.

Chip Topography

TRANSISTOR COUNT: 17
SUBSTRATE CONNECTED TO V+

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Analog Devices Inc.:
$\underline{M A X 4501 C U K+T}$ MAX4501ESA + MAX4501EUK + T MAX4501EXK + T

