5.0Gbps PCI Express Passive Switches

General Description

The MAX4888A/MAX4889A high-speed passive switches route PCI Express ${ }^{\circledR}$ (PCle) data between two possible destinations. The MAX4888A is a quad single-pole/dou-ble-throw ($4 \times$ SPDT) switch ideally suited for switching two half lanes of PCle data between two destinations. The MAX4889A is an octal single-pole/double-throw (8 x SPDT) switch ideal for switching four half lanes of PCle data between four destinations. The MAX4888A/ MAX4889A feature a single digital control input (SEL) to switch signal paths.
The MAX4888A/MAX4889A are fully specified to operate from a single +3.0 V to +3.6 V power supplytt. The MAX4888A is available in a $3.5 \mathrm{~mm} \times 5.5 \mathrm{~mm}$, 28-pin TQFN package. The MAX4889A is available in a 3.5 mm $\times 9.0 \mathrm{~mm}, 42$-pin TQFN package. Both devices operate over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.
Features
Low Same-Pair Skew of 7ps
Low 120нA (Max) Quiescent Current
Supports PCle Gen I and Gen II Data Rates
Flow-Through Pin Configuration for Ease of
Layout
Lead-Free Packaging
Desktop Computers
Servers/Storage Area Networks
Laptops

Ordering Information/Selector Guide

PART	TEMP RANGE	PIN-PACKAGE	CONFIGURATION
MAX4888AETI +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 TQFN-EP*	Two Half Lanes
MAX4889AETO +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	42 TQFN-EP*	Four Half Lanes

+Denotes lead(Pb)-free/RoHS-compliant package.
*EP = Exposed paddle.
t+Contact factory if operating at +2.5 V or +1.8 V . Typical Application Circuit appears at end of data sheet.
PCI Express is a registered trademark of PCI-SIG Corp.
Pin Configurations

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

5.0Gbps PCI Express Passive Switches

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND, unless otherwise noted.)

Note 1: Signals on SEL, NO__, NC__ or COM__ exceeding V+ or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}+=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
ANALOG SWITCH						
Analog-Signal Range	VCOM $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$				(V+-1.2)	V
Voltage Between COM and NO/NC	I VCOM_- VNO_I, \| VCOM_{-}- V_{NC} I		0		1.8	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=+3.0 \mathrm{~V}, \mathrm{ICOM}_{-}=15 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}_{-}}=0 \mathrm{~V},+1.8 \mathrm{~V} \end{aligned}$		7		Ω
On-Resistance Match Between Pairs of Same Channel	Ron	$\begin{aligned} & \mathrm{V}_{+}=+3.0 \mathrm{~V}, \mathrm{ICOM}_{-}=15 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {NO_ }} \text { or } \mathrm{V}_{\mathrm{NC}_{-}}=0 \mathrm{OV}(\text { Notes } 3,4) \end{aligned}$		0.1	1	Ω
On-Resistance Match Between Channels	Ron	$\begin{aligned} & \mathrm{V}_{+}=+3.0 \mathrm{~V}, \mathrm{ICOM}_{-}=15 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}_{-}} \text {or } \mathrm{V}_{\mathrm{NC}_{-}}=0 \mathrm{OV}(\text { Notes } 3,4) \end{aligned}$		0.6	2	Ω
On-Resistance Flatness	RFLAT(ON)	$\begin{aligned} & \mathrm{V}_{+}=+3.0 \mathrm{~V}, \mathrm{ICOM}=15 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}_{-}}=0 \mathrm{~V},+1.8 \mathrm{~V}(\text { Notes } 4,5) \end{aligned}$		0.06	2	Ω
NO_ or NC_ Off-Leakage Current	INO_(OFF) INC_(OFF)	$\begin{aligned} & \mathrm{V}_{+}=+3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=0 \mathrm{~V},+1.8 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}_{-}}=+1.8 \mathrm{~V}, 0 \mathrm{~V} \end{aligned}$	-1		+1	$\mu \mathrm{A}$
COM_ On-Leakage Current	ICOM_(ON)	$\begin{aligned} & \mathrm{V}_{+}=+3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}^{-}= \\ & \mathrm{V}_{\text {NO_ }} \text { or } \mathrm{V}_{\text {NC_ }}=\mathrm{V}_{\mathrm{COM}} \mathrm{~V},+1.8 \text { or unconnected } \end{aligned}$	-1		+1	$\mu \mathrm{A}$

