12.5 mm Modular Panel Potentiometer High Dielectric Strength
 FEATURES

- High dielectric strength potentiometer up to $5000 \mathrm{~V}_{\mathrm{RMS}}$
- 12.5 mm square single turn panel control
- Plastic shaft and bushing
- Two shaft lengths and 29 terminal styles
- P11P: Cermet element
- P11D: Conductive plastic element
- Multiple assemblies - up to seven modules
- Test according to CECC 41000 or IEC 60393-1
- Shaft and panel sealed version
- Up to twenty-one indent positions
- Rotary switch options
- Custom designs on request
- Compliant to RoBS Directive 2002/95/EC

P11P, P11D

12.5 mm Modular Panel Potentiometer High Dielectric Strength

GENERAL SPECIFICATIONS

ELECTRICAL (initial)					
	P11D			P11P	
Resistive Element	Conductive plastic			Cermet	
Electrical Travel	$270^{\circ} \pm 10^{\circ}$			$270^{\circ} \pm 10^{\circ}$	
Resistance Range ${ }^{(1)} \begin{array}{r}\text { Linear Taper } \\ \text { Non-Linear Taper }\end{array}$	$\begin{gathered} 1 \mathrm{k} \Omega \text { to } 1 \mathrm{M} \Omega \\ 470 \Omega \text { to } 500 \mathrm{k} \Omega \end{gathered}$			$\begin{gathered} 20 \Omega \text { to } 10 \mathrm{M} \Omega \\ 100 \Omega \text { to } 2.2 \mathrm{M} \Omega \end{gathered}$	
ToleranceStandard On Request	± 20 \%			$\pm 20 \%$	
Taper					
Circuit Diagram	(2)				
Linear Taper Non-Linear Taper Multiple Assemblies	$\begin{gathered} \hline 0.5 \mathrm{~W} \text { at }+70^{\circ} \mathrm{C} \\ 0.25 \mathrm{~W} \text { at }+70^{\circ} \mathrm{C} \end{gathered}$ 0.25 W at $+70^{\circ} \mathrm{C}$ per module			$\begin{gathered} 1 \mathrm{~W} \text { at }+70^{\circ} \mathrm{C} \\ 0.5 \mathrm{~W} \text { at }+70^{\circ} \mathrm{C} \\ 0.5 \mathrm{~W} \text { at }+70^{\circ} \mathrm{C} \text { per module } \end{gathered}$	
Power Rating at $70^{\circ} \mathrm{C}$					
Temperature Coefficient, $-40^{\circ} \mathrm{C}$ to + $100{ }^{\circ} \mathrm{C}$ (Typical)	$\pm 500 \mathrm{ppm}$			$\pm 150 \mathrm{ppm}$	
Limiting Element Voltage	350 V			350 V	
End Resistance (Typical)	2Ω			2Ω	
Contact Resistance Variation Linear Taper	1%			2% or 3Ω	
Independent Linearity (Typical) Linear Taper	$\pm 5 \%$			± 5 \%	
Insulation Resistance	$10^{6} \mathrm{M} \Omega \mathrm{min}$.			$10^{6} \mathrm{M} \Omega \mathrm{min}$.	
Dielectric Strength $\begin{array}{r}\text { Leads to Support Plate } \\ \text { Leads to Shaft and Bushing }\end{array}$	$3000 \mathrm{~V}_{\text {RMS }} \mathrm{min}$.			$3000 \mathrm{~V}_{\text {RMS }} \mathrm{min}$.	
	$5000 \mathrm{~V}_{\text {RMS }} \mathrm{min}$.			$5000 \mathrm{~V}_{\text {RMS }} \mathrm{min}$.	
Mechanical Endurance				50000 cycles	

