
www.st.com

High voltage high and low-side driver

Datasheet - production data

Features

- High voltage rail up to 600 V
- dV/dt immunity ± 50 V/ns over full temperature range
- Driver current capability:
 - 290 mA source
 - 430 mA sink
- Switching times 75/35 ns rise/fall with 1 nF load
- 3.3 V, 5 V TTL/CMOS inputs with hysteresis
- Integrated bootstrap diode
- Internal 320 ns deadtime
- Interlocking function
- Compact and simplified layout
- Bill of material reduction
- · Flexible, easy and fast design

This is information on a product in full production.

Applications

- Home appliances
- Industrial applications and drives
- Motor drivers DC, AC, PMDC and PMAC motors systems
- HVAC
- Factory automation
- Power supply systems
- Compressors
- Fans
- Lighting applications

Description

The L6399 is a high voltage device manufactured using BCD™ "offline" technology. It is a single-chip half bridge gate driver for N-channel power MOSFETs or IGBTs.

The high-side (floating) section is designed to withstand a voltage rail up to 600 V. The logic inputs are CMOS/TTL compatible down to 3.3 V for easy microcontroller/DSP interfacing.

Contents L6399

Contents

1	Block diagram	3
2	Electrical data	4
	2.1 Absolute maximum ratings	4
	2.2 Recommended operating conditions	4
	2.3 Thermal data	4
3	Pin connection	5
4	Electrical characteristics	6
	4.1 AC operation	6
	4.2 DC operation	7
5	Timing and waveform definitions	8
6	Input logic1	0
7	Bootstrap driver 1	1
	C _{BOOT} selection and charging	1
8	Typical application diagram	3
9	Package information	4
	9.1 SO-8 package information	5
10	Order codes	7
11	Revision history1	7

Downloaded from Arrow.com.

L6399 **Block diagram**

Block diagram

BOOTSTRAP DRIVER FLOATING STRUCTURE vcc \$\frac{1}{3} **BOOT** --from LVG UV DETECTION UV DETECTION HVG DRIVER LOGIC 7 LEVEL SHIFTER HVG SHOOT THROUGH PREVENTION LIN 6 OUT LVG DRIVER HIN DEADTIME LVG 5 GND AM040073

Figure 1. Block diagram

Electrical data L6399

Electrical data 2

Absolute maximum ratings 2.1

Table 1. Absolute maximum rating

Symbol	Parameter	Va	Unit	
Syllibol	Parameter	Min.	Max.	Offic
V _{CC}	Supply voltage	-0.3	21	V
V _{OUT}	Output voltage	V _{BOOT} - 21	V _{BOOT} + 0.3	V
V _{BOOT}	Bootstrap voltage	-0.3	620	V
V _{hvg}	High-side gate output voltage	V _{OUT} - 0.3	V _{BOOT} + 0.3	V
V _{Ivg}	Low-side gate output voltage	-0.3	V _{CC} + 0.3	V
V _i	Logic input voltage	-0.3	15	V
dV _{OUT} /dt	Allowed output slew rate	-	50	V/ns
P _{tot}	Total power dissipation (T _A = 25 °C)	-	800	mW
TJ	Junction temperature	-	150	°C
T _{stg}	Storage temperature	-50	150	°C
ESD	Human body model	:	2	kV

Recommended operating conditions 2.2

Table 2. Recommended operating conditions

			<u> </u>			
Symbol	Pin	Parameter	Test condition	Min.	Max.	Unit
V _{CC}	3	Supply voltage	-	10	20	V
V _{BO} ⁽¹⁾	8 - 6	Floating supply voltage	-	9.8	20	V
V _{OUT}	6	Output voltage	-	- 11 ⁽²⁾	580	V
f _{sw}	-	Switching frequency	HVG, LVG load C _L = 1 nF	-	800	kHz
T_J	-	Junction temperature	-	-40	125	°C

^{1.} $V_{BO} = V_{BOOT} - V_{OUT}$.