5.0Gbps PCI Express Passive Switches

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}+=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}+=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

Note 2: All units are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design and characterization and are not production tested.
Note 3: $\Delta \operatorname{RON}=\operatorname{RON}(\mathrm{MAX})-\operatorname{RON}(\mathrm{MIN})$.
Note 4: Guaranteed by design. Not production tested.
Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.

5.0Gbps PCI Express Passive Switches

5.0Gbps PCI Express Passive Switches

Typical Operating Characteristics (continued)
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

EYE DIAGRAM
($\mathrm{V}_{+}=+1.8 \mathrm{~V}, \mathrm{f}=1.25 \mathrm{GHz}$,
600 mV p-p PRBS SIGNAL, $\left.\mathrm{RS}_{\mathbf{S}}=\mathrm{R}_{\mathrm{L}}=50 \Omega\right) \dagger$

*PRBS = PSEUDORANDOM BIT SEQUENCE
† = GEN 1, 2.5Gbps; U1 = 400ps

EYE DIAGRAM
($\mathrm{V}_{+}=+1.8 \mathrm{~V}, \mathrm{f}=2.5 \mathrm{GHz}$, 600 mV P-p PRBS SIGNAL, $\left.\mathrm{R}_{\mathrm{S}}=\mathrm{RL}_{\mathrm{L}}=50 \Omega\right)^{\boldsymbol{t}} \dagger$

*PRBS = PSEUDORANDOM BIT SEQUENCE $\dagger t=$ GEN $11,5.0 \mathrm{OGbps} ; \mathrm{U1}=200 \mathrm{ps}$

EYE DIAGRAM
$\left(\mathrm{V}_{+}=+2.5 \mathrm{~V}, \mathrm{f}=1.25 \mathrm{GHz}\right.$, 600 mV P-P PRBS SIGNAL, $\left.\mathrm{RS}_{S}=\mathrm{R}_{\mathrm{L}}=50 \Omega\right)^{\dagger}$

*PRBS = PSEUDORANDOM BIT SEQUENCE
$\dagger=$ GEN $1,2.5 \mathrm{Gbps} ; \mathrm{U1}=400 \mathrm{ps}$

EYE DIAGRAM
($\mathrm{V}_{+}=+2.5 \mathrm{~V}, \mathrm{f}=2.5 \mathrm{GHz}$, 600 mV P-P PRBS SIGNAL, $\left.\mathrm{R}_{S}=\mathrm{RL}_{\mathrm{L}}=50 \Omega\right) \dagger \dagger$

*PRBS = PSEUDORANDOM BIT SEQUENCE $\mathrm{tt}=\mathrm{GEN} 11,5.0 \mathrm{Gbps} ; \mathrm{U} 1=200 \mathrm{ps}$

EYE DIAGRAM
($\mathrm{V}_{+}=+3.3 \mathrm{~V}, \mathrm{f}=1.25 \mathrm{GHz}$,
600 mV P.p PRBS SIGNAL, $\left.\mathrm{RS}_{\mathrm{S}}=\mathrm{RL}_{\mathrm{L}}=50 \Omega\right)^{\dagger}$

50ps/div
*PRBS = PSEUDORANDOM BIT SEQUENCE $\dagger=$ GEN 1, 2.5Gbps; U1 = 400ps

EYE DIAGRAM
($\mathrm{V}_{+}=+3.3 \mathrm{~V}, \mathrm{f}=2.5 \mathrm{GHz}$,
600 mV p-p PRBS SIGNAL, $\left.\mathrm{R}_{\mathrm{S}}=\mathrm{RL}_{\mathrm{L}}=\mathbf{5 0 \Omega}\right)^{\dagger \dagger}$

