10k Precision-Matched Resistor-Divider in SOT23

General Description

The MAX5492 precision resistor-divider consists of two accurately matched resistors with access to the ends and center of the divider. This device offers excellent resistance matching of 0.035\% (A grade), 0.05\% (B grade), and 0.1% (C grade). The MAX5492 includes an extremely low-resistance-ratio temperature drift of $1.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (typ) over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, and has an end-to-end resistance of $10 \mathrm{k} \Omega$. Resistance ratios from $1: 1$ to 10:1 are available. Five standard ratios are available (see Table 1), and custom ratios are also available upon request. To enhance device and system robustness, the MAX5492 features $\pm 2 \mathrm{kV}$ Human Body Model electrostatic discharge (ESD) protection to ensure against realworld ESD events. The MAX5492 is ideal for precision gain-setting applications where tight resistance matching and low temperature drift are necessary.
The MAX5492 is available in a space-saving 5-pin SOT23 package, and is guaranteed over the military $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.

Applications
Industrial Process Control
Instrumentation
Precision Gain Setting
Medical Equipment
Automatic Test Equipment
Base Stations
\qquad Features

- Resistance Ratios from 1:1 to 10:1
- Custom Ratios Available Upon Request
- Tight Initial Ratio Accuracy
0.035\% (MAX5492A)
0.05\% (MAX5492B)
0.1\% (MAX5492C)
- Low 1.5ppm/ ${ }^{\circ} \mathrm{C}$ (typ) Resistor-Ratio-Drift (1.1:1)
- Up to 40V Operating Voltage Across Sum of R1 and R2
- Tiny 5-Pin SOT23 Package

Block Diagram

10k Ω Precision-Matched Resistor-Divider in SOT23

ABSOLUTE MAXIMUM RATINGS

Voltage Between P1 and P2	$\pm 50 \mathrm{~V}$
Continuous Current into Any Pin.................................. $\pm 4.2 \mathrm{~mA}$	
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
5-Pin SOT23 (derate $7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	571.4 mW
$5-\mathrm{Pin}$ SOT23 ($\theta_{\text {J-A }}$)	$.141^{\circ} \mathrm{C} / \mathrm{W}$

Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature .. $150^{\circ} \mathrm{C}$
Storage Temperature Range-65 ${ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(T_{A}=-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Initial Resistor-Ratio Error (Note 2)		MAX5492_A, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			± 0.035	\%
		MAX5492_B, $\mathrm{T}_{A}=+25^{\circ} \mathrm{C}$			± 0.05	
		MAX5492_C, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			± 0.1	
Resistance-Ratio Temperature Coefficient (Note 3)		Ratio 1.1:1		1.5		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
		Ratio 1.5:1		3		
		Ratio 3.2:1 \leq ratio $\leq 10: 1$		5.5		
Absolute Temperature Coefficient of Resistance	TCR	(Note 4)		35		ppm $/{ }^{\circ} \mathrm{C}$
Voltage Coefficient of Resistance	VCR	(Note 5)		0.1		ppm/V
End-to-End Resistance ($\mathrm{R}_{1}+\mathrm{R}_{2}$)			9.25	10	10.75	k Ω
Continuous Working Voltage Between P1 and P2	VP1-P2		-40		+40	V
P1, P2, P3, SL, SH Capacitance				2		pF
Resistance-Ratio Stability		2000 hours at $+70^{\circ} \mathrm{C}$		± 0.03		\%
-3dB Bandwidth	$f_{3 d B}$	1.1:1 ratio (Note 6)		30		MHz
Thermal Noise		(Note 7)		45		$\mu \mathrm{V}_{\text {RMS }}$
Current Noise		(Note 8)		<-30		dB
Maximum Power Rating				160		mW

Note 1: The MAX5492 is 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ are guaranteed by design and characterization.
Note 2: Testing conditions: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{P} 1-\mathrm{P} 2}=10 \mathrm{~V}$ and 40 V .
Note 3: Resistance-ratio temperature coefficient is defined $\left|\frac{\Delta\left(\frac{R_{1}}{R_{2}}\right)}{\frac{R_{1}}{R_{2}} \times \Delta T}\right|$ and is guaranteed by design, not production tested

Note 4: Absolute TCR is defined as $\left|\frac{\Delta\left(R_{1}+R_{2}\right)}{\left(R_{1}+R_{2}\right) \times \Delta T}\right|$ and is tested at 10 V and 40 V .