Thermal data 2.3

Table 3. Thermal data

Symbol	Parameter	SO-8	Unit
$R_{th(JA)}$	Thermal resistance junction to ambient	150	°C/W

DocID030402 Rev 2 4/18

^{2.} LVG off. V_{CC} = 10 V Logic is operational if V_{BOOT} > 5 V.

L6399 Pin connection

3 Pin connection

Figure 2. Pin connection (top view)

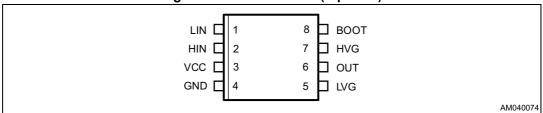


Table 4. Pin description

Pin no.	Pin name	Type	Function
1	LIN	I	Low-side driver logic input (active high)
2	HIN	I	High-side driver logic input (active high)
3	VCC	Р	Lower section supply voltage
4	GND	Р	Ground
5	LVG ⁽¹⁾	0	Low-side driver output
6	OUT	Р	High-side (floating) common voltage
7	HVG ⁽¹⁾	0	High-side driver output
8	воот	Р	Bootstrapped supply voltage

The circuit guarantees less than 1 V on the LVG and HVG pins (at I_{sink} = 10 mA), with V_{CC} > 3 V. This
allows omitting the "bleeder" resistor connected between the gate and the source of the external MOSFET
normally used to hold the pin low.

Electrical characteristics L6399

4 Electrical characteristics

4.1 AC operation

Table 5. AC operation electrical characteristics (V_{CC} = 15 V; T_{J} = +25 °C)

Symbol	Pin	Parameter	Test c	ondition	Min.	Тур.	Max.	Unit
t _{on}	1, 2		$V_{OUT} = 0 V$ $V_{BOOT} = V_{CC}$	V _{IN} = 0 to 3.3 V	50	125	200	ns
t _{off}	vs. 5, 7	High/low side driver turn-off propagation $delay^{(1)}$	$C_1 = 1 \text{ nF}$	V _{IN} = 3.3 to 0 V	50	125	200	ns
DT	-	Deadtime ⁽²⁾	C _L = 1 nF	-	225	320	415	ns
t _r	5, 7	Rise time ⁽¹⁾	C _L = 1 nF	-	-	75	120	ns
t _f	5, 1	Fall time ⁽¹⁾	C _L = 1 nF	-	-	35	70	ns

^{1.} See Figure 3

^{2.} See Figure 4.

4.2 DC operation

Table 6. DC operation electrical characteristics (V_{CC} = 15 V; T_J = + 25 °C)

Symbol	Pin	Parameter	Test condition	Min.	Тур.	Max.	Unit
Low suppl	y vol	tage section ⁽¹⁾		<u>I</u>	1		
V _{CC_hys}		V _{CC} UV hysteresis	-	1.2	1.5	1.8	٧
V _{CC_thON}		V _{CC} UV turn-ON threshold	-	9	9.5	10	V
V _{CC_thOFF}		V _{CC} UV turn-OFF threshold	-	7.6	8	8.4	V
I _{QCCU}	3	Undervoltage quiescent supply current	V _{CC} = 7 V LIN = HIN = GND	-	170	330	μА
I _{QCC}		Quiescent current	V _{CC} = 15 V LIN = HIN = GND	-	380	440	μΑ
Bootstrap	ped s	upply voltage section ⁽¹⁾		-	•		
V _{BO_hys}		V _{BO} UV hysteresis	-	0.8	1	1.2	V
V _{BO_thON}		V _{BO} UV turn-ON threshold	-	8.2	9	9.8	V
V _{BO_thOFF}		V _{BO} UV turn-OFF threshold	-	7.3	8	8.7	V
I _{QBOU}	8	Undervoltage V _{BO} quiescent current	V _{BO} = 7 V, LIN = GND; HIN = 5 V	-	30	140	μА
I _{QBO}		V _{BO} quiescent current	V _{BO} = 15 V, LIN = GND; HIN = 5 V	-	190	240	μА
I _{LK}	-	High voltage leakage current	V _{hvg} = V _{OUT} = V _{BOOT} = 600 V	-	-	10	μА
R _{DS(on)}	-	Bootstrap driver on resistance ⁽²⁾	LVG ON	-	120	-	Ω
Driving bu	ffers	section					
I _{SO}	F 7	High/low-side source short-circuit current	$V_{IN} = V_{ih} (t_p < 10 \ \mu s)$	200	290	-	mA
I _{SI}	5, 7	High/low side sink short-circuit current	$V_{IN} = V_{ii} (t_p < 10 \ \mu s)$	250	430	-	mA
Logic inpu	Logic inputs						
V _{il}		Low level logic threshold voltage	-	0.8	-	1.1	V
V _{ih}	1, 2	High level logic threshold voltage	-	1.9	-	2.25	V
I _{INI}		LIN/HIN logic "0" input bias current	V _{IN} = 0 V	-	-	1	μА
I _{HINh}	2	HIN High logic level input current	V _{IN} = 15 V	110	175	260	μА
R _{PD-HIN}		HIN pull-down resistor	V _{IN} = 15 V	57	85	137	kΩ
I _{LINh}	1	LIN High logic level input current	V _{IN} = 15 V	10	40	100	μА
R _{PD-LIN}	ı	LIN pull-down resistor	V _{IN} = 15 V	150	375	1500	kΩ