*PRBS = PSEUDORANDOM BIT SEQUENCE
$\mathrm{tt}=\mathrm{GEN} 11,5.0 \mathrm{Gbps} ; \mathrm{U} 1=200 \mathrm{ps}$

5.0Gbps PCI Express Passive Switches

Pin Description

PIN		NAME	FUNCTION
MAX4888A	MAX4889A		
$\begin{gathered} 1,10,12,14 \\ 20,25,27 \end{gathered}$	$\begin{gathered} 1,4,10,14,17 \\ 19,21,39,41 \end{gathered}$	GND	Ground
2	9	SEL	Digital Control Input
3, 9	-	N.C.	No Connection. Not internally connected.
4	2	COM1+	Analog Switch 1. Common Positive Terminal.
5	3	COM1-	Analog Switch 1. Common Negative Terminal.
6	6	COM2+	Analog Switch 2. Common Positive Terminal.
7	7	COM2-	Analog Switch 2. Common Negative Terminal.
$\begin{gathered} 8,11,13,19 \\ 26,28 \end{gathered}$	$\begin{gathered} 5,8,13,18, \\ 20,30, \\ 40,42 \end{gathered}$	V+	Positive-Supply Voltage Input. Connect $\mathrm{V}+$ to $\mathrm{a}+3.0 \mathrm{~V}$ to +3.6 V supply voltage. Bypass V+ to GND with a $0.1 \mu \mathrm{~F}$ capacitor placed as close to the device as possible (See the Board Layout section).
15	31	NO2-	Analog Switch 2. Normally Open Negative Terminal.
16	32	NO2+	Analog Switch 2. Normally Open Positive Terminal.
17	33	NO1-	Analog Switch 1. Normally Open Negative Terminal.
18	34	NO1+	Analog Switch 1. Normally Open Positive Terminal.
21	35	NC2-	Analog Switch 2. Normally Closed Negative Terminal.
22	36	NC2+	Analog Switch 2. Normally Closed Positive Terminal.
23	37	NC1-	Analog Switch 1. Normally Closed Negative Terminal.
24	38	NC1+	Analog Switch 1. Normally Closed Positive Terminal.
-	11	COM3+	Analog Switch 3. Common Positive Terminal.
-	12	COM3-	Analog Switch 3. Common Negative Terminal.
-	15	COM4+	Analog Switch 4. Common Positive Terminal.
-	16	COM4-	Analog Switch 4. Common Negative Terminal.
-	22	NO4-	Analog Switch 4. Normally Open Negative Terminal.
-	23	NO4+	Analog Switch 4. Normally Open Positive Terminal.
-	24	NO3-	Analog Switch 3. Normally Open Negative Terminal.
-	25	NO3+	Analog Switch 3. Normally Open Positive Terminal.
-	26	NC4-	Analog Switch 4. Normally Closed Negative Terminal.
-	27	NC4+	Analog Switch 4. Normally Closed Positive Terminal.
-	28	NC3-	Analog Switch 3. Normally Closed Negative Terminal.
-	29	NC3+	Analog Switch 3. Normally Closed Positive Terminal.
-	-	EP	Exposed Paddle. Connect EP to GND.

5.0Gbps PCI Express Passive Switches

C INCLUDES FIXTURE AND STRAY CAPACITANCE

$$
\begin{aligned}
& V_{\text {OUT }}=V_{N_{-}}\left(\frac{R_{L}}{R_{L}+R_{\text {ON }}}\right) \\
& V_{N_{-}}=V_{N_{N} O_{-}} O R V_{V_{N C_{-}}}
\end{aligned}
$$

Figure 1. Switching Time

5.0Gbps PCI Express Passive Switches

Figure 2. Propagation Delay and Output Skew

5.0Gbps PCI Express Passive Switches

Test Circuits/Timing Diagrams (continued)

Figure 3. On-Loss, Off-Isolation, and Crosstalk

Figure 4. Channel Off-/On-Capacitance

Detailed Description

The MAX4888A/MAX4889A high-speed passive switches route PCle data between two possible destinations. The MAX4888A/MAX4889A are ideal for routing PCle signals to change the system configuration. For example, in a graphics application, the MAX4888A/MAX4889A create
two sets of eight lanes from a single 16-lane bus. The MAX4888A/MAX4889A feature a single digital control input (SEL) to switch signal paths.
The MAX4888A/MAX4889A are fully specified to operate from a single +3.0 V to +3.6 V power supplytt.