Note

${ }^{(1)}$ Consult Vishay Sfernice for other ohmic values

MECHANICAL (initial)	
Mechanical Travel	$300^{\circ} \pm 5^{\circ}$
Operating Torque (Typical)	
Single and Dual Assemblies	0.2 Ncm to $1 \mathrm{Ncm} \mathrm{max}$. (0.3 oz.-inch to 1.4 oz.-inch max.)
Three to Seven Modules (Per Module)	0.2 Ncm to $0.3 \mathrm{Ncm} \mathrm{max}$. (0.3 oz .-inch to 0.45 oz.-inch max.)
End Stop Torque	$80 \mathrm{Ncm} \mathrm{max}. \mathrm{(6.8} \mathrm{Ib-inch} \mathrm{max)}$.
Tightening Torque	150 Ncm max. (13 lb-inch max.)
Weight	
Single Assemblies	3.5 g
Two to Seven Modules (Per Module)	1.5 g to 2 g (0.25 oz . to 0.32 oz .)

ENVIRONMENTAL		
	P11D	P11P
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Climatic Category	$40 / 100 / 21$	$40 / 100 / 56$
Sealing	IP 64	IP 64
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

MARKING

- Potentiometer Module

Vishay logo, nominal ohmic value ($\Omega, \mathrm{k} \Omega, \mathrm{M} \Omega$), two stars identify P11D version, tolerance in \% - variation law, manufacturing date (four digits), " 3 " for the lead 3

- Switch Module

Version, manufacturing date (four digits), "c" for common lead

- Indent Module

Version, manufacturing date (four digits)

PACKAGING

Box

- Box

PERFORMANCES				
TESTS	CONDITIONS	TYPICAL VALUE AND DRIFTS		
			P11D	P11P
Electrical Endurance	1000 h at rated power $90^{\prime} / 30^{\prime}$ - ambient temp. $70^{\circ} \mathrm{C}$	$\Delta R_{T} / R_{T}$ Contact resistance variation	$\begin{gathered} \pm 10 \% \\ \pm 5 \% \end{gathered}$	$\begin{aligned} & \pm 2 \% \\ & \pm 4 \% \end{aligned}$
Change of Temperature	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}, 5$ cycles	$\Delta R_{T} / R_{T}$	± 0.5 \%	± 0.2 \%
Damp Heat, Steady State	$+40^{\circ} \mathrm{C}, 93 \%$ relative humidity P11P: 56 days, P11D: 21 days	$\Delta R_{\top} / R_{\top}$ Insulation resistance	$\begin{gathered} \pm 5 \% \\ \gg 10 \mathrm{M} \Omega \end{gathered}$	$\begin{gathered} \quad \pm 2 \% \\ > \\ >1000 \mathrm{M} \Omega \end{gathered}$
Mechanical Endurance	50000 cycles	$\Delta R_{T} / R_{T}$ Contact resistance variation	$\begin{aligned} & \pm 6 \% \\ & \pm 4 \% \end{aligned}$	$\begin{aligned} & \pm 5 \% \\ & \pm 5 \% \end{aligned}$
Climatic Sequence	Dry heat at $+125^{\circ} \mathrm{C} /$ damp heat cold - $55^{\circ} \mathrm{C} /$ damp heat, 5 cycles	$\Delta R_{T} / R_{T}$	-	$\pm 1 \%$
Shock	50 g 's, 11 ms 3 shocks - 3 directions	$\begin{gathered} \Delta R_{\mathrm{T}} / R_{\mathrm{T}} \\ \Delta R_{1-2} / R_{1-2} \end{gathered}$	$\begin{aligned} & \pm 0.2 \% \\ & \pm 0.5 \% \end{aligned}$	$\begin{aligned} & \pm 0.2 \% \\ & \pm 0.5 \% \end{aligned}$
Vibration	10 Hz to 55 Hz 0.75 mm or 10 g 's, 6 h	$\begin{gathered} \Delta R_{\top} / R_{\mathrm{T}} \\ \Delta \mathrm{~V}_{1-2} / \mathrm{V}_{1-3} \end{gathered}$	$\begin{aligned} & \pm 0.2 \% \\ & \pm 0.5 \% \end{aligned}$	$\begin{aligned} & \pm 0.2 \% \\ & \pm 0.5 \% \end{aligned}$

ORDERING INFORMATION (Part Number)