^{1.} $V_{BO} = V_{BOOT} - V_{OUT}$.

^{2.} R_{DSON} is tested in the following way: R_{DSON} = [(V_{CC} - V_{BOOT1}) - (V_{CC} - V_{BOOT2})] / [I_1 (V_{CC} , V_{BOOT1}) - I_2 (V_{CC} , V_{BOOT2})] where I_1 is the pin 8 current when V_{BOOT} = V_{BOOT1} , I_2 when V_{BOOT} = V_{BOOT2} .

5 Timing and waveform definitions

Figure 3. Propagation delay timing definition

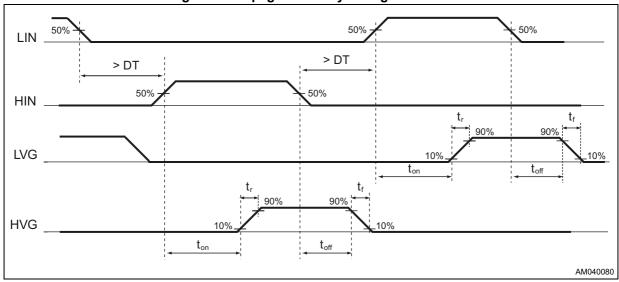
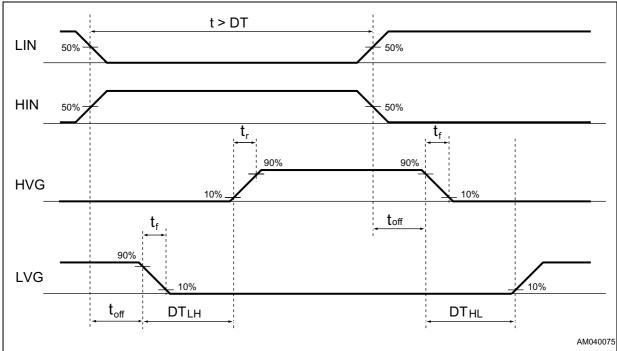