Note 5: Resistance-ratio voltage coefficient is defined as

10k Ω Precision-Matched Resistor-Divider in SOT23

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(T_{A}=-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)
Note 6: Calculate bandwidth by using $\frac{1}{2 \pi R C}$ where C is $C_{P 3}$ and $R=\frac{R_{1} \times R_{2}}{R_{1}+R_{2}}$
Note 7: Calculated according to $\sqrt{\frac{\mathrm{kT}}{\mathrm{C}}}$ noise.
Note 8: In accordance with the military specification MIL-STD-202G method 308.

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{P} 1-\mathrm{P} 3}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

10k Ω Precision-Matched Resistor-Divider in SOT23

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{P} 1-\mathrm{P} 3}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Pin Description

PIN	NAME	FUNCTION
1	P1	R1 Connection Terminal
2	SL	Sense Connection for Low Side of Resistor String. Leave floating or connect in a Kelvin connection configuration.
3	P2	R2 Connection Terminal
4	P3	Set-Point Connection Terminal
5	SH	Sense Connection for High Side of Resistor String. Leave floating or connect in a Kelvin connection configuration.

Detailed Description

The MAX5492 consists of two precision, low-ratio-drift resistors with an end-to-end resistance of $10 k \Omega\left(R_{1}+R_{2}\right)$. (See Figure 1.) P3 is the set point of the divider. The maximum working voltage of the MAX5492 is 40 V . This device offers a wide range of resistance ratios (R_{1} / R_{2}) from $1: 1$ to $10: 1$ and is ideally suited for precision operational-amplifier gain/attenuation control. The MAX5492 features a $\pm 2 \mathrm{kV}$ ESD protection that enhances system robustness. A maximum initial ratio accuracy of 0.035% and a low ratio drift enhance system accuracy.

Applications Information

Kelvin Sensing
Kelvin sensing can improve accuracy in sensitive applications. Apply a voltage or current at P1 and use sense high (SH) and sense low (SL) to monitor the voltage at the upper and lower ends of the resistor string.

10k Ω Precision-Matched Resistor-Divider in SOT23

Typical Applications

Figure 1. Inverting Amplifier Configuration

Figure 3. Buffered Attenuator

Self-Heating and Error

Applying a voltage across terminals P1 and P2 causes the device to heat up due to power dissipation. In highvoltage applications, consider the error in resistanceratio temperature coefficient caused by self-heating. The worst-case self-heating occurs when the operating voltage attains its maximum value. Approximate the result of power dissipation under this condition as:

$$
P_{\mathrm{DISS}}=\frac{\left(\mathrm{V}_{\mathrm{MAX}}\right)^{2}}{\mathrm{R}}=\frac{(40 \mathrm{~V})^{2}}{10 \mathrm{k} \Omega}=160 \mathrm{~mW}
$$

Figure 2. Noninverting Amplifier Configuration

Figure 4. Attenuator with Buffer
The thermal resistance from junction to ambient, $\theta_{\mathrm{J}-\mathrm{A} \text {, }}$ for a 5 -pin SOT23 package is $141^{\circ} \mathrm{C} / \mathrm{W}$. Calculate the resulting temperature rise as:

$$
\Delta \mathrm{T}=160 \mathrm{~mW} \times 141^{\circ} \mathrm{C} / \mathrm{W}=22.5^{\circ} \mathrm{C}
$$

If the ratio temperature coefficient is $1.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (typ), the total error introduced by self-heating is:

$$
22.5^{\circ} \mathrm{C} \times 1.5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}=33.75 \mathrm{ppm}
$$