STANDARD RESISTANCE ELEMENT DATA

STANDARD RESISTANCE VALUES	P11P CERMET						P11A CONDUCTIVE PLASTIC LINEAR TAPER		
	LINEAR TAPER			NON-LINEAR TAPER					
	MAX. POWER AT $70{ }^{\circ} \mathrm{C}$	MAX. WORKING VOLTAGE	MAX. CUR. THROUGH WIPER	MAX. POWER AT $70^{\circ} \mathrm{C}$	MAX. WORKING VOLTAGE	MAX. CUR. THROUGH WIPER	MAX. POWER AT $70^{\circ} \mathrm{C}$	$\begin{gathered} \text { MAX. } \\ \text { WORKING } \\ \text { VOLTAGE } \end{gathered}$	MAX. CUR. THROUGH WIPER
Ω	W	V	mA	W	V	mA	W	V	mA
22	1	4.69	213						
47	1	6.85	146						
50	1	7.07	141						
100	1	10	100	0.5	7.1	70.7			
200	1	14.8	67.4	0.5	10.0	50.0			
470	1	21.6	46.1	0.5	15.3	32.7			
500	1	22.4	44.7	0.5	15.8	31.6			
1K	1	31.6	31.6	0.5	22.4	22.4	0.5	22.4	22.4
2.2 K	1	46.9	21.3	0.5	33.2	15.1	0.5	33.2	15.1
4.7K	1	63.5	14.5	0.5	48.5	10.3	0.5	48.5	10.3
5K	1	70.7	14.1	0.5	50.0	10.0	0.5	50.0	10.0
10K	1	100	10	0.5	79.7	7.07	0.5	79.7	7.07
22K	1	148	6.7	0.5	105	4.77	0.5	105	4.77
47K	1	217	4.6	0.5	153	3.26	0.5	153	3.26
50K	1	224	4.47	0.5	158	3.16	0.5	158	3.16
100K	1	316	3.16	0.5	224	2.24	0.5	224	2.24
220K	0.56	350	1.59	0.5	332	1.51	0.5	332	1.51
470K	0.26	350	0.75	0.26	350	0.74	0.26	350	0.74
500K	0.25	350	0.70	0.25	350	0.70	0.25	350	0.70
1M	0.12	350	0.35	0.12	350	0.35	0.12	350	0.35
2.2 M	0.05	350	0.16	0.05	350	0.07			
4.7M	0.02	350	0.07						

BUSHING DIMENSIONS - Dimensions in mm (inches) $\pm 0.5 \mathrm{~mm}\left(\pm 0.02^{\prime \prime}\right)$

PANEL CUT OUT - Dimensions in mm (inches) $\pm 0.5 \mathrm{~mm}$ ($\pm 0.02^{\prime \prime}$)

Note

- Hardware supplied in separate bags

ORDERING INFORMATION (Part Number)

LOCATING PEGS (Anti-Rotation Lug)

The locating peg is provided by a plate mounted on the bushing and positioned by the module sides. Four set positions are available, clock face orientation: 12, 3, 6, 9 .

Bushings have a double flat. When panel mounting holes have been punched accordingly, an anti-rotation lug is not necessary.

CODE	$\boldsymbol{\sigma}$ $(\mathbf{m m})$	\mathbf{L} $(\mathbf{m m})$	EFFECTIVE HIGH PEG
A	2	6.2	0.7
B	2	7.75	0.7
C	3.5	13.5	1.1

PANEL AND SHAFT SEALED

O ring plate can not be used with locating pegs

Note

- Locating pegs and panel o ring are supplied in separate bags with nuts and washers

ORDERING INFORMATION (Part Number)

SHAFTS - Dimensions in mm (inches) $\pm 0.5 \mathrm{~mm}$ (± 0.02 ")
The shaft length are always measured from the mounting face.
Shafts are designed by a 3 letter code (3 digits). Shafts are slotted and aligned to $\pm 10^{\circ}$ of the wiper position.