Figure 4. Deadtime and interlocking timing definition

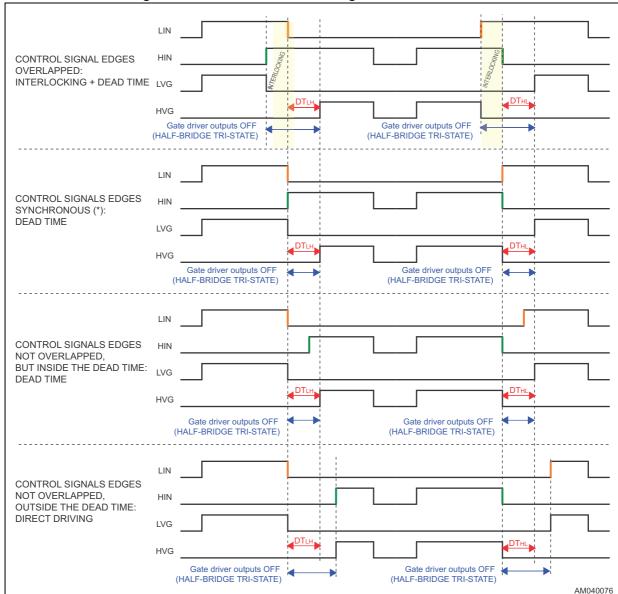


Figure 5. Deadtime and interlocking waveform definitions

Input logic L6399

6 Input logic

Table 7. Truth table

Inj	out	Out	put
LIN HIN		LVG	HVG
L	L	L	L
L	Н	L	Н
Н	L	Н	L
Н	Н	L(1)	L ⁽¹⁾

^{1.} Interlocking function.

Input logic is provided with interlocking circuitry which prevents the two outputs (LVG, HVG) being active at the same time when both the logic input pins (LIN, HIN) are at a high logic level. In addition, to prevent cross-conduction of the external MOSFETs, after each output is turned off, the other output cannot be turned on before a certain amount of time (DT) (see Figure 4: Deadtime and interlocking timing definition and Figure 5: Deadtime and interlocking waveform definitions).

L6399 Bootstrap driver

7 Bootstrap driver

A bootstrap circuitry is needed to supply the high voltage section. This function is normally accomplished by a high voltage fast recovery diode (*Figure 6*). In the L6399 device a patented integrated structure replaces the external diode. It is realized by a high voltage DMOS, driven synchronously with the low-side driver (LVG), with a diode in series, as shown in *Figure 7*. An internal charge pump (*Figure 7*) provides the DMOS driving voltage.

CBOOT selection and charging

To choose the proper C_{BOOT} value the external MOS can be seen as an equivalent capacitor. This capacitor C_{EXT} is related to the MOS total gate charge:

Equation 1

$$C_{EXT} = \frac{Q_{gate}}{V_{gate}}$$

The ratio between the capacitors C_{EXT} and C_{BOOT} is proportional to the cyclical voltage loss. It has to be:

Equation 2

E.g.: if Q_{gate} is 30 nC and V_{gate} is 10 V, C_{EXT} is 3 nF. With C_{BOOT} = 100 nF the drop would be 300 mV.

If HVG has to be supplied for a long time, the C_{BOOT} selection has to take into account also the leakage and quiescent losses.

E.g.: HVG steady state consumption is lower than 190 μ A, so if HVG T_{ON} is 5 ms, C_{BOOT} has to supply C_{EXT} with 1 μ C. This charge on a 1 μ F capacitor means a voltage drop of 1 V.

The internal bootstrap driver gives a great advantage: the external fast recovery diode can be avoided (it usually has a high leakage current).

This internal diode can work only if V_{OUT} is close to GND (or lower) and in the meanwhile the LVG is on. The charging time (T_{charge}) of the C_{BOOT} is the time in which both conditions are fulfilled and it has to be long enough to charge the capacitor.

The bootstrap driver introduces a voltage drop due to the equivalent resistance of the internal diode R_{DSon} (typical value: 120 Ω). At low frequency this drop can be neglected. Anyway increasing the frequency it must be taken in to account.

The following equation is useful to compute the drop on the bootstrap DMOS:

Equation 3

$$V_{drop} = I_{charge} \bullet R_{BOOT} \rightarrow V_{drop} = \frac{Q_{gate}}{T_{charge}} \bullet R_{DSon}$$

where Q_{gate} is the gate charge of the external power MOS.

DocID030402 Rev 2 11/18

Bootstrap driver L6399

For example: using a power MOS with a total gate charge of 30 nC the drop on the bootstrap diode is about 1 V, if the T_{charge} is 5 μs . In fact:

Equation 4

$$V_{drop} \,=\, \frac{30nC}{5\mu s} \cdot 120\Omega \sim 0.72V$$

 V_{drop} has to be taken into account when the voltage drop on C_{BOOT} is calculated: if this drop is too high, or the circuit topology doesn't allow a sufficient charging time, an external diode can be used.