Digital Control Input (SEL)

The MAX4888A/MAX4889A provide a single digital control input (SEL) to select the signal path between the COM__ and NO__/NC__ channels. The truth tables for the MAX4888A/MAX4889A are depicted in the Functional Diagrams/Truth Table section. Drive SEL rail-to-rail to minimize power consumption.

Analog Signal Levels

The MAX4888A/MAX4889A accept standard PCle signals to a maximum of $\mathrm{V}_{+}-1.2 \mathrm{~V}$. Signals on the COM_+ channels are routed to either the NO_+ or NC_+ channels, and signals on the COM_- channels are routed to either the NO_- or NC_- channels. The MAX4888A/ MAX4889A are bidirectional switches, allowing COM__, NO__, and NC__ to be used as either inputs or outputs.
${ }^{++}$Contact factory if operating at +2.5 V or +1.8 V .

5.0Gbps PCI Express Passive Switches

Functional Diagrams/Truth Table

5.0Gbps PCI Express Passive Switches

Applications Information

PCle Switching

The MAX4888A/MAX4889A primary applications are aimed at reallocating PCle lanes (see Figure 5). For example, in graphics applications, several manufacturers have found that it is possible to improve performance by a factor of nearly two by splitting a single 16-lane PCle bus into two 8-lane buses. Two of the more prominent examples are SLITM (Scaled Link Interface) and CrossFire ${ }^{\text {TM }}$. The MAX4889A permits a computer motherboard to operate properly with a single 16-lane graphics card, and can later be updated to dual cards. The same motherboard can be used with dual cards where the user sets a jumper or a bit through software to switch between single- or dual-card operation. Common mode below 1 V operation requirement.

Board Layout

High-speed switches require proper layout and design procedures for optimum performance. Keep designcontrolled impedance PCB traces as short as possible or follow impedance layouts per the PCle specification. Ensure that power-supply bypass capacitors are placed as close to the device as possible. Multiple bypass capacitors are recommended. Connect all grounds and the exposed pad to large ground planes. Common mode below 1 V operation requirement.

Figure 5. The MAX4888A/MAX4889A Used as a Single-Lane Switch

CrossFire is a trademark of ATI Technologies, Inc.
SLI is a trademark of NVIDIA Corporation.

ESD Protection

As with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The COM_+ and COM_- lines have extra protection against static electricity. Maxim's engineers have developed state-of-the-art structures to protect these pins against ESD of $\pm 6 \mathrm{kV}$ without damage. The ESD structures withstand $\pm 6 \mathrm{kV}$ of ESD in all states: normal operation, state output mode, and powered down.

Human Body Model
The MAX4889A COM_+ and COM_- pins are characterized for $\pm 6 \mathrm{kV}$ ESD protection using the Human Body Model (MIL-STD-883, Method 3015). Figure 6 shows the Human Body Model and Figure 7 shows the current waveform it generates when discharged into low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the device through a resistor.

Figure 6. Human Body ESD Test Model

Figure 7. Human Body Model Current Waveform
Chip Information
PROCESS: CMOS

5.0Gbps PCI Express Passive Switches

5.0Gbps PCI Express Passive Switches

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
28 TQFN-EP	T283555-1	$\underline{\mathbf{2 1 - 0 1 8 4}}$
42 TQFN-EP	T423590M-1	$\underline{\mathbf{2 1 - 0 1 8 1}}$

5.0Gbps PCI Express Passive Switches

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$4 / 07$	Initial release	-
2	$5 / 09$	Updated voltage range, style edits.	$1,2,3,5-9,13,14$

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Analog Devices Inc.:
$\underline{\text { MAX4889AETO }+ \text { MAX4889AETO }+ \text { T }}$