10k Ω Precision-Matched Resistor-Divider in SOT23

Example Part Numbers

PART NUMBER	RESISTOR-RATIO RANGE	RESISTOR-RATIO ACCURACY (\% MAX)	RESISTOR RATIO
MAX5492PA02500-T	2.000 to 2.999	0.035	$2.5: 1$
MAX5492RB03000-T	3.000 to 3.999	0.05	$3: 1$
MAX5492UA07538-T	7.538 to 10.0	0.035	$7.538: 1$

10k Ω Precision-Matched Resistor-Divider in SOT23

Table 1. Standard Ratios*

PART NUMBER	RESISTOR RATIO	RESISTOR-RATIO SUFFIX	RESISTOR-RATIO ACCURACY (\% MAX)	TOP MARK
MAX5492RA01100-T	$1.1: 1$	01100	0.035	AERA
MAX5492RB01100-T	$1.1: 1$	01100	0.05	AERC
MAX5492RC01100-T	$1.1: 1$	01100	0.1	AERE
MAX5492PA01500-T	$1.5: 1$	01500	0.035	AEQU
MAX5492PB01500-T	$1.5: 1$	01500	0.05	AEQW
MAX5492PC01500-T	$1.5: 1$	01500	0.1	AEQY
MAX5492PA03200-T	$3.2: 1$	$0.2: 1$	03200	0.035
MAX5492PB03200-T	$3.2: 1$	03200	0.05	AEVE
MAX5492PC03200-T	$7.538: 1$	07538	0.1	AEVF
MAX5492LA07538-T	$7.538: 1$	07538	0.05	AEVG
MAX5492LB07538-T	$7.538: 1$	07538	0.1	AEQB
MAX5492LC07538-T	$10: 1$	10000	0.035	AEQD
MAX5492LA10000-T	10000	0.05	AEQF	
MAX5492LB10000-T	$10: 1$	10000	0.1	AEQC
MAX5492LC10000-T			AEQE	

*Standard ratios are available for ordering in any quantity. Nonstandard ratios are also available for values from 1:1 to 10:1. A minimum
order quantity of 10,000 units is required for nonstandard ratios. Contact factory for more information.

Table 2. Ratio Ranges

LETTER SUFFIX	RESISTOR-RATIO RANGE
R	1.0 to 1.399
P	1.4 to 1.999
N	2.0 to 2.999
M	3.0 to 7.537
L	7.538 to 10

Chip Information
TRANSISTOR COUNT: 0 PROCESS: BiCMOS

10k Ω Precision-Matched Resistor-Divider in SOT23

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

SYMBDL	MIN	MAX
A	0.90	1.45
A1	0.00	0.15
A己	0.90	1.30
b	0.35	0.50
C	0.08	0.20
D	2.80	3.00
E	2.60	3.00
E1	1.50	1.75
L	0.35	0.60
L1	0.60	
REF		
e	0.95	
$e 1$	1.90	
BSC.		
a	0°	
	8°	

NOTES:
ALL DIMENSIDNS ARE IN MILLIMETERS
FIIT LENGTH MEASURED AT INTERCEPT POINT BETWEEN DATUM A \& LEAD SURFACE.
3. PACKAGE ZUTLINE EXCLUSIVE DF MLLD FLASH \& METAL BURR. MLLD

FLASH, PROTRUSION DR METAL BURR SHIULD NDT EXCEED 0.25 MM.
4. PACKAGE DUTLINE INCLUSIVE OF SULDER PLATING.
5. MEETS JEDEC MD178, VARIATIUN AA.
6. LEADS TD BE CDPLANAR WITHIN 0.10 mm
7. SULDER THICKNESS MEASURED AT FLAT SECTION IF LEAD BETWEEN 0.08 mm AND 0.15 mm FRDM LEAD TIP.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8 \qquad Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

[^0]
Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Analog Devices Inc.:
MAX5492LC10000+T

Other:
MAX5492LB10000+T MAX5492PA01500+T

[^0]: © 2005 Maxim Integrated Products