Figure 6. Bootstrap driver with high voltage fast recovery diode

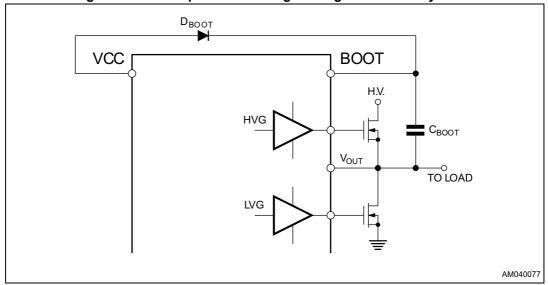
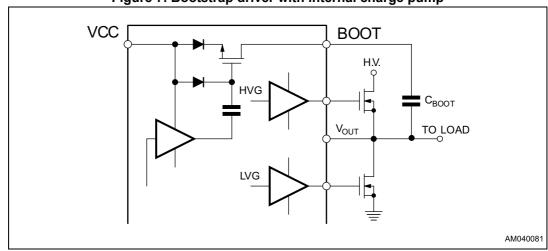



Figure 7. Bootstrap driver with internal charge pump

57

12/18 DocID030402 Rev 2

8 Typical application diagram

FLOATING STRUCTURE BOOTSTRAP DRIVER воот \blacksquare - from LVG UV DETECTION UV DETECTION HVG DRIVER Cboot LOGIC LEVEL SHIFTER FROM CONTROLLER LIN SHOOT THROUGH PREVENTION OUT TO LOAD FROM CONTROLLER HIN LVG DRIVER DEADTIME GND AM040078

Figure 8. Typical application schematic

Package information L6399

9 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

L6399 Package information

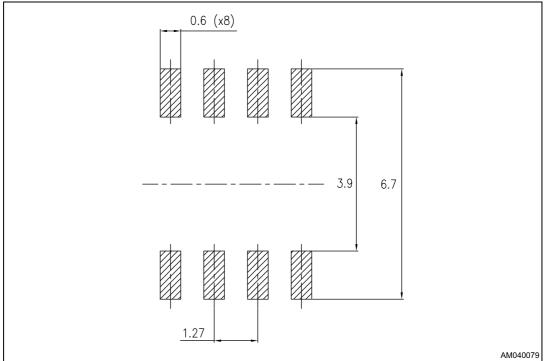
9.1 SO-8 package information

Figure 9. SO-8 package outline

Table 8. SO-8 package mechanical data

Symbol		Dimensions (mm		Note
Symbol	Min.	Тур.	Max.	Note
Α	-	-	1.75	-
A1	0.10	-	0.25	-
A2	1.25	-	-	-
b	0.28	-	0.48	-
С	0.17	-	0.23	-
D	4.80	4.90	5.00	(1)
E	5.80	6.00	6.20	-
E1	3.80	3.90	4.00	(2)
е	-	1.27	-	-
h	0.25	-	0.50	-
L	0.40	-	1.27	-
L1	-	1.04	-	-
k	0	-	8	(3)
ccc	-	-	0.10	-

The dimension "D" does not include the mold flash, protrusions or gate burrs. The mold flash, protrusions or gate burrs shall not exceed 0.15 mm in total (both sides).


3. Degrees.

The dimension "E1" does not include the interlead flash or protrusions. The interlead flash or protrusions shall not exceed 0.25 mm per side.

Package information L6399

Figure 10. SO-8 footprint

L6399 Order codes

10 Order codes

Table 9. Order codes

Order codes	Package	Packaging
L6399D	SO-8	Tube
L6399DTR	SO-8	Tape and reel

11 Revision history

Table 10. Document revision history

Date	Revision	Changes
03-Mar-2017	1	Initial release.
ン/-Mar-201/ I ソ I		Updated document status to: Datasheet - production data on page 1.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

57

18/18 DocID030402 Rev 2