A PCB pins with front and back support plates - PCB pins - vertical mounting with 2 extra pins - 1 module only

FIRST DIGIT	
\mathbf{Y}	Soldering lugs
\mathbf{X}	PCB pins
\mathbf{Z}	PCB pins with front support plate
\mathbf{A}	PCB pins with front and back support plates
\mathbf{W}	PCB pins - vertical mounting with 2 extra pins - 1 module only

SECOND DIGIT	
$\mathbf{0}$	$\mathrm{Y}=4.65\left(0.183^{\prime \prime}\right)$ $\mathrm{A}, \mathrm{X}, \mathrm{Z}, \mathrm{W}=5.08\left(0.200^{\prime \prime}\right)$ pin spacing pins section $0.9 \times 0.3\left(0.035^{\prime \prime} \times 0.012^{\prime \prime}\right)$
$\mathbf{1}$	$2.54(0.100$ " $)$ pin spacing pin section $0.6 \times 0.3\left(0.024 " \times 0.012^{\prime \prime}\right)$
$\mathbf{2}$	$5.08\left(0.200^{\prime \prime}\right)$ pin spacing pins section $0.6 \times 0.3\left(0.024 " \times 0.012^{\prime \prime}\right)$

THIRD DIGIT	
$\mathbf{0}$	$5.08\left(0.200^{\prime \prime}\right)$ space between modules
$\mathbf{3}$	$7.62\left(0.300^{\prime \prime}\right)$ space between modules
$\mathbf{4}$	$10.16\left(0.400^{\prime \prime}\right)$ space between modules

DIMENSIONS in mm (inches) ± 0.5 (0.02)

HORIZONTAL MOUNTING

FRONT AND REAR SUPPORT PLATES

FRONT SUPPORT PLATE

LEADS

	LEADS			
	X../Y..	A../Z1./Z2.	Z0. (except with rotary switch)	Z0. (with rotary switch)
E	-	$3.6(0.14)$	$3.81(0.15)$	$2.15(0.085)$
F	-	$3.81(0.15)$	$5.08(0.20)$	$5.08(0.20)$
J	$7.06(0.278)$	-	-	-

SPECIAL CODES GIVEN BY VISHAY

Option available:

- Custom design on request
- Specific linearity
- Specific interlinerarity
- Specific taper
- Multiple assemblies with various modules

12.5 mm Modular Panel Potentiometer High Dielectric Strength

P11 OPTION: ROTARY SWITCH MODULES

- Rotary switchs
- Current up to 2 A
- Actuation CW or CCW position
- Sealing IP60

MODULES: RS ON/OFF SWITCH RSI CHANGEOVER SWITCH

The position of each module is free. RS and RSI rotary switches are housed in a standard P11 module size $12.7 \mathrm{~mm} \times 12.7 \mathrm{~mm} \times 5.08 \mathrm{~mm}$ (0.5 " $\times 0.5^{\prime \prime} \times 0.2^{\prime \prime}$). They have the same terminal styles as the assembled electrical modules.

An assembly can comprise 1 or more switch modules.
Switch actuation is described as seen from the shaft end.
D:means actuation in maximum CCW position
F:means actuation in maximum CW position
The switch actuation travel is 25° with a total mechanical travel of $300^{\circ} \pm 5^{\circ}$ and electrical travel of electrical modules is $238^{\circ} \pm 10^{\circ}$. Leads finish: Gold plated.

RDS SINGLE POLE SWITCH, NORMALLY OPEN

In full CCW position, the contact between 1 and 3 is open. It is made at the beginning of the travel in CW direction.

SWITCH SPECIFICATIONS		
Switching Power Maximum		$\begin{gathered} 62.5 \mathrm{VA} \mathrm{v} \\ 15 \mathrm{VA}= \end{gathered}$
Switching Current Maximum		$\begin{gathered} 0.25 \text { A } 250 \mathrm{~V} v \\ 0.5 \text { A } 30 \mathrm{~V}= \end{gathered}$
Maximum Current Through Element		2 A
Contact Resistance		$100 \mathrm{~m} \Omega$
Dielectric Strength	Terminal to Terminal	$1000 \mathrm{~V}_{\text {RMS }}$
	Terminal to Bushing	$5000 \mathrm{~V}_{\text {RMS }}$
Maximum Voltage Operation		$\begin{gathered} 250 \mathrm{~V} v \\ 30 \mathrm{~V}= \end{gathered}$
Insulation Resistance Between Contacts		$10^{6} \mathrm{M} \Omega$
Life at $\mathrm{P}_{\text {max }}$.		10000 actuations
Minimal Travel		25°
Operating Temperature		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

RSF SINGLE POLE SWITCH, NORMALLY OPEN

In full CW position, the contact between 1 and 3 is open. It is made at the beginning of the travel in CCW direction.

RSID SINGLE POLE CHANGEOVER

In full CCW position, the contact is made between 3 and 2 and open between 3 and 1 . Switch actuation (CW direction) reverses these positions.

RSIF SINGLE POLE CHANGEOVER

In full CW position, the contact is made between 1 and 2 and open between 1 and 3 . Switch actuation (CCW direction) reverses these positions.

ELECTRICAL DIAGRAM

RSD	RSID	RSIF
RSF	CCW POSITION	CW POSITION

Note

- Common

ORDERING INFORMATION (First order only)

RSD	
RSF	SPST: Single pole, open switch in CCW position -2 pins
RSID	SPST: Single pole, open switch in CW position -2 pins
RSIF	SPDT: Single pole, changeover switch in CCW position -3 pins
SPDT: Single pole, changeover switch in CW position -3 pins	

P11 OPTION: NEUTRAL MODULES "EN"

Neutral or screen module is housed in a standard P11 module.
It is used as a screen between two electrical modules.
The leads can be connected to ground.

ORDERING INFORMATION (First order only for special code creation)

	EN
EN	Neutral module

P11 OPTION: CENTER CURRENT TAP "J"

The extra terminal is a solder lug connected at 50% of electrical travel and siluated in the potentiometer module opposite the terminals.
Center tap presents a short circuit of 11° of travel.

- Sealing IP60

ORDERING INFORMATION (First order only)

\square
J Center tap

P11 OPTION: SPECIAL LINEARITY - CONFORMITY

The independent linearity (conformity for the non linear laws) is the maximum gap $\Delta \mathrm{V}$ between the actual variation curve and the theorical variation curve the nearest to it. The linearity and the conformity are expressed in percentage of the total applied voltage E

$$
\text { linearity conformity }=\frac{ \pm \Delta V_{\max }}{E}
$$

They are measured over 90% of actual electrical travel (centered).
On request linearity can be guaranteed in linear law.

ORDERING INFORMATION (First order only)
J123

P11 OPTION: SPECIAL INTERLINEARITY - INTERCONFORMITY

It is the maximum deviation between the actual voltage outputs of 2 or more pot modules in the same assembly. It is expressed as a percentage of the total applied voltage, or in dB attenuation

Interlinearity is measured between 2 pot modules, over 10 to 90% of the attenuation.

The interlinearity or interconformity is expressed as a percentage of the total applied voltage

$$
I \%=\frac{|C|}{E}
$$

Or in decibels by comparison between outputs V1 and V2

$$
I \mathrm{~dB}=20 \log \frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}
$$

ORDERING INFORMATION (First order only)

J44

J44
Interlinearity ± 2 \% (linear taper)
For other request, contact us

EXAMPLES OF FIRST ORDER INFORMATION
FIRST EXAMPLE: Triple module (switch is counted as a module)

ORDERING INFORMATION:
PART NUMBER
SHAFT AND BUSHING
MODULE NO. 1
MODULE NO. 2
MODULE NO. 3

PART NUMBER DESCRIPTION (used on some Vishay document or label, for information only)

P11P	3	F	0	GG	S	Y00	10K	20 \%	A			e3
MODEL	MODULES	BUSHING	OPTION	SHAFT	SHAFT STYLE	LEADS	VALUE	TOL.	TAPER	SPECIAL	SPECIAL	LEAD (Pb)-FREE

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

